Merge tag 'topic/core-stuff-2014-06-30' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
69
70 #include <asm/uaccess.h>
71
72 #define DRIVER_NAME "pktcdvd"
73
74 #define pkt_err(pd, fmt, ...) \
75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...) \
77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78 #define pkt_info(pd, fmt, ...) \
79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
80
81 #define pkt_dbg(level, pd, fmt, ...) \
82 do { \
83 if (level == 2 && PACKET_DEBUG >= 2) \
84 pr_notice("%s: %s():" fmt, \
85 pd->name, __func__, ##__VA_ARGS__); \
86 else if (level == 1 && PACKET_DEBUG >= 1) \
87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
88 } while (0)
89
90 #define MAX_SPEED 0xffff
91
92 static DEFINE_MUTEX(pktcdvd_mutex);
93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94 static struct proc_dir_entry *pkt_proc;
95 static int pktdev_major;
96 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
99 static mempool_t *psd_pool;
100
101 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
102 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
103
104 /* forward declaration */
105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106 static int pkt_remove_dev(dev_t pkt_dev);
107 static int pkt_seq_show(struct seq_file *m, void *p);
108
109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
110 {
111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
112 }
113
114 /*
115 * create and register a pktcdvd kernel object.
116 */
117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 const char* name,
119 struct kobject* parent,
120 struct kobj_type* ktype)
121 {
122 struct pktcdvd_kobj *p;
123 int error;
124
125 p = kzalloc(sizeof(*p), GFP_KERNEL);
126 if (!p)
127 return NULL;
128 p->pd = pd;
129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 if (error) {
131 kobject_put(&p->kobj);
132 return NULL;
133 }
134 kobject_uevent(&p->kobj, KOBJ_ADD);
135 return p;
136 }
137 /*
138 * remove a pktcdvd kernel object.
139 */
140 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
141 {
142 if (p)
143 kobject_put(&p->kobj);
144 }
145 /*
146 * default release function for pktcdvd kernel objects.
147 */
148 static void pkt_kobj_release(struct kobject *kobj)
149 {
150 kfree(to_pktcdvdkobj(kobj));
151 }
152
153
154 /**********************************************************
155 *
156 * sysfs interface for pktcdvd
157 * by (C) 2006 Thomas Maier <balagi@justmail.de>
158 *
159 **********************************************************/
160
161 #define DEF_ATTR(_obj,_name,_mode) \
162 static struct attribute _obj = { .name = _name, .mode = _mode }
163
164 /**********************************************************
165 /sys/class/pktcdvd/pktcdvd[0-7]/
166 stat/reset
167 stat/packets_started
168 stat/packets_finished
169 stat/kb_written
170 stat/kb_read
171 stat/kb_read_gather
172 write_queue/size
173 write_queue/congestion_off
174 write_queue/congestion_on
175 **********************************************************/
176
177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
183
184 static struct attribute *kobj_pkt_attrs_stat[] = {
185 &kobj_pkt_attr_st1,
186 &kobj_pkt_attr_st2,
187 &kobj_pkt_attr_st3,
188 &kobj_pkt_attr_st4,
189 &kobj_pkt_attr_st5,
190 &kobj_pkt_attr_st6,
191 NULL
192 };
193
194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
197
198 static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 &kobj_pkt_attr_wq1,
200 &kobj_pkt_attr_wq2,
201 &kobj_pkt_attr_wq3,
202 NULL
203 };
204
205 static ssize_t kobj_pkt_show(struct kobject *kobj,
206 struct attribute *attr, char *data)
207 {
208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 int n = 0;
210 int v;
211 if (strcmp(attr->name, "packets_started") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
213
214 } else if (strcmp(attr->name, "packets_finished") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
216
217 } else if (strcmp(attr->name, "kb_written") == 0) {
218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
219
220 } else if (strcmp(attr->name, "kb_read") == 0) {
221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
222
223 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
225
226 } else if (strcmp(attr->name, "size") == 0) {
227 spin_lock(&pd->lock);
228 v = pd->bio_queue_size;
229 spin_unlock(&pd->lock);
230 n = sprintf(data, "%d\n", v);
231
232 } else if (strcmp(attr->name, "congestion_off") == 0) {
233 spin_lock(&pd->lock);
234 v = pd->write_congestion_off;
235 spin_unlock(&pd->lock);
236 n = sprintf(data, "%d\n", v);
237
238 } else if (strcmp(attr->name, "congestion_on") == 0) {
239 spin_lock(&pd->lock);
240 v = pd->write_congestion_on;
241 spin_unlock(&pd->lock);
242 n = sprintf(data, "%d\n", v);
243 }
244 return n;
245 }
246
247 static void init_write_congestion_marks(int* lo, int* hi)
248 {
249 if (*hi > 0) {
250 *hi = max(*hi, 500);
251 *hi = min(*hi, 1000000);
252 if (*lo <= 0)
253 *lo = *hi - 100;
254 else {
255 *lo = min(*lo, *hi - 100);
256 *lo = max(*lo, 100);
257 }
258 } else {
259 *hi = -1;
260 *lo = -1;
261 }
262 }
263
264 static ssize_t kobj_pkt_store(struct kobject *kobj,
265 struct attribute *attr,
266 const char *data, size_t len)
267 {
268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 int val;
270
271 if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 pd->stats.pkt_started = 0;
273 pd->stats.pkt_ended = 0;
274 pd->stats.secs_w = 0;
275 pd->stats.secs_rg = 0;
276 pd->stats.secs_r = 0;
277
278 } else if (strcmp(attr->name, "congestion_off") == 0
279 && sscanf(data, "%d", &val) == 1) {
280 spin_lock(&pd->lock);
281 pd->write_congestion_off = val;
282 init_write_congestion_marks(&pd->write_congestion_off,
283 &pd->write_congestion_on);
284 spin_unlock(&pd->lock);
285
286 } else if (strcmp(attr->name, "congestion_on") == 0
287 && sscanf(data, "%d", &val) == 1) {
288 spin_lock(&pd->lock);
289 pd->write_congestion_on = val;
290 init_write_congestion_marks(&pd->write_congestion_off,
291 &pd->write_congestion_on);
292 spin_unlock(&pd->lock);
293 }
294 return len;
295 }
296
297 static const struct sysfs_ops kobj_pkt_ops = {
298 .show = kobj_pkt_show,
299 .store = kobj_pkt_store
300 };
301 static struct kobj_type kobj_pkt_type_stat = {
302 .release = pkt_kobj_release,
303 .sysfs_ops = &kobj_pkt_ops,
304 .default_attrs = kobj_pkt_attrs_stat
305 };
306 static struct kobj_type kobj_pkt_type_wqueue = {
307 .release = pkt_kobj_release,
308 .sysfs_ops = &kobj_pkt_ops,
309 .default_attrs = kobj_pkt_attrs_wqueue
310 };
311
312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
313 {
314 if (class_pktcdvd) {
315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 "%s", pd->name);
317 if (IS_ERR(pd->dev))
318 pd->dev = NULL;
319 }
320 if (pd->dev) {
321 pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 &pd->dev->kobj,
323 &kobj_pkt_type_stat);
324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 &pd->dev->kobj,
326 &kobj_pkt_type_wqueue);
327 }
328 }
329
330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
331 {
332 pkt_kobj_remove(pd->kobj_stat);
333 pkt_kobj_remove(pd->kobj_wqueue);
334 if (class_pktcdvd)
335 device_unregister(pd->dev);
336 }
337
338
339 /********************************************************************
340 /sys/class/pktcdvd/
341 add map block device
342 remove unmap packet dev
343 device_map show mappings
344 *******************************************************************/
345
346 static void class_pktcdvd_release(struct class *cls)
347 {
348 kfree(cls);
349 }
350 static ssize_t class_pktcdvd_show_map(struct class *c,
351 struct class_attribute *attr,
352 char *data)
353 {
354 int n = 0;
355 int idx;
356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 for (idx = 0; idx < MAX_WRITERS; idx++) {
358 struct pktcdvd_device *pd = pkt_devs[idx];
359 if (!pd)
360 continue;
361 n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 pd->name,
363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 MAJOR(pd->bdev->bd_dev),
365 MINOR(pd->bdev->bd_dev));
366 }
367 mutex_unlock(&ctl_mutex);
368 return n;
369 }
370
371 static ssize_t class_pktcdvd_store_add(struct class *c,
372 struct class_attribute *attr,
373 const char *buf,
374 size_t count)
375 {
376 unsigned int major, minor;
377
378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 /* pkt_setup_dev() expects caller to hold reference to self */
380 if (!try_module_get(THIS_MODULE))
381 return -ENODEV;
382
383 pkt_setup_dev(MKDEV(major, minor), NULL);
384
385 module_put(THIS_MODULE);
386
387 return count;
388 }
389
390 return -EINVAL;
391 }
392
393 static ssize_t class_pktcdvd_store_remove(struct class *c,
394 struct class_attribute *attr,
395 const char *buf,
396 size_t count)
397 {
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
402 }
403 return -EINVAL;
404 }
405
406 static struct class_attribute class_pktcdvd_attrs[] = {
407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
410 __ATTR_NULL
411 };
412
413
414 static int pkt_sysfs_init(void)
415 {
416 int ret = 0;
417
418 /*
419 * create control files in sysfs
420 * /sys/class/pktcdvd/...
