ae65fac2c42b088bc047aca09d218f9a08089496
[deliverable/linux.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 /*
45 * The basic unit of block I/O is a sector. It is interpreted in a
46 * number of contexts in Linux (blk, bio, genhd), but the default is
47 * universally 512 bytes. These symbols are just slightly more
48 * meaningful than the bare numbers they represent.
49 */
50 #define SECTOR_SHIFT 9
51 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
52
53 #define RBD_DRV_NAME "rbd"
54 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
55
56 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
57
58 #define RBD_MAX_SNAP_NAME_LEN 32
59 #define RBD_MAX_OPT_LEN 1024
60
61 #define RBD_SNAP_HEAD_NAME "-"
62
63 /*
64 * An RBD device name will be "rbd#", where the "rbd" comes from
65 * RBD_DRV_NAME above, and # is a unique integer identifier.
66 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
67 * enough to hold all possible device names.
68 */
69 #define DEV_NAME_LEN 32
70 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
71
72 #define RBD_NOTIFY_TIMEOUT_DEFAULT 10
73
74 /*
75 * block device image metadata (in-memory version)
76 */
77 struct rbd_image_header {
78 u64 image_size;
79 char *object_prefix;
80 __u8 obj_order;
81 __u8 crypt_type;
82 __u8 comp_type;
83 struct ceph_snap_context *snapc;
84 size_t snap_names_len;
85 u32 total_snaps;
86
87 char *snap_names;
88 u64 *snap_sizes;
89
90 u64 obj_version;
91 };
92
93 struct rbd_options {
94 int notify_timeout;
95 };
96
97 /*
98 * an instance of the client. multiple devices may share an rbd client.
99 */
100 struct rbd_client {
101 struct ceph_client *client;
102 struct rbd_options *rbd_opts;
103 struct kref kref;
104 struct list_head node;
105 };
106
107 /*
108 * a request completion status
109 */
110 struct rbd_req_status {
111 int done;
112 int rc;
113 u64 bytes;
114 };
115
116 /*
117 * a collection of requests
118 */
119 struct rbd_req_coll {
120 int total;
121 int num_done;
122 struct kref kref;
123 struct rbd_req_status status[0];
124 };
125
126 /*
127 * a single io request
128 */
129 struct rbd_request {
130 struct request *rq; /* blk layer request */
131 struct bio *bio; /* cloned bio */
132 struct page **pages; /* list of used pages */
133 u64 len;
134 int coll_index;
135 struct rbd_req_coll *coll;
136 };
137
138 struct rbd_snap {
139 struct device dev;
140 const char *name;
141 u64 size;
142 struct list_head node;
143 u64 id;
144 };
145
146 /*
147 * a single device
148 */
149 struct rbd_device {
150 int id; /* blkdev unique id */
151
152 int major; /* blkdev assigned major */
153 struct gendisk *disk; /* blkdev's gendisk and rq */
154 struct request_queue *q;
155
156 struct rbd_client *rbd_client;
157
158 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
159
160 spinlock_t lock; /* queue lock */
161
162 struct rbd_image_header header;
163 char *image_name;
164 size_t image_name_len;
165 char *header_name;
166 char *pool_name;
167 int pool_id;
168
169 struct ceph_osd_event *watch_event;
170 struct ceph_osd_request *watch_request;
171
172 /* protects updating the header */
173 struct rw_semaphore header_rwsem;
174 /* name of the snapshot this device reads from */
175 char *snap_name;
176 /* id of the snapshot this device reads from */
177 u64 snap_id; /* current snapshot id */
178 /* whether the snap_id this device reads from still exists */
179 bool snap_exists;
180 int read_only;
181
182 struct list_head node;
183
184 /* list of snapshots */
185 struct list_head snaps;
186
187 /* sysfs related */
188 struct device dev;
189 };
190
191 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
192
193 static LIST_HEAD(rbd_dev_list); /* devices */
194 static DEFINE_SPINLOCK(rbd_dev_list_lock);
195
196 static LIST_HEAD(rbd_client_list); /* clients */
197 static DEFINE_SPINLOCK(rbd_client_list_lock);
198
199 static int __rbd_init_snaps_header(struct rbd_device *rbd_dev);
200 static void rbd_dev_release(struct device *dev);
201 static ssize_t rbd_snap_add(struct device *dev,
202 struct device_attribute *attr,
203 const char *buf,
204 size_t count);
205 static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
206 struct rbd_snap *snap);
207
208 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
209 size_t count);
210 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
211 size_t count);
212
213 static struct bus_attribute rbd_bus_attrs[] = {
214 __ATTR(add, S_IWUSR, NULL, rbd_add),
215 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
216 __ATTR_NULL
217 };
218
219 static struct bus_type rbd_bus_type = {
220 .name = "rbd",
221 .bus_attrs = rbd_bus_attrs,
222 };
223
224 static void rbd_root_dev_release(struct device *dev)
225 {
226 }
227
228 static struct device rbd_root_dev = {
229 .init_name = "rbd",
230 .release = rbd_root_dev_release,
231 };
232
233
234 static struct device *rbd_get_dev(struct rbd_device *rbd_dev)
235 {
236 return get_device(&rbd_dev->dev);
237 }
238
239 static void rbd_put_dev(struct rbd_device *rbd_dev)
240 {
241 put_device(&rbd_dev->dev);
242 }
243
244 static int __rbd_refresh_header(struct rbd_device *rbd_dev);
245
246 static int rbd_open(struct block_device *bdev, fmode_t mode)
247 {
248 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
249
250 rbd_get_dev(rbd_dev);
251
252 set_device_ro(bdev, rbd_dev->read_only);
253
254 if ((mode & FMODE_WRITE) && rbd_dev->read_only)
255 return -EROFS;
256
257 return 0;
258 }
259
260 static int rbd_release(struct gendisk *disk, fmode_t mode)
261 {
262 struct rbd_device *rbd_dev = disk->private_data;
263
264 rbd_put_dev(rbd_dev);
265
266 return 0;
267 }
268
269 static const struct block_device_operations rbd_bd_ops = {
270 .owner = THIS_MODULE,
271 .open = rbd_open,
272 .release = rbd_release,
273 };
274
275 /*
276 * Initialize an rbd client instance.
277 * We own *ceph_opts.
278 */
279 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts,
280 struct rbd_options *rbd_opts)
281 {
282 struct rbd_client *rbdc;
283 int ret = -ENOMEM;
284
285 dout("rbd_client_create\n");
286 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
287 if (!rbdc)
288 goto out_opt;
289
290 kref_init(&rbdc->kref);
291 INIT_LIST_HEAD(&rbdc->node);
292
293 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
294
295 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
296 if (IS_ERR(rbdc->client))
297 goto out_mutex;
298 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
299
300 ret = ceph_open_session(rbdc->client);
301 if (ret < 0)
302 goto out_err;
303
304 rbdc->rbd_opts = rbd_opts;
305
306 spin_lock(&rbd_client_list_lock);
307 list_add_tail(&rbdc->node, &rbd_client_list);
308 spin_unlock(&rbd_client_list_lock);
309
310 mutex_unlock(&ctl_mutex);
311
312 dout("rbd_client_create created %p\n", rbdc);
313 return rbdc;
314
315 out_err:
316 ceph_destroy_client(rbdc->client);
317 out_mutex:
318 mutex_unlock(&ctl_mutex);
319 kfree(rbdc);
320 out_opt:
321 if (ceph_opts)
322 ceph_destroy_options(ceph_opts);
323 return ERR_PTR(ret);
324 }
325
326 /*
327 * Find a ceph client with specific addr and configuration.
328 */
329 static struct rbd_client *__rbd_client_find(struct ceph_options *ceph_opts)
330 {
331 struct rbd_client *client_node;
332
333 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
334 return NULL;
335
336 list_for_each_entry(client_node, &rbd_client_list, node)
337 if (!ceph_compare_options(ceph_opts, client_node->client))
338 return client_node;
339 return NULL;
340 }
341
342 /*
343 * mount options
344 */
345 enum {
346 Opt_notify_timeout,
347 Opt_last_int,
348 /* int args above */
349 Opt_last_string,
350 /* string args above */
351 };
352
353 static match_table_t rbd_opts_tokens = {
354 {Opt_notify_timeout, "notify_timeout=%d"},
355 /* int args above */
356 /* string args above */
357 {-1, NULL}
358 };
359
360 static int parse_rbd_opts_token(char *c, void *private)
361 {
362 struct rbd_options *rbd_opts = private;
363 substring_t argstr[MAX_OPT_ARGS];
364 int token, intval, ret;
365
366 token = match_token(c, rbd_opts_tokens, argstr);
367 if (token < 0)
368 return -EINVAL;
369
370 if (token < Opt_last_int) {
371 ret = match_int(&argstr[0], &intval);
372 if (ret < 0) {
373 pr_err("bad mount option arg (not int) "
374 "at '%s'\n", c);
375 return ret;
376 }
377 dout("got int token %d val %d\n", token, intval);
378 } else if (token > Opt_last_int && token < Opt_last_string) {
379 dout("got string token %d val %s\n", token,
380 argstr[0].from);
381 } else {
382 dout("got token %d\n", token);
383 }
384
385 switch (token) {
386 case Opt_notify_timeout:
387 rbd_opts->notify_timeout = intval;
388 break;
389 default:
390 BUG_ON(token);
391 }
392 return 0;
393 }
394
395 /*
396 * Get a ceph client with specific addr and configuration, if one does
397 * not exist create it.
398 */
399 static struct rbd_client *rbd_get_client(const char *mon_addr,
400 size_t mon_addr_len,
401 char *options)
402 {
403 struct rbd_client *rbdc;
404 struct ceph_options *ceph_opts;
405 struct rbd_options *rbd_opts;
406
407 rbd_opts = kzalloc(sizeof(*rbd_opts), GFP_KERNEL);
408 if (!rbd_opts)
409 return ERR_PTR(-ENOMEM);
410
411 rbd_opts->notify_timeout = RBD_NOTIFY_TIMEOUT_DEFAULT;
412
413 ceph_opts = ceph_parse_options(options, mon_addr,
414 mon_addr + mon_addr_len,
415 parse_rbd_opts_token, rbd_opts);
416 if (IS_ERR(ceph_opts)) {
417 kfree(rbd_opts);
418 return ERR_CAST(ceph_opts);
419 }
420
421 spin_lock(&rbd_client_list_lock);
422 rbdc = __rbd_client_find(ceph_opts);
423 if (rbdc) {
424 /* using an existing client */
425 kref_get(&rbdc->kref);
426 spin_unlock(&rbd_client_list_lock);
427
428 ceph_destroy_options(ceph_opts);
429 kfree(rbd_opts);
430
431 return rbdc;
432 }
433 spin_unlock(&rbd_client_list_lock);
434
435 rbdc = rbd_client_create(ceph_opts, rbd_opts);
436
437 if (IS_ERR(rbdc))
438 kfree(rbd_opts);
439
440 return rbdc;
441 }
442
443 /*
444 * Destroy ceph client
445 *
446 * Caller must hold rbd_client_list_lock.
