rbd: don't print warning if not mapping a parent
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 #define RBD_DRV_NAME "rbd"
59 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
60
61 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
62
63 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
64 #define RBD_MAX_SNAP_NAME_LEN \
65 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
66
67 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
68
69 #define RBD_SNAP_HEAD_NAME "-"
70
71 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
72
73 /* This allows a single page to hold an image name sent by OSD */
74 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
75 #define RBD_IMAGE_ID_LEN_MAX 64
76
77 #define RBD_OBJ_PREFIX_LEN_MAX 64
78
79 /* Feature bits */
80
81 #define RBD_FEATURE_LAYERING (1<<0)
82 #define RBD_FEATURE_STRIPINGV2 (1<<1)
83 #define RBD_FEATURES_ALL \
84 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
85
86 /* Features supported by this (client software) implementation. */
87
88 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
89
90 /*
91 * An RBD device name will be "rbd#", where the "rbd" comes from
92 * RBD_DRV_NAME above, and # is a unique integer identifier.
93 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
94 * enough to hold all possible device names.
95 */
96 #define DEV_NAME_LEN 32
97 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
98
99 /*
100 * block device image metadata (in-memory version)
101 */
102 struct rbd_image_header {
103 /* These four fields never change for a given rbd image */
104 char *object_prefix;
105 u64 features;
106 __u8 obj_order;
107 __u8 crypt_type;
108 __u8 comp_type;
109
110 /* The remaining fields need to be updated occasionally */
111 u64 image_size;
112 struct ceph_snap_context *snapc;
113 char *snap_names;
114 u64 *snap_sizes;
115
116 u64 stripe_unit;
117 u64 stripe_count;
118 };
119
120 /*
121 * An rbd image specification.
122 *
123 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
124 * identify an image. Each rbd_dev structure includes a pointer to
125 * an rbd_spec structure that encapsulates this identity.
126 *
127 * Each of the id's in an rbd_spec has an associated name. For a
128 * user-mapped image, the names are supplied and the id's associated
129 * with them are looked up. For a layered image, a parent image is
130 * defined by the tuple, and the names are looked up.
131 *
132 * An rbd_dev structure contains a parent_spec pointer which is
133 * non-null if the image it represents is a child in a layered
134 * image. This pointer will refer to the rbd_spec structure used
135 * by the parent rbd_dev for its own identity (i.e., the structure
136 * is shared between the parent and child).
137 *
138 * Since these structures are populated once, during the discovery
139 * phase of image construction, they are effectively immutable so
140 * we make no effort to synchronize access to them.
141 *
142 * Note that code herein does not assume the image name is known (it
143 * could be a null pointer).
144 */
145 struct rbd_spec {
146 u64 pool_id;
147 const char *pool_name;
148
149 const char *image_id;
150 const char *image_name;
151
152 u64 snap_id;
153 const char *snap_name;
154
155 struct kref kref;
156 };
157
158 /*
159 * an instance of the client. multiple devices may share an rbd client.
160 */
161 struct rbd_client {
162 struct ceph_client *client;
163 struct kref kref;
164 struct list_head node;
165 };
166
167 struct rbd_img_request;
168 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
169
170 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
171
172 struct rbd_obj_request;
173 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
174
175 enum obj_request_type {
176 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
177 };
178
179 enum obj_req_flags {
180 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
181 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
182 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
183 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
184 };
185
186 struct rbd_obj_request {
187 const char *object_name;
188 u64 offset; /* object start byte */
189 u64 length; /* bytes from offset */
190 unsigned long flags;
191
192 /*
193 * An object request associated with an image will have its
194 * img_data flag set; a standalone object request will not.
195 *
196 * A standalone object request will have which == BAD_WHICH
197 * and a null obj_request pointer.
198 *
199 * An object request initiated in support of a layered image
200 * object (to check for its existence before a write) will
201 * have which == BAD_WHICH and a non-null obj_request pointer.
202 *
203 * Finally, an object request for rbd image data will have
204 * which != BAD_WHICH, and will have a non-null img_request
205 * pointer. The value of which will be in the range
206 * 0..(img_request->obj_request_count-1).
207 */
208 union {
209 struct rbd_obj_request *obj_request; /* STAT op */
210 struct {
211 struct rbd_img_request *img_request;
212 u64 img_offset;
213 /* links for img_request->obj_requests list */
214 struct list_head links;
215 };
216 };
217 u32 which; /* posn image request list */
218
219 enum obj_request_type type;
220 union {
221 struct bio *bio_list;
222 struct {
223 struct page **pages;
224 u32 page_count;
225 };
226 };
227 struct page **copyup_pages;
228
229 struct ceph_osd_request *osd_req;
230
231 u64 xferred; /* bytes transferred */
232 int result;
233
234 rbd_obj_callback_t callback;
235 struct completion completion;
236
237 struct kref kref;
238 };
239
240 enum img_req_flags {
241 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
242 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
243 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
244 };
245
246 struct rbd_img_request {
247 struct rbd_device *rbd_dev;
248 u64 offset; /* starting image byte offset */
249 u64 length; /* byte count from offset */
250 unsigned long flags;
251 union {
252 u64 snap_id; /* for reads */
253 struct ceph_snap_context *snapc; /* for writes */
254 };
255 union {
256 struct request *rq; /* block request */
257 struct rbd_obj_request *obj_request; /* obj req initiator */
258 };
259 struct page **copyup_pages;
260 spinlock_t completion_lock;/* protects next_completion */
261 u32 next_completion;
262 rbd_img_callback_t callback;
263 u64 xferred;/* aggregate bytes transferred */
264 int result; /* first nonzero obj_request result */
265
266 u32 obj_request_count;
267 struct list_head obj_requests; /* rbd_obj_request structs */
268
269 struct kref kref;
270 };
271
272 #define for_each_obj_request(ireq, oreq) \
273 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
274 #define for_each_obj_request_from(ireq, oreq) \
275 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
276 #define for_each_obj_request_safe(ireq, oreq, n) \
277 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
278
279 struct rbd_mapping {
280 u64 size;
281 u64 features;
282 bool read_only;
283 };
284
285 /*
286 * a single device
287 */
288 struct rbd_device {
289 int dev_id; /* blkdev unique id */
290
291 int major; /* blkdev assigned major */
292 struct gendisk *disk; /* blkdev's gendisk and rq */
293
294 u32 image_format; /* Either 1 or 2 */
295 struct rbd_client *rbd_client;
296
297 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
298
299 spinlock_t lock; /* queue, flags, open_count */
300
301 struct rbd_image_header header;
302 unsigned long flags; /* possibly lock protected */
303 struct rbd_spec *spec;
304
305 char *header_name;
306
307 struct ceph_file_layout layout;
308
309 struct ceph_osd_event *watch_event;
310 struct rbd_obj_request *watch_request;
311
312 struct rbd_spec *parent_spec;
313 u64 parent_overlap;
314 struct rbd_device *parent;
315
316 /* protects updating the header */
317 struct rw_semaphore header_rwsem;
318
319 struct rbd_mapping mapping;
320
321 struct list_head node;
322
323 /* sysfs related */
324 struct device dev;
325 unsigned long open_count; /* protected by lock */
326 };
327
328 /*
329 * Flag bits for rbd_dev->flags. If atomicity is required,
330 * rbd_dev->lock is used to protect access.
331 *
332 * Currently, only the "removing" flag (which is coupled with the
333 * "open_count" field) requires atomic access.
334 */
335 enum rbd_dev_flags {
336 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
337 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
338 };
339
340 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
341
342 static LIST_HEAD(rbd_dev_list); /* devices */
343 static DEFINE_SPINLOCK(rbd_dev_list_lock);
344
345 static LIST_HEAD(rbd_client_list); /* clients */
346 static DEFINE_SPINLOCK(rbd_client_list_lock);
347
348 /* Slab caches for frequently-allocated structures */
349
350 static struct kmem_cache *rbd_img_request_cache;
351 static struct kmem_cache *rbd_obj_request_cache;
352 static struct kmem_cache *rbd_segment_name_cache;
353
354 static int rbd_img_request_submit(struct rbd_img_request *img_request);
355
356 static void rbd_dev_device_release(struct device *dev);
357
358 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
359 size_t count);
360 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
361 size_t count);
362 static int rbd_dev_image_probe(struct rbd_device *rbd_dev);
363
364 static struct bus_attribute rbd_bus_attrs[] = {
365 __ATTR(add, S_IWUSR, NULL, rbd_add),
366 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
367 __ATTR_NULL
368 };
369
370 static struct bus_type rbd_bus_type = {
371 .name = "rbd",
372 .bus_attrs = rbd_bus_attrs,
373 };
374
375 static void rbd_root_dev_release(struct device *dev)
376 {
377 }
378
379 static struct device rbd_root_dev = {
380 .init_name = "rbd",
381 .release = rbd_root_dev_release,
382 };
383
384 static __printf(2, 3)
385 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
386 {
387 struct va_format vaf;
388 va_list args;
389
390 va_start(args, fmt);
391 vaf.fmt = fmt;
392 vaf.va = &args;
393
394 if (!rbd_dev)
395 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
396 else if (rbd_dev->disk)
397 printk(KERN_WARNING "%s: %s: %pV\n",
398 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
399 else if (rbd_dev->spec && rbd_dev->spec->image_name)
400 printk(KERN_WARNING "%s: image %s: %pV\n",
401 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
402 else if (rbd_dev->spec && rbd_dev->spec->image_id)
403 printk(KERN_WARNING "%s: id %s: %pV\n",
404 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
405 else /* punt */
406 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
407 RBD_DRV_NAME, rbd_dev, &vaf);
408 va_end(args);
409 }
410
411 #ifdef RBD_DEBUG
412 #define rbd_assert(expr) \
413 if (unlikely(!(expr))) { \
414 printk(KERN_ERR "\nAssertion failure in %s() " \
415 "at line %d:\n\n" \
416 "\trbd_assert(%s);\n\n", \
417 __func__, __LINE__, #expr); \
418 BUG(); \
419 }
420 #else /* !RBD_DEBUG */
421 # define rbd_assert(expr) ((void) 0)
422 #endif /* !RBD_DEBUG */
423
424 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
425 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
426 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
427
428 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
429 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev);
430 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
431 u64 snap_id);
432 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
433 u8 *order, u64 *snap_size);
434 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
435 u64 *snap_features);
436 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
437
438 static int rbd_open(struct block_device *bdev, fmode_t mode)
439 {
440 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
441 bool removing = false;
442
443 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
444 return -EROFS;
445
446 spin_lock_irq(&rbd_dev->lock);
447 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
448 removing = true;
449 else
450 rbd_dev->open_count++;
451 spin_unlock_irq(&rbd_dev->lock);
452 if (removing)
453 return -ENOENT;
454
455 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
456 (void) get_device(&rbd_dev->dev);
457 set_device_ro(bdev, rbd_dev->mapping.read_only);
458 mutex_unlock(&ctl_mutex);
459
460 return 0;
461 }
462
463 static int rbd_release(struct gendisk *disk, fmode_t mode)
464 {
465 struct rbd_device *rbd_dev = disk->private_data;
466 unsigned long open_count_before;
467
468 spin_lock_irq(&rbd_dev->lock);
469 open_count_before = rbd_dev->open_count--;
470 spin_unlock_irq(&rbd_dev->lock);
471 rbd_assert(open_count_before > 0);
472
473 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
474 put_device(&rbd_dev->dev);
475 mutex_unlock(&ctl_mutex);
476
477 return 0;
478 }
479
480 static const struct block_device_operations rbd_bd_ops = {
481 .owner = THIS_MODULE,
482 .open = rbd_open,
483 .release = rbd_release,
484 };
485
486 /*
487 * Initialize an rbd client instance.
488 * We own *ceph_opts.
489 */
490 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
491 {
492 struct rbd_client *rbdc;
493 int ret = -ENOMEM;
494
495 dout("%s:\n", __func__);
496 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
497 if (!rbdc)
498 goto out_opt;
499
500 kref_init(&rbdc->kref);
501 INIT_LIST_HEAD(&rbdc->node);
502
503 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
504
505 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
506 if (IS_ERR(rbdc->client))
507 goto out_mutex;
508 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
509
510 ret = ceph_open_session(rbdc->client);
511 if (ret < 0)
512 goto out_err;
513
514 spin_lock(&rbd_client_list_lock);
515 list_add_tail(&rbdc->node, &rbd_client_list);
516 spin_unlock(&rbd_client_list_lock);
517
518 mutex_unlock(&ctl_mutex);
519 dout("%s: rbdc %p\n", __func__, rbdc);
520
521 return rbdc;
522
523 out_err:
524 ceph_destroy_client(rbdc->client);
525 out_mutex:
526 mutex_unlock(&ctl_mutex);
527 kfree(rbdc);
528 out_opt:
529 if (ceph_opts)
530 ceph_destroy_options(ceph_opts);
531 dout("%s: error %d\n", __func__, ret);
532
533 return ERR_PTR(ret);
534 }
535
536 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
537 {
538 kref_get(&rbdc->kref);
539
540 return rbdc;
541 }
542
543 /*
544 * Find a ceph client with specific addr and configuration. If
545 * found, bump its reference count.
546 */
547 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
548 {
549 struct rbd_client *client_node;
550 bool found = false;
551
552 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
553 return NULL;
554
555 spin_lock(&rbd_client_list_lock);
556 list_for_each_entry(client_node, &rbd_client_list, node) {
557 if (!ceph_compare_options(ceph_opts, client_node->client)) {
558 __rbd_get_client(client_node);
559
560 found = true;
561 break;
562 }
563 }
564 spin_unlock(&rbd_client_list_lock);
565
566 return found ? client_node : NULL;
567 }
568
569 /*
570 * mount options
571 */
572 enum {
573 Opt_last_int,
574 /* int args above */
575 Opt_last_string,
576 /* string args above */
577 Opt_read_only,
578 Opt_read_write,
579 /* Boolean args above */
580 Opt_last_bool,
581 };
582
583 static match_table_t rbd_opts_tokens = {
584 /* int args above */
585 /* string args above */
586 {Opt_read_only, "read_only"},
587 {Opt_read_only, "ro"}, /* Alternate spelling */
588 {Opt_read_write, "read_write"},
589 {Opt_read_write, "rw"}, /* Alternate spelling */
590 /* Boolean args above */
591 {-1, NULL}
592 };
593
594 struct rbd_options {
595 bool read_only;
596 };
597
598 #define RBD_READ_ONLY_DEFAULT false
599
600 static int parse_rbd_opts_token(char *c, void *private)
601 {
602 struct rbd_options *rbd_opts = private;
603 substring_t argstr[MAX_OPT_ARGS];
604 int token, intval, ret;
605
606 token = match_token(c, rbd_opts_tokens, argstr);
607 if (token < 0)
608 return -EINVAL;
609
610 if (token < Opt_last_int) {
611 ret = match_int(&argstr[0], &intval);
612 if (ret < 0) {
613 pr_err("bad mount option arg (not int) "
614 "at '%s'\n", c);
615 return ret;
616 }
617 dout("got int token %d val %d\n", token, intval);
618 } else if (token > Opt_last_int && token < Opt_last_string) {
619 dout("got string token %d val %s\n", token,
620 argstr[0].from);
621 } else if (token > Opt_last_string && token < Opt_last_bool) {
622 dout("got Boolean token %d\n", token);
623 } else {
624 dout("got token %d\n", token);
625 }
626
627 switch (token) {
628 case Opt_read_only:
629 rbd_opts->read_only = true;
630 break;
631 case Opt_read_write:
632 rbd_opts->read_only = false;
633 break;
634 default:
635 rbd_assert(false);
636 break;
637 }
638 return 0;
639 }
640
641 /*
642 * Get a ceph client with specific addr and configuration, if one does
643 * not exist create it.
644 */
645 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
646 {
647 struct rbd_client *rbdc;
648
649 rbdc = rbd_client_find(ceph_opts);
650 if (rbdc) /* using an existing client */
651 ceph_destroy_options(ceph_opts);
652 else
653 rbdc = rbd_client_create(ceph_opts);
654
655 return rbdc;
656 }
657
658 /*
659 * Destroy ceph client
660 *
661 * Caller must hold rbd_client_list_lock.
662 */
663 static void rbd_client_release(struct kref *kref)
664 {
665 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
666
667 dout("%s: rbdc %p\n", __func__, rbdc);
668 spin_lock(&rbd_client_list_lock);
669 list_del(&rbdc->node);
670 spin_unlock(&rbd_client_list_lock);
671
672 ceph_destroy_client(rbdc->client);
673 kfree(rbdc);
674 }
675
676 /*
677 * Drop reference to ceph client node. If it's not referenced anymore, release
678 * it.
679 */
680 static void rbd_put_client(struct rbd_client *rbdc)
681 {
682 if (rbdc)
683 kref_put(&rbdc->kref, rbd_client_release);
684 }
685
686 static bool rbd_image_format_valid(u32 image_format)
687 {
688 return image_format == 1 || image_format == 2;
689 }
690
691 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
692 {
693 size_t size;
694 u32 snap_count;
695
696 /* The header has to start with the magic rbd header text */
697 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
698 return false;
699
700 /* The bio layer requires at least sector-sized I/O */
701
702 if (ondisk->options.order < SECTOR_SHIFT)
703 return false;
704
705 /* If we use u64 in a few spots we may be able to loosen this */
706
707 if (ondisk->options.order > 8 * sizeof (int) - 1)
708 return false;
709
710 /*
711 * The size of a snapshot header has to fit in a size_t, and
712 * that limits the number of snapshots.
713 */
714 snap_count = le32_to_cpu(ondisk->snap_count);
715 size = SIZE_MAX - sizeof (struct ceph_snap_context);
716 if (snap_count > size / sizeof (__le64))
717 return false;
718
719 /*
720 * Not only that, but the size of the entire the snapshot
721 * header must also be representable in a size_t.
722 */
723 size -= snap_count * sizeof (__le64);
724 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
725 return false;
726
727 return true;
728 }
729
730 /*
731 * Create a new header structure, translate header format from the on-disk
732 * header.