421 */
422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 if (!class_pktcdvd)
424 return -ENOMEM;
425 class_pktcdvd->name = DRIVER_NAME;
426 class_pktcdvd->owner = THIS_MODULE;
427 class_pktcdvd->class_release = class_pktcdvd_release;
428 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 ret = class_register(class_pktcdvd);
430 if (ret) {
431 kfree(class_pktcdvd);
432 class_pktcdvd = NULL;
433 pr_err("failed to create class pktcdvd\n");
434 return ret;
435 }
436 return 0;
437 }
438
439 static void pkt_sysfs_cleanup(void)
440 {
441 if (class_pktcdvd)
442 class_destroy(class_pktcdvd);
443 class_pktcdvd = NULL;
444 }
445
446 /********************************************************************
447 entries in debugfs
448
449 /sys/kernel/debug/pktcdvd[0-7]/
450 info
451
452 *******************************************************************/
453
454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
455 {
456 return pkt_seq_show(m, p);
457 }
458
459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
460 {
461 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
462 }
463
464 static const struct file_operations debug_fops = {
465 .open = pkt_debugfs_fops_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469 .owner = THIS_MODULE,
470 };
471
472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
473 {
474 if (!pkt_debugfs_root)
475 return;
476 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
477 if (!pd->dfs_d_root)
478 return;
479
480 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
481 pd->dfs_d_root, pd, &debug_fops);
482 }
483
484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 {
486 if (!pkt_debugfs_root)
487 return;
488 debugfs_remove(pd->dfs_f_info);
489 debugfs_remove(pd->dfs_d_root);
490 pd->dfs_f_info = NULL;
491 pd->dfs_d_root = NULL;
492 }
493
494 static void pkt_debugfs_init(void)
495 {
496 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
497 }
498
499 static void pkt_debugfs_cleanup(void)
500 {
501 debugfs_remove(pkt_debugfs_root);
502 pkt_debugfs_root = NULL;
503 }
504
505 /* ----------------------------------------------------------*/
506
507
508 static void pkt_bio_finished(struct pktcdvd_device *pd)
509 {
510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 pkt_dbg(2, pd, "queue empty\n");
513 atomic_set(&pd->iosched.attention, 1);
514 wake_up(&pd->wqueue);
515 }
516 }
517
518 /*
519 * Allocate a packet_data struct
520 */
521 static struct packet_data *pkt_alloc_packet_data(int frames)
522 {
523 int i;
524 struct packet_data *pkt;
525
526 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
527 if (!pkt)
528 goto no_pkt;
529
530 pkt->frames = frames;
531 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
532 if (!pkt->w_bio)
533 goto no_bio;
534
535 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
536 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
537 if (!pkt->pages[i])
538 goto no_page;
539 }
540
541 spin_lock_init(&pkt->lock);
542 bio_list_init(&pkt->orig_bios);
543
544 for (i = 0; i < frames; i++) {
545 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
546 if (!bio)
547 goto no_rd_bio;
548
549 pkt->r_bios[i] = bio;
550 }
551
552 return pkt;
553
554 no_rd_bio:
555 for (i = 0; i < frames; i++) {
556 struct bio *bio = pkt->r_bios[i];
557 if (bio)
558 bio_put(bio);
559 }
560
561 no_page:
562 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
563 if (pkt->pages[i])
564 __free_page(pkt->pages[i]);
565 bio_put(pkt->w_bio);
566 no_bio:
567 kfree(pkt);
568 no_pkt:
569 return NULL;
570 }
571
572 /*
573 * Free a packet_data struct
574 */
575 static void pkt_free_packet_data(struct packet_data *pkt)
576 {
577 int i;
578
579 for (i = 0; i < pkt->frames; i++) {
580 struct bio *bio = pkt->r_bios[i];
581 if (bio)
582 bio_put(bio);
583 }
584 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
585 __free_page(pkt->pages[i]);
586 bio_put(pkt->w_bio);
587 kfree(pkt);
588 }
589
590 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
591 {
592 struct packet_data *pkt, *next;
593
594 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
595
596 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
597 pkt_free_packet_data(pkt);
598 }
599 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
600 }
601
602 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
603 {
604 struct packet_data *pkt;
605
606 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
607
608 while (nr_packets > 0) {
609 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
610 if (!pkt) {
611 pkt_shrink_pktlist(pd);
612 return 0;
613 }
614 pkt->id = nr_packets;
615 pkt->pd = pd;
616 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
617 nr_packets--;
618 }
619 return 1;
620 }
621
622 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
623 {
624 struct rb_node *n = rb_next(&node->rb_node);
625 if (!n)
626 return NULL;
627 return rb_entry(n, struct pkt_rb_node, rb_node);
628 }
629
630 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
631 {
632 rb_erase(&node->rb_node, &pd->bio_queue);
633 mempool_free(node, pd->rb_pool);
634 pd->bio_queue_size--;
635 BUG_ON(pd->bio_queue_size < 0);
636 }
637
638 /*
639 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
640 */
641 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
642 {
643 struct rb_node *n = pd->bio_queue.rb_node;
644 struct rb_node *next;
645 struct pkt_rb_node *tmp;
646
647 if (!n) {
648 BUG_ON(pd->bio_queue_size > 0);
649 return NULL;
650 }
651
652 for (;;) {
653 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
654 if (s <= tmp->bio->bi_iter.bi_sector)
655 next = n->rb_left;
656 else
657 next = n->rb_right;
658 if (!next)
659 break;
660 n = next;
661 }
662
663 if (s > tmp->bio->bi_iter.bi_sector) {
664 tmp = pkt_rbtree_next(tmp);
665 if (!tmp)
666 return NULL;
667 }
668 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
669 return tmp;
670 }
671
672 /*
673 * Insert a node into the pd->bio_queue rb tree.
674 */
675 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
676 {
677 struct rb_node **p = &pd->bio_queue.rb_node;
678 struct rb_node *parent = NULL;
679 sector_t s = node->bio->bi_iter.bi_sector;
680 struct pkt_rb_node *tmp;
681
682 while (*p) {
683 parent = *p;
684 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
685 if (s < tmp->bio->bi_iter.bi_sector)
686 p = &(*p)->rb_left;
687 else
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&node->rb_node, parent, p);
691 rb_insert_color(&node->rb_node, &pd->bio_queue);
692 pd->bio_queue_size++;
693 }
694
695 /*
696 * Send a packet_command to the underlying block device and
697 * wait for completion.
698 */
699 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
700 {
701 struct request_queue *q = bdev_get_queue(pd->bdev);
702 struct request *rq;
703 int ret = 0;
704
705 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
706 WRITE : READ, __GFP_WAIT);
707 blk_rq_set_block_pc(rq);
708
709 if (cgc->buflen) {
710 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
711 __GFP_WAIT);
712 if (ret)
713 goto out;
714 }
715
716 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
717 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
718
719 rq->timeout = 60*HZ;
720 if (cgc->quiet)
721 rq->cmd_flags |= REQ_QUIET;
722
723 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
724 if (rq->errors)
725 ret = -EIO;
726 out:
727 blk_put_request(rq);
728 return ret;
729 }
730
731 static const char *sense_key_string(__u8 index)
732 {
733 static const char * const info[] = {
734 "No sense", "Recovered error", "Not ready",
735 "Medium error", "Hardware error", "Illegal request",
736 "Unit attention", "Data protect", "Blank check",
737 };
738
739 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
740 }
741
742 /*
743 * A generic sense dump / resolve mechanism should be implemented across
744 * all ATAPI + SCSI devices.
745 */
746 static void pkt_dump_sense(struct pktcdvd_device *pd,
747 struct packet_command *cgc)
748 {
749 struct request_sense *sense = cgc->sense;
750
751 if (sense)
752 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
753 CDROM_PACKET_SIZE, cgc->cmd,
754 sense->sense_key, sense->asc, sense->ascq,
755 sense_key_string(sense->sense_key));
756 else
757 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
758 }
759
760 /*
761 * flush the drive cache to media
762 */
763 static int pkt_flush_cache(struct pktcdvd_device *pd)
764 {
765 struct packet_command cgc;
766
767 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
768 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
769 cgc.quiet = 1;
770
771 /*
772 * the IMMED bit -- we default to not setting it, although that
773 * would allow a much faster close, this is safer
774 */
775 #if 0
776 cgc.cmd[1] = 1 << 1;
777 #endif
778 return pkt_generic_packet(pd, &cgc);
779 }
780
781 /*
782 * speed is given as the normal factor, e.g. 4 for 4x
783 */
784 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
785 unsigned write_speed, unsigned read_speed)
786 {
787 struct packet_command cgc;
788 struct request_sense sense;
789 int ret;
790
791 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
792 cgc.sense = &sense;
793 cgc.cmd[0] = GPCMD_SET_SPEED;
794 cgc.cmd[2] = (read_speed >> 8) & 0xff;
795 cgc.cmd[3] = read_speed & 0xff;
796 cgc.cmd[4] = (write_speed >> 8) & 0xff;
797 cgc.cmd[5] = write_speed & 0xff;
798
799 if ((ret = pkt_generic_packet(pd, &cgc)))
800 pkt_dump_sense(pd, &cgc);
801
802 return ret;
803 }
804
805 /*
806 * Queue a bio for processing by the low-level CD device. Must be called
807 * from process context.
808 */
809 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
810 {
811 spin_lock(&pd->iosched.lock);
812 if (bio_data_dir(bio) == READ)
813 bio_list_add(&pd->iosched.read_queue, bio);
814 else
815 bio_list_add(&pd->iosched.write_queue, bio);
816 spin_unlock(&pd->iosched.lock);
817
818 atomic_set(&pd->iosched.attention, 1);
819 wake_up(&pd->wqueue);
820 }
821
822 /*
823 * Process the queued read/write requests. This function handles special
824 * requirements for CDRW drives:
825 * - A cache flush command must be inserted before a read request if the
826 * previous request was a write.
827 * - Switching between reading and writing is slow, so don't do it more often
828 * than necessary.
829 * - Optimize for throughput at the expense of latency. This means that streaming
830 * writes will never be interrupted by a read, but if the drive has to seek
831 * before the next write, switch to reading instead if there are any pending
832 * read requests.
833 * - Set the read speed according to current usage pattern. When only reading
834 * from the device, it's best to use the highest possible read speed, but
835 * when switching often between reading and writing, it's better to have the
836 * same read and write speeds.