447 */
448 static void rbd_client_release(struct kref *kref)
449 {
450 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
451
452 dout("rbd_release_client %p\n", rbdc);
453 spin_lock(&rbd_client_list_lock);
454 list_del(&rbdc->node);
455 spin_unlock(&rbd_client_list_lock);
456
457 ceph_destroy_client(rbdc->client);
458 kfree(rbdc->rbd_opts);
459 kfree(rbdc);
460 }
461
462 /*
463 * Drop reference to ceph client node. If it's not referenced anymore, release
464 * it.
465 */
466 static void rbd_put_client(struct rbd_device *rbd_dev)
467 {
468 kref_put(&rbd_dev->rbd_client->kref, rbd_client_release);
469 rbd_dev->rbd_client = NULL;
470 }
471
472 /*
473 * Destroy requests collection
474 */
475 static void rbd_coll_release(struct kref *kref)
476 {
477 struct rbd_req_coll *coll =
478 container_of(kref, struct rbd_req_coll, kref);
479
480 dout("rbd_coll_release %p\n", coll);
481 kfree(coll);
482 }
483
484 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
485 {
486 return !memcmp(&ondisk->text,
487 RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT));
488 }
489
490 /*
491 * Create a new header structure, translate header format from the on-disk
492 * header.
493 */
494 static int rbd_header_from_disk(struct rbd_image_header *header,
495 struct rbd_image_header_ondisk *ondisk,
496 u32 allocated_snaps,
497 gfp_t gfp_flags)
498 {
499 u32 i, snap_count;
500
501 if (!rbd_dev_ondisk_valid(ondisk))
502 return -ENXIO;
503
504 snap_count = le32_to_cpu(ondisk->snap_count);
505 if (snap_count > (UINT_MAX - sizeof(struct ceph_snap_context))
506 / sizeof (*ondisk))
507 return -EINVAL;
508 header->snapc = kmalloc(sizeof(struct ceph_snap_context) +
509 snap_count * sizeof(u64),
510 gfp_flags);
511 if (!header->snapc)
512 return -ENOMEM;
513
514 header->snap_names_len = le64_to_cpu(ondisk->snap_names_len);
515 if (snap_count) {
516 header->snap_names = kmalloc(header->snap_names_len,
517 gfp_flags);
518 if (!header->snap_names)
519 goto err_snapc;
520 header->snap_sizes = kmalloc(snap_count * sizeof(u64),
521 gfp_flags);
522 if (!header->snap_sizes)
523 goto err_names;
524 } else {
525 header->snap_names = NULL;
526 header->snap_sizes = NULL;
527 }
528
529 header->object_prefix = kmalloc(sizeof (ondisk->block_name) + 1,
530 gfp_flags);
531 if (!header->object_prefix)
532 goto err_sizes;
533
534 memcpy(header->object_prefix, ondisk->block_name,
535 sizeof(ondisk->block_name));
536 header->object_prefix[sizeof (ondisk->block_name)] = '\0';
537
538 header->image_size = le64_to_cpu(ondisk->image_size);
539 header->obj_order = ondisk->options.order;
540 header->crypt_type = ondisk->options.crypt_type;
541 header->comp_type = ondisk->options.comp_type;
542
543 atomic_set(&header->snapc->nref, 1);
544 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
545 header->snapc->num_snaps = snap_count;
546 header->total_snaps = snap_count;
547
548 if (snap_count && allocated_snaps == snap_count) {
549 for (i = 0; i < snap_count; i++) {
550 header->snapc->snaps[i] =
551 le64_to_cpu(ondisk->snaps[i].id);
552 header->snap_sizes[i] =
553 le64_to_cpu(ondisk->snaps[i].image_size);
554 }
555
556 /* copy snapshot names */
557 memcpy(header->snap_names, &ondisk->snaps[i],
558 header->snap_names_len);
559 }
560
561 return 0;
562
563 err_sizes:
564 kfree(header->snap_sizes);
565 err_names:
566 kfree(header->snap_names);
567 err_snapc:
568 kfree(header->snapc);
569 return -ENOMEM;
570 }
571
572 static int snap_by_name(struct rbd_image_header *header, const char *snap_name,
573 u64 *seq, u64 *size)
574 {
575 int i;
576 char *p = header->snap_names;
577
578 for (i = 0; i < header->total_snaps; i++) {
579 if (!strcmp(snap_name, p)) {
580
581 /* Found it. Pass back its id and/or size */
582
583 if (seq)
584 *seq = header->snapc->snaps[i];
585 if (size)
586 *size = header->snap_sizes[i];
587 return i;
588 }
589 p += strlen(p) + 1; /* Skip ahead to the next name */
590 }
591 return -ENOENT;
592 }
593
594 static int rbd_header_set_snap(struct rbd_device *rbd_dev, u64 *size)
595 {
596 int ret;
597
598 down_write(&rbd_dev->header_rwsem);
599
600 if (!memcmp(rbd_dev->snap_name, RBD_SNAP_HEAD_NAME,
601 sizeof (RBD_SNAP_HEAD_NAME))) {
602 rbd_dev->snap_id = CEPH_NOSNAP;
603 rbd_dev->snap_exists = false;
604 rbd_dev->read_only = 0;
605 if (size)
606 *size = rbd_dev->header.image_size;
607 } else {
608 u64 snap_id = 0;
609
610 ret = snap_by_name(&rbd_dev->header, rbd_dev->snap_name,
611 &snap_id, size);
612 if (ret < 0)
613 goto done;
614 rbd_dev->snap_id = snap_id;
615 rbd_dev->snap_exists = true;
616 rbd_dev->read_only = 1;
617 }
618
619 ret = 0;
620 done:
621 up_write(&rbd_dev->header_rwsem);
622 return ret;
623 }
624
625 static void rbd_header_free(struct rbd_image_header *header)
626 {
627 kfree(header->object_prefix);
628 kfree(header->snap_sizes);
629 kfree(header->snap_names);
630 ceph_put_snap_context(header->snapc);
631 }
632
633 /*
634 * get the actual striped segment name, offset and length
635 */
636 static u64 rbd_get_segment(struct rbd_image_header *header,
637 const char *object_prefix,
638 u64 ofs, u64 len,
639 char *seg_name, u64 *segofs)
640 {
641 u64 seg = ofs >> header->obj_order;
642
643 if (seg_name)
644 snprintf(seg_name, RBD_MAX_SEG_NAME_LEN,
645 "%s.%012llx", object_prefix, seg);
646
647 ofs = ofs & ((1 << header->obj_order) - 1);
648 len = min_t(u64, len, (1 << header->obj_order) - ofs);
649
650 if (segofs)
651 *segofs = ofs;
652
653 return len;
654 }
655
656 static int rbd_get_num_segments(struct rbd_image_header *header,
657 u64 ofs, u64 len)
658 {
659 u64 start_seg = ofs >> header->obj_order;
660 u64 end_seg = (ofs + len - 1) >> header->obj_order;
661 return end_seg - start_seg + 1;
662 }
663
664 /*
665 * returns the size of an object in the image
666 */
667 static u64 rbd_obj_bytes(struct rbd_image_header *header)
668 {
669 return 1 << header->obj_order;
670 }
671
672 /*
673 * bio helpers
674 */
675
676 static void bio_chain_put(struct bio *chain)
677 {
678 struct bio *tmp;
679
680 while (chain) {
681 tmp = chain;
682 chain = chain->bi_next;
683 bio_put(tmp);
684 }
685 }
686
687 /*
688 * zeros a bio chain, starting at specific offset
689 */
690 static void zero_bio_chain(struct bio *chain, int start_ofs)
691 {
692 struct bio_vec *bv;
693 unsigned long flags;
694 void *buf;
695 int i;
696 int pos = 0;
697
698 while (chain) {
699 bio_for_each_segment(bv, chain, i) {
700 if (pos + bv->bv_len > start_ofs) {
701 int remainder = max(start_ofs - pos, 0);
702 buf = bvec_kmap_irq(bv, &flags);
703 memset(buf + remainder, 0,
704 bv->bv_len - remainder);
705 bvec_kunmap_irq(buf, &flags);
706 }
707 pos += bv->bv_len;
708 }
709
710 chain = chain->bi_next;
711 }
712 }
713
714 /*
715 * bio_chain_clone - clone a chain of bios up to a certain length.
716 * might return a bio_pair that will need to be released.
717 */
718 static struct bio *bio_chain_clone(struct bio **old, struct bio **next,
719 struct bio_pair **bp,
720 int len, gfp_t gfpmask)
721 {
722 struct bio *tmp, *old_chain = *old, *new_chain = NULL, *tail = NULL;
723 int total = 0;
724
725 if (*bp) {
726 bio_pair_release(*bp);
727 *bp = NULL;
728 }
729
730 while (old_chain && (total < len)) {
731 tmp = bio_kmalloc(gfpmask, old_chain->bi_max_vecs);
732 if (!tmp)
733 goto err_out;
734
735 if (total + old_chain->bi_size > len) {
736 struct bio_pair *bp;
737
738 /*
739 * this split can only happen with a single paged bio,
740 * split_bio will BUG_ON if this is not the case
741 */
742 dout("bio_chain_clone split! total=%d remaining=%d"
743 "bi_size=%u\n",
744 total, len - total, old_chain->bi_size);
745
746 /* split the bio. We'll release it either in the next
747 call, or it will have to be released outside */
748 bp = bio_split(old_chain, (len - total) / SECTOR_SIZE);
749 if (!bp)
750 goto err_out;
751
752 __bio_clone(tmp, &bp->bio1);
753
754 *next = &bp->bio2;
755 } else {
756 __bio_clone(tmp, old_chain);
757 *next = old_chain->bi_next;
758 }
759
760 tmp->bi_bdev = NULL;
761 gfpmask &= ~__GFP_WAIT;
762 tmp->bi_next = NULL;
763
764 if (!new_chain) {
765 new_chain = tail = tmp;
766 } else {
767 tail->bi_next = tmp;
768 tail = tmp;
769 }
770 old_chain = old_chain->bi_next;
771
772 total += tmp->bi_size;
773 }
774
775 BUG_ON(total < len);
776
777 if (tail)
778 tail->bi_next = NULL;
779
780 *old = old_chain;
781
782 return new_chain;
783
784 err_out:
785 dout("bio_chain_clone with err\n");
786 bio_chain_put(new_chain);
787 return NULL;
788 }
789
790 /*
791 * helpers for osd request op vectors.