733 */
734 static int rbd_header_from_disk(struct rbd_image_header *header,
735 struct rbd_image_header_ondisk *ondisk)
736 {
737 u32 snap_count;
738 size_t len;
739 size_t size;
740 u32 i;
741
742 memset(header, 0, sizeof (*header));
743
744 snap_count = le32_to_cpu(ondisk->snap_count);
745
746 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
747 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
748 if (!header->object_prefix)
749 return -ENOMEM;
750 memcpy(header->object_prefix, ondisk->object_prefix, len);
751 header->object_prefix[len] = '\0';
752
753 if (snap_count) {
754 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
755
756 /* Save a copy of the snapshot names */
757
758 if (snap_names_len > (u64) SIZE_MAX)
759 return -EIO;
760 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
761 if (!header->snap_names)
762 goto out_err;
763 /*
764 * Note that rbd_dev_v1_header_read() guarantees
765 * the ondisk buffer we're working with has
766 * snap_names_len bytes beyond the end of the
767 * snapshot id array, this memcpy() is safe.
768 */
769 memcpy(header->snap_names, &ondisk->snaps[snap_count],
770 snap_names_len);
771
772 /* Record each snapshot's size */
773
774 size = snap_count * sizeof (*header->snap_sizes);
775 header->snap_sizes = kmalloc(size, GFP_KERNEL);
776 if (!header->snap_sizes)
777 goto out_err;
778 for (i = 0; i < snap_count; i++)
779 header->snap_sizes[i] =
780 le64_to_cpu(ondisk->snaps[i].image_size);
781 } else {
782 header->snap_names = NULL;
783 header->snap_sizes = NULL;
784 }
785
786 header->features = 0; /* No features support in v1 images */
787 header->obj_order = ondisk->options.order;
788 header->crypt_type = ondisk->options.crypt_type;
789 header->comp_type = ondisk->options.comp_type;
790
791 /* Allocate and fill in the snapshot context */
792
793 header->image_size = le64_to_cpu(ondisk->image_size);
794
795 header->snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
796 if (!header->snapc)
797 goto out_err;
798 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
799 for (i = 0; i < snap_count; i++)
800 header->snapc->snaps[i] = le64_to_cpu(ondisk->snaps[i].id);
801
802 return 0;
803
804 out_err:
805 kfree(header->snap_sizes);
806 header->snap_sizes = NULL;
807 kfree(header->snap_names);
808 header->snap_names = NULL;
809 kfree(header->object_prefix);
810 header->object_prefix = NULL;
811
812 return -ENOMEM;
813 }
814
815 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
816 {
817 const char *snap_name;
818
819 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
820
821 /* Skip over names until we find the one we are looking for */
822
823 snap_name = rbd_dev->header.snap_names;
824 while (which--)
825 snap_name += strlen(snap_name) + 1;
826
827 return kstrdup(snap_name, GFP_KERNEL);
828 }
829
830 /*
831 * Snapshot id comparison function for use with qsort()/bsearch().
832 * Note that result is for snapshots in *descending* order.
833 */
834 static int snapid_compare_reverse(const void *s1, const void *s2)
835 {
836 u64 snap_id1 = *(u64 *)s1;
837 u64 snap_id2 = *(u64 *)s2;
838
839 if (snap_id1 < snap_id2)
840 return 1;
841 return snap_id1 == snap_id2 ? 0 : -1;
842 }
843
844 /*
845 * Search a snapshot context to see if the given snapshot id is
846 * present.
847 *
848 * Returns the position of the snapshot id in the array if it's found,
849 * or BAD_SNAP_INDEX otherwise.
850 *
851 * Note: The snapshot array is in kept sorted (by the osd) in
852 * reverse order, highest snapshot id first.
853 */
854 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
855 {
856 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
857 u64 *found;
858
859 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
860 sizeof (snap_id), snapid_compare_reverse);
861
862 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
863 }
864
865 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
866 u64 snap_id)
867 {
868 u32 which;
869
870 which = rbd_dev_snap_index(rbd_dev, snap_id);
871 if (which == BAD_SNAP_INDEX)
872 return NULL;
873
874 return _rbd_dev_v1_snap_name(rbd_dev, which);
875 }
876
877 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
878 {
879 if (snap_id == CEPH_NOSNAP)
880 return RBD_SNAP_HEAD_NAME;
881
882 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
883 if (rbd_dev->image_format == 1)
884 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
885
886 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
887 }
888
889 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
890 u64 *snap_size)
891 {
892 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
893 if (snap_id == CEPH_NOSNAP) {
894 *snap_size = rbd_dev->header.image_size;
895 } else if (rbd_dev->image_format == 1) {
896 u32 which;
897
898 which = rbd_dev_snap_index(rbd_dev, snap_id);
899 if (which == BAD_SNAP_INDEX)
900 return -ENOENT;
901
902 *snap_size = rbd_dev->header.snap_sizes[which];
903 } else {
904 u64 size = 0;
905 int ret;
906
907 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
908 if (ret)
909 return ret;
910
911 *snap_size = size;
912 }
913 return 0;
914 }
915
916 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
917 u64 *snap_features)
918 {
919 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
920 if (snap_id == CEPH_NOSNAP) {
921 *snap_features = rbd_dev->header.features;
922 } else if (rbd_dev->image_format == 1) {
923 *snap_features = 0; /* No features for format 1 */
924 } else {
925 u64 features = 0;
926 int ret;
927
928 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
929 if (ret)
930 return ret;
931
932 *snap_features = features;
933 }
934 return 0;
935 }
936
937 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
938 {
939 const char *snap_name = rbd_dev->spec->snap_name;
940 u64 snap_id;
941 u64 size = 0;
942 u64 features = 0;
943 int ret;
944
945 if (strcmp(snap_name, RBD_SNAP_HEAD_NAME)) {
946 snap_id = rbd_snap_id_by_name(rbd_dev, snap_name);
947 if (snap_id == CEPH_NOSNAP)
948 return -ENOENT;
949 } else {
950 snap_id = CEPH_NOSNAP;
951 }
952
953 ret = rbd_snap_size(rbd_dev, snap_id, &size);
954 if (ret)
955 return ret;
956 ret = rbd_snap_features(rbd_dev, snap_id, &features);
957 if (ret)
958 return ret;
959
960 rbd_dev->mapping.size = size;
961 rbd_dev->mapping.features = features;
962
963 /* If we are mapping a snapshot it must be marked read-only */
964
965 if (snap_id != CEPH_NOSNAP)
966 rbd_dev->mapping.read_only = true;
967
968 return 0;
969 }
970
971 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
972 {
973 rbd_dev->mapping.size = 0;
974 rbd_dev->mapping.features = 0;
975 rbd_dev->mapping.read_only = true;
976 }
977
978 static void rbd_dev_clear_mapping(struct rbd_device *rbd_dev)
979 {
980 rbd_dev->mapping.size = 0;
981 rbd_dev->mapping.features = 0;
982 rbd_dev->mapping.read_only = true;
983 }
984
985 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
986 {
987 char *name;
988 u64 segment;
989 int ret;
990
991 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
992 if (!name)
993 return NULL;
994 segment = offset >> rbd_dev->header.obj_order;
995 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
996 rbd_dev->header.object_prefix, segment);
997 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
998 pr_err("error formatting segment name for #%llu (%d)\n",
999 segment, ret);
1000 kfree(name);
1001 name = NULL;
1002 }
1003
1004 return name;
1005 }
1006
1007 static void rbd_segment_name_free(const char *name)
1008 {
1009 /* The explicit cast here is needed to drop the const qualifier */
1010
1011 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1012 }
1013
1014 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1015 {
1016 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1017
1018 return offset & (segment_size - 1);
1019 }
1020
1021 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1022 u64 offset, u64 length)
1023 {
1024 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1025
1026 offset &= segment_size - 1;
1027
1028 rbd_assert(length <= U64_MAX - offset);
1029 if (offset + length > segment_size)
1030 length = segment_size - offset;
1031
1032 return length;
1033 }
1034
1035 /*
1036 * returns the size of an object in the image
1037 */
1038 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1039 {
1040 return 1 << header->obj_order;
1041 }
1042
1043 /*
1044 * bio helpers
1045 */
1046
1047 static void bio_chain_put(struct bio *chain)
1048 {
1049 struct bio *tmp;
1050
1051 while (chain) {
1052 tmp = chain;
1053 chain = chain->bi_next;
1054 bio_put(tmp);
1055 }
1056 }
1057
1058 /*
1059 * zeros a bio chain, starting at specific offset
1060 */
1061 static void zero_bio_chain(struct bio *chain, int start_ofs)
1062 {
1063 struct bio_vec *bv;
1064 unsigned long flags;
1065 void *buf;
1066 int i;
1067 int pos = 0;
1068
1069 while (chain) {
1070 bio_for_each_segment(bv, chain, i) {
1071 if (pos + bv->bv_len > start_ofs) {
1072 int remainder = max(start_ofs - pos, 0);
1073 buf = bvec_kmap_irq(bv, &flags);
1074 memset(buf + remainder, 0,
1075 bv->bv_len - remainder);
1076 bvec_kunmap_irq(buf, &flags);
1077 }
1078 pos += bv->bv_len;
1079 }
1080
1081 chain = chain->bi_next;
1082 }
1083 }
1084
1085 /*
1086 * similar to zero_bio_chain(), zeros data defined by a page array,
1087 * starting at the given byte offset from the start of the array and
1088 * continuing up to the given end offset. The pages array is
1089 * assumed to be big enough to hold all bytes up to the end.
1090 */
1091 static void zero_pages(struct page **pages, u64 offset, u64 end)
1092 {
1093 struct page **page = &pages[offset >> PAGE_SHIFT];
1094
1095 rbd_assert(end > offset);
1096 rbd_assert(end - offset <= (u64)SIZE_MAX);
1097 while (offset < end) {
1098 size_t page_offset;
1099 size_t length;
1100 unsigned long flags;
1101 void *kaddr;
1102
1103 page_offset = (size_t)(offset & ~PAGE_MASK);
1104 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1105 local_irq_save(flags);
1106 kaddr = kmap_atomic(*page);
1107 memset(kaddr + page_offset, 0, length);
1108 kunmap_atomic(kaddr);
1109 local_irq_restore(flags);
1110
1111 offset += length;
1112 page++;
1113 }
1114 }
1115
1116 /*
1117 * Clone a portion of a bio, starting at the given byte offset
1118 * and continuing for the number of bytes indicated.
1119 */
1120 static struct bio *bio_clone_range(struct bio *bio_src,
1121 unsigned int offset,
1122 unsigned int len,
1123 gfp_t gfpmask)
1124 {
1125 struct bio_vec *bv;
1126 unsigned int resid;
1127 unsigned short idx;
1128 unsigned int voff;
1129 unsigned short end_idx;
1130 unsigned short vcnt;
1131 struct bio *bio;
1132
1133 /* Handle the easy case for the caller */
1134
1135 if (!offset && len == bio_src->bi_size)
1136 return bio_clone(bio_src, gfpmask);
1137
1138 if (WARN_ON_ONCE(!len))
1139 return NULL;
1140 if (WARN_ON_ONCE(len > bio_src->bi_size))
1141 return NULL;
1142 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1143 return NULL;
1144
1145 /* Find first affected segment... */
1146
1147 resid = offset;
1148 __bio_for_each_segment(bv, bio_src, idx, 0) {
1149 if (resid < bv->bv_len)
1150 break;
1151 resid -= bv->bv_len;
1152 }
1153 voff = resid;
1154
1155 /* ...and the last affected segment */
1156
1157 resid += len;
1158 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1159 if (resid <= bv->bv_len)
1160 break;
1161 resid -= bv->bv_len;
1162 }
1163 vcnt = end_idx - idx + 1;
1164
1165 /* Build the clone */
1166
1167 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1168 if (!bio)
1169 return NULL; /* ENOMEM */
1170
1171 bio->bi_bdev = bio_src->bi_bdev;
1172 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1173 bio->bi_rw = bio_src->bi_rw;
1174 bio->bi_flags |= 1 << BIO_CLONED;
1175
1176 /*
1177 * Copy over our part of the bio_vec, then update the first
1178 * and last (or only) entries.
1179 */
1180 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1181 vcnt * sizeof (struct bio_vec));
1182 bio->bi_io_vec[0].bv_offset += voff;
1183 if (vcnt > 1) {
1184 bio->bi_io_vec[0].bv_len -= voff;
1185 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1186 } else {
1187 bio->bi_io_vec[0].bv_len = len;
1188 }
1189
1190 bio->bi_vcnt = vcnt;
1191 bio->bi_size = len;
1192 bio->bi_idx = 0;
1193
1194 return bio;
1195 }
1196
1197 /*
1198 * Clone a portion of a bio chain, starting at the given byte offset
1199 * into the first bio in the source chain and continuing for the
1200 * number of bytes indicated. The result is another bio chain of
1201 * exactly the given length, or a null pointer on error.
1202 *
1203 * The bio_src and offset parameters are both in-out. On entry they
1204 * refer to the first source bio and the offset into that bio where
1205 * the start of data to be cloned is located.
1206 *
1207 * On return, bio_src is updated to refer to the bio in the source
1208 * chain that contains first un-cloned byte, and *offset will
1209 * contain the offset of that byte within that bio.
1210 */
1211 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1212 unsigned int *offset,
1213 unsigned int len,
1214 gfp_t gfpmask)
1215 {
1216 struct bio *bi = *bio_src;
1217 unsigned int off = *offset;
1218 struct bio *chain = NULL;
1219 struct bio **end;
1220
1221 /* Build up a chain of clone bios up to the limit */
1222
1223 if (!bi || off >= bi->bi_size || !len)
1224 return NULL; /* Nothing to clone */
1225
1226 end = &chain;
1227 while (len) {
1228 unsigned int bi_size;
1229 struct bio *bio;
1230
1231 if (!bi) {
1232 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1233 goto out_err; /* EINVAL; ran out of bio's */
1234 }
1235 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1236 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1237 if (!bio)
1238 goto out_err; /* ENOMEM */
1239
1240 *end = bio;
1241 end = &bio->bi_next;
1242
1243 off += bi_size;
1244 if (off == bi->bi_size) {
1245 bi = bi->bi_next;
1246 off = 0;
1247 }
1248 len -= bi_size;
1249 }
1250 *bio_src = bi;
1251 *offset = off;
1252
1253 return chain;
1254 out_err:
1255 bio_chain_put(chain);
1256
1257 return NULL;
1258 }
1259
1260 /*
1261 * The default/initial value for all object request flags is 0. For
1262 * each flag, once its value is set to 1 it is never reset to 0
1263 * again.
1264 */
1265 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1266 {
1267 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1268 struct rbd_device *rbd_dev;
1269
1270 rbd_dev = obj_request->img_request->rbd_dev;
1271 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1272 obj_request);
1273 }
1274 }
1275
1276 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1277 {
1278 smp_mb();
1279 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1280 }
1281
1282 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1283 {
1284 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1285 struct rbd_device *rbd_dev = NULL;
1286
1287 if (obj_request_img_data_test(obj_request))
1288 rbd_dev = obj_request->img_request->rbd_dev;
1289 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1290 obj_request);
1291 }
1292 }
1293
1294 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1295 {
1296 smp_mb();
1297 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1298 }
1299
1300 /*
1301 * This sets the KNOWN flag after (possibly) setting the EXISTS
1302 * flag. The latter is set based on the "exists" value provided.
1303 *
1304 * Note that for our purposes once an object exists it never goes
1305 * away again. It's possible that the response from two existence
1306 * checks are separated by the creation of the target object, and
1307 * the first ("doesn't exist") response arrives *after* the second
1308 * ("does exist"). In that case we ignore the second one.
1309 */
1310 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1311 bool exists)
1312 {
1313 if (exists)
1314 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1315 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1316 smp_mb();
1317 }
1318
1319 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1320 {
1321 smp_mb();
1322 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1323 }
1324
1325 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1326 {
1327 smp_mb();
1328 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1329 }
1330
1331 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1332 {
1333 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1334 atomic_read(&obj_request->kref.refcount));
1335 kref_get(&obj_request->kref);
1336 }
1337
1338 static void rbd_obj_request_destroy(struct kref *kref);
1339 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1340 {
1341 rbd_assert(obj_request != NULL);
1342 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1343 atomic_read(&obj_request->kref.refcount));
1344 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1345 }
1346
1347 static void rbd_img_request_get(struct rbd_img_request *img_request)
1348 {
1349 dout("%s: img %p (was %d)\n", __func__, img_request,
1350 atomic_read(&img_request->kref.refcount));
1351 kref_get(&img_request->kref);
1352 }
1353
1354 static void rbd_img_request_destroy(struct kref *kref);
1355 static void rbd_img_request_put(struct rbd_img_request *img_request)
1356 {
1357 rbd_assert(img_request != NULL);
1358 dout("%s: img %p (was %d)\n", __func__, img_request,
1359 atomic_read(&img_request->kref.refcount));
1360 kref_put(&img_request->kref, rbd_img_request_destroy);
1361 }
1362
1363 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1364 struct rbd_obj_request *obj_request)
1365 {
1366 rbd_assert(obj_request->img_request == NULL);
1367
1368 /* Image request now owns object's original reference */
1369 obj_request->img_request = img_request;
1370 obj_request->which = img_request->obj_request_count;
1371 rbd_assert(!obj_request_img_data_test(obj_request));
1372 obj_request_img_data_set(obj_request);
1373 rbd_assert(obj_request->which != BAD_WHICH);
1374 img_request->obj_request_count++;
1375 list_add_tail(&obj_request->links, &img_request->obj_requests);
1376 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1377 obj_request->which);
1378 }
1379
1380 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1381 struct rbd_obj_request *obj_request)
1382 {
1383 rbd_assert(obj_request->which != BAD_WHICH);
1384
1385 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1386 obj_request->which);
1387 list_del(&obj_request->links);
1388 rbd_assert(img_request->obj_request_count > 0);
1389 img_request->obj_request_count--;
1390 rbd_assert(obj_request->which == img_request->obj_request_count);
1391 obj_request->which = BAD_WHICH;
1392 rbd_assert(obj_request_img_data_test(obj_request));
1393 rbd_assert(obj_request->img_request == img_request);
1394 obj_request->img_request = NULL;
1395 obj_request->callback = NULL;
1396 rbd_obj_request_put(obj_request);
1397 }
1398
1399 static bool obj_request_type_valid(enum obj_request_type type)
1400 {
1401 switch (type) {
1402 case OBJ_REQUEST_NODATA:
1403 case OBJ_REQUEST_BIO:
1404 case OBJ_REQUEST_PAGES:
1405 return true;
1406 default:
1407 return false;
1408 }
1409 }
1410
1411 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1412 struct rbd_obj_request *obj_request)
1413 {
1414 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1415
1416 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1417 }
1418
1419 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1420 {
1421
1422 dout("%s: img %p\n", __func__, img_request);
1423
1424 /*
1425 * If no error occurred, compute the aggregate transfer
1426 * count for the image request. We could instead use
1427 * atomic64_cmpxchg() to update it as each object request
1428 * completes; not clear which way is better off hand.