837 */
838 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
839 {
840
841 if (atomic_read(&pd->iosched.attention) == 0)
842 return;
843 atomic_set(&pd->iosched.attention, 0);
844
845 for (;;) {
846 struct bio *bio;
847 int reads_queued, writes_queued;
848
849 spin_lock(&pd->iosched.lock);
850 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
851 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
852 spin_unlock(&pd->iosched.lock);
853
854 if (!reads_queued && !writes_queued)
855 break;
856
857 if (pd->iosched.writing) {
858 int need_write_seek = 1;
859 spin_lock(&pd->iosched.lock);
860 bio = bio_list_peek(&pd->iosched.write_queue);
861 spin_unlock(&pd->iosched.lock);
862 if (bio && (bio->bi_iter.bi_sector ==
863 pd->iosched.last_write))
864 need_write_seek = 0;
865 if (need_write_seek && reads_queued) {
866 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
867 pkt_dbg(2, pd, "write, waiting\n");
868 break;
869 }
870 pkt_flush_cache(pd);
871 pd->iosched.writing = 0;
872 }
873 } else {
874 if (!reads_queued && writes_queued) {
875 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
876 pkt_dbg(2, pd, "read, waiting\n");
877 break;
878 }
879 pd->iosched.writing = 1;
880 }
881 }
882
883 spin_lock(&pd->iosched.lock);
884 if (pd->iosched.writing)
885 bio = bio_list_pop(&pd->iosched.write_queue);
886 else
887 bio = bio_list_pop(&pd->iosched.read_queue);
888 spin_unlock(&pd->iosched.lock);
889
890 if (!bio)
891 continue;
892
893 if (bio_data_dir(bio) == READ)
894 pd->iosched.successive_reads +=
895 bio->bi_iter.bi_size >> 10;
896 else {
897 pd->iosched.successive_reads = 0;
898 pd->iosched.last_write = bio_end_sector(bio);
899 }
900 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
901 if (pd->read_speed == pd->write_speed) {
902 pd->read_speed = MAX_SPEED;
903 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
904 }
905 } else {
906 if (pd->read_speed != pd->write_speed) {
907 pd->read_speed = pd->write_speed;
908 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
909 }
910 }
911
912 atomic_inc(&pd->cdrw.pending_bios);
913 generic_make_request(bio);
914 }
915 }
916
917 /*
918 * Special care is needed if the underlying block device has a small
919 * max_phys_segments value.
920 */
921 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
922 {
923 if ((pd->settings.size << 9) / CD_FRAMESIZE
924 <= queue_max_segments(q)) {
925 /*
926 * The cdrom device can handle one segment/frame
927 */
928 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
929 return 0;
930 } else if ((pd->settings.size << 9) / PAGE_SIZE
931 <= queue_max_segments(q)) {
932 /*
933 * We can handle this case at the expense of some extra memory
934 * copies during write operations
935 */
936 set_bit(PACKET_MERGE_SEGS, &pd->flags);
937 return 0;
938 } else {
939 pkt_err(pd, "cdrom max_phys_segments too small\n");
940 return -EIO;
941 }
942 }
943
944 /*
945 * Copy all data for this packet to pkt->pages[], so that
946 * a) The number of required segments for the write bio is minimized, which
947 * is necessary for some scsi controllers.
948 * b) The data can be used as cache to avoid read requests if we receive a
949 * new write request for the same zone.
950 */
951 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
952 {
953 int f, p, offs;
954
955 /* Copy all data to pkt->pages[] */
956 p = 0;
957 offs = 0;
958 for (f = 0; f < pkt->frames; f++) {
959 if (bvec[f].bv_page != pkt->pages[p]) {
960 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
961 void *vto = page_address(pkt->pages[p]) + offs;
962 memcpy(vto, vfrom, CD_FRAMESIZE);
963 kunmap_atomic(vfrom);
964 bvec[f].bv_page = pkt->pages[p];
965 bvec[f].bv_offset = offs;
966 } else {
967 BUG_ON(bvec[f].bv_offset != offs);
968 }
969 offs += CD_FRAMESIZE;
970 if (offs >= PAGE_SIZE) {
971 offs = 0;
972 p++;
973 }
974 }
975 }
976
977 static void pkt_end_io_read(struct bio *bio, int err)
978 {
979 struct packet_data *pkt = bio->bi_private;
980 struct pktcdvd_device *pd = pkt->pd;
981 BUG_ON(!pd);
982
983 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
984 bio, (unsigned long long)pkt->sector,
985 (unsigned long long)bio->bi_iter.bi_sector, err);
986
987 if (err)
988 atomic_inc(&pkt->io_errors);
989 if (atomic_dec_and_test(&pkt->io_wait)) {
990 atomic_inc(&pkt->run_sm);
991 wake_up(&pd->wqueue);
992 }
993 pkt_bio_finished(pd);
994 }
995
996 static void pkt_end_io_packet_write(struct bio *bio, int err)
997 {
998 struct packet_data *pkt = bio->bi_private;
999 struct pktcdvd_device *pd = pkt->pd;
1000 BUG_ON(!pd);
1001
1002 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
1003
1004 pd->stats.pkt_ended++;
1005
1006 pkt_bio_finished(pd);
1007 atomic_dec(&pkt->io_wait);
1008 atomic_inc(&pkt->run_sm);
1009 wake_up(&pd->wqueue);
1010 }
1011
1012 /*
1013 * Schedule reads for the holes in a packet
1014 */
1015 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1016 {
1017 int frames_read = 0;
1018 struct bio *bio;
1019 int f;
1020 char written[PACKET_MAX_SIZE];
1021
1022 BUG_ON(bio_list_empty(&pkt->orig_bios));
1023
1024 atomic_set(&pkt->io_wait, 0);
1025 atomic_set(&pkt->io_errors, 0);
1026
1027 /*
1028 * Figure out which frames we need to read before we can write.
1029 */
1030 memset(written, 0, sizeof(written));
1031 spin_lock(&pkt->lock);
1032 bio_list_for_each(bio, &pkt->orig_bios) {
1033 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1034 (CD_FRAMESIZE >> 9);
1035 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1036 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1037 BUG_ON(first_frame < 0);
1038 BUG_ON(first_frame + num_frames > pkt->frames);
1039 for (f = first_frame; f < first_frame + num_frames; f++)
1040 written[f] = 1;
1041 }
1042 spin_unlock(&pkt->lock);
1043
1044 if (pkt->cache_valid) {
1045 pkt_dbg(2, pd, "zone %llx cached\n",
1046 (unsigned long long)pkt->sector);
1047 goto out_account;
1048 }
1049
1050 /*
1051 * Schedule reads for missing parts of the packet.
1052 */
1053 for (f = 0; f < pkt->frames; f++) {
1054 int p, offset;
1055
1056 if (written[f])
1057 continue;
1058
1059 bio = pkt->r_bios[f];
1060 bio_reset(bio);
1061 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1062 bio->bi_bdev = pd->bdev;
1063 bio->bi_end_io = pkt_end_io_read;
1064 bio->bi_private = pkt;
1065
1066 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1067 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1068 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1069 f, pkt->pages[p], offset);
1070 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1071 BUG();
1072
1073 atomic_inc(&pkt->io_wait);
1074 bio->bi_rw = READ;
1075 pkt_queue_bio(pd, bio);
1076 frames_read++;
1077 }
1078
1079 out_account:
1080 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1081 frames_read, (unsigned long long)pkt->sector);
1082 pd->stats.pkt_started++;
1083 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1084 }
1085
1086 /*
1087 * Find a packet matching zone, or the least recently used packet if
1088 * there is no match.
1089 */
1090 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1091 {
1092 struct packet_data *pkt;
1093
1094 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1095 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1096 list_del_init(&pkt->list);
1097 if (pkt->sector != zone)
1098 pkt->cache_valid = 0;
1099 return pkt;
1100 }
1101 }
1102 BUG();
1103 return NULL;
1104 }
1105
1106 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1107 {
1108 if (pkt->cache_valid) {
1109 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1110 } else {
1111 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1112 }
1113 }
1114
1115 /*
1116 * recover a failed write, query for relocation if possible
1117 *
1118 * returns 1 if recovery is possible, or 0 if not
1119 *
1120 */
1121 static int pkt_start_recovery(struct packet_data *pkt)
1122 {
1123 /*
1124 * FIXME. We need help from the file system to implement
1125 * recovery handling.
1126 */
1127 return 0;
1128 #if 0
1129 struct request *rq = pkt->rq;
1130 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1131 struct block_device *pkt_bdev;
1132 struct super_block *sb = NULL;
1133 unsigned long old_block, new_block;
1134 sector_t new_sector;
1135
1136 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1137 if (pkt_bdev) {
1138 sb = get_super(pkt_bdev);
1139 bdput(pkt_bdev);
1140 }
1141
1142 if (!sb)
1143 return 0;
1144
1145 if (!sb->s_op->relocate_blocks)
1146 goto out;
1147
1148 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1149 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1150 goto out;
1151
1152 new_sector = new_block * (CD_FRAMESIZE >> 9);
1153 pkt->sector = new_sector;
1154
1155 bio_reset(pkt->bio);
1156 pkt->bio->bi_bdev = pd->bdev;
1157 pkt->bio->bi_rw = REQ_WRITE;
1158 pkt->bio->bi_iter.bi_sector = new_sector;
1159 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1160 pkt->bio->bi_vcnt = pkt->frames;
1161
1162 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1163 pkt->bio->bi_private = pkt;
1164
1165 drop_super(sb);
1166 return 1;
1167
1168 out:
1169 drop_super(sb);
1170 return 0;
1171 #endif
1172 }
1173
1174 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1175 {
1176 #if PACKET_DEBUG > 1
1177 static const char *state_name[] = {
1178 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1179 };
1180 enum packet_data_state old_state = pkt->state;
1181 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1182 pkt->id, (unsigned long long)pkt->sector,
1183 state_name[old_state], state_name[state]);
1184 #endif
1185 pkt->state = state;
1186 }
1187
1188 /*
1189 * Scan the work queue to see if we can start a new packet.
1190 * returns non-zero if any work was done.
1191 */
1192 static int pkt_handle_queue(struct pktcdvd_device *pd)
1193 {
1194 struct packet_data *pkt, *p;
1195 struct bio *bio = NULL;
1196 sector_t zone = 0; /* Suppress gcc warning */
1197 struct pkt_rb_node *node, *first_node;
1198 struct rb_node *n;
1199 int wakeup;
1200
1201 atomic_set(&pd->scan_queue, 0);
1202
1203 if (list_empty(&pd->cdrw.pkt_free_list)) {
1204 pkt_dbg(2, pd, "no pkt\n");
1205 return 0;
1206 }
1207
1208 /*
1209 * Try to find a zone we are not already working on.