792 */
793 static int rbd_create_rw_ops(struct ceph_osd_req_op **ops,
794 int num_ops,
795 int opcode,
796 u32 payload_len)
797 {
798 *ops = kzalloc(sizeof(struct ceph_osd_req_op) * (num_ops + 1),
799 GFP_NOIO);
800 if (!*ops)
801 return -ENOMEM;
802 (*ops)[0].op = opcode;
803 /*
804 * op extent offset and length will be set later on
805 * in calc_raw_layout()
806 */
807 (*ops)[0].payload_len = payload_len;
808 return 0;
809 }
810
811 static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
812 {
813 kfree(ops);
814 }
815
816 static void rbd_coll_end_req_index(struct request *rq,
817 struct rbd_req_coll *coll,
818 int index,
819 int ret, u64 len)
820 {
821 struct request_queue *q;
822 int min, max, i;
823
824 dout("rbd_coll_end_req_index %p index %d ret %d len %llu\n",
825 coll, index, ret, (unsigned long long) len);
826
827 if (!rq)
828 return;
829
830 if (!coll) {
831 blk_end_request(rq, ret, len);
832 return;
833 }
834
835 q = rq->q;
836
837 spin_lock_irq(q->queue_lock);
838 coll->status[index].done = 1;
839 coll->status[index].rc = ret;
840 coll->status[index].bytes = len;
841 max = min = coll->num_done;
842 while (max < coll->total && coll->status[max].done)
843 max++;
844
845 for (i = min; i<max; i++) {
846 __blk_end_request(rq, coll->status[i].rc,
847 coll->status[i].bytes);
848 coll->num_done++;
849 kref_put(&coll->kref, rbd_coll_release);
850 }
851 spin_unlock_irq(q->queue_lock);
852 }
853
854 static void rbd_coll_end_req(struct rbd_request *req,
855 int ret, u64 len)
856 {
857 rbd_coll_end_req_index(req->rq, req->coll, req->coll_index, ret, len);
858 }
859
860 /*
861 * Send ceph osd request
862 */
863 static int rbd_do_request(struct request *rq,
864 struct rbd_device *rbd_dev,
865 struct ceph_snap_context *snapc,
866 u64 snapid,
867 const char *object_name, u64 ofs, u64 len,
868 struct bio *bio,
869 struct page **pages,
870 int num_pages,
871 int flags,
872 struct ceph_osd_req_op *ops,
873 struct rbd_req_coll *coll,
874 int coll_index,
875 void (*rbd_cb)(struct ceph_osd_request *req,
876 struct ceph_msg *msg),
877 struct ceph_osd_request **linger_req,
878 u64 *ver)
879 {
880 struct ceph_osd_request *req;
881 struct ceph_file_layout *layout;
882 int ret;
883 u64 bno;
884 struct timespec mtime = CURRENT_TIME;
885 struct rbd_request *req_data;
886 struct ceph_osd_request_head *reqhead;
887 struct ceph_osd_client *osdc;
888
889 req_data = kzalloc(sizeof(*req_data), GFP_NOIO);
890 if (!req_data) {
891 if (coll)
892 rbd_coll_end_req_index(rq, coll, coll_index,
893 -ENOMEM, len);
894 return -ENOMEM;
895 }
896
897 if (coll) {
898 req_data->coll = coll;
899 req_data->coll_index = coll_index;
900 }
901
902 dout("rbd_do_request object_name=%s ofs=%llu len=%llu\n", object_name,
903 (unsigned long long) ofs, (unsigned long long) len);
904
905 osdc = &rbd_dev->rbd_client->client->osdc;
906 req = ceph_osdc_alloc_request(osdc, flags, snapc, ops,
907 false, GFP_NOIO, pages, bio);
908 if (!req) {
909 ret = -ENOMEM;
910 goto done_pages;
911 }
912
913 req->r_callback = rbd_cb;
914
915 req_data->rq = rq;
916 req_data->bio = bio;
917 req_data->pages = pages;
918 req_data->len = len;
919
920 req->r_priv = req_data;
921
922 reqhead = req->r_request->front.iov_base;
923 reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
924
925 strncpy(req->r_oid, object_name, sizeof(req->r_oid));
926 req->r_oid_len = strlen(req->r_oid);
927
928 layout = &req->r_file_layout;
929 memset(layout, 0, sizeof(*layout));
930 layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
931 layout->fl_stripe_count = cpu_to_le32(1);
932 layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
933 layout->fl_pg_pool = cpu_to_le32(rbd_dev->pool_id);
934 ceph_calc_raw_layout(osdc, layout, snapid, ofs, &len, &bno,
935 req, ops);
936
937 ceph_osdc_build_request(req, ofs, &len,
938 ops,
939 snapc,
940 &mtime,
941 req->r_oid, req->r_oid_len);
942
943 if (linger_req) {
944 ceph_osdc_set_request_linger(osdc, req);
945 *linger_req = req;
946 }
947
948 ret = ceph_osdc_start_request(osdc, req, false);
949 if (ret < 0)
950 goto done_err;
951
952 if (!rbd_cb) {
953 ret = ceph_osdc_wait_request(osdc, req);
954 if (ver)
955 *ver = le64_to_cpu(req->r_reassert_version.version);
956 dout("reassert_ver=%llu\n",
957 (unsigned long long)
958 le64_to_cpu(req->r_reassert_version.version));
959 ceph_osdc_put_request(req);
960 }
961 return ret;
962
963 done_err:
964 bio_chain_put(req_data->bio);
965 ceph_osdc_put_request(req);
966 done_pages:
967 rbd_coll_end_req(req_data, ret, len);
968 kfree(req_data);
969 return ret;
970 }
971
972 /*
973 * Ceph osd op callback
974 */
975 static void rbd_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
976 {
977 struct rbd_request *req_data = req->r_priv;
978 struct ceph_osd_reply_head *replyhead;
979 struct ceph_osd_op *op;
980 __s32 rc;
981 u64 bytes;
982 int read_op;
983
984 /* parse reply */
985 replyhead = msg->front.iov_base;
986 WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
987 op = (void *)(replyhead + 1);
988 rc = le32_to_cpu(replyhead->result);
989 bytes = le64_to_cpu(op->extent.length);
990 read_op = (le16_to_cpu(op->op) == CEPH_OSD_OP_READ);
991
992 dout("rbd_req_cb bytes=%llu readop=%d rc=%d\n",
993 (unsigned long long) bytes, read_op, (int) rc);
994
995 if (rc == -ENOENT && read_op) {
996 zero_bio_chain(req_data->bio, 0);
997 rc = 0;
998 } else if (rc == 0 && read_op && bytes < req_data->len) {
999 zero_bio_chain(req_data->bio, bytes);
1000 bytes = req_data->len;
1001 }
1002
1003 rbd_coll_end_req(req_data, rc, bytes);
1004
1005 if (req_data->bio)
1006 bio_chain_put(req_data->bio);
1007
1008 ceph_osdc_put_request(req);
1009 kfree(req_data);
1010 }
1011
1012 static void rbd_simple_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
1013 {
1014 ceph_osdc_put_request(req);
1015 }
1016
1017 /*
1018 * Do a synchronous ceph osd operation
1019 */
1020 static int rbd_req_sync_op(struct rbd_device *rbd_dev,
1021 struct ceph_snap_context *snapc,
1022 u64 snapid,
1023 int opcode,
1024 int flags,
1025 struct ceph_osd_req_op *orig_ops,
1026 const char *object_name,
1027 u64 ofs, u64 len,
1028 char *buf,
1029 struct ceph_osd_request **linger_req,
1030 u64 *ver)
1031 {
1032 int ret;
1033 struct page **pages;
1034 int num_pages;
1035 struct ceph_osd_req_op *ops = orig_ops;
1036 u32 payload_len;
1037
1038 num_pages = calc_pages_for(ofs , len);
1039 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1040 if (IS_ERR(pages))
1041 return PTR_ERR(pages);
1042
1043 if (!orig_ops) {
1044 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? len : 0);
1045 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1046 if (ret < 0)
1047 goto done;
1048
1049 if ((flags & CEPH_OSD_FLAG_WRITE) && buf) {
1050 ret = ceph_copy_to_page_vector(pages, buf, ofs, len);
1051 if (ret < 0)
1052 goto done_ops;
1053 }
1054 }
1055
1056 ret = rbd_do_request(NULL, rbd_dev, snapc, snapid,
1057 object_name, ofs, len, NULL,
1058 pages, num_pages,
1059 flags,
1060 ops,
1061 NULL, 0,
1062 NULL,
1063 linger_req, ver);
1064 if (ret < 0)
1065 goto done_ops;
1066
1067 if ((flags & CEPH_OSD_FLAG_READ) && buf)
1068 ret = ceph_copy_from_page_vector(pages, buf, ofs, ret);
1069
1070 done_ops:
1071 if (!orig_ops)
1072 rbd_destroy_ops(ops);
1073 done:
1074 ceph_release_page_vector(pages, num_pages);
1075 return ret;
1076 }
1077
1078 /*
1079 * Do an asynchronous ceph osd operation
1080 */
1081 static int rbd_do_op(struct request *rq,
1082 struct rbd_device *rbd_dev,
1083 struct ceph_snap_context *snapc,
1084 u64 snapid,
1085 int opcode, int flags,
1086 u64 ofs, u64 len,
1087 struct bio *bio,
1088 struct rbd_req_coll *coll,
1089 int coll_index)
1090 {
1091 char *seg_name;
1092 u64 seg_ofs;
1093 u64 seg_len;
1094 int ret;
1095 struct ceph_osd_req_op *ops;
1096 u32 payload_len;
1097
1098 seg_name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
1099 if (!seg_name)
1100 return -ENOMEM;
1101
1102 seg_len = rbd_get_segment(&rbd_dev->header,
1103 rbd_dev->header.object_prefix,
1104 ofs, len,
1105 seg_name, &seg_ofs);
1106
1107 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? seg_len : 0);
1108
1109 ret = rbd_create_rw_ops(&ops, 1, opcode, payload_len);
1110 if (ret < 0)
1111 goto done;
1112
1113 /* we've taken care of segment sizes earlier when we
1114 cloned the bios. We should never have a segment
1115 truncated at this point */
1116 BUG_ON(seg_len < len);
1117
1118 ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1119 seg_name, seg_ofs, seg_len,
1120 bio,
1121 NULL, 0,
1122 flags,