1429 */
1430 if (!img_request->result) {
1431 struct rbd_obj_request *obj_request;
1432 u64 xferred = 0;
1433
1434 for_each_obj_request(img_request, obj_request)
1435 xferred += obj_request->xferred;
1436 img_request->xferred = xferred;
1437 }
1438
1439 if (img_request->callback)
1440 img_request->callback(img_request);
1441 else
1442 rbd_img_request_put(img_request);
1443 }
1444
1445 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1446
1447 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1448 {
1449 dout("%s: obj %p\n", __func__, obj_request);
1450
1451 return wait_for_completion_interruptible(&obj_request->completion);
1452 }
1453
1454 /*
1455 * The default/initial value for all image request flags is 0. Each
1456 * is conditionally set to 1 at image request initialization time
1457 * and currently never change thereafter.
1458 */
1459 static void img_request_write_set(struct rbd_img_request *img_request)
1460 {
1461 set_bit(IMG_REQ_WRITE, &img_request->flags);
1462 smp_mb();
1463 }
1464
1465 static bool img_request_write_test(struct rbd_img_request *img_request)
1466 {
1467 smp_mb();
1468 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1469 }
1470
1471 static void img_request_child_set(struct rbd_img_request *img_request)
1472 {
1473 set_bit(IMG_REQ_CHILD, &img_request->flags);
1474 smp_mb();
1475 }
1476
1477 static bool img_request_child_test(struct rbd_img_request *img_request)
1478 {
1479 smp_mb();
1480 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1481 }
1482
1483 static void img_request_layered_set(struct rbd_img_request *img_request)
1484 {
1485 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1486 smp_mb();
1487 }
1488
1489 static bool img_request_layered_test(struct rbd_img_request *img_request)
1490 {
1491 smp_mb();
1492 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1493 }
1494
1495 static void
1496 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1497 {
1498 u64 xferred = obj_request->xferred;
1499 u64 length = obj_request->length;
1500
1501 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1502 obj_request, obj_request->img_request, obj_request->result,
1503 xferred, length);
1504 /*
1505 * ENOENT means a hole in the image. We zero-fill the
1506 * entire length of the request. A short read also implies
1507 * zero-fill to the end of the request. Either way we
1508 * update the xferred count to indicate the whole request
1509 * was satisfied.
1510 */
1511 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1512 if (obj_request->result == -ENOENT) {
1513 if (obj_request->type == OBJ_REQUEST_BIO)
1514 zero_bio_chain(obj_request->bio_list, 0);
1515 else
1516 zero_pages(obj_request->pages, 0, length);
1517 obj_request->result = 0;
1518 obj_request->xferred = length;
1519 } else if (xferred < length && !obj_request->result) {
1520 if (obj_request->type == OBJ_REQUEST_BIO)
1521 zero_bio_chain(obj_request->bio_list, xferred);
1522 else
1523 zero_pages(obj_request->pages, xferred, length);
1524 obj_request->xferred = length;
1525 }
1526 obj_request_done_set(obj_request);
1527 }
1528
1529 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1530 {
1531 dout("%s: obj %p cb %p\n", __func__, obj_request,
1532 obj_request->callback);
1533 if (obj_request->callback)
1534 obj_request->callback(obj_request);
1535 else
1536 complete_all(&obj_request->completion);
1537 }
1538
1539 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1540 {
1541 dout("%s: obj %p\n", __func__, obj_request);
1542 obj_request_done_set(obj_request);
1543 }
1544
1545 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1546 {
1547 struct rbd_img_request *img_request = NULL;
1548 struct rbd_device *rbd_dev = NULL;
1549 bool layered = false;
1550
1551 if (obj_request_img_data_test(obj_request)) {
1552 img_request = obj_request->img_request;
1553 layered = img_request && img_request_layered_test(img_request);
1554 rbd_dev = img_request->rbd_dev;
1555 }
1556
1557 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1558 obj_request, img_request, obj_request->result,
1559 obj_request->xferred, obj_request->length);
1560 if (layered && obj_request->result == -ENOENT &&
1561 obj_request->img_offset < rbd_dev->parent_overlap)
1562 rbd_img_parent_read(obj_request);
1563 else if (img_request)
1564 rbd_img_obj_request_read_callback(obj_request);
1565 else
1566 obj_request_done_set(obj_request);
1567 }
1568
1569 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1570 {
1571 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1572 obj_request->result, obj_request->length);
1573 /*
1574 * There is no such thing as a successful short write. Set
1575 * it to our originally-requested length.
1576 */
1577 obj_request->xferred = obj_request->length;
1578 obj_request_done_set(obj_request);
1579 }
1580
1581 /*
1582 * For a simple stat call there's nothing to do. We'll do more if
1583 * this is part of a write sequence for a layered image.
1584 */
1585 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1586 {
1587 dout("%s: obj %p\n", __func__, obj_request);
1588 obj_request_done_set(obj_request);
1589 }
1590
1591 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1592 struct ceph_msg *msg)
1593 {
1594 struct rbd_obj_request *obj_request = osd_req->r_priv;
1595 u16 opcode;
1596
1597 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1598 rbd_assert(osd_req == obj_request->osd_req);
1599 if (obj_request_img_data_test(obj_request)) {
1600 rbd_assert(obj_request->img_request);
1601 rbd_assert(obj_request->which != BAD_WHICH);
1602 } else {
1603 rbd_assert(obj_request->which == BAD_WHICH);
1604 }
1605
1606 if (osd_req->r_result < 0)
1607 obj_request->result = osd_req->r_result;
1608
1609 BUG_ON(osd_req->r_num_ops > 2);
1610
1611 /*
1612 * We support a 64-bit length, but ultimately it has to be
1613 * passed to blk_end_request(), which takes an unsigned int.
1614 */
1615 obj_request->xferred = osd_req->r_reply_op_len[0];
1616 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1617 opcode = osd_req->r_ops[0].op;
1618 switch (opcode) {
1619 case CEPH_OSD_OP_READ:
1620 rbd_osd_read_callback(obj_request);
1621 break;
1622 case CEPH_OSD_OP_WRITE:
1623 rbd_osd_write_callback(obj_request);
1624 break;
1625 case CEPH_OSD_OP_STAT:
1626 rbd_osd_stat_callback(obj_request);
1627 break;
1628 case CEPH_OSD_OP_CALL:
1629 case CEPH_OSD_OP_NOTIFY_ACK:
1630 case CEPH_OSD_OP_WATCH:
1631 rbd_osd_trivial_callback(obj_request);
1632 break;
1633 default:
1634 rbd_warn(NULL, "%s: unsupported op %hu\n",
1635 obj_request->object_name, (unsigned short) opcode);
1636 break;
1637 }
1638
1639 if (obj_request_done_test(obj_request))
1640 rbd_obj_request_complete(obj_request);
1641 }
1642
1643 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1644 {
1645 struct rbd_img_request *img_request = obj_request->img_request;
1646 struct ceph_osd_request *osd_req = obj_request->osd_req;
1647 u64 snap_id;
1648
1649 rbd_assert(osd_req != NULL);
1650
1651 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1652 ceph_osdc_build_request(osd_req, obj_request->offset,
1653 NULL, snap_id, NULL);
1654 }
1655
1656 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1657 {
1658 struct rbd_img_request *img_request = obj_request->img_request;
1659 struct ceph_osd_request *osd_req = obj_request->osd_req;
1660 struct ceph_snap_context *snapc;
1661 struct timespec mtime = CURRENT_TIME;
1662
1663 rbd_assert(osd_req != NULL);
1664
1665 snapc = img_request ? img_request->snapc : NULL;
1666 ceph_osdc_build_request(osd_req, obj_request->offset,
1667 snapc, CEPH_NOSNAP, &mtime);
1668 }
1669
1670 static struct ceph_osd_request *rbd_osd_req_create(
1671 struct rbd_device *rbd_dev,
1672 bool write_request,
1673 struct rbd_obj_request *obj_request)
1674 {
1675 struct ceph_snap_context *snapc = NULL;
1676 struct ceph_osd_client *osdc;
1677 struct ceph_osd_request *osd_req;
1678
1679 if (obj_request_img_data_test(obj_request)) {
1680 struct rbd_img_request *img_request = obj_request->img_request;
1681
1682 rbd_assert(write_request ==
1683 img_request_write_test(img_request));
1684 if (write_request)
1685 snapc = img_request->snapc;
1686 }
1687
1688 /* Allocate and initialize the request, for the single op */
1689
1690 osdc = &rbd_dev->rbd_client->client->osdc;
1691 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1692 if (!osd_req)
1693 return NULL; /* ENOMEM */
1694
1695 if (write_request)
1696 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1697 else
1698 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1699
1700 osd_req->r_callback = rbd_osd_req_callback;
1701 osd_req->r_priv = obj_request;
1702
1703 osd_req->r_oid_len = strlen(obj_request->object_name);
1704 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1705 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1706
1707 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1708
1709 return osd_req;
1710 }
1711
1712 /*
1713 * Create a copyup osd request based on the information in the
1714 * object request supplied. A copyup request has two osd ops,
1715 * a copyup method call, and a "normal" write request.
1716 */
1717 static struct ceph_osd_request *
1718 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1719 {
1720 struct rbd_img_request *img_request;
1721 struct ceph_snap_context *snapc;
1722 struct rbd_device *rbd_dev;
1723 struct ceph_osd_client *osdc;
1724 struct ceph_osd_request *osd_req;
1725
1726 rbd_assert(obj_request_img_data_test(obj_request));
1727 img_request = obj_request->img_request;
1728 rbd_assert(img_request);
1729 rbd_assert(img_request_write_test(img_request));
1730
1731 /* Allocate and initialize the request, for the two ops */
1732
1733 snapc = img_request->snapc;
1734 rbd_dev = img_request->rbd_dev;
1735 osdc = &rbd_dev->rbd_client->client->osdc;
1736 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1737 if (!osd_req)
1738 return NULL; /* ENOMEM */
1739
1740 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1741 osd_req->r_callback = rbd_osd_req_callback;
1742 osd_req->r_priv = obj_request;
1743
1744 osd_req->r_oid_len = strlen(obj_request->object_name);
1745 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1746 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1747
1748 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1749
1750 return osd_req;
1751 }
1752
1753
1754 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1755 {
1756 ceph_osdc_put_request(osd_req);
1757 }
1758
1759 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1760
1761 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1762 u64 offset, u64 length,
1763 enum obj_request_type type)
1764 {
1765 struct rbd_obj_request *obj_request;
1766 size_t size;
1767 char *name;
1768
1769 rbd_assert(obj_request_type_valid(type));
1770
1771 size = strlen(object_name) + 1;
1772 name = kmalloc(size, GFP_KERNEL);
1773 if (!name)
1774 return NULL;
1775
1776 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1777 if (!obj_request) {
1778 kfree(name);
1779 return NULL;
1780 }
1781
1782 obj_request->object_name = memcpy(name, object_name, size);
1783 obj_request->offset = offset;
1784 obj_request->length = length;
1785 obj_request->flags = 0;
1786 obj_request->which = BAD_WHICH;
1787 obj_request->type = type;
1788 INIT_LIST_HEAD(&obj_request->links);
1789 init_completion(&obj_request->completion);
1790 kref_init(&obj_request->kref);
1791
1792 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1793 offset, length, (int)type, obj_request);
1794
1795 return obj_request;
1796 }
1797
1798 static void rbd_obj_request_destroy(struct kref *kref)
1799 {
1800 struct rbd_obj_request *obj_request;
1801
1802 obj_request = container_of(kref, struct rbd_obj_request, kref);
1803
1804 dout("%s: obj %p\n", __func__, obj_request);
1805
1806 rbd_assert(obj_request->img_request == NULL);
1807 rbd_assert(obj_request->which == BAD_WHICH);
1808
1809 if (obj_request->osd_req)
1810 rbd_osd_req_destroy(obj_request->osd_req);
1811
1812 rbd_assert(obj_request_type_valid(obj_request->type));
1813 switch (obj_request->type) {
1814 case OBJ_REQUEST_NODATA:
1815 break; /* Nothing to do */
1816 case OBJ_REQUEST_BIO:
1817 if (obj_request->bio_list)
1818 bio_chain_put(obj_request->bio_list);
1819 break;
1820 case OBJ_REQUEST_PAGES:
1821 if (obj_request->pages)
1822 ceph_release_page_vector(obj_request->pages,
1823 obj_request->page_count);
1824 break;
1825 }
1826
1827 kfree(obj_request->object_name);
1828 obj_request->object_name = NULL;
1829 kmem_cache_free(rbd_obj_request_cache, obj_request);
1830 }
1831
1832 /*
1833 * Caller is responsible for filling in the list of object requests
1834 * that comprises the image request, and the Linux request pointer
1835 * (if there is one).
1836 */
1837 static struct rbd_img_request *rbd_img_request_create(
1838 struct rbd_device *rbd_dev,
1839 u64 offset, u64 length,
1840 bool write_request,
1841 bool child_request)
1842 {
1843 struct rbd_img_request *img_request;
1844
1845 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1846 if (!img_request)
1847 return NULL;
1848
1849 if (write_request) {
1850 down_read(&rbd_dev->header_rwsem);
1851 ceph_get_snap_context(rbd_dev->header.snapc);
1852 up_read(&rbd_dev->header_rwsem);
1853 }
1854
1855 img_request->rq = NULL;
1856 img_request->rbd_dev = rbd_dev;
1857 img_request->offset = offset;
1858 img_request->length = length;
1859 img_request->flags = 0;
1860 if (write_request) {
1861 img_request_write_set(img_request);
1862 img_request->snapc = rbd_dev->header.snapc;
1863 } else {
1864 img_request->snap_id = rbd_dev->spec->snap_id;
1865 }
1866 if (child_request)
1867 img_request_child_set(img_request);
1868 if (rbd_dev->parent_spec)
1869 img_request_layered_set(img_request);
1870 spin_lock_init(&img_request->completion_lock);
1871 img_request->next_completion = 0;
1872 img_request->callback = NULL;
1873 img_request->result = 0;
1874 img_request->obj_request_count = 0;
1875 INIT_LIST_HEAD(&img_request->obj_requests);
1876 kref_init(&img_request->kref);
1877
1878 rbd_img_request_get(img_request); /* Avoid a warning */
1879 rbd_img_request_put(img_request); /* TEMPORARY */
1880
1881 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1882 write_request ? "write" : "read", offset, length,
1883 img_request);
1884
1885 return img_request;
1886 }
1887
1888 static void rbd_img_request_destroy(struct kref *kref)
1889 {
1890 struct rbd_img_request *img_request;
1891 struct rbd_obj_request *obj_request;
1892 struct rbd_obj_request *next_obj_request;
1893
1894 img_request = container_of(kref, struct rbd_img_request, kref);
1895
1896 dout("%s: img %p\n", __func__, img_request);
1897
1898 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1899 rbd_img_obj_request_del(img_request, obj_request);
1900 rbd_assert(img_request->obj_request_count == 0);
1901
1902 if (img_request_write_test(img_request))
1903 ceph_put_snap_context(img_request->snapc);
1904
1905 if (img_request_child_test(img_request))
1906 rbd_obj_request_put(img_request->obj_request);
1907
1908 kmem_cache_free(rbd_img_request_cache, img_request);
1909 }
1910
1911 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
1912 {
1913 struct rbd_img_request *img_request;
1914 unsigned int xferred;
1915 int result;
1916 bool more;
1917
1918 rbd_assert(obj_request_img_data_test(obj_request));
1919 img_request = obj_request->img_request;
1920
1921 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
1922 xferred = (unsigned int)obj_request->xferred;
1923 result = obj_request->result;
1924 if (result) {
1925 struct rbd_device *rbd_dev = img_request->rbd_dev;
1926
1927 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
1928 img_request_write_test(img_request) ? "write" : "read",
1929 obj_request->length, obj_request->img_offset,
1930 obj_request->offset);
1931 rbd_warn(rbd_dev, " result %d xferred %x\n",
1932 result, xferred);
1933 if (!img_request->result)
1934 img_request->result = result;
1935 }
1936
1937 /* Image object requests don't own their page array */
1938
1939 if (obj_request->type == OBJ_REQUEST_PAGES) {
1940 obj_request->pages = NULL;
1941 obj_request->page_count = 0;
1942 }
1943
1944 if (img_request_child_test(img_request)) {
1945 rbd_assert(img_request->obj_request != NULL);
1946 more = obj_request->which < img_request->obj_request_count - 1;
1947 } else {
1948 rbd_assert(img_request->rq != NULL);
1949 more = blk_end_request(img_request->rq, result, xferred);
1950 }
1951
1952 return more;
1953 }
1954
1955 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1956 {
1957 struct rbd_img_request *img_request;
1958 u32 which = obj_request->which;
1959 bool more = true;
1960
1961 rbd_assert(obj_request_img_data_test(obj_request));
1962 img_request = obj_request->img_request;
1963
1964 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1965 rbd_assert(img_request != NULL);
1966 rbd_assert(img_request->obj_request_count > 0);
1967 rbd_assert(which != BAD_WHICH);
1968 rbd_assert(which < img_request->obj_request_count);
1969 rbd_assert(which >= img_request->next_completion);
1970
1971 spin_lock_irq(&img_request->completion_lock);
1972 if (which != img_request->next_completion)
1973 goto out;
1974
1975 for_each_obj_request_from(img_request, obj_request) {
1976 rbd_assert(more);
1977 rbd_assert(which < img_request->obj_request_count);
1978
1979 if (!obj_request_done_test(obj_request))
1980 break;
1981 more = rbd_img_obj_end_request(obj_request);
1982 which++;
1983 }
1984
1985 rbd_assert(more ^ (which == img_request->obj_request_count));
1986 img_request->next_completion = which;
1987 out:
1988 spin_unlock_irq(&img_request->completion_lock);
1989
1990 if (!more)
1991 rbd_img_request_complete(img_request);
1992 }
1993
1994 /*
1995 * Split up an image request into one or more object requests, each
1996 * to a different object. The "type" parameter indicates whether
1997 * "data_desc" is the pointer to the head of a list of bio
1998 * structures, or the base of a page array. In either case this
1999 * function assumes data_desc describes memory sufficient to hold
2000 * all data described by the image request.