1210 */
1211 spin_lock(&pd->lock);
1212 first_node = pkt_rbtree_find(pd, pd->current_sector);
1213 if (!first_node) {
1214 n = rb_first(&pd->bio_queue);
1215 if (n)
1216 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1217 }
1218 node = first_node;
1219 while (node) {
1220 bio = node->bio;
1221 zone = get_zone(bio->bi_iter.bi_sector, pd);
1222 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1223 if (p->sector == zone) {
1224 bio = NULL;
1225 goto try_next_bio;
1226 }
1227 }
1228 break;
1229 try_next_bio:
1230 node = pkt_rbtree_next(node);
1231 if (!node) {
1232 n = rb_first(&pd->bio_queue);
1233 if (n)
1234 node = rb_entry(n, struct pkt_rb_node, rb_node);
1235 }
1236 if (node == first_node)
1237 node = NULL;
1238 }
1239 spin_unlock(&pd->lock);
1240 if (!bio) {
1241 pkt_dbg(2, pd, "no bio\n");
1242 return 0;
1243 }
1244
1245 pkt = pkt_get_packet_data(pd, zone);
1246
1247 pd->current_sector = zone + pd->settings.size;
1248 pkt->sector = zone;
1249 BUG_ON(pkt->frames != pd->settings.size >> 2);
1250 pkt->write_size = 0;
1251
1252 /*
1253 * Scan work queue for bios in the same zone and link them
1254 * to this packet.
1255 */
1256 spin_lock(&pd->lock);
1257 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1258 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1259 bio = node->bio;
1260 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1261 get_zone(bio->bi_iter.bi_sector, pd));
1262 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1263 break;
1264 pkt_rbtree_erase(pd, node);
1265 spin_lock(&pkt->lock);
1266 bio_list_add(&pkt->orig_bios, bio);
1267 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1268 spin_unlock(&pkt->lock);
1269 }
1270 /* check write congestion marks, and if bio_queue_size is
1271 below, wake up any waiters */
1272 wakeup = (pd->write_congestion_on > 0
1273 && pd->bio_queue_size <= pd->write_congestion_off);
1274 spin_unlock(&pd->lock);
1275 if (wakeup) {
1276 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1277 BLK_RW_ASYNC);
1278 }
1279
1280 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1281 pkt_set_state(pkt, PACKET_WAITING_STATE);
1282 atomic_set(&pkt->run_sm, 1);
1283
1284 spin_lock(&pd->cdrw.active_list_lock);
1285 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1286 spin_unlock(&pd->cdrw.active_list_lock);
1287
1288 return 1;
1289 }
1290
1291 /*
1292 * Assemble a bio to write one packet and queue the bio for processing
1293 * by the underlying block device.
1294 */
1295 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1296 {
1297 int f;
1298 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1299
1300 bio_reset(pkt->w_bio);
1301 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1302 pkt->w_bio->bi_bdev = pd->bdev;
1303 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1304 pkt->w_bio->bi_private = pkt;
1305
1306 /* XXX: locking? */
1307 for (f = 0; f < pkt->frames; f++) {
1308 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1309 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1310 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1311 BUG();
1312 }
1313 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1314
1315 /*
1316 * Fill-in bvec with data from orig_bios.
1317 */
1318 spin_lock(&pkt->lock);
1319 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1320
1321 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1322 spin_unlock(&pkt->lock);
1323
1324 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1325 pkt->write_size, (unsigned long long)pkt->sector);
1326
1327 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1328 pkt_make_local_copy(pkt, bvec);
1329 pkt->cache_valid = 1;
1330 } else {
1331 pkt->cache_valid = 0;
1332 }
1333
1334 /* Start the write request */
1335 atomic_set(&pkt->io_wait, 1);
1336 pkt->w_bio->bi_rw = WRITE;
1337 pkt_queue_bio(pd, pkt->w_bio);
1338 }
1339
1340 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1341 {
1342 struct bio *bio;
1343
1344 if (!uptodate)
1345 pkt->cache_valid = 0;
1346
1347 /* Finish all bios corresponding to this packet */
1348 while ((bio = bio_list_pop(&pkt->orig_bios)))
1349 bio_endio(bio, uptodate ? 0 : -EIO);
1350 }
1351
1352 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1353 {
1354 int uptodate;
1355
1356 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1357
1358 for (;;) {
1359 switch (pkt->state) {
1360 case PACKET_WAITING_STATE:
1361 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1362 return;
1363
1364 pkt->sleep_time = 0;
1365 pkt_gather_data(pd, pkt);
1366 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1367 break;
1368
1369 case PACKET_READ_WAIT_STATE:
1370 if (atomic_read(&pkt->io_wait) > 0)
1371 return;
1372
1373 if (atomic_read(&pkt->io_errors) > 0) {
1374 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1375 } else {
1376 pkt_start_write(pd, pkt);
1377 }
1378 break;
1379
1380 case PACKET_WRITE_WAIT_STATE:
1381 if (atomic_read(&pkt->io_wait) > 0)
1382 return;
1383
1384 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1385 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1386 } else {
1387 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1388 }
1389 break;
1390
1391 case PACKET_RECOVERY_STATE:
1392 if (pkt_start_recovery(pkt)) {
1393 pkt_start_write(pd, pkt);
1394 } else {
1395 pkt_dbg(2, pd, "No recovery possible\n");
1396 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1397 }
1398 break;
1399
1400 case PACKET_FINISHED_STATE:
1401 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1402 pkt_finish_packet(pkt, uptodate);
1403 return;
1404
1405 default:
1406 BUG();
1407 break;
1408 }
1409 }
1410 }
1411
1412 static void pkt_handle_packets(struct pktcdvd_device *pd)
1413 {
1414 struct packet_data *pkt, *next;
1415
1416 /*
1417 * Run state machine for active packets
1418 */
1419 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1420 if (atomic_read(&pkt->run_sm) > 0) {
1421 atomic_set(&pkt->run_sm, 0);
1422 pkt_run_state_machine(pd, pkt);
1423 }
1424 }
1425
1426 /*
1427 * Move no longer active packets to the free list
1428 */
1429 spin_lock(&pd->cdrw.active_list_lock);
1430 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1431 if (pkt->state == PACKET_FINISHED_STATE) {
1432 list_del(&pkt->list);
1433 pkt_put_packet_data(pd, pkt);
1434 pkt_set_state(pkt, PACKET_IDLE_STATE);
1435 atomic_set(&pd->scan_queue, 1);
1436 }
1437 }
1438 spin_unlock(&pd->cdrw.active_list_lock);
1439 }
1440
1441 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1442 {
1443 struct packet_data *pkt;
1444 int i;
1445
1446 for (i = 0; i < PACKET_NUM_STATES; i++)
1447 states[i] = 0;
1448
1449 spin_lock(&pd->cdrw.active_list_lock);
1450 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1451 states[pkt->state]++;
1452 }
1453 spin_unlock(&pd->cdrw.active_list_lock);
1454 }
1455
1456 /*
1457 * kcdrwd is woken up when writes have been queued for one of our
1458 * registered devices
1459 */
1460 static int kcdrwd(void *foobar)
1461 {
1462 struct pktcdvd_device *pd = foobar;
1463 struct packet_data *pkt;
1464 long min_sleep_time, residue;
1465
1466 set_user_nice(current, MIN_NICE);
1467 set_freezable();
1468
1469 for (;;) {
1470 DECLARE_WAITQUEUE(wait, current);
1471
1472 /*
1473 * Wait until there is something to do
1474 */
1475 add_wait_queue(&pd->wqueue, &wait);
1476 for (;;) {
1477 set_current_state(TASK_INTERRUPTIBLE);
1478
1479 /* Check if we need to run pkt_handle_queue */
1480 if (atomic_read(&pd->scan_queue) > 0)
1481 goto work_to_do;
1482
1483 /* Check if we need to run the state machine for some packet */
1484 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1485 if (atomic_read(&pkt->run_sm) > 0)
1486 goto work_to_do;
1487 }
1488
1489 /* Check if we need to process the iosched queues */
1490 if (atomic_read(&pd->iosched.attention) != 0)
1491 goto work_to_do;
1492
1493 /* Otherwise, go to sleep */
1494 if (PACKET_DEBUG > 1) {
1495 int states[PACKET_NUM_STATES];
1496 pkt_count_states(pd, states);
1497 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1498 states[0], states[1], states[2],
1499 states[3], states[4], states[5]);
1500 }
1501
1502 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1503 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1504 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1505 min_sleep_time = pkt->sleep_time;
1506 }
1507
1508 pkt_dbg(2, pd, "sleeping\n");
1509 residue = schedule_timeout(min_sleep_time);
1510 pkt_dbg(2, pd, "wake up\n");
1511
1512 /* make swsusp happy with our thread */
1513 try_to_freeze();
1514
1515 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1516 if (!pkt->sleep_time)
1517 continue;
1518 pkt->sleep_time -= min_sleep_time - residue;
1519 if (pkt->sleep_time <= 0) {
1520 pkt->sleep_time = 0;
1521 atomic_inc(&pkt->run_sm);
1522 }
1523 }
1524
1525 if (kthread_should_stop())
1526 break;
1527 }
1528 work_to_do:
1529 set_current_state(TASK_RUNNING);
1530 remove_wait_queue(&pd->wqueue, &wait);
1531
1532 if (kthread_should_stop())
1533 break;
1534
1535 /*
1536 * if pkt_handle_queue returns true, we can queue
1537 * another request.