1123 ops,
1124 coll, coll_index,
1125 rbd_req_cb, 0, NULL);
1126
1127 rbd_destroy_ops(ops);
1128 done:
1129 kfree(seg_name);
1130 return ret;
1131 }
1132
1133 /*
1134 * Request async osd write
1135 */
1136 static int rbd_req_write(struct request *rq,
1137 struct rbd_device *rbd_dev,
1138 struct ceph_snap_context *snapc,
1139 u64 ofs, u64 len,
1140 struct bio *bio,
1141 struct rbd_req_coll *coll,
1142 int coll_index)
1143 {
1144 return rbd_do_op(rq, rbd_dev, snapc, CEPH_NOSNAP,
1145 CEPH_OSD_OP_WRITE,
1146 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1147 ofs, len, bio, coll, coll_index);
1148 }
1149
1150 /*
1151 * Request async osd read
1152 */
1153 static int rbd_req_read(struct request *rq,
1154 struct rbd_device *rbd_dev,
1155 u64 snapid,
1156 u64 ofs, u64 len,
1157 struct bio *bio,
1158 struct rbd_req_coll *coll,
1159 int coll_index)
1160 {
1161 return rbd_do_op(rq, rbd_dev, NULL,
1162 snapid,
1163 CEPH_OSD_OP_READ,
1164 CEPH_OSD_FLAG_READ,
1165 ofs, len, bio, coll, coll_index);
1166 }
1167
1168 /*
1169 * Request sync osd read
1170 */
1171 static int rbd_req_sync_read(struct rbd_device *rbd_dev,
1172 struct ceph_snap_context *snapc,
1173 u64 snapid,
1174 const char *object_name,
1175 u64 ofs, u64 len,
1176 char *buf,
1177 u64 *ver)
1178 {
1179 return rbd_req_sync_op(rbd_dev, NULL,
1180 snapid,
1181 CEPH_OSD_OP_READ,
1182 CEPH_OSD_FLAG_READ,
1183 NULL,
1184 object_name, ofs, len, buf, NULL, ver);
1185 }
1186
1187 /*
1188 * Request sync osd watch
1189 */
1190 static int rbd_req_sync_notify_ack(struct rbd_device *rbd_dev,
1191 u64 ver,
1192 u64 notify_id,
1193 const char *object_name)
1194 {
1195 struct ceph_osd_req_op *ops;
1196 int ret;
1197
1198 ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1199 if (ret < 0)
1200 return ret;
1201
1202 ops[0].watch.ver = cpu_to_le64(ver);
1203 ops[0].watch.cookie = notify_id;
1204 ops[0].watch.flag = 0;
1205
1206 ret = rbd_do_request(NULL, rbd_dev, NULL, CEPH_NOSNAP,
1207 object_name, 0, 0, NULL,
1208 NULL, 0,
1209 CEPH_OSD_FLAG_READ,
1210 ops,
1211 NULL, 0,
1212 rbd_simple_req_cb, 0, NULL);
1213
1214 rbd_destroy_ops(ops);
1215 return ret;
1216 }
1217
1218 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1219 {
1220 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1221 u64 hver;
1222 int rc;
1223
1224 if (!rbd_dev)
1225 return;
1226
1227 dout("rbd_watch_cb %s notify_id=%llu opcode=%u\n",
1228 rbd_dev->header_name, (unsigned long long) notify_id,
1229 (unsigned int) opcode);
1230 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1231 rc = __rbd_refresh_header(rbd_dev);
1232 hver = rbd_dev->header.obj_version;
1233 mutex_unlock(&ctl_mutex);
1234 if (rc)
1235 pr_warning(RBD_DRV_NAME "%d got notification but failed to "
1236 " update snaps: %d\n", rbd_dev->major, rc);
1237
1238 rbd_req_sync_notify_ack(rbd_dev, hver, notify_id, rbd_dev->header_name);
1239 }
1240
1241 /*
1242 * Request sync osd watch
1243 */
1244 static int rbd_req_sync_watch(struct rbd_device *rbd_dev,
1245 const char *object_name,
1246 u64 ver)
1247 {
1248 struct ceph_osd_req_op *ops;
1249 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1250
1251 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1252 if (ret < 0)
1253 return ret;
1254
1255 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1256 (void *)rbd_dev, &rbd_dev->watch_event);
1257 if (ret < 0)
1258 goto fail;
1259
1260 ops[0].watch.ver = cpu_to_le64(ver);
1261 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1262 ops[0].watch.flag = 1;
1263
1264 ret = rbd_req_sync_op(rbd_dev, NULL,
1265 CEPH_NOSNAP,
1266 0,
1267 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1268 ops,
1269 object_name, 0, 0, NULL,
1270 &rbd_dev->watch_request, NULL);
1271
1272 if (ret < 0)
1273 goto fail_event;
1274
1275 rbd_destroy_ops(ops);
1276 return 0;
1277
1278 fail_event:
1279 ceph_osdc_cancel_event(rbd_dev->watch_event);
1280 rbd_dev->watch_event = NULL;
1281 fail:
1282 rbd_destroy_ops(ops);
1283 return ret;
1284 }
1285
1286 /*
1287 * Request sync osd unwatch
1288 */
1289 static int rbd_req_sync_unwatch(struct rbd_device *rbd_dev,
1290 const char *object_name)
1291 {
1292 struct ceph_osd_req_op *ops;
1293
1294 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_WATCH, 0);
1295 if (ret < 0)
1296 return ret;
1297
1298 ops[0].watch.ver = 0;
1299 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1300 ops[0].watch.flag = 0;
1301
1302 ret = rbd_req_sync_op(rbd_dev, NULL,
1303 CEPH_NOSNAP,
1304 0,
1305 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1306 ops,
1307 object_name, 0, 0, NULL, NULL, NULL);
1308
1309 rbd_destroy_ops(ops);
1310 ceph_osdc_cancel_event(rbd_dev->watch_event);
1311 rbd_dev->watch_event = NULL;
1312 return ret;
1313 }
1314
1315 struct rbd_notify_info {
1316 struct rbd_device *rbd_dev;
1317 };
1318
1319 static void rbd_notify_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1320 {
1321 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1322 if (!rbd_dev)
1323 return;
1324
1325 dout("rbd_notify_cb %s notify_id=%llu opcode=%u\n",
1326 rbd_dev->header_name, (unsigned long long) notify_id,
1327 (unsigned int) opcode);
1328 }
1329
1330 /*
1331 * Request sync osd notify
1332 */
1333 static int rbd_req_sync_notify(struct rbd_device *rbd_dev,
1334 const char *object_name)
1335 {
1336 struct ceph_osd_req_op *ops;
1337 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1338 struct ceph_osd_event *event;
1339 struct rbd_notify_info info;
1340 int payload_len = sizeof(u32) + sizeof(u32);
1341 int ret;
1342
1343 ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_NOTIFY, payload_len);
1344 if (ret < 0)
1345 return ret;
1346
1347 info.rbd_dev = rbd_dev;
1348
1349 ret = ceph_osdc_create_event(osdc, rbd_notify_cb, 1,
1350 (void *)&info, &event);
1351 if (ret < 0)
1352 goto fail;
1353
1354 ops[0].watch.ver = 1;
1355 ops[0].watch.flag = 1;
1356 ops[0].watch.cookie = event->cookie;
1357 ops[0].watch.prot_ver = RADOS_NOTIFY_VER;
1358 ops[0].watch.timeout = 12;
1359
1360 ret = rbd_req_sync_op(rbd_dev, NULL,
1361 CEPH_NOSNAP,
1362 0,
1363 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1364 ops,
1365 object_name, 0, 0, NULL, NULL, NULL);
1366 if (ret < 0)
1367 goto fail_event;
1368
1369 ret = ceph_osdc_wait_event(event, CEPH_OSD_TIMEOUT_DEFAULT);
1370 dout("ceph_osdc_wait_event returned %d\n", ret);
1371 rbd_destroy_ops(ops);
1372 return 0;
1373
1374 fail_event:
1375 ceph_osdc_cancel_event(event);
1376 fail:
1377 rbd_destroy_ops(ops);
1378 return ret;
1379 }
1380
1381 /*
1382 * Request sync osd read
1383 */
1384 static int rbd_req_sync_exec(struct rbd_device *rbd_dev,
1385 const char *object_name,
1386 const char *class_name,
1387 const char *method_name,
1388 const char *data,
1389 int len,
1390 u64 *ver)
1391 {
1392 struct ceph_osd_req_op *ops;
1393 int class_name_len = strlen(class_name);
1394 int method_name_len = strlen(method_name);
1395 int ret = rbd_create_rw_ops(&ops, 1, CEPH_OSD_OP_CALL,
1396 class_name_len + method_name_len + len);
1397 if (ret < 0)
1398 return ret;
1399
1400 ops[0].cls.class_name = class_name;
1401 ops[0].cls.class_len = (__u8) class_name_len;
1402 ops[0].cls.method_name = method_name;
1403 ops[0].cls.method_len = (__u8) method_name_len;
1404 ops[0].cls.argc = 0;
1405 ops[0].cls.indata = data;
1406 ops[0].cls.indata_len = len;
1407
1408 ret = rbd_req_sync_op(rbd_dev, NULL,
1409 CEPH_NOSNAP,
1410 0,
1411 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1412 ops,
1413 object_name, 0, 0, NULL, NULL, ver);
1414
1415 rbd_destroy_ops(ops);
1416
1417 dout("cls_exec returned %d\n", ret);
1418 return ret;
1419 }
1420
1421 static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1422 {
1423 struct rbd_req_coll *coll =
1424 kzalloc(sizeof(struct rbd_req_coll) +
1425 sizeof(struct rbd_req_status) * num_reqs,
1426 GFP_ATOMIC);
1427
1428 if (!coll)
1429 return NULL;
1430 coll->total = num_reqs;
1431 kref_init(&coll->kref);
1432 return coll;
1433 }
1434
1435 /*
1436 * block device queue callback
1437 */
1438 static void rbd_rq_fn(struct request_queue *q)
1439 {
1440 struct rbd_device *rbd_dev = q->queuedata;
1441 struct request *rq;
1442 struct bio_pair *bp = NULL;
1443
1444 while ((rq = blk_fetch_request(q))) {
1445 struct bio *bio;
1446 struct bio *rq_bio, *next_bio = NULL;
1447 bool do_write;
1448 unsigned int size;
1449 u64 op_size = 0;
1450 u64 ofs;
1451 int num_segs, cur_seg = 0;
1452 struct rbd_req_coll *coll;
1453 struct ceph_snap_context *snapc;
1454
1455 /* peek at request from block layer */
1456 if (!rq)