2001 */
2002 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2003 enum obj_request_type type,
2004 void *data_desc)
2005 {
2006 struct rbd_device *rbd_dev = img_request->rbd_dev;
2007 struct rbd_obj_request *obj_request = NULL;
2008 struct rbd_obj_request *next_obj_request;
2009 bool write_request = img_request_write_test(img_request);
2010 struct bio *bio_list;
2011 unsigned int bio_offset = 0;
2012 struct page **pages;
2013 u64 img_offset;
2014 u64 resid;
2015 u16 opcode;
2016
2017 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2018 (int)type, data_desc);
2019
2020 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2021 img_offset = img_request->offset;
2022 resid = img_request->length;
2023 rbd_assert(resid > 0);
2024
2025 if (type == OBJ_REQUEST_BIO) {
2026 bio_list = data_desc;
2027 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2028 } else {
2029 rbd_assert(type == OBJ_REQUEST_PAGES);
2030 pages = data_desc;
2031 }
2032
2033 while (resid) {
2034 struct ceph_osd_request *osd_req;
2035 const char *object_name;
2036 u64 offset;
2037 u64 length;
2038
2039 object_name = rbd_segment_name(rbd_dev, img_offset);
2040 if (!object_name)
2041 goto out_unwind;
2042 offset = rbd_segment_offset(rbd_dev, img_offset);
2043 length = rbd_segment_length(rbd_dev, img_offset, resid);
2044 obj_request = rbd_obj_request_create(object_name,
2045 offset, length, type);
2046 /* object request has its own copy of the object name */
2047 rbd_segment_name_free(object_name);
2048 if (!obj_request)
2049 goto out_unwind;
2050
2051 if (type == OBJ_REQUEST_BIO) {
2052 unsigned int clone_size;
2053
2054 rbd_assert(length <= (u64)UINT_MAX);
2055 clone_size = (unsigned int)length;
2056 obj_request->bio_list =
2057 bio_chain_clone_range(&bio_list,
2058 &bio_offset,
2059 clone_size,
2060 GFP_ATOMIC);
2061 if (!obj_request->bio_list)
2062 goto out_partial;
2063 } else {
2064 unsigned int page_count;
2065
2066 obj_request->pages = pages;
2067 page_count = (u32)calc_pages_for(offset, length);
2068 obj_request->page_count = page_count;
2069 if ((offset + length) & ~PAGE_MASK)
2070 page_count--; /* more on last page */
2071 pages += page_count;
2072 }
2073
2074 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2075 obj_request);
2076 if (!osd_req)
2077 goto out_partial;
2078 obj_request->osd_req = osd_req;
2079 obj_request->callback = rbd_img_obj_callback;
2080
2081 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2082 0, 0);
2083 if (type == OBJ_REQUEST_BIO)
2084 osd_req_op_extent_osd_data_bio(osd_req, 0,
2085 obj_request->bio_list, length);
2086 else
2087 osd_req_op_extent_osd_data_pages(osd_req, 0,
2088 obj_request->pages, length,
2089 offset & ~PAGE_MASK, false, false);
2090
2091 if (write_request)
2092 rbd_osd_req_format_write(obj_request);
2093 else
2094 rbd_osd_req_format_read(obj_request);
2095
2096 obj_request->img_offset = img_offset;
2097 rbd_img_obj_request_add(img_request, obj_request);
2098
2099 img_offset += length;
2100 resid -= length;
2101 }
2102
2103 return 0;
2104
2105 out_partial:
2106 rbd_obj_request_put(obj_request);
2107 out_unwind:
2108 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2109 rbd_obj_request_put(obj_request);
2110
2111 return -ENOMEM;
2112 }
2113
2114 static void
2115 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2116 {
2117 struct rbd_img_request *img_request;
2118 struct rbd_device *rbd_dev;
2119 u64 length;
2120 u32 page_count;
2121
2122 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2123 rbd_assert(obj_request_img_data_test(obj_request));
2124 img_request = obj_request->img_request;
2125 rbd_assert(img_request);
2126
2127 rbd_dev = img_request->rbd_dev;
2128 rbd_assert(rbd_dev);
2129 length = (u64)1 << rbd_dev->header.obj_order;
2130 page_count = (u32)calc_pages_for(0, length);
2131
2132 rbd_assert(obj_request->copyup_pages);
2133 ceph_release_page_vector(obj_request->copyup_pages, page_count);
2134 obj_request->copyup_pages = NULL;
2135
2136 /*
2137 * We want the transfer count to reflect the size of the
2138 * original write request. There is no such thing as a
2139 * successful short write, so if the request was successful
2140 * we can just set it to the originally-requested length.
2141 */
2142 if (!obj_request->result)
2143 obj_request->xferred = obj_request->length;
2144
2145 /* Finish up with the normal image object callback */
2146
2147 rbd_img_obj_callback(obj_request);
2148 }
2149
2150 static void
2151 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2152 {
2153 struct rbd_obj_request *orig_request;
2154 struct ceph_osd_request *osd_req;
2155 struct ceph_osd_client *osdc;
2156 struct rbd_device *rbd_dev;
2157 struct page **pages;
2158 int result;
2159 u64 obj_size;
2160 u64 xferred;
2161
2162 rbd_assert(img_request_child_test(img_request));
2163
2164 /* First get what we need from the image request */
2165
2166 pages = img_request->copyup_pages;
2167 rbd_assert(pages != NULL);
2168 img_request->copyup_pages = NULL;
2169
2170 orig_request = img_request->obj_request;
2171 rbd_assert(orig_request != NULL);
2172 rbd_assert(orig_request->type == OBJ_REQUEST_BIO);
2173 result = img_request->result;
2174 obj_size = img_request->length;
2175 xferred = img_request->xferred;
2176
2177 rbd_dev = img_request->rbd_dev;
2178 rbd_assert(rbd_dev);
2179 rbd_assert(obj_size == (u64)1 << rbd_dev->header.obj_order);
2180
2181 rbd_img_request_put(img_request);
2182
2183 if (result)
2184 goto out_err;
2185
2186 /* Allocate the new copyup osd request for the original request */
2187
2188 result = -ENOMEM;
2189 rbd_assert(!orig_request->osd_req);
2190 osd_req = rbd_osd_req_create_copyup(orig_request);
2191 if (!osd_req)
2192 goto out_err;
2193 orig_request->osd_req = osd_req;
2194 orig_request->copyup_pages = pages;
2195
2196 /* Initialize the copyup op */
2197
2198 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2199 osd_req_op_cls_request_data_pages(osd_req, 0, pages, obj_size, 0,
2200 false, false);
2201
2202 /* Then the original write request op */
2203
2204 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2205 orig_request->offset,
2206 orig_request->length, 0, 0);
2207 osd_req_op_extent_osd_data_bio(osd_req, 1, orig_request->bio_list,
2208 orig_request->length);
2209
2210 rbd_osd_req_format_write(orig_request);
2211
2212 /* All set, send it off. */
2213
2214 orig_request->callback = rbd_img_obj_copyup_callback;
2215 osdc = &rbd_dev->rbd_client->client->osdc;
2216 result = rbd_obj_request_submit(osdc, orig_request);
2217 if (!result)
2218 return;
2219 out_err:
2220 /* Record the error code and complete the request */
2221
2222 orig_request->result = result;
2223 orig_request->xferred = 0;
2224 obj_request_done_set(orig_request);
2225 rbd_obj_request_complete(orig_request);
2226 }
2227
2228 /*
2229 * Read from the parent image the range of data that covers the
2230 * entire target of the given object request. This is used for
2231 * satisfying a layered image write request when the target of an
2232 * object request from the image request does not exist.
2233 *
2234 * A page array big enough to hold the returned data is allocated
2235 * and supplied to rbd_img_request_fill() as the "data descriptor."
2236 * When the read completes, this page array will be transferred to
2237 * the original object request for the copyup operation.
2238 *
2239 * If an error occurs, record it as the result of the original
2240 * object request and mark it done so it gets completed.
2241 */
2242 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2243 {
2244 struct rbd_img_request *img_request = NULL;
2245 struct rbd_img_request *parent_request = NULL;
2246 struct rbd_device *rbd_dev;
2247 u64 img_offset;
2248 u64 length;
2249 struct page **pages = NULL;
2250 u32 page_count;
2251 int result;
2252
2253 rbd_assert(obj_request_img_data_test(obj_request));
2254 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2255
2256 img_request = obj_request->img_request;
2257 rbd_assert(img_request != NULL);
2258 rbd_dev = img_request->rbd_dev;
2259 rbd_assert(rbd_dev->parent != NULL);
2260
2261 /*
2262 * First things first. The original osd request is of no
2263 * use to use any more, we'll need a new one that can hold
2264 * the two ops in a copyup request. We'll get that later,
2265 * but for now we can release the old one.
2266 */
2267 rbd_osd_req_destroy(obj_request->osd_req);
2268 obj_request->osd_req = NULL;
2269
2270 /*
2271 * Determine the byte range covered by the object in the
2272 * child image to which the original request was to be sent.
2273 */
2274 img_offset = obj_request->img_offset - obj_request->offset;
2275 length = (u64)1 << rbd_dev->header.obj_order;
2276
2277 /*
2278 * There is no defined parent data beyond the parent
2279 * overlap, so limit what we read at that boundary if
2280 * necessary.
2281 */
2282 if (img_offset + length > rbd_dev->parent_overlap) {
2283 rbd_assert(img_offset < rbd_dev->parent_overlap);
2284 length = rbd_dev->parent_overlap - img_offset;
2285 }
2286
2287 /*
2288 * Allocate a page array big enough to receive the data read
2289 * from the parent.
2290 */
2291 page_count = (u32)calc_pages_for(0, length);
2292 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2293 if (IS_ERR(pages)) {
2294 result = PTR_ERR(pages);
2295 pages = NULL;
2296 goto out_err;
2297 }
2298
2299 result = -ENOMEM;
2300 parent_request = rbd_img_request_create(rbd_dev->parent,
2301 img_offset, length,
2302 false, true);
2303 if (!parent_request)
2304 goto out_err;
2305 rbd_obj_request_get(obj_request);
2306 parent_request->obj_request = obj_request;
2307
2308 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2309 if (result)
2310 goto out_err;
2311 parent_request->copyup_pages = pages;
2312
2313 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2314 result = rbd_img_request_submit(parent_request);
2315 if (!result)
2316 return 0;
2317
2318 parent_request->copyup_pages = NULL;
2319 parent_request->obj_request = NULL;
2320 rbd_obj_request_put(obj_request);
2321 out_err:
2322 if (pages)
2323 ceph_release_page_vector(pages, page_count);
2324 if (parent_request)
2325 rbd_img_request_put(parent_request);
2326 obj_request->result = result;
2327 obj_request->xferred = 0;
2328 obj_request_done_set(obj_request);
2329
2330 return result;
2331 }
2332
2333 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2334 {
2335 struct rbd_obj_request *orig_request;
2336 int result;
2337
2338 rbd_assert(!obj_request_img_data_test(obj_request));
2339
2340 /*
2341 * All we need from the object request is the original
2342 * request and the result of the STAT op. Grab those, then
2343 * we're done with the request.
2344 */
2345 orig_request = obj_request->obj_request;
2346 obj_request->obj_request = NULL;
2347 rbd_assert(orig_request);
2348 rbd_assert(orig_request->img_request);
2349
2350 result = obj_request->result;
2351 obj_request->result = 0;
2352
2353 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2354 obj_request, orig_request, result,
2355 obj_request->xferred, obj_request->length);
2356 rbd_obj_request_put(obj_request);
2357
2358 rbd_assert(orig_request);
2359 rbd_assert(orig_request->img_request);
2360
2361 /*
2362 * Our only purpose here is to determine whether the object
2363 * exists, and we don't want to treat the non-existence as
2364 * an error. If something else comes back, transfer the
2365 * error to the original request and complete it now.
2366 */
2367 if (!result) {
2368 obj_request_existence_set(orig_request, true);
2369 } else if (result == -ENOENT) {
2370 obj_request_existence_set(orig_request, false);
2371 } else if (result) {
2372 orig_request->result = result;
2373 goto out;
2374 }
2375
2376 /*
2377 * Resubmit the original request now that we have recorded
2378 * whether the target object exists.
2379 */
2380 orig_request->result = rbd_img_obj_request_submit(orig_request);
2381 out:
2382 if (orig_request->result)
2383 rbd_obj_request_complete(orig_request);
2384 rbd_obj_request_put(orig_request);
2385 }
2386
2387 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2388 {
2389 struct rbd_obj_request *stat_request;
2390 struct rbd_device *rbd_dev;
2391 struct ceph_osd_client *osdc;
2392 struct page **pages = NULL;
2393 u32 page_count;
2394 size_t size;
2395 int ret;
2396
2397 /*
2398 * The response data for a STAT call consists of:
2399 * le64 length;
2400 * struct {
2401 * le32 tv_sec;
2402 * le32 tv_nsec;
2403 * } mtime;
2404 */
2405 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2406 page_count = (u32)calc_pages_for(0, size);
2407 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2408 if (IS_ERR(pages))
2409 return PTR_ERR(pages);
2410
2411 ret = -ENOMEM;
2412 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2413 OBJ_REQUEST_PAGES);
2414 if (!stat_request)
2415 goto out;
2416
2417 rbd_obj_request_get(obj_request);
2418 stat_request->obj_request = obj_request;
2419 stat_request->pages = pages;
2420 stat_request->page_count = page_count;
2421
2422 rbd_assert(obj_request->img_request);
2423 rbd_dev = obj_request->img_request->rbd_dev;
2424 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2425 stat_request);
2426 if (!stat_request->osd_req)
2427 goto out;
2428 stat_request->callback = rbd_img_obj_exists_callback;
2429
2430 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2431 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2432 false, false);
2433 rbd_osd_req_format_read(stat_request);
2434
2435 osdc = &rbd_dev->rbd_client->client->osdc;
2436 ret = rbd_obj_request_submit(osdc, stat_request);
2437 out:
2438 if (ret)
2439 rbd_obj_request_put(obj_request);
2440
2441 return ret;
2442 }
2443
2444 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2445 {
2446 struct rbd_img_request *img_request;
2447 struct rbd_device *rbd_dev;
2448 bool known;
2449
2450 rbd_assert(obj_request_img_data_test(obj_request));
2451
2452 img_request = obj_request->img_request;
2453 rbd_assert(img_request);
2454 rbd_dev = img_request->rbd_dev;
2455
2456 /*
2457 * Only writes to layered images need special handling.
2458 * Reads and non-layered writes are simple object requests.
2459 * Layered writes that start beyond the end of the overlap
2460 * with the parent have no parent data, so they too are
2461 * simple object requests. Finally, if the target object is
2462 * known to already exist, its parent data has already been
2463 * copied, so a write to the object can also be handled as a
2464 * simple object request.
2465 */
2466 if (!img_request_write_test(img_request) ||
2467 !img_request_layered_test(img_request) ||
2468 rbd_dev->parent_overlap <= obj_request->img_offset ||
2469 ((known = obj_request_known_test(obj_request)) &&
2470 obj_request_exists_test(obj_request))) {
2471
2472 struct rbd_device *rbd_dev;
2473 struct ceph_osd_client *osdc;
2474
2475 rbd_dev = obj_request->img_request->rbd_dev;
2476 osdc = &rbd_dev->rbd_client->client->osdc;
2477
2478 return rbd_obj_request_submit(osdc, obj_request);
2479 }
2480
2481 /*
2482 * It's a layered write. The target object might exist but
2483 * we may not know that yet. If we know it doesn't exist,
2484 * start by reading the data for the full target object from
2485 * the parent so we can use it for a copyup to the target.
2486 */
2487 if (known)
2488 return rbd_img_obj_parent_read_full(obj_request);
2489
2490 /* We don't know whether the target exists. Go find out. */
2491
2492 return rbd_img_obj_exists_submit(obj_request);
2493 }
2494
2495 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2496 {
2497 struct rbd_obj_request *obj_request;
2498 struct rbd_obj_request *next_obj_request;
2499
2500 dout("%s: img %p\n", __func__, img_request);
2501 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2502 int ret;
2503
2504 ret = rbd_img_obj_request_submit(obj_request);
2505 if (ret)
2506 return ret;
2507 }
2508
2509 return 0;
2510 }
2511
2512 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2513 {
2514 struct rbd_obj_request *obj_request;
2515 struct rbd_device *rbd_dev;
2516 u64 obj_end;
2517
2518 rbd_assert(img_request_child_test(img_request));
2519
2520 obj_request = img_request->obj_request;
2521 rbd_assert(obj_request);
2522 rbd_assert(obj_request->img_request);
2523
2524 obj_request->result = img_request->result;
2525 if (obj_request->result)
2526 goto out;
2527
2528 /*
2529 * We need to zero anything beyond the parent overlap
2530 * boundary. Since rbd_img_obj_request_read_callback()
2531 * will zero anything beyond the end of a short read, an
2532 * easy way to do this is to pretend the data from the
2533 * parent came up short--ending at the overlap boundary.