1538 */
1539 while (pkt_handle_queue(pd))
1540 ;
1541
1542 /*
1543 * Handle packet state machine
1544 */
1545 pkt_handle_packets(pd);
1546
1547 /*
1548 * Handle iosched queues
1549 */
1550 pkt_iosched_process_queue(pd);
1551 }
1552
1553 return 0;
1554 }
1555
1556 static void pkt_print_settings(struct pktcdvd_device *pd)
1557 {
1558 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1559 pd->settings.fp ? "Fixed" : "Variable",
1560 pd->settings.size >> 2,
1561 pd->settings.block_mode == 8 ? '1' : '2');
1562 }
1563
1564 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1565 {
1566 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1567
1568 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1569 cgc->cmd[2] = page_code | (page_control << 6);
1570 cgc->cmd[7] = cgc->buflen >> 8;
1571 cgc->cmd[8] = cgc->buflen & 0xff;
1572 cgc->data_direction = CGC_DATA_READ;
1573 return pkt_generic_packet(pd, cgc);
1574 }
1575
1576 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1577 {
1578 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1579 memset(cgc->buffer, 0, 2);
1580 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1581 cgc->cmd[1] = 0x10; /* PF */
1582 cgc->cmd[7] = cgc->buflen >> 8;
1583 cgc->cmd[8] = cgc->buflen & 0xff;
1584 cgc->data_direction = CGC_DATA_WRITE;
1585 return pkt_generic_packet(pd, cgc);
1586 }
1587
1588 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1589 {
1590 struct packet_command cgc;
1591 int ret;
1592
1593 /* set up command and get the disc info */
1594 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1595 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1596 cgc.cmd[8] = cgc.buflen = 2;
1597 cgc.quiet = 1;
1598
1599 if ((ret = pkt_generic_packet(pd, &cgc)))
1600 return ret;
1601
1602 /* not all drives have the same disc_info length, so requeue
1603 * packet with the length the drive tells us it can supply
1604 */
1605 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1606 sizeof(di->disc_information_length);
1607
1608 if (cgc.buflen > sizeof(disc_information))
1609 cgc.buflen = sizeof(disc_information);
1610
1611 cgc.cmd[8] = cgc.buflen;
1612 return pkt_generic_packet(pd, &cgc);
1613 }
1614
1615 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1616 {
1617 struct packet_command cgc;
1618 int ret;
1619
1620 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1621 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1622 cgc.cmd[1] = type & 3;
1623 cgc.cmd[4] = (track & 0xff00) >> 8;
1624 cgc.cmd[5] = track & 0xff;
1625 cgc.cmd[8] = 8;
1626 cgc.quiet = 1;
1627
1628 if ((ret = pkt_generic_packet(pd, &cgc)))
1629 return ret;
1630
1631 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1632 sizeof(ti->track_information_length);
1633
1634 if (cgc.buflen > sizeof(track_information))
1635 cgc.buflen = sizeof(track_information);
1636
1637 cgc.cmd[8] = cgc.buflen;
1638 return pkt_generic_packet(pd, &cgc);
1639 }
1640
1641 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1642 long *last_written)
1643 {
1644 disc_information di;
1645 track_information ti;
1646 __u32 last_track;
1647 int ret = -1;
1648
1649 if ((ret = pkt_get_disc_info(pd, &di)))
1650 return ret;
1651
1652 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1653 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1654 return ret;
1655
1656 /* if this track is blank, try the previous. */
1657 if (ti.blank) {
1658 last_track--;
1659 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1660 return ret;
1661 }
1662
1663 /* if last recorded field is valid, return it. */
1664 if (ti.lra_v) {
1665 *last_written = be32_to_cpu(ti.last_rec_address);
1666 } else {
1667 /* make it up instead */
1668 *last_written = be32_to_cpu(ti.track_start) +
1669 be32_to_cpu(ti.track_size);
1670 if (ti.free_blocks)
1671 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1672 }
1673 return 0;
1674 }
1675
1676 /*
1677 * write mode select package based on pd->settings
1678 */
1679 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1680 {
1681 struct packet_command cgc;
1682 struct request_sense sense;
1683 write_param_page *wp;
1684 char buffer[128];
1685 int ret, size;
1686
1687 /* doesn't apply to DVD+RW or DVD-RAM */
1688 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1689 return 0;
1690
1691 memset(buffer, 0, sizeof(buffer));
1692 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1693 cgc.sense = &sense;
1694 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1695 pkt_dump_sense(pd, &cgc);
1696 return ret;
1697 }
1698
1699 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1700 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1701 if (size > sizeof(buffer))
1702 size = sizeof(buffer);
1703
1704 /*
1705 * now get it all
1706 */
1707 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1708 cgc.sense = &sense;
1709 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1710 pkt_dump_sense(pd, &cgc);
1711 return ret;
1712 }
1713
1714 /*
1715 * write page is offset header + block descriptor length
1716 */
1717 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1718
1719 wp->fp = pd->settings.fp;
1720 wp->track_mode = pd->settings.track_mode;
1721 wp->write_type = pd->settings.write_type;
1722 wp->data_block_type = pd->settings.block_mode;
1723
1724 wp->multi_session = 0;
1725
1726 #ifdef PACKET_USE_LS
1727 wp->link_size = 7;
1728 wp->ls_v = 1;
1729 #endif
1730
1731 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1732 wp->session_format = 0;
1733 wp->subhdr2 = 0x20;
1734 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1735 wp->session_format = 0x20;
1736 wp->subhdr2 = 8;
1737 #if 0
1738 wp->mcn[0] = 0x80;
1739 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1740 #endif
1741 } else {
1742 /*
1743 * paranoia
1744 */
1745 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1746 return 1;
1747 }
1748 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1749
1750 cgc.buflen = cgc.cmd[8] = size;
1751 if ((ret = pkt_mode_select(pd, &cgc))) {
1752 pkt_dump_sense(pd, &cgc);
1753 return ret;
1754 }
1755
1756 pkt_print_settings(pd);
1757 return 0;
1758 }
1759
1760 /*
1761 * 1 -- we can write to this track, 0 -- we can't
1762 */
1763 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1764 {
1765 switch (pd->mmc3_profile) {
1766 case 0x1a: /* DVD+RW */
1767 case 0x12: /* DVD-RAM */
1768 /* The track is always writable on DVD+RW/DVD-RAM */
1769 return 1;
1770 default:
1771 break;
1772 }
1773
1774 if (!ti->packet || !ti->fp)
1775 return 0;
1776
1777 /*
1778 * "good" settings as per Mt Fuji.
1779 */
1780 if (ti->rt == 0 && ti->blank == 0)
1781 return 1;
1782
1783 if (ti->rt == 0 && ti->blank == 1)
1784 return 1;
1785
1786 if (ti->rt == 1 && ti->blank == 0)
1787 return 1;
1788
1789 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1790 return 0;
1791 }
1792
1793 /*
1794 * 1 -- we can write to this disc, 0 -- we can't
1795 */
1796 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1797 {
1798 switch (pd->mmc3_profile) {
1799 case 0x0a: /* CD-RW */
1800 case 0xffff: /* MMC3 not supported */
1801 break;
1802 case 0x1a: /* DVD+RW */
1803 case 0x13: /* DVD-RW */
1804 case 0x12: /* DVD-RAM */
1805 return 1;
1806 default:
1807 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1808 pd->mmc3_profile);
1809 return 0;
1810 }
1811
1812 /*
1813 * for disc type 0xff we should probably reserve a new track.
1814 * but i'm not sure, should we leave this to user apps? probably.
1815 */
1816 if (di->disc_type == 0xff) {
1817 pkt_notice(pd, "unknown disc - no track?\n");
1818 return 0;
1819 }
1820
1821 if (di->disc_type != 0x20 && di->disc_type != 0) {
1822 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1823 return 0;
1824 }
1825
1826 if (di->erasable == 0) {
1827 pkt_notice(pd, "disc not erasable\n");
1828 return 0;
1829 }
1830
1831 if (di->border_status == PACKET_SESSION_RESERVED) {
1832 pkt_err(pd, "can't write to last track (reserved)\n");
1833 return 0;
1834 }
1835
1836 return 1;
1837 }
1838
1839 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1840 {
1841 struct packet_command cgc;
1842 unsigned char buf[12];
1843 disc_information di;
1844 track_information ti;
1845 int ret, track;
1846
1847 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1848 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1849 cgc.cmd[8] = 8;
1850 ret = pkt_generic_packet(pd, &cgc);
1851 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1852
1853 memset(&di, 0, sizeof(disc_information));
1854 memset(&ti, 0, sizeof(track_information));
1855
1856 if ((ret = pkt_get_disc_info(pd, &di))) {
1857 pkt_err(pd, "failed get_disc\n");
1858 return ret;
1859 }
1860
1861 if (!pkt_writable_disc(pd, &di))
1862 return -EROFS;
1863
1864 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1865
1866 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1867 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1868 pkt_err(pd, "failed get_track\n");
1869 return ret;
1870 }
1871
1872 if (!pkt_writable_track(pd, &ti)) {
1873 pkt_err(pd, "can't write to this track\n");
1874 return -EROFS;
1875 }
1876
1877 /*
1878 * we keep packet size in 512 byte units, makes it easier to
1879 * deal with request calculations.
1880 */
1881 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1882 if (pd->settings.size == 0) {
1883 pkt_notice(pd, "detected zero packet size!\n");
1884 return -ENXIO;
1885 }
1886 if (pd->settings.size > PACKET_MAX_SECTORS) {
1887 pkt_err(pd, "packet size is too big\n");
1888 return -EROFS;
1889 }
1890 pd->settings.fp = ti.fp;
1891 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1892
1893 if (ti.nwa_v) {
1894 pd->nwa = be32_to_cpu(ti.next_writable);
1895 set_bit(PACKET_NWA_VALID, &pd->flags);
1896 }
1897
1898 /*
1899 * in theory we could use lra on -RW media as well and just zero
1900 * blocks that haven't been written yet, but in practice that
1901 * is just a no-go. we'll use that for -R, naturally.