1457 break;
1458
1459 dout("fetched request\n");
1460
1461 /* filter out block requests we don't understand */
1462 if ((rq->cmd_type != REQ_TYPE_FS)) {
1463 __blk_end_request_all(rq, 0);
1464 continue;
1465 }
1466
1467 /* deduce our operation (read, write) */
1468 do_write = (rq_data_dir(rq) == WRITE);
1469
1470 size = blk_rq_bytes(rq);
1471 ofs = blk_rq_pos(rq) * SECTOR_SIZE;
1472 rq_bio = rq->bio;
1473 if (do_write && rbd_dev->read_only) {
1474 __blk_end_request_all(rq, -EROFS);
1475 continue;
1476 }
1477
1478 spin_unlock_irq(q->queue_lock);
1479
1480 down_read(&rbd_dev->header_rwsem);
1481
1482 if (rbd_dev->snap_id != CEPH_NOSNAP && !rbd_dev->snap_exists) {
1483 up_read(&rbd_dev->header_rwsem);
1484 dout("request for non-existent snapshot");
1485 spin_lock_irq(q->queue_lock);
1486 __blk_end_request_all(rq, -ENXIO);
1487 continue;
1488 }
1489
1490 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1491
1492 up_read(&rbd_dev->header_rwsem);
1493
1494 dout("%s 0x%x bytes at 0x%llx\n",
1495 do_write ? "write" : "read",
1496 size, (unsigned long long) blk_rq_pos(rq) * SECTOR_SIZE);
1497
1498 num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1499 coll = rbd_alloc_coll(num_segs);
1500 if (!coll) {
1501 spin_lock_irq(q->queue_lock);
1502 __blk_end_request_all(rq, -ENOMEM);
1503 ceph_put_snap_context(snapc);
1504 continue;
1505 }
1506
1507 do {
1508 /* a bio clone to be passed down to OSD req */
1509 dout("rq->bio->bi_vcnt=%hu\n", rq->bio->bi_vcnt);
1510 op_size = rbd_get_segment(&rbd_dev->header,
1511 rbd_dev->header.object_prefix,
1512 ofs, size,
1513 NULL, NULL);
1514 kref_get(&coll->kref);
1515 bio = bio_chain_clone(&rq_bio, &next_bio, &bp,
1516 op_size, GFP_ATOMIC);
1517 if (!bio) {
1518 rbd_coll_end_req_index(rq, coll, cur_seg,
1519 -ENOMEM, op_size);
1520 goto next_seg;
1521 }
1522
1523
1524 /* init OSD command: write or read */
1525 if (do_write)
1526 rbd_req_write(rq, rbd_dev,
1527 snapc,
1528 ofs,
1529 op_size, bio,
1530 coll, cur_seg);
1531 else
1532 rbd_req_read(rq, rbd_dev,
1533 rbd_dev->snap_id,
1534 ofs,
1535 op_size, bio,
1536 coll, cur_seg);
1537
1538 next_seg:
1539 size -= op_size;
1540 ofs += op_size;
1541
1542 cur_seg++;
1543 rq_bio = next_bio;
1544 } while (size > 0);
1545 kref_put(&coll->kref, rbd_coll_release);
1546
1547 if (bp)
1548 bio_pair_release(bp);
1549 spin_lock_irq(q->queue_lock);
1550
1551 ceph_put_snap_context(snapc);
1552 }
1553 }
1554
1555 /*
1556 * a queue callback. Makes sure that we don't create a bio that spans across
1557 * multiple osd objects. One exception would be with a single page bios,
1558 * which we handle later at bio_chain_clone
1559 */
1560 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1561 struct bio_vec *bvec)
1562 {
1563 struct rbd_device *rbd_dev = q->queuedata;
1564 unsigned int chunk_sectors;
1565 sector_t sector;
1566 unsigned int bio_sectors;
1567 int max;
1568
1569 chunk_sectors = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1570 sector = bmd->bi_sector + get_start_sect(bmd->bi_bdev);
1571 bio_sectors = bmd->bi_size >> SECTOR_SHIFT;
1572
1573 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
1574 + bio_sectors)) << SECTOR_SHIFT;
1575 if (max < 0)
1576 max = 0; /* bio_add cannot handle a negative return */
1577 if (max <= bvec->bv_len && bio_sectors == 0)
1578 return bvec->bv_len;
1579 return max;
1580 }
1581
1582 static void rbd_free_disk(struct rbd_device *rbd_dev)
1583 {
1584 struct gendisk *disk = rbd_dev->disk;
1585
1586 if (!disk)
1587 return;
1588
1589 rbd_header_free(&rbd_dev->header);
1590
1591 if (disk->flags & GENHD_FL_UP)
1592 del_gendisk(disk);
1593 if (disk->queue)
1594 blk_cleanup_queue(disk->queue);
1595 put_disk(disk);
1596 }
1597
1598 /*
1599 * reload the ondisk the header
1600 */
1601 static int rbd_read_header(struct rbd_device *rbd_dev,
1602 struct rbd_image_header *header)
1603 {
1604 ssize_t rc;
1605 struct rbd_image_header_ondisk *dh;
1606 u32 snap_count = 0;
1607 u64 ver;
1608 size_t len;
1609
1610 /*
1611 * First reads the fixed-size header to determine the number
1612 * of snapshots, then re-reads it, along with all snapshot
1613 * records as well as their stored names.
1614 */
1615 len = sizeof (*dh);
1616 while (1) {
1617 dh = kmalloc(len, GFP_KERNEL);
1618 if (!dh)
1619 return -ENOMEM;
1620
1621 rc = rbd_req_sync_read(rbd_dev,
1622 NULL, CEPH_NOSNAP,
1623 rbd_dev->header_name,
1624 0, len,
1625 (char *)dh, &ver);
1626 if (rc < 0)
1627 goto out_dh;
1628
1629 rc = rbd_header_from_disk(header, dh, snap_count, GFP_KERNEL);
1630 if (rc < 0) {
1631 if (rc == -ENXIO)
1632 pr_warning("unrecognized header format"
1633 " for image %s\n",
1634 rbd_dev->image_name);
1635 goto out_dh;
1636 }
1637
1638 if (snap_count == header->total_snaps)
1639 break;
1640
1641 snap_count = header->total_snaps;
1642 len = sizeof (*dh) +
1643 snap_count * sizeof(struct rbd_image_snap_ondisk) +
1644 header->snap_names_len;
1645
1646 rbd_header_free(header);
1647 kfree(dh);
1648 }
1649 header->obj_version = ver;
1650
1651 out_dh:
1652 kfree(dh);
1653 return rc;
1654 }
1655
1656 /*
1657 * create a snapshot
1658 */
1659 static int rbd_header_add_snap(struct rbd_device *rbd_dev,
1660 const char *snap_name,
1661 gfp_t gfp_flags)
1662 {
1663 int name_len = strlen(snap_name);
1664 u64 new_snapid;
1665 int ret;
1666 void *data, *p, *e;
1667 u64 ver;
1668 struct ceph_mon_client *monc;
1669
1670 /* we should create a snapshot only if we're pointing at the head */
1671 if (rbd_dev->snap_id != CEPH_NOSNAP)
1672 return -EINVAL;
1673
1674 monc = &rbd_dev->rbd_client->client->monc;
1675 ret = ceph_monc_create_snapid(monc, rbd_dev->pool_id, &new_snapid);
1676 dout("created snapid=%llu\n", (unsigned long long) new_snapid);
1677 if (ret < 0)
1678 return ret;
1679
1680 data = kmalloc(name_len + 16, gfp_flags);
1681 if (!data)
1682 return -ENOMEM;
1683
1684 p = data;
1685 e = data + name_len + 16;
1686
1687 ceph_encode_string_safe(&p, e, snap_name, name_len, bad);
1688 ceph_encode_64_safe(&p, e, new_snapid, bad);
1689
1690 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
1691 "rbd", "snap_add",
1692 data, p - data, &ver);
1693
1694 kfree(data);
1695
1696 return ret < 0 ? ret : 0;
1697 bad:
1698 return -ERANGE;
1699 }
1700
1701 static void __rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1702 {
1703 struct rbd_snap *snap;
1704 struct rbd_snap *next;
1705
1706 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
1707 __rbd_remove_snap_dev(rbd_dev, snap);
1708 }
1709
1710 /*
1711 * only read the first part of the ondisk header, without the snaps info
1712 */
1713 static int __rbd_refresh_header(struct rbd_device *rbd_dev)
1714 {
1715 int ret;
1716 struct rbd_image_header h;
1717
1718 ret = rbd_read_header(rbd_dev, &h);
1719 if (ret < 0)
1720 return ret;
1721
1722 down_write(&rbd_dev->header_rwsem);
1723
1724 /* resized? */
1725 if (rbd_dev->snap_id == CEPH_NOSNAP) {
1726 sector_t size = (sector_t) h.image_size / SECTOR_SIZE;
1727
1728 dout("setting size to %llu sectors", (unsigned long long) size);
1729 set_capacity(rbd_dev->disk, size);
1730 }
1731
1732 /* rbd_dev->header.object_prefix shouldn't change */
1733 kfree(rbd_dev->header.snap_sizes);
1734 kfree(rbd_dev->header.snap_names);
1735 /* osd requests may still refer to snapc */
1736 ceph_put_snap_context(rbd_dev->header.snapc);
1737
1738 rbd_dev->header.obj_version = h.obj_version;
1739 rbd_dev->header.image_size = h.image_size;
1740 rbd_dev->header.total_snaps = h.total_snaps;
1741 rbd_dev->header.snapc = h.snapc;
1742 rbd_dev->header.snap_names = h.snap_names;
1743 rbd_dev->header.snap_names_len = h.snap_names_len;
1744 rbd_dev->header.snap_sizes = h.snap_sizes;
1745 /* Free the extra copy of the object prefix */
1746 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
1747 kfree(h.object_prefix);
1748
1749 ret = __rbd_init_snaps_header(rbd_dev);
1750
1751 up_write(&rbd_dev->header_rwsem);
1752
1753 return ret;
1754 }
1755
1756 static int rbd_init_disk(struct rbd_device *rbd_dev)
1757 {
1758 struct gendisk *disk;
1759 struct request_queue *q;
1760 int rc;
1761 u64 segment_size;
1762 u64 total_size = 0;
1763
1764 /* contact OSD, request size info about the object being mapped */
1765 rc = rbd_read_header(rbd_dev, &rbd_dev->header);
1766 if (rc)
1767 return rc;
1768
1769 /* no need to lock here, as rbd_dev is not registered yet */
1770 rc = __rbd_init_snaps_header(rbd_dev);
1771 if (rc)
1772 return rc;
1773
1774 rc = rbd_header_set_snap(rbd_dev, &total_size);
1775 if (rc)
1776 return rc;
1777