2534 */
2535 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2536 obj_end = obj_request->img_offset + obj_request->length;
2537 rbd_dev = obj_request->img_request->rbd_dev;
2538 if (obj_end > rbd_dev->parent_overlap) {
2539 u64 xferred = 0;
2540
2541 if (obj_request->img_offset < rbd_dev->parent_overlap)
2542 xferred = rbd_dev->parent_overlap -
2543 obj_request->img_offset;
2544
2545 obj_request->xferred = min(img_request->xferred, xferred);
2546 } else {
2547 obj_request->xferred = img_request->xferred;
2548 }
2549 out:
2550 rbd_img_request_put(img_request);
2551 rbd_img_obj_request_read_callback(obj_request);
2552 rbd_obj_request_complete(obj_request);
2553 }
2554
2555 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2556 {
2557 struct rbd_device *rbd_dev;
2558 struct rbd_img_request *img_request;
2559 int result;
2560
2561 rbd_assert(obj_request_img_data_test(obj_request));
2562 rbd_assert(obj_request->img_request != NULL);
2563 rbd_assert(obj_request->result == (s32) -ENOENT);
2564 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2565
2566 rbd_dev = obj_request->img_request->rbd_dev;
2567 rbd_assert(rbd_dev->parent != NULL);
2568 /* rbd_read_finish(obj_request, obj_request->length); */
2569 img_request = rbd_img_request_create(rbd_dev->parent,
2570 obj_request->img_offset,
2571 obj_request->length,
2572 false, true);
2573 result = -ENOMEM;
2574 if (!img_request)
2575 goto out_err;
2576
2577 rbd_obj_request_get(obj_request);
2578 img_request->obj_request = obj_request;
2579
2580 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2581 obj_request->bio_list);
2582 if (result)
2583 goto out_err;
2584
2585 img_request->callback = rbd_img_parent_read_callback;
2586 result = rbd_img_request_submit(img_request);
2587 if (result)
2588 goto out_err;
2589
2590 return;
2591 out_err:
2592 if (img_request)
2593 rbd_img_request_put(img_request);
2594 obj_request->result = result;
2595 obj_request->xferred = 0;
2596 obj_request_done_set(obj_request);
2597 }
2598
2599 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2600 {
2601 struct rbd_obj_request *obj_request;
2602 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2603 int ret;
2604
2605 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2606 OBJ_REQUEST_NODATA);
2607 if (!obj_request)
2608 return -ENOMEM;
2609
2610 ret = -ENOMEM;
2611 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2612 if (!obj_request->osd_req)
2613 goto out;
2614 obj_request->callback = rbd_obj_request_put;
2615
2616 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2617 notify_id, 0, 0);
2618 rbd_osd_req_format_read(obj_request);
2619
2620 ret = rbd_obj_request_submit(osdc, obj_request);
2621 out:
2622 if (ret)
2623 rbd_obj_request_put(obj_request);
2624
2625 return ret;
2626 }
2627
2628 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2629 {
2630 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2631 int ret;
2632
2633 if (!rbd_dev)
2634 return;
2635
2636 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2637 rbd_dev->header_name, (unsigned long long)notify_id,
2638 (unsigned int)opcode);
2639 ret = rbd_dev_refresh(rbd_dev);
2640 if (ret)
2641 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2642
2643 rbd_obj_notify_ack(rbd_dev, notify_id);
2644 }
2645
2646 /*
2647 * Request sync osd watch/unwatch. The value of "start" determines
2648 * whether a watch request is being initiated or torn down.
2649 */
2650 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
2651 {
2652 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2653 struct rbd_obj_request *obj_request;
2654 int ret;
2655
2656 rbd_assert(start ^ !!rbd_dev->watch_event);
2657 rbd_assert(start ^ !!rbd_dev->watch_request);
2658
2659 if (start) {
2660 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2661 &rbd_dev->watch_event);
2662 if (ret < 0)
2663 return ret;
2664 rbd_assert(rbd_dev->watch_event != NULL);
2665 }
2666
2667 ret = -ENOMEM;
2668 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2669 OBJ_REQUEST_NODATA);
2670 if (!obj_request)
2671 goto out_cancel;
2672
2673 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2674 if (!obj_request->osd_req)
2675 goto out_cancel;
2676
2677 if (start)
2678 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2679 else
2680 ceph_osdc_unregister_linger_request(osdc,
2681 rbd_dev->watch_request->osd_req);
2682
2683 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2684 rbd_dev->watch_event->cookie, 0, start);
2685 rbd_osd_req_format_write(obj_request);
2686
2687 ret = rbd_obj_request_submit(osdc, obj_request);
2688 if (ret)
2689 goto out_cancel;
2690 ret = rbd_obj_request_wait(obj_request);
2691 if (ret)
2692 goto out_cancel;
2693 ret = obj_request->result;
2694 if (ret)
2695 goto out_cancel;
2696
2697 /*
2698 * A watch request is set to linger, so the underlying osd
2699 * request won't go away until we unregister it. We retain
2700 * a pointer to the object request during that time (in
2701 * rbd_dev->watch_request), so we'll keep a reference to
2702 * it. We'll drop that reference (below) after we've
2703 * unregistered it.
2704 */
2705 if (start) {
2706 rbd_dev->watch_request = obj_request;
2707
2708 return 0;
2709 }
2710
2711 /* We have successfully torn down the watch request */
2712
2713 rbd_obj_request_put(rbd_dev->watch_request);
2714 rbd_dev->watch_request = NULL;
2715 out_cancel:
2716 /* Cancel the event if we're tearing down, or on error */
2717 ceph_osdc_cancel_event(rbd_dev->watch_event);
2718 rbd_dev->watch_event = NULL;
2719 if (obj_request)
2720 rbd_obj_request_put(obj_request);
2721
2722 return ret;
2723 }
2724
2725 /*
2726 * Synchronous osd object method call. Returns the number of bytes
2727 * returned in the outbound buffer, or a negative error code.
2728 */
2729 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2730 const char *object_name,
2731 const char *class_name,
2732 const char *method_name,
2733 const void *outbound,
2734 size_t outbound_size,
2735 void *inbound,
2736 size_t inbound_size)
2737 {
2738 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2739 struct rbd_obj_request *obj_request;
2740 struct page **pages;
2741 u32 page_count;
2742 int ret;
2743
2744 /*
2745 * Method calls are ultimately read operations. The result
2746 * should placed into the inbound buffer provided. They
2747 * also supply outbound data--parameters for the object
2748 * method. Currently if this is present it will be a
2749 * snapshot id.
2750 */
2751 page_count = (u32)calc_pages_for(0, inbound_size);
2752 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2753 if (IS_ERR(pages))
2754 return PTR_ERR(pages);
2755
2756 ret = -ENOMEM;
2757 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2758 OBJ_REQUEST_PAGES);
2759 if (!obj_request)
2760 goto out;
2761
2762 obj_request->pages = pages;
2763 obj_request->page_count = page_count;
2764
2765 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2766 if (!obj_request->osd_req)
2767 goto out;
2768
2769 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2770 class_name, method_name);
2771 if (outbound_size) {
2772 struct ceph_pagelist *pagelist;
2773
2774 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2775 if (!pagelist)
2776 goto out;
2777
2778 ceph_pagelist_init(pagelist);
2779 ceph_pagelist_append(pagelist, outbound, outbound_size);
2780 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2781 pagelist);
2782 }
2783 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2784 obj_request->pages, inbound_size,
2785 0, false, false);
2786 rbd_osd_req_format_read(obj_request);
2787
2788 ret = rbd_obj_request_submit(osdc, obj_request);
2789 if (ret)
2790 goto out;
2791 ret = rbd_obj_request_wait(obj_request);
2792 if (ret)
2793 goto out;
2794
2795 ret = obj_request->result;
2796 if (ret < 0)
2797 goto out;
2798
2799 rbd_assert(obj_request->xferred < (u64)INT_MAX);
2800 ret = (int)obj_request->xferred;
2801 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
2802 out:
2803 if (obj_request)
2804 rbd_obj_request_put(obj_request);
2805 else
2806 ceph_release_page_vector(pages, page_count);
2807
2808 return ret;
2809 }
2810
2811 static void rbd_request_fn(struct request_queue *q)
2812 __releases(q->queue_lock) __acquires(q->queue_lock)
2813 {
2814 struct rbd_device *rbd_dev = q->queuedata;
2815 bool read_only = rbd_dev->mapping.read_only;
2816 struct request *rq;
2817 int result;
2818
2819 while ((rq = blk_fetch_request(q))) {
2820 bool write_request = rq_data_dir(rq) == WRITE;
2821 struct rbd_img_request *img_request;
2822 u64 offset;
2823 u64 length;
2824
2825 /* Ignore any non-FS requests that filter through. */
2826
2827 if (rq->cmd_type != REQ_TYPE_FS) {
2828 dout("%s: non-fs request type %d\n", __func__,
2829 (int) rq->cmd_type);
2830 __blk_end_request_all(rq, 0);
2831 continue;
2832 }
2833
2834 /* Ignore/skip any zero-length requests */
2835
2836 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
2837 length = (u64) blk_rq_bytes(rq);
2838
2839 if (!length) {
2840 dout("%s: zero-length request\n", __func__);
2841 __blk_end_request_all(rq, 0);
2842 continue;
2843 }
2844
2845 spin_unlock_irq(q->queue_lock);
2846
2847 /* Disallow writes to a read-only device */
2848
2849 if (write_request) {
2850 result = -EROFS;
2851 if (read_only)
2852 goto end_request;
2853 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2854 }
2855
2856 /*
2857 * Quit early if the mapped snapshot no longer
2858 * exists. It's still possible the snapshot will
2859 * have disappeared by the time our request arrives
2860 * at the osd, but there's no sense in sending it if
2861 * we already know.
2862 */
2863 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2864 dout("request for non-existent snapshot");
2865 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2866 result = -ENXIO;
2867 goto end_request;
2868 }
2869
2870 result = -EINVAL;
2871 if (offset && length > U64_MAX - offset + 1) {
2872 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
2873 offset, length);
2874 goto end_request; /* Shouldn't happen */
2875 }
2876
2877 result = -EIO;
2878 if (offset + length > rbd_dev->mapping.size) {
2879 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
2880 offset, length, rbd_dev->mapping.size);
2881 goto end_request;
2882 }
2883
2884 result = -ENOMEM;
2885 img_request = rbd_img_request_create(rbd_dev, offset, length,
2886 write_request, false);
2887 if (!img_request)
2888 goto end_request;
2889
2890 img_request->rq = rq;
2891
2892 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2893 rq->bio);
2894 if (!result)
2895 result = rbd_img_request_submit(img_request);
2896 if (result)
2897 rbd_img_request_put(img_request);
2898 end_request:
2899 spin_lock_irq(q->queue_lock);
2900 if (result < 0) {
2901 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
2902 write_request ? "write" : "read",
2903 length, offset, result);
2904
2905 __blk_end_request_all(rq, result);
2906 }
2907 }
2908 }
2909
2910 /*
2911 * a queue callback. Makes sure that we don't create a bio that spans across
2912 * multiple osd objects. One exception would be with a single page bios,
2913 * which we handle later at bio_chain_clone_range()
2914 */
2915 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2916 struct bio_vec *bvec)
2917 {
2918 struct rbd_device *rbd_dev = q->queuedata;
2919 sector_t sector_offset;
2920 sector_t sectors_per_obj;
2921 sector_t obj_sector_offset;
2922 int ret;
2923
2924 /*
2925 * Find how far into its rbd object the partition-relative
2926 * bio start sector is to offset relative to the enclosing
2927 * device.
2928 */
2929 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2930 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2931 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2932
2933 /*
2934 * Compute the number of bytes from that offset to the end
2935 * of the object. Account for what's already used by the bio.
2936 */
2937 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2938 if (ret > bmd->bi_size)
2939 ret -= bmd->bi_size;
2940 else
2941 ret = 0;
2942
2943 /*
2944 * Don't send back more than was asked for. And if the bio
2945 * was empty, let the whole thing through because: "Note
2946 * that a block device *must* allow a single page to be
2947 * added to an empty bio."
2948 */
2949 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2950 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2951 ret = (int) bvec->bv_len;
2952
2953 return ret;
2954 }
2955
2956 static void rbd_free_disk(struct rbd_device *rbd_dev)
2957 {
2958 struct gendisk *disk = rbd_dev->disk;
2959
2960 if (!disk)
2961 return;
2962
2963 rbd_dev->disk = NULL;
2964 if (disk->flags & GENHD_FL_UP) {
2965 del_gendisk(disk);
2966 if (disk->queue)
2967 blk_cleanup_queue(disk->queue);
2968 }
2969 put_disk(disk);
2970 }
2971
2972 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2973 const char *object_name,
2974 u64 offset, u64 length, void *buf)
2975
2976 {
2977 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2978 struct rbd_obj_request *obj_request;
2979 struct page **pages = NULL;
2980 u32 page_count;
2981 size_t size;
2982 int ret;
2983
2984 page_count = (u32) calc_pages_for(offset, length);
2985 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2986 if (IS_ERR(pages))
2987 ret = PTR_ERR(pages);
2988
2989 ret = -ENOMEM;
2990 obj_request = rbd_obj_request_create(object_name, offset, length,
2991 OBJ_REQUEST_PAGES);
2992 if (!obj_request)
2993 goto out;
2994
2995 obj_request->pages = pages;
2996 obj_request->page_count = page_count;
2997
2998 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2999 if (!obj_request->osd_req)
3000 goto out;
3001
3002 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3003 offset, length, 0, 0);
3004 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3005 obj_request->pages,
3006 obj_request->length,
3007 obj_request->offset & ~PAGE_MASK,
3008 false, false);
3009 rbd_osd_req_format_read(obj_request);
3010
3011 ret = rbd_obj_request_submit(osdc, obj_request);
3012 if (ret)
3013 goto out;
3014 ret = rbd_obj_request_wait(obj_request);
3015 if (ret)
3016 goto out;
3017
3018 ret = obj_request->result;
3019 if (ret < 0)
3020 goto out;
3021
3022 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3023 size = (size_t) obj_request->xferred;
3024 ceph_copy_from_page_vector(pages, buf, 0, size);
3025 rbd_assert(size <= (size_t)INT_MAX);
3026 ret = (int)size;
3027 out:
3028 if (obj_request)
3029 rbd_obj_request_put(obj_request);
3030 else
3031 ceph_release_page_vector(pages, page_count);
3032
3033 return ret;
3034 }
3035
3036 /*
3037 * Read the complete header for the given rbd device.
3038 *
3039 * Returns a pointer to a dynamically-allocated buffer containing
3040 * the complete and validated header. Caller can pass the address
3041 * of a variable that will be filled in with the version of the
3042 * header object at the time it was read.
3043 *
3044 * Returns a pointer-coded errno if a failure occurs.
3045 */
3046 static struct rbd_image_header_ondisk *
3047 rbd_dev_v1_header_read(struct rbd_device *rbd_dev)
3048 {
3049 struct rbd_image_header_ondisk *ondisk = NULL;
3050 u32 snap_count = 0;
3051 u64 names_size = 0;
3052 u32 want_count;
3053 int ret;
3054
3055 /*
3056 * The complete header will include an array of its 64-bit
3057 * snapshot ids, followed by the names of those snapshots as
3058 * a contiguous block of NUL-terminated strings. Note that
3059 * the number of snapshots could change by the time we read
3060 * it in, in which case we re-read it.
3061 */
3062 do {
3063 size_t size;
3064
3065 kfree(ondisk);
3066
3067 size = sizeof (*ondisk);
3068 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3069 size += names_size;
3070 ondisk = kmalloc(size, GFP_KERNEL);
3071 if (!ondisk)
3072 return ERR_PTR(-ENOMEM);
3073
3074 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3075 0, size, ondisk);
3076 if (ret < 0)
3077 goto out_err;
3078 if ((size_t)ret < size) {
3079 ret = -ENXIO;
3080 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3081 size, ret);
3082 goto out_err;
3083 }
3084 if (!rbd_dev_ondisk_valid(ondisk)) {
3085 ret = -ENXIO;
3086 rbd_warn(rbd_dev, "invalid header");
3087 goto out_err;
3088 }
3089
3090 names_size = le64_to_cpu(ondisk->snap_names_len);
3091 want_count = snap_count;
3092 snap_count = le32_to_cpu(ondisk->snap_count);
3093 } while (snap_count != want_count);
3094
3095 return ondisk;
3096
3097 out_err:
3098 kfree(ondisk);
3099
3100 return ERR_PTR(ret);
3101 }
3102
3103 /*
3104 * reload the ondisk the header
3105 */
3106 static int rbd_read_header(struct rbd_device *rbd_dev,
3107 struct rbd_image_header *header)
3108 {
3109 struct rbd_image_header_ondisk *ondisk;
3110 int ret;
3111
3112 ondisk = rbd_dev_v1_header_read(rbd_dev);
3113 if (IS_ERR(ondisk))
3114 return PTR_ERR(ondisk);
3115 ret = rbd_header_from_disk(header, ondisk);
3116 kfree(ondisk);
3117
3118 return ret;
3119 }
3120
3121 /*
3122 * only read the first part of the ondisk header, without the snaps info
3123 */
3124 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev)
3125 {
3126 int ret;
3127 struct rbd_image_header h;
3128
3129 ret = rbd_read_header(rbd_dev, &h);
3130 if (ret < 0)
3131 return ret;
3132
3133 down_write(&rbd_dev->header_rwsem);
3134
3135 /* Update image size, and check for resize of mapped image */
3136 rbd_dev->header.image_size = h.image_size;
3137 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
3138 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3139 rbd_dev->mapping.size = rbd_dev->header.image_size;
3140
3141 /* rbd_dev->header.object_prefix shouldn't change */
3142 kfree(rbd_dev->header.snap_sizes);
3143 kfree(rbd_dev->header.snap_names);
3144 /* osd requests may still refer to snapc */
3145 ceph_put_snap_context(rbd_dev->header.snapc);
3146
3147 rbd_dev->header.image_size = h.image_size;
3148 rbd_dev->header.snapc = h.snapc;
3149 rbd_dev->header.snap_names = h.snap_names;
3150 rbd_dev->header.snap_sizes = h.snap_sizes;
3151 /* Free the extra copy of the object prefix */
3152 if (strcmp(rbd_dev->header.object_prefix, h.object_prefix))
3153 rbd_warn(rbd_dev, "object prefix changed (ignoring)");
3154 kfree(h.object_prefix);
3155
3156 up_write(&rbd_dev->header_rwsem);
3157
3158 return ret;
3159 }
3160
3161 /*
3162 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3163 * has disappeared from the (just updated) snapshot context.