1902 */
1903 if (ti.lra_v) {
1904 pd->lra = be32_to_cpu(ti.last_rec_address);
1905 set_bit(PACKET_LRA_VALID, &pd->flags);
1906 } else {
1907 pd->lra = 0xffffffff;
1908 set_bit(PACKET_LRA_VALID, &pd->flags);
1909 }
1910
1911 /*
1912 * fine for now
1913 */
1914 pd->settings.link_loss = 7;
1915 pd->settings.write_type = 0; /* packet */
1916 pd->settings.track_mode = ti.track_mode;
1917
1918 /*
1919 * mode1 or mode2 disc
1920 */
1921 switch (ti.data_mode) {
1922 case PACKET_MODE1:
1923 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1924 break;
1925 case PACKET_MODE2:
1926 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1927 break;
1928 default:
1929 pkt_err(pd, "unknown data mode\n");
1930 return -EROFS;
1931 }
1932 return 0;
1933 }
1934
1935 /*
1936 * enable/disable write caching on drive
1937 */
1938 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1939 int set)
1940 {
1941 struct packet_command cgc;
1942 struct request_sense sense;
1943 unsigned char buf[64];
1944 int ret;
1945
1946 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947 cgc.sense = &sense;
1948 cgc.buflen = pd->mode_offset + 12;
1949
1950 /*
1951 * caching mode page might not be there, so quiet this command
1952 */
1953 cgc.quiet = 1;
1954
1955 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1956 return ret;
1957
1958 buf[pd->mode_offset + 10] |= (!!set << 2);
1959
1960 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1961 ret = pkt_mode_select(pd, &cgc);
1962 if (ret) {
1963 pkt_err(pd, "write caching control failed\n");
1964 pkt_dump_sense(pd, &cgc);
1965 } else if (!ret && set)
1966 pkt_notice(pd, "enabled write caching\n");
1967 return ret;
1968 }
1969
1970 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1971 {
1972 struct packet_command cgc;
1973
1974 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1975 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1976 cgc.cmd[4] = lockflag ? 1 : 0;
1977 return pkt_generic_packet(pd, &cgc);
1978 }
1979
1980 /*
1981 * Returns drive maximum write speed
1982 */
1983 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1984 unsigned *write_speed)
1985 {
1986 struct packet_command cgc;
1987 struct request_sense sense;
1988 unsigned char buf[256+18];
1989 unsigned char *cap_buf;
1990 int ret, offset;
1991
1992 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1993 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1994 cgc.sense = &sense;
1995
1996 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1997 if (ret) {
1998 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1999 sizeof(struct mode_page_header);
2000 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2001 if (ret) {
2002 pkt_dump_sense(pd, &cgc);
2003 return ret;
2004 }
2005 }
2006
2007 offset = 20; /* Obsoleted field, used by older drives */
2008 if (cap_buf[1] >= 28)
2009 offset = 28; /* Current write speed selected */
2010 if (cap_buf[1] >= 30) {
2011 /* If the drive reports at least one "Logical Unit Write
2012 * Speed Performance Descriptor Block", use the information
2013 * in the first block. (contains the highest speed)
2014 */
2015 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2016 if (num_spdb > 0)
2017 offset = 34;
2018 }
2019
2020 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2021 return 0;
2022 }
2023
2024 /* These tables from cdrecord - I don't have orange book */
2025 /* standard speed CD-RW (1-4x) */
2026 static char clv_to_speed[16] = {
2027 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2028 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2029 };
2030 /* high speed CD-RW (-10x) */
2031 static char hs_clv_to_speed[16] = {
2032 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2033 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2034 };
2035 /* ultra high speed CD-RW */
2036 static char us_clv_to_speed[16] = {
2037 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2038 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2039 };
2040
2041 /*
2042 * reads the maximum media speed from ATIP
2043 */
2044 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2045 unsigned *speed)
2046 {
2047 struct packet_command cgc;
2048 struct request_sense sense;
2049 unsigned char buf[64];
2050 unsigned int size, st, sp;
2051 int ret;
2052
2053 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2054 cgc.sense = &sense;
2055 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2056 cgc.cmd[1] = 2;
2057 cgc.cmd[2] = 4; /* READ ATIP */
2058 cgc.cmd[8] = 2;
2059 ret = pkt_generic_packet(pd, &cgc);
2060 if (ret) {
2061 pkt_dump_sense(pd, &cgc);
2062 return ret;
2063 }
2064 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2065 if (size > sizeof(buf))
2066 size = sizeof(buf);
2067
2068 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2069 cgc.sense = &sense;
2070 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2071 cgc.cmd[1] = 2;
2072 cgc.cmd[2] = 4;
2073 cgc.cmd[8] = size;
2074 ret = pkt_generic_packet(pd, &cgc);
2075 if (ret) {
2076 pkt_dump_sense(pd, &cgc);
2077 return ret;
2078 }
2079
2080 if (!(buf[6] & 0x40)) {
2081 pkt_notice(pd, "disc type is not CD-RW\n");
2082 return 1;
2083 }
2084 if (!(buf[6] & 0x4)) {
2085 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2086 return 1;
2087 }
2088
2089 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2090
2091 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2092
2093 /* Info from cdrecord */
2094 switch (st) {
2095 case 0: /* standard speed */
2096 *speed = clv_to_speed[sp];
2097 break;
2098 case 1: /* high speed */
2099 *speed = hs_clv_to_speed[sp];
2100 break;
2101 case 2: /* ultra high speed */
2102 *speed = us_clv_to_speed[sp];
2103 break;
2104 default:
2105 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2106 return 1;
2107 }
2108 if (*speed) {
2109 pkt_info(pd, "maximum media speed: %d\n", *speed);
2110 return 0;
2111 } else {
2112 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2113 return 1;
2114 }
2115 }
2116
2117 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2118 {
2119 struct packet_command cgc;
2120 struct request_sense sense;
2121 int ret;
2122
2123 pkt_dbg(2, pd, "Performing OPC\n");
2124
2125 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2126 cgc.sense = &sense;
2127 cgc.timeout = 60*HZ;
2128 cgc.cmd[0] = GPCMD_SEND_OPC;
2129 cgc.cmd[1] = 1;
2130 if ((ret = pkt_generic_packet(pd, &cgc)))
2131 pkt_dump_sense(pd, &cgc);
2132 return ret;
2133 }
2134
2135 static int pkt_open_write(struct pktcdvd_device *pd)
2136 {
2137 int ret;
2138 unsigned int write_speed, media_write_speed, read_speed;
2139
2140 if ((ret = pkt_probe_settings(pd))) {
2141 pkt_dbg(2, pd, "failed probe\n");
2142 return ret;
2143 }
2144
2145 if ((ret = pkt_set_write_settings(pd))) {
2146 pkt_dbg(1, pd, "failed saving write settings\n");
2147 return -EIO;
2148 }
2149
2150 pkt_write_caching(pd, USE_WCACHING);
2151
2152 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2153 write_speed = 16 * 177;
2154 switch (pd->mmc3_profile) {
2155 case 0x13: /* DVD-RW */
2156 case 0x1a: /* DVD+RW */
2157 case 0x12: /* DVD-RAM */
2158 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2159 break;
2160 default:
2161 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2162 media_write_speed = 16;
2163 write_speed = min(write_speed, media_write_speed * 177);
2164 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2165 break;
2166 }
2167 read_speed = write_speed;
2168
2169 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2170 pkt_dbg(1, pd, "couldn't set write speed\n");
2171 return -EIO;
2172 }
2173 pd->write_speed = write_speed;
2174 pd->read_speed = read_speed;
2175
2176 if ((ret = pkt_perform_opc(pd))) {
2177 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2178 }
2179
2180 return 0;
2181 }
2182
2183 /*
2184 * called at open time.
2185 */
2186 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2187 {
2188 int ret;
2189 long lba;
2190 struct request_queue *q;
2191
2192 /*
2193 * We need to re-open the cdrom device without O_NONBLOCK to be able
2194 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2195 * so bdget() can't fail.
2196 */
2197 bdget(pd->bdev->bd_dev);
2198 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2199 goto out;
2200
2201 if ((ret = pkt_get_last_written(pd, &lba))) {
2202 pkt_err(pd, "pkt_get_last_written failed\n");
2203 goto out_putdev;
2204 }
2205
2206 set_capacity(pd->disk, lba << 2);
2207 set_capacity(pd->bdev->bd_disk, lba << 2);
2208 bd_set_size(pd->bdev, (loff_t)lba << 11);
2209
2210 q = bdev_get_queue(pd->bdev);
2211 if (write) {
2212 if ((ret = pkt_open_write(pd)))
2213 goto out_putdev;
2214 /*
2215 * Some CDRW drives can not handle writes larger than one packet,
2216 * even if the size is a multiple of the packet size.
2217 */
2218 spin_lock_irq(q->queue_lock);
2219 blk_queue_max_hw_sectors(q, pd->settings.size);
2220 spin_unlock_irq(q->queue_lock);
2221 set_bit(PACKET_WRITABLE, &pd->flags);
2222 } else {
2223 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2224 clear_bit(PACKET_WRITABLE, &pd->flags);
2225 }
2226
2227 if ((ret = pkt_set_segment_merging(pd, q)))
2228 goto out_putdev;
2229
2230 if (write) {
2231 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2232 pkt_err(pd, "not enough memory for buffers\n");
2233 ret = -ENOMEM;
2234 goto out_putdev;
2235 }
2236 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2237 }
2238
2239 return 0;
2240
2241 out_putdev:
2242 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2243 out:
2244 return ret;
2245 }
2246
2247 /*
2248 * called when the device is closed. makes sure that the device flushes
2249 * the internal cache before we close.
2250 */
2251 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2252 {
2253 if (flush && pkt_flush_cache(pd))
2254 pkt_dbg(1, pd, "not flushing cache\n");
2255
2256 pkt_lock_door(pd, 0);
2257
2258 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2259 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2260
2261 pkt_shrink_pktlist(pd);
2262 }
2263
2264 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2265 {
2266 if (dev_minor >= MAX_WRITERS)
2267 return NULL;
2268 return pkt_devs[dev_minor];
2269 }
2270
2271 static int pkt_open(struct block_device *bdev, fmode_t mode)
2272 {
2273 struct pktcdvd_device *pd = NULL;
2274 int ret;
2275
2276 mutex_lock(&pktcdvd_mutex);
2277 mutex_lock(&ctl_mutex);
2278 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2279 if (!pd) {
2280 ret = -ENODEV;
2281 goto out;
2282 }
2283 BUG_ON(pd->refcnt < 0);
2284
2285 pd->refcnt++;
2286 if (pd->refcnt > 1) {
2287 if ((mode & FMODE_WRITE) &&
2288 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2289 ret = -EBUSY;
2290 goto out_dec;
2291 }
2292 } else {
2293 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2294 if (ret)
2295 goto out_dec;
2296 /*
2297 * needed here as well, since ext2 (among others) may change
2298 * the blocksize at mount time
2299 */
2300 set_blocksize(bdev, CD_FRAMESIZE);
2301 }
2302
2303 mutex_unlock(&ctl_mutex);
2304 mutex_unlock(&pktcdvd_mutex);
2305 return 0;
2306
2307 out_dec:
2308 pd->refcnt--;
2309 out:
2310 mutex_unlock(&ctl_mutex);
2311 mutex_unlock(&pktcdvd_mutex);
2312 return ret;
2313 }
2314
2315 static void pkt_close(struct gendisk *disk, fmode_t mode)
2316 {
2317 struct pktcdvd_device *pd = disk->private_data;
2318
2319 mutex_lock(&pktcdvd_mutex);
2320 mutex_lock(&ctl_mutex);
2321 pd->refcnt--;
2322 BUG_ON(pd->refcnt < 0);
2323 if (pd->refcnt == 0) {
2324 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2325 pkt_release_dev(pd, flush);
2326 }
2327 mutex_unlock(&ctl_mutex);
2328 mutex_unlock(&pktcdvd_mutex);
2329 }
2330
2331
2332 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2333 {
2334 struct packet_stacked_data *psd = bio->bi_private;
2335 struct pktcdvd_device *pd = psd->pd;
2336
2337 bio_put(bio);
2338 bio_endio(psd->bio, err);
2339 mempool_free(psd, psd_pool);
2340 pkt_bio_finished(pd);
2341 }
2342
2343 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2344 {
2345 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2346 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2347
2348 psd->pd = pd;
2349 psd->bio = bio;
2350 cloned_bio->bi_bdev = pd->bdev;
2351 cloned_bio->bi_private = psd;
2352 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2353 pd->stats.secs_r += bio_sectors(bio);
2354 pkt_queue_bio(pd, cloned_bio);
2355 }
2356
2357 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2358 {
2359 struct pktcdvd_device *pd = q->queuedata;
2360 sector_t zone;
2361 struct packet_data *pkt;
2362 int was_empty, blocked_bio;
2363 struct pkt_rb_node *node;
2364
2365 zone = get_zone(bio->bi_iter.bi_sector, pd);
2366
2367 /*
2368 * If we find a matching packet in state WAITING or READ_WAIT, we can
2369 * just append this bio to that packet.