1778 /* create gendisk info */
1779 rc = -ENOMEM;
1780 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
1781 if (!disk)
1782 goto out;
1783
1784 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
1785 rbd_dev->id);
1786 disk->major = rbd_dev->major;
1787 disk->first_minor = 0;
1788 disk->fops = &rbd_bd_ops;
1789 disk->private_data = rbd_dev;
1790
1791 /* init rq */
1792 rc = -ENOMEM;
1793 q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1794 if (!q)
1795 goto out_disk;
1796
1797 /* We use the default size, but let's be explicit about it. */
1798 blk_queue_physical_block_size(q, SECTOR_SIZE);
1799
1800 /* set io sizes to object size */
1801 segment_size = rbd_obj_bytes(&rbd_dev->header);
1802 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
1803 blk_queue_max_segment_size(q, segment_size);
1804 blk_queue_io_min(q, segment_size);
1805 blk_queue_io_opt(q, segment_size);
1806
1807 blk_queue_merge_bvec(q, rbd_merge_bvec);
1808 disk->queue = q;
1809
1810 q->queuedata = rbd_dev;
1811
1812 rbd_dev->disk = disk;
1813 rbd_dev->q = q;
1814
1815 /* finally, announce the disk to the world */
1816 set_capacity(disk, total_size / SECTOR_SIZE);
1817 add_disk(disk);
1818
1819 pr_info("%s: added with size 0x%llx\n",
1820 disk->disk_name, (unsigned long long)total_size);
1821 return 0;
1822
1823 out_disk:
1824 put_disk(disk);
1825 out:
1826 return rc;
1827 }
1828
1829 /*
1830 sysfs
1831 */
1832
1833 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
1834 {
1835 return container_of(dev, struct rbd_device, dev);
1836 }
1837
1838 static ssize_t rbd_size_show(struct device *dev,
1839 struct device_attribute *attr, char *buf)
1840 {
1841 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1842 sector_t size;
1843
1844 down_read(&rbd_dev->header_rwsem);
1845 size = get_capacity(rbd_dev->disk);
1846 up_read(&rbd_dev->header_rwsem);
1847
1848 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
1849 }
1850
1851 static ssize_t rbd_major_show(struct device *dev,
1852 struct device_attribute *attr, char *buf)
1853 {
1854 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1855
1856 return sprintf(buf, "%d\n", rbd_dev->major);
1857 }
1858
1859 static ssize_t rbd_client_id_show(struct device *dev,
1860 struct device_attribute *attr, char *buf)
1861 {
1862 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1863
1864 return sprintf(buf, "client%lld\n",
1865 ceph_client_id(rbd_dev->rbd_client->client));
1866 }
1867
1868 static ssize_t rbd_pool_show(struct device *dev,
1869 struct device_attribute *attr, char *buf)
1870 {
1871 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1872
1873 return sprintf(buf, "%s\n", rbd_dev->pool_name);
1874 }
1875
1876 static ssize_t rbd_pool_id_show(struct device *dev,
1877 struct device_attribute *attr, char *buf)
1878 {
1879 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1880
1881 return sprintf(buf, "%d\n", rbd_dev->pool_id);
1882 }
1883
1884 static ssize_t rbd_name_show(struct device *dev,
1885 struct device_attribute *attr, char *buf)
1886 {
1887 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1888
1889 return sprintf(buf, "%s\n", rbd_dev->image_name);
1890 }
1891
1892 static ssize_t rbd_snap_show(struct device *dev,
1893 struct device_attribute *attr,
1894 char *buf)
1895 {
1896 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1897
1898 return sprintf(buf, "%s\n", rbd_dev->snap_name);
1899 }
1900
1901 static ssize_t rbd_image_refresh(struct device *dev,
1902 struct device_attribute *attr,
1903 const char *buf,
1904 size_t size)
1905 {
1906 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1907 int rc;
1908 int ret = size;
1909
1910 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1911
1912 rc = __rbd_refresh_header(rbd_dev);
1913 if (rc < 0)
1914 ret = rc;
1915
1916 mutex_unlock(&ctl_mutex);
1917 return ret;
1918 }
1919
1920 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
1921 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
1922 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
1923 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
1924 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
1925 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
1926 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
1927 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
1928 static DEVICE_ATTR(create_snap, S_IWUSR, NULL, rbd_snap_add);
1929
1930 static struct attribute *rbd_attrs[] = {
1931 &dev_attr_size.attr,
1932 &dev_attr_major.attr,
1933 &dev_attr_client_id.attr,
1934 &dev_attr_pool.attr,
1935 &dev_attr_pool_id.attr,
1936 &dev_attr_name.attr,
1937 &dev_attr_current_snap.attr,
1938 &dev_attr_refresh.attr,
1939 &dev_attr_create_snap.attr,
1940 NULL
1941 };
1942
1943 static struct attribute_group rbd_attr_group = {
1944 .attrs = rbd_attrs,
1945 };
1946
1947 static const struct attribute_group *rbd_attr_groups[] = {
1948 &rbd_attr_group,
1949 NULL
1950 };
1951
1952 static void rbd_sysfs_dev_release(struct device *dev)
1953 {
1954 }
1955
1956 static struct device_type rbd_device_type = {
1957 .name = "rbd",
1958 .groups = rbd_attr_groups,
1959 .release = rbd_sysfs_dev_release,
1960 };
1961
1962
1963 /*
1964 sysfs - snapshots
1965 */
1966
1967 static ssize_t rbd_snap_size_show(struct device *dev,
1968 struct device_attribute *attr,
1969 char *buf)
1970 {
1971 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1972
1973 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
1974 }
1975
1976 static ssize_t rbd_snap_id_show(struct device *dev,
1977 struct device_attribute *attr,
1978 char *buf)
1979 {
1980 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
1981
1982 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
1983 }
1984
1985 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
1986 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
1987
1988 static struct attribute *rbd_snap_attrs[] = {
1989 &dev_attr_snap_size.attr,
1990 &dev_attr_snap_id.attr,
1991 NULL,
1992 };
1993
1994 static struct attribute_group rbd_snap_attr_group = {
1995 .attrs = rbd_snap_attrs,
1996 };
1997
1998 static void rbd_snap_dev_release(struct device *dev)
1999 {
2000 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2001 kfree(snap->name);
2002 kfree(snap);
2003 }
2004
2005 static const struct attribute_group *rbd_snap_attr_groups[] = {
2006 &rbd_snap_attr_group,
2007 NULL
2008 };
2009
2010 static struct device_type rbd_snap_device_type = {
2011 .groups = rbd_snap_attr_groups,
2012 .release = rbd_snap_dev_release,
2013 };
2014
2015 static void __rbd_remove_snap_dev(struct rbd_device *rbd_dev,
2016 struct rbd_snap *snap)
2017 {
2018 list_del(&snap->node);
2019 device_unregister(&snap->dev);
2020 }
2021
2022 static int rbd_register_snap_dev(struct rbd_device *rbd_dev,
2023 struct rbd_snap *snap,
2024 struct device *parent)
2025 {
2026 struct device *dev = &snap->dev;
2027 int ret;
2028
2029 dev->type = &rbd_snap_device_type;
2030 dev->parent = parent;
2031 dev->release = rbd_snap_dev_release;
2032 dev_set_name(dev, "snap_%s", snap->name);
2033 ret = device_register(dev);
2034
2035 return ret;
2036 }
2037
2038 static int __rbd_add_snap_dev(struct rbd_device *rbd_dev,
2039 int i, const char *name,
2040 struct rbd_snap **snapp)
2041 {
2042 int ret;
2043 struct rbd_snap *snap = kzalloc(sizeof(*snap), GFP_KERNEL);
2044 if (!snap)
2045 return -ENOMEM;
2046 snap->name = kstrdup(name, GFP_KERNEL);
2047 snap->size = rbd_dev->header.snap_sizes[i];
2048 snap->id = rbd_dev->header.snapc->snaps[i];
2049 if (device_is_registered(&rbd_dev->dev)) {
2050 ret = rbd_register_snap_dev(rbd_dev, snap,
2051 &rbd_dev->dev);
2052 if (ret < 0)
2053 goto err;
2054 }
2055 *snapp = snap;
2056 return 0;
2057 err:
2058 kfree(snap->name);
2059 kfree(snap);
2060 return ret;
2061 }
2062
2063 /*
2064 * search for the previous snap in a null delimited string list
2065 */
2066 const char *rbd_prev_snap_name(const char *name, const char *start)
2067 {
2068 if (name < start + 2)
2069 return NULL;
2070
2071 name -= 2;
2072 while (*name) {
2073 if (name == start)
2074 return start;
2075 name--;
2076 }
2077 return name + 1;
2078 }
2079
2080 /*
2081 * compare the old list of snapshots that we have to what's in the header
2082 * and update it accordingly. Note that the header holds the snapshots
2083 * in a reverse order (from newest to oldest) and we need to go from
2084 * older to new so that we don't get a duplicate snap name when
2085 * doing the process (e.g., removed snapshot and recreated a new
2086 * one with the same name.