3164 */
3165 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3166 {
3167 u64 snap_id;
3168
3169 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3170 return;
3171
3172 snap_id = rbd_dev->spec->snap_id;
3173 if (snap_id == CEPH_NOSNAP)
3174 return;
3175
3176 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3177 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3178 }
3179
3180 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3181 {
3182 u64 mapping_size;
3183 int ret;
3184
3185 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3186 mapping_size = rbd_dev->mapping.size;
3187 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3188 if (rbd_dev->image_format == 1)
3189 ret = rbd_dev_v1_refresh(rbd_dev);
3190 else
3191 ret = rbd_dev_v2_refresh(rbd_dev);
3192
3193 /* If it's a mapped snapshot, validate its EXISTS flag */
3194
3195 rbd_exists_validate(rbd_dev);
3196 mutex_unlock(&ctl_mutex);
3197 if (mapping_size != rbd_dev->mapping.size) {
3198 sector_t size;
3199
3200 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3201 dout("setting size to %llu sectors", (unsigned long long)size);
3202 set_capacity(rbd_dev->disk, size);
3203 revalidate_disk(rbd_dev->disk);
3204 }
3205
3206 return ret;
3207 }
3208
3209 static int rbd_init_disk(struct rbd_device *rbd_dev)
3210 {
3211 struct gendisk *disk;
3212 struct request_queue *q;
3213 u64 segment_size;
3214
3215 /* create gendisk info */
3216 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3217 if (!disk)
3218 return -ENOMEM;
3219
3220 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3221 rbd_dev->dev_id);
3222 disk->major = rbd_dev->major;
3223 disk->first_minor = 0;
3224 disk->fops = &rbd_bd_ops;
3225 disk->private_data = rbd_dev;
3226
3227 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3228 if (!q)
3229 goto out_disk;
3230
3231 /* We use the default size, but let's be explicit about it. */
3232 blk_queue_physical_block_size(q, SECTOR_SIZE);
3233
3234 /* set io sizes to object size */
3235 segment_size = rbd_obj_bytes(&rbd_dev->header);
3236 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3237 blk_queue_max_segment_size(q, segment_size);
3238 blk_queue_io_min(q, segment_size);
3239 blk_queue_io_opt(q, segment_size);
3240
3241 blk_queue_merge_bvec(q, rbd_merge_bvec);
3242 disk->queue = q;
3243
3244 q->queuedata = rbd_dev;
3245
3246 rbd_dev->disk = disk;
3247
3248 return 0;
3249 out_disk:
3250 put_disk(disk);
3251
3252 return -ENOMEM;
3253 }
3254
3255 /*
3256 sysfs
3257 */
3258
3259 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3260 {
3261 return container_of(dev, struct rbd_device, dev);
3262 }
3263
3264 static ssize_t rbd_size_show(struct device *dev,
3265 struct device_attribute *attr, char *buf)
3266 {
3267 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3268
3269 return sprintf(buf, "%llu\n",
3270 (unsigned long long)rbd_dev->mapping.size);
3271 }
3272
3273 /*
3274 * Note this shows the features for whatever's mapped, which is not
3275 * necessarily the base image.
3276 */
3277 static ssize_t rbd_features_show(struct device *dev,
3278 struct device_attribute *attr, char *buf)
3279 {
3280 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3281
3282 return sprintf(buf, "0x%016llx\n",
3283 (unsigned long long)rbd_dev->mapping.features);
3284 }
3285
3286 static ssize_t rbd_major_show(struct device *dev,
3287 struct device_attribute *attr, char *buf)
3288 {
3289 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3290
3291 if (rbd_dev->major)
3292 return sprintf(buf, "%d\n", rbd_dev->major);
3293
3294 return sprintf(buf, "(none)\n");
3295
3296 }
3297
3298 static ssize_t rbd_client_id_show(struct device *dev,
3299 struct device_attribute *attr, char *buf)
3300 {
3301 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3302
3303 return sprintf(buf, "client%lld\n",
3304 ceph_client_id(rbd_dev->rbd_client->client));
3305 }
3306
3307 static ssize_t rbd_pool_show(struct device *dev,
3308 struct device_attribute *attr, char *buf)
3309 {
3310 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3311
3312 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3313 }
3314
3315 static ssize_t rbd_pool_id_show(struct device *dev,
3316 struct device_attribute *attr, char *buf)
3317 {
3318 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3319
3320 return sprintf(buf, "%llu\n",
3321 (unsigned long long) rbd_dev->spec->pool_id);
3322 }
3323
3324 static ssize_t rbd_name_show(struct device *dev,
3325 struct device_attribute *attr, char *buf)
3326 {
3327 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3328
3329 if (rbd_dev->spec->image_name)
3330 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3331
3332 return sprintf(buf, "(unknown)\n");
3333 }
3334
3335 static ssize_t rbd_image_id_show(struct device *dev,
3336 struct device_attribute *attr, char *buf)
3337 {
3338 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3339
3340 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3341 }
3342
3343 /*
3344 * Shows the name of the currently-mapped snapshot (or
3345 * RBD_SNAP_HEAD_NAME for the base image).
3346 */
3347 static ssize_t rbd_snap_show(struct device *dev,
3348 struct device_attribute *attr,
3349 char *buf)
3350 {
3351 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3352
3353 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3354 }
3355
3356 /*
3357 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3358 * for the parent image. If there is no parent, simply shows
3359 * "(no parent image)".
3360 */
3361 static ssize_t rbd_parent_show(struct device *dev,
3362 struct device_attribute *attr,
3363 char *buf)
3364 {
3365 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3366 struct rbd_spec *spec = rbd_dev->parent_spec;
3367 int count;
3368 char *bufp = buf;
3369
3370 if (!spec)
3371 return sprintf(buf, "(no parent image)\n");
3372
3373 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3374 (unsigned long long) spec->pool_id, spec->pool_name);
3375 if (count < 0)
3376 return count;
3377 bufp += count;
3378
3379 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3380 spec->image_name ? spec->image_name : "(unknown)");
3381 if (count < 0)
3382 return count;
3383 bufp += count;
3384
3385 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3386 (unsigned long long) spec->snap_id, spec->snap_name);
3387 if (count < 0)
3388 return count;
3389 bufp += count;
3390
3391 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3392 if (count < 0)
3393 return count;
3394 bufp += count;
3395
3396 return (ssize_t) (bufp - buf);
3397 }
3398
3399 static ssize_t rbd_image_refresh(struct device *dev,
3400 struct device_attribute *attr,
3401 const char *buf,
3402 size_t size)
3403 {
3404 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3405 int ret;
3406
3407 ret = rbd_dev_refresh(rbd_dev);
3408 if (ret)
3409 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3410
3411 return ret < 0 ? ret : size;
3412 }
3413
3414 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3415 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3416 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3417 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3418 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3419 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3420 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3421 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3422 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3423 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3424 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3425
3426 static struct attribute *rbd_attrs[] = {
3427 &dev_attr_size.attr,
3428 &dev_attr_features.attr,
3429 &dev_attr_major.attr,
3430 &dev_attr_client_id.attr,
3431 &dev_attr_pool.attr,
3432 &dev_attr_pool_id.attr,
3433 &dev_attr_name.attr,
3434 &dev_attr_image_id.attr,
3435 &dev_attr_current_snap.attr,
3436 &dev_attr_parent.attr,
3437 &dev_attr_refresh.attr,
3438 NULL
3439 };
3440
3441 static struct attribute_group rbd_attr_group = {
3442 .attrs = rbd_attrs,
3443 };
3444
3445 static const struct attribute_group *rbd_attr_groups[] = {
3446 &rbd_attr_group,
3447 NULL
3448 };
3449
3450 static void rbd_sysfs_dev_release(struct device *dev)
3451 {
3452 }
3453
3454 static struct device_type rbd_device_type = {
3455 .name = "rbd",
3456 .groups = rbd_attr_groups,
3457 .release = rbd_sysfs_dev_release,
3458 };
3459
3460 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3461 {
3462 kref_get(&spec->kref);
3463
3464 return spec;
3465 }
3466
3467 static void rbd_spec_free(struct kref *kref);
3468 static void rbd_spec_put(struct rbd_spec *spec)
3469 {
3470 if (spec)
3471 kref_put(&spec->kref, rbd_spec_free);
3472 }
3473
3474 static struct rbd_spec *rbd_spec_alloc(void)
3475 {
3476 struct rbd_spec *spec;
3477
3478 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3479 if (!spec)
3480 return NULL;
3481 kref_init(&spec->kref);
3482
3483 return spec;
3484 }
3485
3486 static void rbd_spec_free(struct kref *kref)
3487 {
3488 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3489
3490 kfree(spec->pool_name);
3491 kfree(spec->image_id);
3492 kfree(spec->image_name);
3493 kfree(spec->snap_name);
3494 kfree(spec);
3495 }
3496
3497 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3498 struct rbd_spec *spec)
3499 {
3500 struct rbd_device *rbd_dev;
3501
3502 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3503 if (!rbd_dev)
3504 return NULL;
3505
3506 spin_lock_init(&rbd_dev->lock);
3507 rbd_dev->flags = 0;
3508 INIT_LIST_HEAD(&rbd_dev->node);
3509 init_rwsem(&rbd_dev->header_rwsem);
3510
3511 rbd_dev->spec = spec;
3512 rbd_dev->rbd_client = rbdc;
3513
3514 /* Initialize the layout used for all rbd requests */
3515
3516 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3517 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3518 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3519 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3520
3521 return rbd_dev;
3522 }
3523
3524 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3525 {
3526 rbd_put_client(rbd_dev->rbd_client);
3527 rbd_spec_put(rbd_dev->spec);
3528 kfree(rbd_dev);
3529 }
3530
3531 /*
3532 * Get the size and object order for an image snapshot, or if
3533 * snap_id is CEPH_NOSNAP, gets this information for the base
3534 * image.
3535 */
3536 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3537 u8 *order, u64 *snap_size)
3538 {
3539 __le64 snapid = cpu_to_le64(snap_id);
3540 int ret;
3541 struct {
3542 u8 order;
3543 __le64 size;
3544 } __attribute__ ((packed)) size_buf = { 0 };
3545
3546 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3547 "rbd", "get_size",
3548 &snapid, sizeof (snapid),
3549 &size_buf, sizeof (size_buf));
3550 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3551 if (ret < 0)
3552 return ret;
3553 if (ret < sizeof (size_buf))
3554 return -ERANGE;
3555
3556 if (order)
3557 *order = size_buf.order;
3558 *snap_size = le64_to_cpu(size_buf.size);
3559
3560 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
3561 (unsigned long long)snap_id, (unsigned int)*order,
3562 (unsigned long long)*snap_size);
3563
3564 return 0;
3565 }
3566
3567 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3568 {
3569 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3570 &rbd_dev->header.obj_order,
3571 &rbd_dev->header.image_size);
3572 }
3573
3574 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3575 {
3576 void *reply_buf;
3577 int ret;
3578 void *p;
3579
3580 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3581 if (!reply_buf)
3582 return -ENOMEM;
3583
3584 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3585 "rbd", "get_object_prefix", NULL, 0,
3586 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3587 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3588 if (ret < 0)
3589 goto out;
3590
3591 p = reply_buf;
3592 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3593 p + ret, NULL, GFP_NOIO);
3594 ret = 0;
3595
3596 if (IS_ERR(rbd_dev->header.object_prefix)) {
3597 ret = PTR_ERR(rbd_dev->header.object_prefix);
3598 rbd_dev->header.object_prefix = NULL;
3599 } else {
3600 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3601 }
3602 out:
3603 kfree(reply_buf);
3604
3605 return ret;
3606 }
3607
3608 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3609 u64 *snap_features)
3610 {
3611 __le64 snapid = cpu_to_le64(snap_id);
3612 struct {
3613 __le64 features;
3614 __le64 incompat;
3615 } __attribute__ ((packed)) features_buf = { 0 };
3616 u64 incompat;
3617 int ret;
3618
3619 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3620 "rbd", "get_features",
3621 &snapid, sizeof (snapid),
3622 &features_buf, sizeof (features_buf));
3623 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3624 if (ret < 0)
3625 return ret;
3626 if (ret < sizeof (features_buf))
3627 return -ERANGE;
3628
3629 incompat = le64_to_cpu(features_buf.incompat);
3630 if (incompat & ~RBD_FEATURES_SUPPORTED)
3631 return -ENXIO;
3632
3633 *snap_features = le64_to_cpu(features_buf.features);
3634
3635 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3636 (unsigned long long)snap_id,
3637 (unsigned long long)*snap_features,
3638 (unsigned long long)le64_to_cpu(features_buf.incompat));
3639
3640 return 0;
3641 }
3642
3643 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3644 {
3645 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3646 &rbd_dev->header.features);
3647 }
3648
3649 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3650 {
3651 struct rbd_spec *parent_spec;
3652 size_t size;
3653 void *reply_buf = NULL;
3654 __le64 snapid;
3655 void *p;
3656 void *end;
3657 char *image_id;
3658 u64 overlap;
3659 int ret;
3660
3661 parent_spec = rbd_spec_alloc();
3662 if (!parent_spec)
3663 return -ENOMEM;
3664
3665 size = sizeof (__le64) + /* pool_id */
3666 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3667 sizeof (__le64) + /* snap_id */
3668 sizeof (__le64); /* overlap */
3669 reply_buf = kmalloc(size, GFP_KERNEL);
3670 if (!reply_buf) {
3671 ret = -ENOMEM;
3672 goto out_err;
3673 }
3674
3675 snapid = cpu_to_le64(CEPH_NOSNAP);
3676 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3677 "rbd", "get_parent",
3678 &snapid, sizeof (snapid),
3679 reply_buf, size);
3680 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3681 if (ret < 0)
3682 goto out_err;
3683
3684 p = reply_buf;
3685 end = reply_buf + ret;
3686 ret = -ERANGE;
3687 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
3688 if (parent_spec->pool_id == CEPH_NOPOOL)
3689 goto out; /* No parent? No problem. */
3690
3691 /* The ceph file layout needs to fit pool id in 32 bits */
3692
3693 ret = -EIO;
3694 if (parent_spec->pool_id > (u64)U32_MAX) {
3695 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3696 (unsigned long long)parent_spec->pool_id, U32_MAX);
3697 goto out_err;
3698 }
3699
3700 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3701 if (IS_ERR(image_id)) {
3702 ret = PTR_ERR(image_id);
3703 goto out_err;
3704 }
3705 parent_spec->image_id = image_id;
3706 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3707 ceph_decode_64_safe(&p, end, overlap, out_err);
3708
3709 rbd_dev->parent_overlap = overlap;
3710 rbd_dev->parent_spec = parent_spec;
3711 parent_spec = NULL; /* rbd_dev now owns this */
3712 out:
3713 ret = 0;
3714 out_err:
3715 kfree(reply_buf);
3716 rbd_spec_put(parent_spec);
3717
3718 return ret;
3719 }
3720
3721 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3722 {
3723 struct {
3724 __le64 stripe_unit;
3725 __le64 stripe_count;
3726 } __attribute__ ((packed)) striping_info_buf = { 0 };
3727 size_t size = sizeof (striping_info_buf);
3728 void *p;
3729 u64 obj_size;
3730 u64 stripe_unit;
3731 u64 stripe_count;
3732 int ret;
3733
3734 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3735 "rbd", "get_stripe_unit_count", NULL, 0,
3736 (char *)&striping_info_buf, size);
3737 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3738 if (ret < 0)
3739 return ret;
3740 if (ret < size)
3741 return -ERANGE;
3742
3743 /*
3744 * We don't actually support the "fancy striping" feature
3745 * (STRIPINGV2) yet, but if the striping sizes are the
3746 * defaults the behavior is the same as before. So find
3747 * out, and only fail if the image has non-default values.
3748 */
3749 ret = -EINVAL;
3750 obj_size = (u64)1 << rbd_dev->header.obj_order;
3751 p = &striping_info_buf;
3752 stripe_unit = ceph_decode_64(&p);
3753 if (stripe_unit != obj_size) {
3754 rbd_warn(rbd_dev, "unsupported stripe unit "
3755 "(got %llu want %llu)",
3756 stripe_unit, obj_size);
3757 return -EINVAL;
3758 }
3759 stripe_count = ceph_decode_64(&p);
3760 if (stripe_count != 1) {
3761 rbd_warn(rbd_dev, "unsupported stripe count "
3762 "(got %llu want 1)", stripe_count);
3763 return -EINVAL;
3764 }
3765 rbd_dev->header.stripe_unit = stripe_unit;
3766 rbd_dev->header.stripe_count = stripe_count;
3767
3768 return 0;
3769 }
3770
3771 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3772 {
3773 size_t image_id_size;
3774 char *image_id;
3775 void *p;
3776 void *end;
3777 size_t size;
3778 void *reply_buf = NULL;
3779 size_t len = 0;
3780 char *image_name = NULL;
3781 int ret;
3782
3783 rbd_assert(!rbd_dev->spec->image_name);
3784
3785 len = strlen(rbd_dev->spec->image_id);
3786 image_id_size = sizeof (__le32) + len;
3787 image_id = kmalloc(image_id_size, GFP_KERNEL);
3788 if (!image_id)
3789 return NULL;
3790
3791 p = image_id;
3792 end = image_id + image_id_size;
3793 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3794
3795 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3796 reply_buf = kmalloc(size, GFP_KERNEL);
3797 if (!reply_buf)
3798 goto out;
3799
3800 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3801 "rbd", "dir_get_name",
3802 image_id, image_id_size,
3803 reply_buf, size);
3804 if (ret < 0)
3805 goto out;
3806 p = reply_buf;
3807 end = reply_buf + ret;
3808
3809 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3810 if (IS_ERR(image_name))
3811 image_name = NULL;
3812 else
3813 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3814 out:
3815 kfree(reply_buf);
3816 kfree(image_id);
3817
3818 return image_name;
3819 }
3820
3821 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3822 {
3823 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3824 const char *snap_name;
3825 u32 which = 0;
3826
3827 /* Skip over names until we find the one we are looking for */
3828
3829 snap_name = rbd_dev->header.snap_names;
3830 while (which < snapc->num_snaps) {
3831 if (!strcmp(name, snap_name))
3832 return snapc->snaps[which];
3833 snap_name += strlen(snap_name) + 1;
3834 which++;
3835 }
3836 return CEPH_NOSNAP;
3837 }
3838
3839 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3840 {
3841 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3842 u32 which;
3843 bool found = false;
3844 u64 snap_id;
3845
3846 for (which = 0; !found && which < snapc->num_snaps; which++) {
3847 const char *snap_name;
3848
3849 snap_id = snapc->snaps[which];
3850 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
3851 if (IS_ERR(snap_name))
3852 break;
3853 found = !strcmp(name, snap_name);
3854 kfree(snap_name);
3855 }
3856 return found ? snap_id : CEPH_NOSNAP;
3857 }
3858
3859 /*
3860 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
3861 * no snapshot by that name is found, or if an error occurs.
3862 */
3863 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3864 {
3865 if (rbd_dev->image_format == 1)
3866 return rbd_v1_snap_id_by_name(rbd_dev, name);
3867
3868 return rbd_v2_snap_id_by_name(rbd_dev, name);
3869 }
3870
3871 /*
3872 * When an rbd image has a parent image, it is identified by the
3873 * pool, image, and snapshot ids (not names). This function fills
3874 * in the names for those ids. (It's OK if we can't figure out the
3875 * name for an image id, but the pool and snapshot ids should always
3876 * exist and have names.) All names in an rbd spec are dynamically
3877 * allocated.