2370 */
2371 spin_lock(&pd->cdrw.active_list_lock);
2372 blocked_bio = 0;
2373 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2374 if (pkt->sector == zone) {
2375 spin_lock(&pkt->lock);
2376 if ((pkt->state == PACKET_WAITING_STATE) ||
2377 (pkt->state == PACKET_READ_WAIT_STATE)) {
2378 bio_list_add(&pkt->orig_bios, bio);
2379 pkt->write_size +=
2380 bio->bi_iter.bi_size / CD_FRAMESIZE;
2381 if ((pkt->write_size >= pkt->frames) &&
2382 (pkt->state == PACKET_WAITING_STATE)) {
2383 atomic_inc(&pkt->run_sm);
2384 wake_up(&pd->wqueue);
2385 }
2386 spin_unlock(&pkt->lock);
2387 spin_unlock(&pd->cdrw.active_list_lock);
2388 return;
2389 } else {
2390 blocked_bio = 1;
2391 }
2392 spin_unlock(&pkt->lock);
2393 }
2394 }
2395 spin_unlock(&pd->cdrw.active_list_lock);
2396
2397 /*
2398 * Test if there is enough room left in the bio work queue
2399 * (queue size >= congestion on mark).
2400 * If not, wait till the work queue size is below the congestion off mark.
2401 */
2402 spin_lock(&pd->lock);
2403 if (pd->write_congestion_on > 0
2404 && pd->bio_queue_size >= pd->write_congestion_on) {
2405 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2406 do {
2407 spin_unlock(&pd->lock);
2408 congestion_wait(BLK_RW_ASYNC, HZ);
2409 spin_lock(&pd->lock);
2410 } while(pd->bio_queue_size > pd->write_congestion_off);
2411 }
2412 spin_unlock(&pd->lock);
2413
2414 /*
2415 * No matching packet found. Store the bio in the work queue.
2416 */
2417 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2418 node->bio = bio;
2419 spin_lock(&pd->lock);
2420 BUG_ON(pd->bio_queue_size < 0);
2421 was_empty = (pd->bio_queue_size == 0);
2422 pkt_rbtree_insert(pd, node);
2423 spin_unlock(&pd->lock);
2424
2425 /*
2426 * Wake up the worker thread.
2427 */
2428 atomic_set(&pd->scan_queue, 1);
2429 if (was_empty) {
2430 /* This wake_up is required for correct operation */
2431 wake_up(&pd->wqueue);
2432 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2433 /*
2434 * This wake up is not required for correct operation,
2435 * but improves performance in some cases.
2436 */
2437 wake_up(&pd->wqueue);
2438 }
2439 }
2440
2441 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2442 {
2443 struct pktcdvd_device *pd;
2444 char b[BDEVNAME_SIZE];
2445 struct bio *split;
2446
2447 pd = q->queuedata;
2448 if (!pd) {
2449 pr_err("%s incorrect request queue\n",
2450 bdevname(bio->bi_bdev, b));
2451 goto end_io;
2452 }
2453
2454 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2455 (unsigned long long)bio->bi_iter.bi_sector,
2456 (unsigned long long)bio_end_sector(bio));
2457
2458 /*
2459 * Clone READ bios so we can have our own bi_end_io callback.
2460 */
2461 if (bio_data_dir(bio) == READ) {
2462 pkt_make_request_read(pd, bio);
2463 return;
2464 }
2465
2466 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2467 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2468 (unsigned long long)bio->bi_iter.bi_sector);
2469 goto end_io;
2470 }
2471
2472 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2473 pkt_err(pd, "wrong bio size\n");
2474 goto end_io;
2475 }
2476
2477 blk_queue_bounce(q, &bio);
2478
2479 do {
2480 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2481 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2482
2483 if (last_zone != zone) {
2484 BUG_ON(last_zone != zone + pd->settings.size);
2485
2486 split = bio_split(bio, last_zone -
2487 bio->bi_iter.bi_sector,
2488 GFP_NOIO, fs_bio_set);
2489 bio_chain(split, bio);
2490 } else {
2491 split = bio;
2492 }
2493
2494 pkt_make_request_write(q, split);
2495 } while (split != bio);
2496
2497 return;
2498 end_io:
2499 bio_io_error(bio);
2500 }
2501
2502
2503
2504 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2505 struct bio_vec *bvec)
2506 {
2507 struct pktcdvd_device *pd = q->queuedata;
2508 sector_t zone = get_zone(bmd->bi_sector, pd);
2509 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2510 int remaining = (pd->settings.size << 9) - used;
2511 int remaining2;
2512
2513 /*
2514 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2515 * boundary, pkt_make_request() will split the bio.
2516 */
2517 remaining2 = PAGE_SIZE - bmd->bi_size;
2518 remaining = max(remaining, remaining2);
2519
2520 BUG_ON(remaining < 0);
2521 return remaining;
2522 }
2523
2524 static void pkt_init_queue(struct pktcdvd_device *pd)
2525 {
2526 struct request_queue *q = pd->disk->queue;
2527
2528 blk_queue_make_request(q, pkt_make_request);
2529 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2530 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2531 blk_queue_merge_bvec(q, pkt_merge_bvec);
2532 q->queuedata = pd;
2533 }
2534
2535 static int pkt_seq_show(struct seq_file *m, void *p)
2536 {
2537 struct pktcdvd_device *pd = m->private;
2538 char *msg;
2539 char bdev_buf[BDEVNAME_SIZE];
2540 int states[PACKET_NUM_STATES];
2541
2542 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2543 bdevname(pd->bdev, bdev_buf));
2544
2545 seq_printf(m, "\nSettings:\n");
2546 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2547
2548 if (pd->settings.write_type == 0)
2549 msg = "Packet";
2550 else
2551 msg = "Unknown";
2552 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2553
2554 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2555 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2556
2557 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2558
2559 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2560 msg = "Mode 1";
2561 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2562 msg = "Mode 2";
2563 else
2564 msg = "Unknown";
2565 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2566
2567 seq_printf(m, "\nStatistics:\n");
2568 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2569 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2570 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2571 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2572 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2573
2574 seq_printf(m, "\nMisc:\n");
2575 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2576 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2577 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2578 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2579 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2580 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2581
2582 seq_printf(m, "\nQueue state:\n");
2583 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2584 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2585 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2586
2587 pkt_count_states(pd, states);
2588 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2589 states[0], states[1], states[2], states[3], states[4], states[5]);
2590
2591 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2592 pd->write_congestion_off,
2593 pd->write_congestion_on);
2594 return 0;
2595 }
2596
2597 static int pkt_seq_open(struct inode *inode, struct file *file)
2598 {
2599 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2600 }
2601
2602 static const struct file_operations pkt_proc_fops = {
2603 .open = pkt_seq_open,
2604 .read = seq_read,
2605 .llseek = seq_lseek,
2606 .release = single_release
2607 };
2608
2609 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2610 {
2611 int i;
2612 int ret = 0;
2613 char b[BDEVNAME_SIZE];
2614 struct block_device *bdev;
2615
2616 if (pd->pkt_dev == dev) {
2617 pkt_err(pd, "recursive setup not allowed\n");
2618 return -EBUSY;
2619 }
2620 for (i = 0; i < MAX_WRITERS; i++) {
2621 struct pktcdvd_device *pd2 = pkt_devs[i];
2622 if (!pd2)
2623 continue;
2624 if (pd2->bdev->bd_dev == dev) {
2625 pkt_err(pd, "%s already setup\n",
2626 bdevname(pd2->bdev, b));
2627 return -EBUSY;
2628 }
2629 if (pd2->pkt_dev == dev) {
2630 pkt_err(pd, "can't chain pktcdvd devices\n");
2631 return -EBUSY;
2632 }
2633 }
2634
2635 bdev = bdget(dev);
2636 if (!bdev)
2637 return -ENOMEM;
2638 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2639 if (ret)
2640 return ret;
2641
2642 /* This is safe, since we have a reference from open(). */
2643 __module_get(THIS_MODULE);
2644
2645 pd->bdev = bdev;
2646 set_blocksize(bdev, CD_FRAMESIZE);
2647
2648 pkt_init_queue(pd);
2649
2650 atomic_set(&pd->cdrw.pending_bios, 0);
2651 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2652 if (IS_ERR(pd->cdrw.thread)) {
2653 pkt_err(pd, "can't start kernel thread\n");
2654 ret = -ENOMEM;
2655 goto out_mem;
2656 }
2657
2658 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2659 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2660 return 0;
2661
2662 out_mem:
2663 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2664 /* This is safe: open() is still holding a reference. */
2665 module_put(THIS_MODULE);
2666 return ret;
2667 }
2668
2669 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2670 {
2671 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2672 int ret;
2673
2674 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2675 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2676
2677 mutex_lock(&pktcdvd_mutex);
2678 switch (cmd) {
2679 case CDROMEJECT:
2680 /*
2681 * The door gets locked when the device is opened, so we
2682 * have to unlock it or else the eject command fails.