2087 */
2088 static int __rbd_init_snaps_header(struct rbd_device *rbd_dev)
2089 {
2090 const char *name, *first_name;
2091 int i = rbd_dev->header.total_snaps;
2092 struct rbd_snap *snap, *old_snap = NULL;
2093 int ret;
2094 struct list_head *p, *n;
2095
2096 first_name = rbd_dev->header.snap_names;
2097 name = first_name + rbd_dev->header.snap_names_len;
2098
2099 list_for_each_prev_safe(p, n, &rbd_dev->snaps) {
2100 u64 cur_id;
2101
2102 old_snap = list_entry(p, struct rbd_snap, node);
2103
2104 if (i)
2105 cur_id = rbd_dev->header.snapc->snaps[i - 1];
2106
2107 if (!i || old_snap->id < cur_id) {
2108 /*
2109 * old_snap->id was skipped, thus was
2110 * removed. If this rbd_dev is mapped to
2111 * the removed snapshot, record that it no
2112 * longer exists, to prevent further I/O.
2113 */
2114 if (rbd_dev->snap_id == old_snap->id)
2115 rbd_dev->snap_exists = false;
2116 __rbd_remove_snap_dev(rbd_dev, old_snap);
2117 continue;
2118 }
2119 if (old_snap->id == cur_id) {
2120 /* we have this snapshot already */
2121 i--;
2122 name = rbd_prev_snap_name(name, first_name);
2123 continue;
2124 }
2125 for (; i > 0;
2126 i--, name = rbd_prev_snap_name(name, first_name)) {
2127 if (!name) {
2128 WARN_ON(1);
2129 return -EINVAL;
2130 }
2131 cur_id = rbd_dev->header.snapc->snaps[i];
2132 /* snapshot removal? handle it above */
2133 if (cur_id >= old_snap->id)
2134 break;
2135 /* a new snapshot */
2136 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2137 if (ret < 0)
2138 return ret;
2139
2140 /* note that we add it backward so using n and not p */
2141 list_add(&snap->node, n);
2142 p = &snap->node;
2143 }
2144 }
2145 /* we're done going over the old snap list, just add what's left */
2146 for (; i > 0; i--) {
2147 name = rbd_prev_snap_name(name, first_name);
2148 if (!name) {
2149 WARN_ON(1);
2150 return -EINVAL;
2151 }
2152 ret = __rbd_add_snap_dev(rbd_dev, i - 1, name, &snap);
2153 if (ret < 0)
2154 return ret;
2155 list_add(&snap->node, &rbd_dev->snaps);
2156 }
2157
2158 return 0;
2159 }
2160
2161 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
2162 {
2163 int ret;
2164 struct device *dev;
2165 struct rbd_snap *snap;
2166
2167 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2168 dev = &rbd_dev->dev;
2169
2170 dev->bus = &rbd_bus_type;
2171 dev->type = &rbd_device_type;
2172 dev->parent = &rbd_root_dev;
2173 dev->release = rbd_dev_release;
2174 dev_set_name(dev, "%d", rbd_dev->id);
2175 ret = device_register(dev);
2176 if (ret < 0)
2177 goto out;
2178
2179 list_for_each_entry(snap, &rbd_dev->snaps, node) {
2180 ret = rbd_register_snap_dev(rbd_dev, snap,
2181 &rbd_dev->dev);
2182 if (ret < 0)
2183 break;
2184 }
2185 out:
2186 mutex_unlock(&ctl_mutex);
2187 return ret;
2188 }
2189
2190 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
2191 {
2192 device_unregister(&rbd_dev->dev);
2193 }
2194
2195 static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
2196 {
2197 int ret, rc;
2198
2199 do {
2200 ret = rbd_req_sync_watch(rbd_dev, rbd_dev->header_name,
2201 rbd_dev->header.obj_version);
2202 if (ret == -ERANGE) {
2203 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2204 rc = __rbd_refresh_header(rbd_dev);
2205 mutex_unlock(&ctl_mutex);
2206 if (rc < 0)
2207 return rc;
2208 }
2209 } while (ret == -ERANGE);
2210
2211 return ret;
2212 }
2213
2214 static atomic64_t rbd_id_max = ATOMIC64_INIT(0);
2215
2216 /*
2217 * Get a unique rbd identifier for the given new rbd_dev, and add
2218 * the rbd_dev to the global list. The minimum rbd id is 1.
2219 */
2220 static void rbd_id_get(struct rbd_device *rbd_dev)
2221 {
2222 rbd_dev->id = atomic64_inc_return(&rbd_id_max);
2223
2224 spin_lock(&rbd_dev_list_lock);
2225 list_add_tail(&rbd_dev->node, &rbd_dev_list);
2226 spin_unlock(&rbd_dev_list_lock);
2227 }
2228
2229 /*
2230 * Remove an rbd_dev from the global list, and record that its
2231 * identifier is no longer in use.
2232 */
2233 static void rbd_id_put(struct rbd_device *rbd_dev)
2234 {
2235 struct list_head *tmp;
2236 int rbd_id = rbd_dev->id;
2237 int max_id;
2238
2239 BUG_ON(rbd_id < 1);
2240
2241 spin_lock(&rbd_dev_list_lock);
2242 list_del_init(&rbd_dev->node);
2243
2244 /*
2245 * If the id being "put" is not the current maximum, there
2246 * is nothing special we need to do.
2247 */
2248 if (rbd_id != atomic64_read(&rbd_id_max)) {
2249 spin_unlock(&rbd_dev_list_lock);
2250 return;
2251 }
2252
2253 /*
2254 * We need to update the current maximum id. Search the
2255 * list to find out what it is. We're more likely to find
2256 * the maximum at the end, so search the list backward.
2257 */
2258 max_id = 0;
2259 list_for_each_prev(tmp, &rbd_dev_list) {
2260 struct rbd_device *rbd_dev;
2261
2262 rbd_dev = list_entry(tmp, struct rbd_device, node);
2263 if (rbd_id > max_id)
2264 max_id = rbd_id;
2265 }
2266 spin_unlock(&rbd_dev_list_lock);
2267
2268 /*
2269 * The max id could have been updated by rbd_id_get(), in
2270 * which case it now accurately reflects the new maximum.
2271 * Be careful not to overwrite the maximum value in that
2272 * case.
2273 */
2274 atomic64_cmpxchg(&rbd_id_max, rbd_id, max_id);
2275 }
2276
2277 /*
2278 * Skips over white space at *buf, and updates *buf to point to the
2279 * first found non-space character (if any). Returns the length of
2280 * the token (string of non-white space characters) found. Note
2281 * that *buf must be terminated with '\0'.
2282 */
2283 static inline size_t next_token(const char **buf)
2284 {
2285 /*
2286 * These are the characters that produce nonzero for
2287 * isspace() in the "C" and "POSIX" locales.
2288 */
2289 const char *spaces = " \f\n\r\t\v";
2290
2291 *buf += strspn(*buf, spaces); /* Find start of token */
2292
2293 return strcspn(*buf, spaces); /* Return token length */
2294 }
2295
2296 /*
2297 * Finds the next token in *buf, and if the provided token buffer is
2298 * big enough, copies the found token into it. The result, if
2299 * copied, is guaranteed to be terminated with '\0'. Note that *buf
2300 * must be terminated with '\0' on entry.
2301 *
2302 * Returns the length of the token found (not including the '\0').
2303 * Return value will be 0 if no token is found, and it will be >=
2304 * token_size if the token would not fit.
2305 *
2306 * The *buf pointer will be updated to point beyond the end of the
2307 * found token. Note that this occurs even if the token buffer is
2308 * too small to hold it.
2309 */
2310 static inline size_t copy_token(const char **buf,
2311 char *token,
2312 size_t token_size)
2313 {
2314 size_t len;
2315
2316 len = next_token(buf);
2317 if (len < token_size) {
2318 memcpy(token, *buf, len);
2319 *(token + len) = '\0';
2320 }
2321 *buf += len;
2322
2323 return len;
2324 }
2325
2326 /*
2327 * Finds the next token in *buf, dynamically allocates a buffer big
2328 * enough to hold a copy of it, and copies the token into the new
2329 * buffer. The copy is guaranteed to be terminated with '\0'. Note
2330 * that a duplicate buffer is created even for a zero-length token.
2331 *
2332 * Returns a pointer to the newly-allocated duplicate, or a null
2333 * pointer if memory for the duplicate was not available. If
2334 * the lenp argument is a non-null pointer, the length of the token
2335 * (not including the '\0') is returned in *lenp.
2336 *
2337 * If successful, the *buf pointer will be updated to point beyond
2338 * the end of the found token.
2339 *
2340 * Note: uses GFP_KERNEL for allocation.
2341 */
2342 static inline char *dup_token(const char **buf, size_t *lenp)
2343 {
2344 char *dup;
2345 size_t len;
2346
2347 len = next_token(buf);
2348 dup = kmalloc(len + 1, GFP_KERNEL);
2349 if (!dup)
2350 return NULL;
2351
2352 memcpy(dup, *buf, len);
2353 *(dup + len) = '\0';
2354 *buf += len;
2355
2356 if (lenp)
2357 *lenp = len;
2358
2359 return dup;
2360 }
2361
2362 /*
2363 * This fills in the pool_name, image_name, image_name_len, snap_name,
2364 * rbd_dev, rbd_md_name, and name fields of the given rbd_dev, based
2365 * on the list of monitor addresses and other options provided via
2366 * /sys/bus/rbd/add.
2367 *
2368 * Note: rbd_dev is assumed to have been initially zero-filled.
2369 */
2370 static int rbd_add_parse_args(struct rbd_device *rbd_dev,
2371 const char *buf,
2372 const char **mon_addrs,
2373 size_t *mon_addrs_size,
2374 char *options,
2375 size_t options_size)
2376 {
2377 size_t len;
2378 int ret;
2379
2380 /* The first four tokens are required */
2381
2382 len = next_token(&buf);
2383 if (!len)
2384 return -EINVAL;
2385 *mon_addrs_size = len + 1;
2386 *mon_addrs = buf;
2387
2388 buf += len;
2389
2390 len = copy_token(&buf, options, options_size);
2391 if (!len || len >= options_size)
2392 return -EINVAL;
2393
2394 ret = -ENOMEM;
2395 rbd_dev->pool_name = dup_token(&buf, NULL);
2396 if (!rbd_dev->pool_name)
2397 goto out_err;
2398
2399 rbd_dev->image_name = dup_token(&buf, &rbd_dev->image_name_len);
2400 if (!rbd_dev->image_name)
2401 goto out_err;
2402
2403 /* Create the name of the header object */
2404
2405 rbd_dev->header_name = kmalloc(rbd_dev->image_name_len
2406 + sizeof (RBD_SUFFIX),
2407 GFP_KERNEL);
2408 if (!rbd_dev->header_name)
2409 goto out_err;
2410 sprintf(rbd_dev->header_name, "%s%s", rbd_dev->image_name, RBD_SUFFIX);
2411
2412 /*
2413 * The snapshot name is optional. If none is is supplied,
2414 * we use the default value.