3878 *
3879 * When an image being mapped (not a parent) is probed, we have the
3880 * pool name and pool id, image name and image id, and the snapshot
3881 * name. The only thing we're missing is the snapshot id.
3882 */
3883 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
3884 {
3885 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3886 struct rbd_spec *spec = rbd_dev->spec;
3887 const char *pool_name;
3888 const char *image_name;
3889 const char *snap_name;
3890 int ret;
3891
3892 /*
3893 * An image being mapped will have the pool name (etc.), but
3894 * we need to look up the snapshot id.
3895 */
3896 if (spec->pool_name) {
3897 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
3898 u64 snap_id;
3899
3900 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
3901 if (snap_id == CEPH_NOSNAP)
3902 return -ENOENT;
3903 spec->snap_id = snap_id;
3904 } else {
3905 spec->snap_id = CEPH_NOSNAP;
3906 }
3907
3908 return 0;
3909 }
3910
3911 /* Get the pool name; we have to make our own copy of this */
3912
3913 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
3914 if (!pool_name) {
3915 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
3916 return -EIO;
3917 }
3918 pool_name = kstrdup(pool_name, GFP_KERNEL);
3919 if (!pool_name)
3920 return -ENOMEM;
3921
3922 /* Fetch the image name; tolerate failure here */
3923
3924 image_name = rbd_dev_image_name(rbd_dev);
3925 if (!image_name)
3926 rbd_warn(rbd_dev, "unable to get image name");
3927
3928 /* Look up the snapshot name, and make a copy */
3929
3930 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
3931 if (!snap_name) {
3932 ret = -ENOMEM;
3933 goto out_err;
3934 }
3935
3936 spec->pool_name = pool_name;
3937 spec->image_name = image_name;
3938 spec->snap_name = snap_name;
3939
3940 return 0;
3941 out_err:
3942 kfree(image_name);
3943 kfree(pool_name);
3944
3945 return ret;
3946 }
3947
3948 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
3949 {
3950 size_t size;
3951 int ret;
3952 void *reply_buf;
3953 void *p;
3954 void *end;
3955 u64 seq;
3956 u32 snap_count;
3957 struct ceph_snap_context *snapc;
3958 u32 i;
3959
3960 /*
3961 * We'll need room for the seq value (maximum snapshot id),
3962 * snapshot count, and array of that many snapshot ids.
3963 * For now we have a fixed upper limit on the number we're
3964 * prepared to receive.
3965 */
3966 size = sizeof (__le64) + sizeof (__le32) +
3967 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3968 reply_buf = kzalloc(size, GFP_KERNEL);
3969 if (!reply_buf)
3970 return -ENOMEM;
3971
3972 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3973 "rbd", "get_snapcontext", NULL, 0,
3974 reply_buf, size);
3975 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3976 if (ret < 0)
3977 goto out;
3978
3979 p = reply_buf;
3980 end = reply_buf + ret;
3981 ret = -ERANGE;
3982 ceph_decode_64_safe(&p, end, seq, out);
3983 ceph_decode_32_safe(&p, end, snap_count, out);
3984
3985 /*
3986 * Make sure the reported number of snapshot ids wouldn't go
3987 * beyond the end of our buffer. But before checking that,
3988 * make sure the computed size of the snapshot context we
3989 * allocate is representable in a size_t.
3990 */
3991 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3992 / sizeof (u64)) {
3993 ret = -EINVAL;
3994 goto out;
3995 }
3996 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3997 goto out;
3998 ret = 0;
3999
4000 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4001 if (!snapc) {
4002 ret = -ENOMEM;
4003 goto out;
4004 }
4005 snapc->seq = seq;
4006 for (i = 0; i < snap_count; i++)
4007 snapc->snaps[i] = ceph_decode_64(&p);
4008
4009 ceph_put_snap_context(rbd_dev->header.snapc);
4010 rbd_dev->header.snapc = snapc;
4011
4012 dout(" snap context seq = %llu, snap_count = %u\n",
4013 (unsigned long long)seq, (unsigned int)snap_count);
4014 out:
4015 kfree(reply_buf);
4016
4017 return ret;
4018 }
4019
4020 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4021 u64 snap_id)
4022 {
4023 size_t size;
4024 void *reply_buf;
4025 __le64 snapid;
4026 int ret;
4027 void *p;
4028 void *end;
4029 char *snap_name;
4030
4031 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4032 reply_buf = kmalloc(size, GFP_KERNEL);
4033 if (!reply_buf)
4034 return ERR_PTR(-ENOMEM);
4035
4036 snapid = cpu_to_le64(snap_id);
4037 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4038 "rbd", "get_snapshot_name",
4039 &snapid, sizeof (snapid),
4040 reply_buf, size);
4041 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4042 if (ret < 0) {
4043 snap_name = ERR_PTR(ret);
4044 goto out;
4045 }
4046
4047 p = reply_buf;
4048 end = reply_buf + ret;
4049 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4050 if (IS_ERR(snap_name))
4051 goto out;
4052
4053 dout(" snap_id 0x%016llx snap_name = %s\n",
4054 (unsigned long long)snap_id, snap_name);
4055 out:
4056 kfree(reply_buf);
4057
4058 return snap_name;
4059 }
4060
4061 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev)
4062 {
4063 int ret;
4064
4065 down_write(&rbd_dev->header_rwsem);
4066
4067 ret = rbd_dev_v2_image_size(rbd_dev);
4068 if (ret)
4069 goto out;
4070 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4071 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4072 rbd_dev->mapping.size = rbd_dev->header.image_size;
4073
4074 ret = rbd_dev_v2_snap_context(rbd_dev);
4075 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4076 if (ret)
4077 goto out;
4078 out:
4079 up_write(&rbd_dev->header_rwsem);
4080
4081 return ret;
4082 }
4083
4084 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4085 {
4086 struct device *dev;
4087 int ret;
4088
4089 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4090
4091 dev = &rbd_dev->dev;
4092 dev->bus = &rbd_bus_type;
4093 dev->type = &rbd_device_type;
4094 dev->parent = &rbd_root_dev;
4095 dev->release = rbd_dev_device_release;
4096 dev_set_name(dev, "%d", rbd_dev->dev_id);
4097 ret = device_register(dev);
4098
4099 mutex_unlock(&ctl_mutex);
4100
4101 return ret;
4102 }
4103
4104 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4105 {
4106 device_unregister(&rbd_dev->dev);
4107 }
4108
4109 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4110
4111 /*
4112 * Get a unique rbd identifier for the given new rbd_dev, and add
4113 * the rbd_dev to the global list. The minimum rbd id is 1.
4114 */
4115 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4116 {
4117 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4118
4119 spin_lock(&rbd_dev_list_lock);
4120 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4121 spin_unlock(&rbd_dev_list_lock);
4122 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4123 (unsigned long long) rbd_dev->dev_id);
4124 }
4125
4126 /*
4127 * Remove an rbd_dev from the global list, and record that its
4128 * identifier is no longer in use.
4129 */
4130 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4131 {
4132 struct list_head *tmp;
4133 int rbd_id = rbd_dev->dev_id;
4134 int max_id;
4135
4136 rbd_assert(rbd_id > 0);
4137
4138 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4139 (unsigned long long) rbd_dev->dev_id);
4140 spin_lock(&rbd_dev_list_lock);
4141 list_del_init(&rbd_dev->node);
4142
4143 /*
4144 * If the id being "put" is not the current maximum, there
4145 * is nothing special we need to do.
4146 */
4147 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4148 spin_unlock(&rbd_dev_list_lock);
4149 return;
4150 }
4151
4152 /*
4153 * We need to update the current maximum id. Search the
4154 * list to find out what it is. We're more likely to find
4155 * the maximum at the end, so search the list backward.
4156 */
4157 max_id = 0;
4158 list_for_each_prev(tmp, &rbd_dev_list) {
4159 struct rbd_device *rbd_dev;
4160
4161 rbd_dev = list_entry(tmp, struct rbd_device, node);
4162 if (rbd_dev->dev_id > max_id)
4163 max_id = rbd_dev->dev_id;
4164 }
4165 spin_unlock(&rbd_dev_list_lock);
4166
4167 /*
4168 * The max id could have been updated by rbd_dev_id_get(), in
4169 * which case it now accurately reflects the new maximum.
4170 * Be careful not to overwrite the maximum value in that
4171 * case.
4172 */
4173 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4174 dout(" max dev id has been reset\n");
4175 }
4176
4177 /*
4178 * Skips over white space at *buf, and updates *buf to point to the
4179 * first found non-space character (if any). Returns the length of
4180 * the token (string of non-white space characters) found. Note
4181 * that *buf must be terminated with '\0'.
4182 */
4183 static inline size_t next_token(const char **buf)
4184 {
4185 /*
4186 * These are the characters that produce nonzero for
4187 * isspace() in the "C" and "POSIX" locales.
4188 */
4189 const char *spaces = " \f\n\r\t\v";
4190
4191 *buf += strspn(*buf, spaces); /* Find start of token */
4192
4193 return strcspn(*buf, spaces); /* Return token length */
4194 }
4195
4196 /*
4197 * Finds the next token in *buf, and if the provided token buffer is
4198 * big enough, copies the found token into it. The result, if
4199 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4200 * must be terminated with '\0' on entry.
4201 *
4202 * Returns the length of the token found (not including the '\0').
4203 * Return value will be 0 if no token is found, and it will be >=
4204 * token_size if the token would not fit.
4205 *
4206 * The *buf pointer will be updated to point beyond the end of the
4207 * found token. Note that this occurs even if the token buffer is
4208 * too small to hold it.
4209 */
4210 static inline size_t copy_token(const char **buf,
4211 char *token,
4212 size_t token_size)
4213 {
4214 size_t len;
4215
4216 len = next_token(buf);
4217 if (len < token_size) {
4218 memcpy(token, *buf, len);
4219 *(token + len) = '\0';
4220 }
4221 *buf += len;
4222
4223 return len;
4224 }
4225
4226 /*
4227 * Finds the next token in *buf, dynamically allocates a buffer big
4228 * enough to hold a copy of it, and copies the token into the new
4229 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4230 * that a duplicate buffer is created even for a zero-length token.
4231 *
4232 * Returns a pointer to the newly-allocated duplicate, or a null
4233 * pointer if memory for the duplicate was not available. If
4234 * the lenp argument is a non-null pointer, the length of the token
4235 * (not including the '\0') is returned in *lenp.
4236 *
4237 * If successful, the *buf pointer will be updated to point beyond
4238 * the end of the found token.
4239 *
4240 * Note: uses GFP_KERNEL for allocation.
4241 */
4242 static inline char *dup_token(const char **buf, size_t *lenp)
4243 {
4244 char *dup;
4245 size_t len;
4246
4247 len = next_token(buf);
4248 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4249 if (!dup)
4250 return NULL;
4251 *(dup + len) = '\0';
4252 *buf += len;
4253
4254 if (lenp)
4255 *lenp = len;
4256
4257 return dup;
4258 }
4259
4260 /*
4261 * Parse the options provided for an "rbd add" (i.e., rbd image
4262 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4263 * and the data written is passed here via a NUL-terminated buffer.
4264 * Returns 0 if successful or an error code otherwise.
4265 *
4266 * The information extracted from these options is recorded in
4267 * the other parameters which return dynamically-allocated
4268 * structures:
4269 * ceph_opts
4270 * The address of a pointer that will refer to a ceph options
4271 * structure. Caller must release the returned pointer using
4272 * ceph_destroy_options() when it is no longer needed.
4273 * rbd_opts
4274 * Address of an rbd options pointer. Fully initialized by
4275 * this function; caller must release with kfree().
4276 * spec
4277 * Address of an rbd image specification pointer. Fully
4278 * initialized by this function based on parsed options.
4279 * Caller must release with rbd_spec_put().
4280 *
4281 * The options passed take this form:
4282 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4283 * where:
4284 * <mon_addrs>
4285 * A comma-separated list of one or more monitor addresses.
4286 * A monitor address is an ip address, optionally followed
4287 * by a port number (separated by a colon).
4288 * I.e.: ip1[:port1][,ip2[:port2]...]
4289 * <options>
4290 * A comma-separated list of ceph and/or rbd options.
4291 * <pool_name>
4292 * The name of the rados pool containing the rbd image.
4293 * <image_name>
4294 * The name of the image in that pool to map.
4295 * <snap_id>
4296 * An optional snapshot id. If provided, the mapping will
4297 * present data from the image at the time that snapshot was
4298 * created. The image head is used if no snapshot id is
4299 * provided. Snapshot mappings are always read-only.
4300 */
4301 static int rbd_add_parse_args(const char *buf,
4302 struct ceph_options **ceph_opts,
4303 struct rbd_options **opts,
4304 struct rbd_spec **rbd_spec)
4305 {
4306 size_t len;
4307 char *options;
4308 const char *mon_addrs;
4309 char *snap_name;
4310 size_t mon_addrs_size;
4311 struct rbd_spec *spec = NULL;
4312 struct rbd_options *rbd_opts = NULL;
4313 struct ceph_options *copts;
4314 int ret;
4315
4316 /* The first four tokens are required */
4317
4318 len = next_token(&buf);
4319 if (!len) {
4320 rbd_warn(NULL, "no monitor address(es) provided");
4321 return -EINVAL;
4322 }
4323 mon_addrs = buf;
4324 mon_addrs_size = len + 1;
4325 buf += len;
4326
4327 ret = -EINVAL;
4328 options = dup_token(&buf, NULL);
4329 if (!options)
4330 return -ENOMEM;
4331 if (!*options) {
4332 rbd_warn(NULL, "no options provided");
4333 goto out_err;
4334 }
4335
4336 spec = rbd_spec_alloc();
4337 if (!spec)
4338 goto out_mem;
4339
4340 spec->pool_name = dup_token(&buf, NULL);
4341 if (!spec->pool_name)
4342 goto out_mem;
4343 if (!*spec->pool_name) {
4344 rbd_warn(NULL, "no pool name provided");
4345 goto out_err;
4346 }
4347
4348 spec->image_name = dup_token(&buf, NULL);
4349 if (!spec->image_name)
4350 goto out_mem;
4351 if (!*spec->image_name) {
4352 rbd_warn(NULL, "no image name provided");
4353 goto out_err;
4354 }
4355
4356 /*
4357 * Snapshot name is optional; default is to use "-"
4358 * (indicating the head/no snapshot).
4359 */
4360 len = next_token(&buf);
4361 if (!len) {
4362 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4363 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4364 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4365 ret = -ENAMETOOLONG;
4366 goto out_err;
4367 }
4368 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4369 if (!snap_name)
4370 goto out_mem;
4371 *(snap_name + len) = '\0';
4372 spec->snap_name = snap_name;
4373
4374 /* Initialize all rbd options to the defaults */
4375
4376 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4377 if (!rbd_opts)
4378 goto out_mem;
4379
4380 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4381
4382 copts = ceph_parse_options(options, mon_addrs,
4383 mon_addrs + mon_addrs_size - 1,
4384 parse_rbd_opts_token, rbd_opts);
4385 if (IS_ERR(copts)) {
4386 ret = PTR_ERR(copts);
4387 goto out_err;
4388 }
4389 kfree(options);
4390
4391 *ceph_opts = copts;
4392 *opts = rbd_opts;
4393 *rbd_spec = spec;
4394
4395 return 0;
4396 out_mem:
4397 ret = -ENOMEM;
4398 out_err:
4399 kfree(rbd_opts);
4400 rbd_spec_put(spec);
4401 kfree(options);
4402
4403 return ret;
4404 }
4405
4406 /*
4407 * An rbd format 2 image has a unique identifier, distinct from the
4408 * name given to it by the user. Internally, that identifier is
4409 * what's used to specify the names of objects related to the image.
4410 *
4411 * A special "rbd id" object is used to map an rbd image name to its
4412 * id. If that object doesn't exist, then there is no v2 rbd image
4413 * with the supplied name.
4414 *
4415 * This function will record the given rbd_dev's image_id field if
4416 * it can be determined, and in that case will return 0. If any
4417 * errors occur a negative errno will be returned and the rbd_dev's
4418 * image_id field will be unchanged (and should be NULL).
4419 */
4420 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4421 {
4422 int ret;
4423 size_t size;
4424 char *object_name;
4425 void *response;
4426 char *image_id;
4427
4428 /*
4429 * When probing a parent image, the image id is already
4430 * known (and the image name likely is not). There's no
4431 * need to fetch the image id again in this case. We
4432 * do still need to set the image format though.
4433 */
4434 if (rbd_dev->spec->image_id) {
4435 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4436
4437 return 0;
4438 }
4439
4440 /*
4441 * First, see if the format 2 image id file exists, and if
4442 * so, get the image's persistent id from it.