2683 */
2684 if (pd->refcnt == 1)
2685 pkt_lock_door(pd, 0);
2686 /* fallthru */
2687 /*
2688 * forward selected CDROM ioctls to CD-ROM, for UDF
2689 */
2690 case CDROMMULTISESSION:
2691 case CDROMREADTOCENTRY:
2692 case CDROM_LAST_WRITTEN:
2693 case CDROM_SEND_PACKET:
2694 case SCSI_IOCTL_SEND_COMMAND:
2695 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2696 break;
2697
2698 default:
2699 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2700 ret = -ENOTTY;
2701 }
2702 mutex_unlock(&pktcdvd_mutex);
2703
2704 return ret;
2705 }
2706
2707 static unsigned int pkt_check_events(struct gendisk *disk,
2708 unsigned int clearing)
2709 {
2710 struct pktcdvd_device *pd = disk->private_data;
2711 struct gendisk *attached_disk;
2712
2713 if (!pd)
2714 return 0;
2715 if (!pd->bdev)
2716 return 0;
2717 attached_disk = pd->bdev->bd_disk;
2718 if (!attached_disk || !attached_disk->fops->check_events)
2719 return 0;
2720 return attached_disk->fops->check_events(attached_disk, clearing);
2721 }
2722
2723 static const struct block_device_operations pktcdvd_ops = {
2724 .owner = THIS_MODULE,
2725 .open = pkt_open,
2726 .release = pkt_close,
2727 .ioctl = pkt_ioctl,
2728 .check_events = pkt_check_events,
2729 };
2730
2731 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2732 {
2733 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2734 }
2735
2736 /*
2737 * Set up mapping from pktcdvd device to CD-ROM device.
2738 */
2739 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2740 {
2741 int idx;
2742 int ret = -ENOMEM;
2743 struct pktcdvd_device *pd;
2744 struct gendisk *disk;
2745
2746 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2747
2748 for (idx = 0; idx < MAX_WRITERS; idx++)
2749 if (!pkt_devs[idx])
2750 break;
2751 if (idx == MAX_WRITERS) {
2752 pr_err("max %d writers supported\n", MAX_WRITERS);
2753 ret = -EBUSY;
2754 goto out_mutex;
2755 }
2756
2757 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2758 if (!pd)
2759 goto out_mutex;
2760
2761 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2762 sizeof(struct pkt_rb_node));
2763 if (!pd->rb_pool)
2764 goto out_mem;
2765
2766 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2767 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2768 spin_lock_init(&pd->cdrw.active_list_lock);
2769
2770 spin_lock_init(&pd->lock);
2771 spin_lock_init(&pd->iosched.lock);
2772 bio_list_init(&pd->iosched.read_queue);
2773 bio_list_init(&pd->iosched.write_queue);
2774 sprintf(pd->name, DRIVER_NAME"%d", idx);
2775 init_waitqueue_head(&pd->wqueue);
2776 pd->bio_queue = RB_ROOT;
2777
2778 pd->write_congestion_on = write_congestion_on;
2779 pd->write_congestion_off = write_congestion_off;
2780
2781 disk = alloc_disk(1);
2782 if (!disk)
2783 goto out_mem;
2784 pd->disk = disk;
2785 disk->major = pktdev_major;
2786 disk->first_minor = idx;
2787 disk->fops = &pktcdvd_ops;
2788 disk->flags = GENHD_FL_REMOVABLE;
2789 strcpy(disk->disk_name, pd->name);
2790 disk->devnode = pktcdvd_devnode;
2791 disk->private_data = pd;
2792 disk->queue = blk_alloc_queue(GFP_KERNEL);
2793 if (!disk->queue)
2794 goto out_mem2;
2795
2796 pd->pkt_dev = MKDEV(pktdev_major, idx);
2797 ret = pkt_new_dev(pd, dev);
2798 if (ret)
2799 goto out_new_dev;
2800
2801 /* inherit events of the host device */
2802 disk->events = pd->bdev->bd_disk->events;
2803 disk->async_events = pd->bdev->bd_disk->async_events;
2804
2805 add_disk(disk);
2806
2807 pkt_sysfs_dev_new(pd);
2808 pkt_debugfs_dev_new(pd);
2809
2810 pkt_devs[idx] = pd;
2811 if (pkt_dev)
2812 *pkt_dev = pd->pkt_dev;
2813
2814 mutex_unlock(&ctl_mutex);
2815 return 0;
2816
2817 out_new_dev:
2818 blk_cleanup_queue(disk->queue);
2819 out_mem2:
2820 put_disk(disk);
2821 out_mem:
2822 if (pd->rb_pool)
2823 mempool_destroy(pd->rb_pool);
2824 kfree(pd);
2825 out_mutex:
2826 mutex_unlock(&ctl_mutex);
2827 pr_err("setup of pktcdvd device failed\n");
2828 return ret;
2829 }
2830
2831 /*
2832 * Tear down mapping from pktcdvd device to CD-ROM device.
2833 */
2834 static int pkt_remove_dev(dev_t pkt_dev)
2835 {
2836 struct pktcdvd_device *pd;
2837 int idx;
2838 int ret = 0;
2839
2840 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2841
2842 for (idx = 0; idx < MAX_WRITERS; idx++) {
2843 pd = pkt_devs[idx];
2844 if (pd && (pd->pkt_dev == pkt_dev))
2845 break;
2846 }
2847 if (idx == MAX_WRITERS) {
2848 pr_debug("dev not setup\n");
2849 ret = -ENXIO;
2850 goto out;
2851 }
2852
2853 if (pd->refcnt > 0) {
2854 ret = -EBUSY;
2855 goto out;
2856 }
2857 if (!IS_ERR(pd->cdrw.thread))
2858 kthread_stop(pd->cdrw.thread);
2859
2860 pkt_devs[idx] = NULL;
2861
2862 pkt_debugfs_dev_remove(pd);
2863 pkt_sysfs_dev_remove(pd);
2864
2865 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2866
2867 remove_proc_entry(pd->name, pkt_proc);
2868 pkt_dbg(1, pd, "writer unmapped\n");
2869
2870 del_gendisk(pd->disk);
2871 blk_cleanup_queue(pd->disk->queue);
2872 put_disk(pd->disk);
2873
2874 mempool_destroy(pd->rb_pool);
2875 kfree(pd);
2876
2877 /* This is safe: open() is still holding a reference. */
2878 module_put(THIS_MODULE);
2879
2880 out:
2881 mutex_unlock(&ctl_mutex);
2882 return ret;
2883 }
2884
2885 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2886 {
2887 struct pktcdvd_device *pd;
2888
2889 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2890
2891 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2892 if (pd) {
2893 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2894 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2895 } else {
2896 ctrl_cmd->dev = 0;
2897 ctrl_cmd->pkt_dev = 0;
2898 }
2899 ctrl_cmd->num_devices = MAX_WRITERS;
2900
2901 mutex_unlock(&ctl_mutex);
2902 }
2903
2904 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2905 {
2906 void __user *argp = (void __user *)arg;
2907 struct pkt_ctrl_command ctrl_cmd;
2908 int ret = 0;
2909 dev_t pkt_dev = 0;
2910
2911 if (cmd != PACKET_CTRL_CMD)
2912 return -ENOTTY;
2913
2914 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2915 return -EFAULT;
2916
2917 switch (ctrl_cmd.command) {
2918 case PKT_CTRL_CMD_SETUP:
2919 if (!capable(CAP_SYS_ADMIN))
2920 return -EPERM;
2921 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2922 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2923 break;
2924 case PKT_CTRL_CMD_TEARDOWN:
2925 if (!capable(CAP_SYS_ADMIN))
2926 return -EPERM;
2927 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2928 break;
2929 case PKT_CTRL_CMD_STATUS:
2930 pkt_get_status(&ctrl_cmd);
2931 break;
2932 default:
2933 return -ENOTTY;
2934 }
2935
2936 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2937 return -EFAULT;
2938 return ret;
2939 }
2940
2941 #ifdef CONFIG_COMPAT
2942 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2943 {
2944 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2945 }
2946 #endif
2947
2948 static const struct file_operations pkt_ctl_fops = {
2949 .open = nonseekable_open,
2950 .unlocked_ioctl = pkt_ctl_ioctl,
2951 #ifdef CONFIG_COMPAT
2952 .compat_ioctl = pkt_ctl_compat_ioctl,
2953 #endif
2954 .owner = THIS_MODULE,
2955 .llseek = no_llseek,
2956 };
2957
2958 static struct miscdevice pkt_misc = {
2959 .minor = MISC_DYNAMIC_MINOR,
2960 .name = DRIVER_NAME,
2961 .nodename = "pktcdvd/control",
2962 .fops = &pkt_ctl_fops
2963 };
2964
2965 static int __init pkt_init(void)
2966 {
2967 int ret;
2968
2969 mutex_init(&ctl_mutex);
2970
2971 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2972 sizeof(struct packet_stacked_data));
2973 if (!psd_pool)
2974 return -ENOMEM;
2975
2976 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2977 if (ret < 0) {
2978 pr_err("unable to register block device\n");
2979 goto out2;
2980 }
2981 if (!pktdev_major)
2982 pktdev_major = ret;
2983
2984 ret = pkt_sysfs_init();
2985 if (ret)
2986 goto out;
2987
2988 pkt_debugfs_init();
2989
2990 ret = misc_register(&pkt_misc);
2991 if (ret) {
2992 pr_err("unable to register misc device\n");
2993 goto out_misc;
2994 }
2995
2996 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2997
2998 return 0;
2999
3000 out_misc:
3001 pkt_debugfs_cleanup();
3002 pkt_sysfs_cleanup();
3003 out:
3004 unregister_blkdev(pktdev_major, DRIVER_NAME);
3005 out2:
3006 mempool_destroy(psd_pool);
3007 return ret;
3008 }
3009
3010 static void __exit pkt_exit(void)
3011 {
3012 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3013 misc_deregister(&pkt_misc);
3014
3015 pkt_debugfs_cleanup();
3016 pkt_sysfs_cleanup();
3017
3018 unregister_blkdev(pktdev_major, DRIVER_NAME);
3019 mempool_destroy(psd_pool);
3020 }
3021
3022 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3023 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3024 MODULE_LICENSE("GPL");
3025
3026 module_init(pkt_init);
3027 module_exit(pkt_exit);
This page took 0.104384 seconds and 6 git commands to generate.