2415 */
2416 rbd_dev->snap_name = dup_token(&buf, &len);
2417 if (!rbd_dev->snap_name)
2418 goto out_err;
2419 if (!len) {
2420 /* Replace the empty name with the default */
2421 kfree(rbd_dev->snap_name);
2422 rbd_dev->snap_name
2423 = kmalloc(sizeof (RBD_SNAP_HEAD_NAME), GFP_KERNEL);
2424 if (!rbd_dev->snap_name)
2425 goto out_err;
2426
2427 memcpy(rbd_dev->snap_name, RBD_SNAP_HEAD_NAME,
2428 sizeof (RBD_SNAP_HEAD_NAME));
2429 }
2430
2431 return 0;
2432
2433 out_err:
2434 kfree(rbd_dev->header_name);
2435 kfree(rbd_dev->image_name);
2436 kfree(rbd_dev->pool_name);
2437 rbd_dev->pool_name = NULL;
2438
2439 return ret;
2440 }
2441
2442 static ssize_t rbd_add(struct bus_type *bus,
2443 const char *buf,
2444 size_t count)
2445 {
2446 char *options;
2447 struct rbd_device *rbd_dev = NULL;
2448 const char *mon_addrs = NULL;
2449 size_t mon_addrs_size = 0;
2450 struct ceph_osd_client *osdc;
2451 int rc = -ENOMEM;
2452
2453 if (!try_module_get(THIS_MODULE))
2454 return -ENODEV;
2455
2456 options = kmalloc(count, GFP_KERNEL);
2457 if (!options)
2458 goto err_nomem;
2459 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
2460 if (!rbd_dev)
2461 goto err_nomem;
2462
2463 /* static rbd_device initialization */
2464 spin_lock_init(&rbd_dev->lock);
2465 INIT_LIST_HEAD(&rbd_dev->node);
2466 INIT_LIST_HEAD(&rbd_dev->snaps);
2467 init_rwsem(&rbd_dev->header_rwsem);
2468
2469 /* generate unique id: find highest unique id, add one */
2470 rbd_id_get(rbd_dev);
2471
2472 /* Fill in the device name, now that we have its id. */
2473 BUILD_BUG_ON(DEV_NAME_LEN
2474 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
2475 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->id);
2476
2477 /* parse add command */
2478 rc = rbd_add_parse_args(rbd_dev, buf, &mon_addrs, &mon_addrs_size,
2479 options, count);
2480 if (rc)
2481 goto err_put_id;
2482
2483 rbd_dev->rbd_client = rbd_get_client(mon_addrs, mon_addrs_size - 1,
2484 options);
2485 if (IS_ERR(rbd_dev->rbd_client)) {
2486 rc = PTR_ERR(rbd_dev->rbd_client);
2487 goto err_put_id;
2488 }
2489
2490 /* pick the pool */
2491 osdc = &rbd_dev->rbd_client->client->osdc;
2492 rc = ceph_pg_poolid_by_name(osdc->osdmap, rbd_dev->pool_name);
2493 if (rc < 0)
2494 goto err_out_client;
2495 rbd_dev->pool_id = rc;
2496
2497 /* register our block device */
2498 rc = register_blkdev(0, rbd_dev->name);
2499 if (rc < 0)
2500 goto err_out_client;
2501 rbd_dev->major = rc;
2502
2503 rc = rbd_bus_add_dev(rbd_dev);
2504 if (rc)
2505 goto err_out_blkdev;
2506
2507 /*
2508 * At this point cleanup in the event of an error is the job
2509 * of the sysfs code (initiated by rbd_bus_del_dev()).
2510 *
2511 * Set up and announce blkdev mapping.
2512 */
2513 rc = rbd_init_disk(rbd_dev);
2514 if (rc)
2515 goto err_out_bus;
2516
2517 rc = rbd_init_watch_dev(rbd_dev);
2518 if (rc)
2519 goto err_out_bus;
2520
2521 return count;
2522
2523 err_out_bus:
2524 /* this will also clean up rest of rbd_dev stuff */
2525
2526 rbd_bus_del_dev(rbd_dev);
2527 kfree(options);
2528 return rc;
2529
2530 err_out_blkdev:
2531 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2532 err_out_client:
2533 rbd_put_client(rbd_dev);
2534 err_put_id:
2535 if (rbd_dev->pool_name) {
2536 kfree(rbd_dev->snap_name);
2537 kfree(rbd_dev->header_name);
2538 kfree(rbd_dev->image_name);
2539 kfree(rbd_dev->pool_name);
2540 }
2541 rbd_id_put(rbd_dev);
2542 err_nomem:
2543 kfree(rbd_dev);
2544 kfree(options);
2545
2546 dout("Error adding device %s\n", buf);
2547 module_put(THIS_MODULE);
2548
2549 return (ssize_t) rc;
2550 }
2551
2552 static struct rbd_device *__rbd_get_dev(unsigned long id)
2553 {
2554 struct list_head *tmp;
2555 struct rbd_device *rbd_dev;
2556
2557 spin_lock(&rbd_dev_list_lock);
2558 list_for_each(tmp, &rbd_dev_list) {
2559 rbd_dev = list_entry(tmp, struct rbd_device, node);
2560 if (rbd_dev->id == id) {
2561 spin_unlock(&rbd_dev_list_lock);
2562 return rbd_dev;
2563 }
2564 }
2565 spin_unlock(&rbd_dev_list_lock);
2566 return NULL;
2567 }
2568
2569 static void rbd_dev_release(struct device *dev)
2570 {
2571 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2572
2573 if (rbd_dev->watch_request) {
2574 struct ceph_client *client = rbd_dev->rbd_client->client;
2575
2576 ceph_osdc_unregister_linger_request(&client->osdc,
2577 rbd_dev->watch_request);
2578 }
2579 if (rbd_dev->watch_event)
2580 rbd_req_sync_unwatch(rbd_dev, rbd_dev->header_name);
2581
2582 rbd_put_client(rbd_dev);
2583
2584 /* clean up and free blkdev */
2585 rbd_free_disk(rbd_dev);
2586 unregister_blkdev(rbd_dev->major, rbd_dev->name);
2587
2588 /* done with the id, and with the rbd_dev */
2589 kfree(rbd_dev->snap_name);
2590 kfree(rbd_dev->header_name);
2591 kfree(rbd_dev->pool_name);
2592 kfree(rbd_dev->image_name);
2593 rbd_id_put(rbd_dev);
2594 kfree(rbd_dev);
2595
2596 /* release module ref */
2597 module_put(THIS_MODULE);
2598 }
2599
2600 static ssize_t rbd_remove(struct bus_type *bus,
2601 const char *buf,
2602 size_t count)
2603 {
2604 struct rbd_device *rbd_dev = NULL;
2605 int target_id, rc;
2606 unsigned long ul;
2607 int ret = count;
2608
2609 rc = strict_strtoul(buf, 10, &ul);
2610 if (rc)
2611 return rc;
2612
2613 /* convert to int; abort if we lost anything in the conversion */
2614 target_id = (int) ul;
2615 if (target_id != ul)
2616 return -EINVAL;
2617
2618 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2619
2620 rbd_dev = __rbd_get_dev(target_id);
2621 if (!rbd_dev) {
2622 ret = -ENOENT;
2623 goto done;
2624 }
2625
2626 __rbd_remove_all_snaps(rbd_dev);
2627 rbd_bus_del_dev(rbd_dev);
2628
2629 done:
2630 mutex_unlock(&ctl_mutex);
2631 return ret;
2632 }
2633
2634 static ssize_t rbd_snap_add(struct device *dev,
2635 struct device_attribute *attr,
2636 const char *buf,
2637 size_t count)
2638 {
2639 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2640 int ret;
2641 char *name = kmalloc(count + 1, GFP_KERNEL);
2642 if (!name)
2643 return -ENOMEM;
2644
2645 snprintf(name, count, "%s", buf);
2646
2647 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2648
2649 ret = rbd_header_add_snap(rbd_dev,
2650 name, GFP_KERNEL);
2651 if (ret < 0)
2652 goto err_unlock;
2653
2654 ret = __rbd_refresh_header(rbd_dev);
2655 if (ret < 0)
2656 goto err_unlock;
2657
2658 /* shouldn't hold ctl_mutex when notifying.. notify might
2659 trigger a watch callback that would need to get that mutex */
2660 mutex_unlock(&ctl_mutex);
2661
2662 /* make a best effort, don't error if failed */
2663 rbd_req_sync_notify(rbd_dev, rbd_dev->header_name);
2664
2665 ret = count;
2666 kfree(name);
2667 return ret;
2668
2669 err_unlock:
2670 mutex_unlock(&ctl_mutex);
2671 kfree(name);
2672 return ret;
2673 }
2674
2675 /*
2676 * create control files in sysfs
2677 * /sys/bus/rbd/...
2678 */
2679 static int rbd_sysfs_init(void)
2680 {
2681 int ret;
2682
2683 ret = device_register(&rbd_root_dev);
2684 if (ret < 0)
2685 return ret;
2686
2687 ret = bus_register(&rbd_bus_type);
2688 if (ret < 0)
2689 device_unregister(&rbd_root_dev);
2690
2691 return ret;
2692 }
2693
2694 static void rbd_sysfs_cleanup(void)
2695 {
2696 bus_unregister(&rbd_bus_type);
2697 device_unregister(&rbd_root_dev);
2698 }
2699
2700 int __init rbd_init(void)
2701 {
2702 int rc;
2703
2704 rc = rbd_sysfs_init();
2705 if (rc)
2706 return rc;
2707 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
2708 return 0;
2709 }
2710
2711 void __exit rbd_exit(void)
2712 {
2713 rbd_sysfs_cleanup();
2714 }
2715
2716 module_init(rbd_init);
2717 module_exit(rbd_exit);
2718
2719 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
2720 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
2721 MODULE_DESCRIPTION("rados block device");
2722
2723 /* following authorship retained from original osdblk.c */
2724 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
2725
2726 MODULE_LICENSE("GPL");
This page took 0.126772 seconds and 4 git commands to generate.