4443 */
4444 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4445 object_name = kmalloc(size, GFP_NOIO);
4446 if (!object_name)
4447 return -ENOMEM;
4448 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4449 dout("rbd id object name is %s\n", object_name);
4450
4451 /* Response will be an encoded string, which includes a length */
4452
4453 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4454 response = kzalloc(size, GFP_NOIO);
4455 if (!response) {
4456 ret = -ENOMEM;
4457 goto out;
4458 }
4459
4460 /* If it doesn't exist we'll assume it's a format 1 image */
4461
4462 ret = rbd_obj_method_sync(rbd_dev, object_name,
4463 "rbd", "get_id", NULL, 0,
4464 response, RBD_IMAGE_ID_LEN_MAX);
4465 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4466 if (ret == -ENOENT) {
4467 image_id = kstrdup("", GFP_KERNEL);
4468 ret = image_id ? 0 : -ENOMEM;
4469 if (!ret)
4470 rbd_dev->image_format = 1;
4471 } else if (ret > sizeof (__le32)) {
4472 void *p = response;
4473
4474 image_id = ceph_extract_encoded_string(&p, p + ret,
4475 NULL, GFP_NOIO);
4476 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4477 if (!ret)
4478 rbd_dev->image_format = 2;
4479 } else {
4480 ret = -EINVAL;
4481 }
4482
4483 if (!ret) {
4484 rbd_dev->spec->image_id = image_id;
4485 dout("image_id is %s\n", image_id);
4486 }
4487 out:
4488 kfree(response);
4489 kfree(object_name);
4490
4491 return ret;
4492 }
4493
4494 /* Undo whatever state changes are made by v1 or v2 image probe */
4495
4496 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4497 {
4498 struct rbd_image_header *header;
4499
4500 rbd_dev_remove_parent(rbd_dev);
4501 rbd_spec_put(rbd_dev->parent_spec);
4502 rbd_dev->parent_spec = NULL;
4503 rbd_dev->parent_overlap = 0;
4504
4505 /* Free dynamic fields from the header, then zero it out */
4506
4507 header = &rbd_dev->header;
4508 ceph_put_snap_context(header->snapc);
4509 kfree(header->snap_sizes);
4510 kfree(header->snap_names);
4511 kfree(header->object_prefix);
4512 memset(header, 0, sizeof (*header));
4513 }
4514
4515 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
4516 {
4517 int ret;
4518
4519 /* Populate rbd image metadata */
4520
4521 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
4522 if (ret < 0)
4523 goto out_err;
4524
4525 /* Version 1 images have no parent (no layering) */
4526
4527 rbd_dev->parent_spec = NULL;
4528 rbd_dev->parent_overlap = 0;
4529
4530 dout("discovered version 1 image, header name is %s\n",
4531 rbd_dev->header_name);
4532
4533 return 0;
4534
4535 out_err:
4536 kfree(rbd_dev->header_name);
4537 rbd_dev->header_name = NULL;
4538 kfree(rbd_dev->spec->image_id);
4539 rbd_dev->spec->image_id = NULL;
4540
4541 return ret;
4542 }
4543
4544 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
4545 {
4546 int ret;
4547
4548 ret = rbd_dev_v2_image_size(rbd_dev);
4549 if (ret)
4550 goto out_err;
4551
4552 /* Get the object prefix (a.k.a. block_name) for the image */
4553
4554 ret = rbd_dev_v2_object_prefix(rbd_dev);
4555 if (ret)
4556 goto out_err;
4557
4558 /* Get the and check features for the image */
4559
4560 ret = rbd_dev_v2_features(rbd_dev);
4561 if (ret)
4562 goto out_err;
4563
4564 /* If the image supports layering, get the parent info */
4565
4566 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
4567 ret = rbd_dev_v2_parent_info(rbd_dev);
4568 if (ret)
4569 goto out_err;
4570 /*
4571 * Print a warning if this image has a parent.
4572 * Don't print it if the image now being probed
4573 * is itself a parent. We can tell at this point
4574 * because we won't know its pool name yet (just its
4575 * pool id).
4576 */
4577 if (rbd_dev->parent_spec && rbd_dev->spec->pool_name)
4578 rbd_warn(rbd_dev, "WARNING: kernel layering "
4579 "is EXPERIMENTAL!");
4580 }
4581
4582 /* If the image supports fancy striping, get its parameters */
4583
4584 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4585 ret = rbd_dev_v2_striping_info(rbd_dev);
4586 if (ret < 0)
4587 goto out_err;
4588 }
4589
4590 /* crypto and compression type aren't (yet) supported for v2 images */
4591
4592 rbd_dev->header.crypt_type = 0;
4593 rbd_dev->header.comp_type = 0;
4594
4595 /* Get the snapshot context, plus the header version */
4596
4597 ret = rbd_dev_v2_snap_context(rbd_dev);
4598 if (ret)
4599 goto out_err;
4600
4601 dout("discovered version 2 image, header name is %s\n",
4602 rbd_dev->header_name);
4603
4604 return 0;
4605 out_err:
4606 rbd_dev->parent_overlap = 0;
4607 rbd_spec_put(rbd_dev->parent_spec);
4608 rbd_dev->parent_spec = NULL;
4609 kfree(rbd_dev->header_name);
4610 rbd_dev->header_name = NULL;
4611 kfree(rbd_dev->header.object_prefix);
4612 rbd_dev->header.object_prefix = NULL;
4613
4614 return ret;
4615 }
4616
4617 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4618 {
4619 struct rbd_device *parent = NULL;
4620 struct rbd_spec *parent_spec;
4621 struct rbd_client *rbdc;
4622 int ret;
4623
4624 if (!rbd_dev->parent_spec)
4625 return 0;
4626 /*
4627 * We need to pass a reference to the client and the parent
4628 * spec when creating the parent rbd_dev. Images related by
4629 * parent/child relationships always share both.
4630 */
4631 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4632 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4633
4634 ret = -ENOMEM;
4635 parent = rbd_dev_create(rbdc, parent_spec);
4636 if (!parent)
4637 goto out_err;
4638
4639 ret = rbd_dev_image_probe(parent);
4640 if (ret < 0)
4641 goto out_err;
4642 rbd_dev->parent = parent;
4643
4644 return 0;
4645 out_err:
4646 if (parent) {
4647 rbd_spec_put(rbd_dev->parent_spec);
4648 kfree(rbd_dev->header_name);
4649 rbd_dev_destroy(parent);
4650 } else {
4651 rbd_put_client(rbdc);
4652 rbd_spec_put(parent_spec);
4653 }
4654
4655 return ret;
4656 }
4657
4658 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4659 {
4660 int ret;
4661
4662 ret = rbd_dev_mapping_set(rbd_dev);
4663 if (ret)
4664 return ret;
4665
4666 /* generate unique id: find highest unique id, add one */
4667 rbd_dev_id_get(rbd_dev);
4668
4669 /* Fill in the device name, now that we have its id. */
4670 BUILD_BUG_ON(DEV_NAME_LEN
4671 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4672 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4673
4674 /* Get our block major device number. */
4675
4676 ret = register_blkdev(0, rbd_dev->name);
4677 if (ret < 0)
4678 goto err_out_id;
4679 rbd_dev->major = ret;
4680
4681 /* Set up the blkdev mapping. */
4682
4683 ret = rbd_init_disk(rbd_dev);
4684 if (ret)
4685 goto err_out_blkdev;
4686
4687 ret = rbd_bus_add_dev(rbd_dev);
4688 if (ret)
4689 goto err_out_disk;
4690
4691 /* Everything's ready. Announce the disk to the world. */
4692
4693 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4694 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4695 add_disk(rbd_dev->disk);
4696
4697 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4698 (unsigned long long) rbd_dev->mapping.size);
4699
4700 return ret;
4701
4702 err_out_disk:
4703 rbd_free_disk(rbd_dev);
4704 err_out_blkdev:
4705 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4706 err_out_id:
4707 rbd_dev_id_put(rbd_dev);
4708 rbd_dev_mapping_clear(rbd_dev);
4709
4710 return ret;
4711 }
4712
4713 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4714 {
4715 struct rbd_spec *spec = rbd_dev->spec;
4716 size_t size;
4717
4718 /* Record the header object name for this rbd image. */
4719
4720 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4721
4722 if (rbd_dev->image_format == 1)
4723 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4724 else
4725 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4726
4727 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4728 if (!rbd_dev->header_name)
4729 return -ENOMEM;
4730
4731 if (rbd_dev->image_format == 1)
4732 sprintf(rbd_dev->header_name, "%s%s",
4733 spec->image_name, RBD_SUFFIX);
4734 else
4735 sprintf(rbd_dev->header_name, "%s%s",
4736 RBD_HEADER_PREFIX, spec->image_id);
4737 return 0;
4738 }
4739
4740 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4741 {
4742 int ret;
4743
4744 rbd_dev_unprobe(rbd_dev);
4745 ret = rbd_dev_header_watch_sync(rbd_dev, 0);
4746 if (ret)
4747 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
4748 kfree(rbd_dev->header_name);
4749 rbd_dev->header_name = NULL;
4750 rbd_dev->image_format = 0;
4751 kfree(rbd_dev->spec->image_id);
4752 rbd_dev->spec->image_id = NULL;
4753
4754 rbd_dev_destroy(rbd_dev);
4755 }
4756
4757 /*
4758 * Probe for the existence of the header object for the given rbd
4759 * device. For format 2 images this includes determining the image
4760 * id.
4761 */
4762 static int rbd_dev_image_probe(struct rbd_device *rbd_dev)
4763 {
4764 int ret;
4765 int tmp;
4766
4767 /*
4768 * Get the id from the image id object. If it's not a
4769 * format 2 image, we'll get ENOENT back, and we'll assume
4770 * it's a format 1 image.
4771 */
4772 ret = rbd_dev_image_id(rbd_dev);
4773 if (ret)
4774 return ret;
4775 rbd_assert(rbd_dev->spec->image_id);
4776 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4777
4778 ret = rbd_dev_header_name(rbd_dev);
4779 if (ret)
4780 goto err_out_format;
4781
4782 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4783 if (ret)
4784 goto out_header_name;
4785
4786 if (rbd_dev->image_format == 1)
4787 ret = rbd_dev_v1_probe(rbd_dev);
4788 else
4789 ret = rbd_dev_v2_probe(rbd_dev);
4790 if (ret)
4791 goto err_out_watch;
4792
4793 ret = rbd_dev_spec_update(rbd_dev);
4794 if (ret)
4795 goto err_out_probe;
4796
4797 ret = rbd_dev_probe_parent(rbd_dev);
4798 if (!ret)
4799 return 0;
4800
4801 err_out_probe:
4802 rbd_dev_unprobe(rbd_dev);
4803 err_out_watch:
4804 tmp = rbd_dev_header_watch_sync(rbd_dev, 0);
4805 if (tmp)
4806 rbd_warn(rbd_dev, "unable to tear down watch request\n");
4807 out_header_name:
4808 kfree(rbd_dev->header_name);
4809 rbd_dev->header_name = NULL;
4810 err_out_format:
4811 rbd_dev->image_format = 0;
4812 kfree(rbd_dev->spec->image_id);
4813 rbd_dev->spec->image_id = NULL;
4814
4815 dout("probe failed, returning %d\n", ret);
4816
4817 return ret;
4818 }
4819
4820 static ssize_t rbd_add(struct bus_type *bus,
4821 const char *buf,
4822 size_t count)
4823 {
4824 struct rbd_device *rbd_dev = NULL;
4825 struct ceph_options *ceph_opts = NULL;
4826 struct rbd_options *rbd_opts = NULL;
4827 struct rbd_spec *spec = NULL;
4828 struct rbd_client *rbdc;
4829 struct ceph_osd_client *osdc;
4830 int rc = -ENOMEM;
4831
4832 if (!try_module_get(THIS_MODULE))
4833 return -ENODEV;
4834
4835 /* parse add command */
4836 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4837 if (rc < 0)
4838 goto err_out_module;
4839
4840 rbdc = rbd_get_client(ceph_opts);
4841 if (IS_ERR(rbdc)) {
4842 rc = PTR_ERR(rbdc);
4843 goto err_out_args;
4844 }
4845 ceph_opts = NULL; /* rbd_dev client now owns this */
4846
4847 /* pick the pool */
4848 osdc = &rbdc->client->osdc;
4849 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4850 if (rc < 0)
4851 goto err_out_client;
4852 spec->pool_id = (u64)rc;
4853
4854 /* The ceph file layout needs to fit pool id in 32 bits */
4855
4856 if (spec->pool_id > (u64)U32_MAX) {
4857 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
4858 (unsigned long long)spec->pool_id, U32_MAX);
4859 rc = -EIO;
4860 goto err_out_client;
4861 }
4862
4863 rbd_dev = rbd_dev_create(rbdc, spec);
4864 if (!rbd_dev)
4865 goto err_out_client;
4866 rbdc = NULL; /* rbd_dev now owns this */
4867 spec = NULL; /* rbd_dev now owns this */
4868
4869 rbd_dev->mapping.read_only = rbd_opts->read_only;
4870 kfree(rbd_opts);
4871 rbd_opts = NULL; /* done with this */
4872
4873 rc = rbd_dev_image_probe(rbd_dev);
4874 if (rc < 0)
4875 goto err_out_rbd_dev;
4876
4877 rc = rbd_dev_device_setup(rbd_dev);
4878 if (!rc)
4879 return count;
4880
4881 rbd_dev_image_release(rbd_dev);
4882 err_out_rbd_dev:
4883 rbd_dev_destroy(rbd_dev);
4884 err_out_client:
4885 rbd_put_client(rbdc);
4886 err_out_args:
4887 if (ceph_opts)
4888 ceph_destroy_options(ceph_opts);
4889 kfree(rbd_opts);
4890 rbd_spec_put(spec);
4891 err_out_module:
4892 module_put(THIS_MODULE);
4893
4894 dout("Error adding device %s\n", buf);
4895
4896 return (ssize_t)rc;
4897 }
4898
4899 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4900 {
4901 struct list_head *tmp;
4902 struct rbd_device *rbd_dev;
4903
4904 spin_lock(&rbd_dev_list_lock);
4905 list_for_each(tmp, &rbd_dev_list) {
4906 rbd_dev = list_entry(tmp, struct rbd_device, node);
4907 if (rbd_dev->dev_id == dev_id) {
4908 spin_unlock(&rbd_dev_list_lock);
4909 return rbd_dev;
4910 }
4911 }
4912 spin_unlock(&rbd_dev_list_lock);
4913 return NULL;
4914 }
4915
4916 static void rbd_dev_device_release(struct device *dev)
4917 {
4918 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4919
4920 rbd_free_disk(rbd_dev);
4921 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4922 rbd_dev_clear_mapping(rbd_dev);
4923 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4924 rbd_dev->major = 0;
4925 rbd_dev_id_put(rbd_dev);
4926 rbd_dev_mapping_clear(rbd_dev);
4927 }
4928
4929 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
4930 {
4931 while (rbd_dev->parent) {
4932 struct rbd_device *first = rbd_dev;
4933 struct rbd_device *second = first->parent;
4934 struct rbd_device *third;
4935
4936 /*
4937 * Follow to the parent with no grandparent and
4938 * remove it.
4939 */
4940 while (second && (third = second->parent)) {
4941 first = second;
4942 second = third;
4943 }
4944 rbd_assert(second);
4945 rbd_dev_image_release(second);
4946 first->parent = NULL;
4947 first->parent_overlap = 0;
4948
4949 rbd_assert(first->parent_spec);
4950 rbd_spec_put(first->parent_spec);
4951 first->parent_spec = NULL;
4952 }
4953 }
4954
4955 static ssize_t rbd_remove(struct bus_type *bus,
4956 const char *buf,
4957 size_t count)
4958 {
4959 struct rbd_device *rbd_dev = NULL;
4960 int target_id;
4961 unsigned long ul;
4962 int ret;
4963
4964 ret = strict_strtoul(buf, 10, &ul);
4965 if (ret)
4966 return ret;
4967
4968 /* convert to int; abort if we lost anything in the conversion */
4969 target_id = (int) ul;
4970 if (target_id != ul)
4971 return -EINVAL;
4972
4973 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4974
4975 rbd_dev = __rbd_get_dev(target_id);
4976 if (!rbd_dev) {
4977 ret = -ENOENT;
4978 goto done;
4979 }
4980
4981 spin_lock_irq(&rbd_dev->lock);
4982 if (rbd_dev->open_count)
4983 ret = -EBUSY;
4984 else
4985 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4986 spin_unlock_irq(&rbd_dev->lock);
4987 if (ret < 0)
4988 goto done;
4989 ret = count;
4990 rbd_bus_del_dev(rbd_dev);
4991 rbd_dev_image_release(rbd_dev);
4992 module_put(THIS_MODULE);
4993 done:
4994 mutex_unlock(&ctl_mutex);
4995
4996 return ret;
4997 }
4998
4999 /*
5000 * create control files in sysfs
5001 * /sys/bus/rbd/...
5002 */
5003 static int rbd_sysfs_init(void)
5004 {
5005 int ret;
5006
5007 ret = device_register(&rbd_root_dev);
5008 if (ret < 0)
5009 return ret;
5010
5011 ret = bus_register(&rbd_bus_type);
5012 if (ret < 0)
5013 device_unregister(&rbd_root_dev);
5014
5015 return ret;
5016 }
5017
5018 static void rbd_sysfs_cleanup(void)
5019 {
5020 bus_unregister(&rbd_bus_type);
5021 device_unregister(&rbd_root_dev);
5022 }
5023
5024 static int rbd_slab_init(void)
5025 {
5026 rbd_assert(!rbd_img_request_cache);
5027 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5028 sizeof (struct rbd_img_request),
5029 __alignof__(struct rbd_img_request),
5030 0, NULL);
5031 if (!rbd_img_request_cache)
5032 return -ENOMEM;
5033
5034 rbd_assert(!rbd_obj_request_cache);
5035 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5036 sizeof (struct rbd_obj_request),
5037 __alignof__(struct rbd_obj_request),
5038 0, NULL);
5039 if (!rbd_obj_request_cache)
5040 goto out_err;
5041
5042 rbd_assert(!rbd_segment_name_cache);
5043 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5044 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5045 if (rbd_segment_name_cache)
5046 return 0;
5047 out_err:
5048 if (rbd_obj_request_cache) {
5049 kmem_cache_destroy(rbd_obj_request_cache);
5050 rbd_obj_request_cache = NULL;
5051 }
5052
5053 kmem_cache_destroy(rbd_img_request_cache);
5054 rbd_img_request_cache = NULL;
5055
5056 return -ENOMEM;
5057 }
5058
5059 static void rbd_slab_exit(void)
5060 {
5061 rbd_assert(rbd_segment_name_cache);
5062 kmem_cache_destroy(rbd_segment_name_cache);
5063 rbd_segment_name_cache = NULL;
5064
5065 rbd_assert(rbd_obj_request_cache);
5066 kmem_cache_destroy(rbd_obj_request_cache);
5067 rbd_obj_request_cache = NULL;
5068
5069 rbd_assert(rbd_img_request_cache);
5070 kmem_cache_destroy(rbd_img_request_cache);
5071 rbd_img_request_cache = NULL;
5072 }
5073
5074 static int __init rbd_init(void)
5075 {
5076 int rc;
5077
5078 if (!libceph_compatible(NULL)) {
5079 rbd_warn(NULL, "libceph incompatibility (quitting)");
5080
5081 return -EINVAL;
5082 }
5083 rc = rbd_slab_init();
5084 if (rc)
5085 return rc;
5086 rc = rbd_sysfs_init();
5087 if (rc)
5088 rbd_slab_exit();
5089 else
5090 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5091
5092 return rc;
5093 }
5094
5095 static void __exit rbd_exit(void)
5096 {
5097 rbd_sysfs_cleanup();
5098 rbd_slab_exit();
5099 }
5100
5101 module_init(rbd_init);
5102 module_exit(rbd_exit);
5103
5104 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5105 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5106 MODULE_DESCRIPTION("rados block device");
5107
5108 /* following authorship retained from original osdblk.c */
5109 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5110
5111 MODULE_LICENSE("GPL");
This page took 0.154139 seconds and 5 git commands to generate.