Merge branch 'stable/for-jens-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
57 */
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60
61 /*
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
66 */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 unsigned int counter;
70
71 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 if (counter <= (unsigned int)INT_MAX)
73 return (int)counter;
74
75 atomic_dec(v);
76
77 return -EINVAL;
78 }
79
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 int counter;
84
85 counter = atomic_dec_return(v);
86 if (counter >= 0)
87 return counter;
88
89 atomic_inc(v);
90
91 return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN \
101 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME "-"
106
107 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX 64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX 64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING (1<<0)
118 #define RBD_FEATURE_STRIPINGV2 (1<<1)
119 #define RBD_FEATURES_ALL \
120 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
125
126 /*
127 * An RBD device name will be "rbd#", where the "rbd" comes from
128 * RBD_DRV_NAME above, and # is a unique integer identifier.
129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130 * enough to hold all possible device names.
131 */
132 #define DEV_NAME_LEN 32
133 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136 * block device image metadata (in-memory version)
137 */
138 struct rbd_image_header {
139 /* These six fields never change for a given rbd image */
140 char *object_prefix;
141 __u8 obj_order;
142 __u8 crypt_type;
143 __u8 comp_type;
144 u64 stripe_unit;
145 u64 stripe_count;
146 u64 features; /* Might be changeable someday? */
147
148 /* The remaining fields need to be updated occasionally */
149 u64 image_size;
150 struct ceph_snap_context *snapc;
151 char *snap_names; /* format 1 only */
152 u64 *snap_sizes; /* format 1 only */
153 };
154
155 /*
156 * An rbd image specification.
157 *
158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159 * identify an image. Each rbd_dev structure includes a pointer to
160 * an rbd_spec structure that encapsulates this identity.
161 *
162 * Each of the id's in an rbd_spec has an associated name. For a
163 * user-mapped image, the names are supplied and the id's associated
164 * with them are looked up. For a layered image, a parent image is
165 * defined by the tuple, and the names are looked up.
166 *
167 * An rbd_dev structure contains a parent_spec pointer which is
168 * non-null if the image it represents is a child in a layered
169 * image. This pointer will refer to the rbd_spec structure used
170 * by the parent rbd_dev for its own identity (i.e., the structure
171 * is shared between the parent and child).
172 *
173 * Since these structures are populated once, during the discovery
174 * phase of image construction, they are effectively immutable so
175 * we make no effort to synchronize access to them.
176 *
177 * Note that code herein does not assume the image name is known (it
178 * could be a null pointer).
179 */
180 struct rbd_spec {
181 u64 pool_id;
182 const char *pool_name;
183
184 const char *image_id;
185 const char *image_name;
186
187 u64 snap_id;
188 const char *snap_name;
189
190 struct kref kref;
191 };
192
193 /*
194 * an instance of the client. multiple devices may share an rbd client.
195 */
196 struct rbd_client {
197 struct ceph_client *client;
198 struct kref kref;
199 struct list_head node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215 OBJ_OP_WRITE,
216 OBJ_OP_READ,
217 OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
222 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
223 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
224 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228 const char *object_name;
229 u64 offset; /* object start byte */
230 u64 length; /* bytes from offset */
231 unsigned long flags;
232
233 /*
234 * An object request associated with an image will have its
235 * img_data flag set; a standalone object request will not.
236 *
237 * A standalone object request will have which == BAD_WHICH
238 * and a null obj_request pointer.
239 *
240 * An object request initiated in support of a layered image
241 * object (to check for its existence before a write) will
242 * have which == BAD_WHICH and a non-null obj_request pointer.
243 *
244 * Finally, an object request for rbd image data will have
245 * which != BAD_WHICH, and will have a non-null img_request
246 * pointer. The value of which will be in the range
247 * 0..(img_request->obj_request_count-1).
248 */
249 union {
250 struct rbd_obj_request *obj_request; /* STAT op */
251 struct {
252 struct rbd_img_request *img_request;
253 u64 img_offset;
254 /* links for img_request->obj_requests list */
255 struct list_head links;
256 };
257 };
258 u32 which; /* posn image request list */
259
260 enum obj_request_type type;
261 union {
262 struct bio *bio_list;
263 struct {
264 struct page **pages;
265 u32 page_count;
266 };
267 };
268 struct page **copyup_pages;
269 u32 copyup_page_count;
270
271 struct ceph_osd_request *osd_req;
272
273 u64 xferred; /* bytes transferred */
274 int result;
275
276 rbd_obj_callback_t callback;
277 struct completion completion;
278
279 struct kref kref;
280 };
281
282 enum img_req_flags {
283 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
284 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
285 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
286 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290 struct rbd_device *rbd_dev;
291 u64 offset; /* starting image byte offset */
292 u64 length; /* byte count from offset */
293 unsigned long flags;
294 union {
295 u64 snap_id; /* for reads */
296 struct ceph_snap_context *snapc; /* for writes */
297 };
298 union {
299 struct request *rq; /* block request */
300 struct rbd_obj_request *obj_request; /* obj req initiator */
301 };
302 struct page **copyup_pages;
303 u32 copyup_page_count;
304 spinlock_t completion_lock;/* protects next_completion */
305 u32 next_completion;
306 rbd_img_callback_t callback;
307 u64 xferred;/* aggregate bytes transferred */
308 int result; /* first nonzero obj_request result */
309
310 u32 obj_request_count;
311 struct list_head obj_requests; /* rbd_obj_request structs */
312
313 struct kref kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324 u64 size;
325 u64 features;
326 bool read_only;
327 };
328
329 /*
330 * a single device
331 */
332 struct rbd_device {
333 int dev_id; /* blkdev unique id */
334
335 int major; /* blkdev assigned major */
336 int minor;
337 struct gendisk *disk; /* blkdev's gendisk and rq */
338
339 u32 image_format; /* Either 1 or 2 */
340 struct rbd_client *rbd_client;
341
342 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344 spinlock_t lock; /* queue, flags, open_count */
345
346 struct rbd_image_header header;
347 unsigned long flags; /* possibly lock protected */
348 struct rbd_spec *spec;
349 struct rbd_options *opts;
350
351 char *header_name;
352
353 struct ceph_file_layout layout;
354
355 struct ceph_osd_event *watch_event;
356 struct rbd_obj_request *watch_request;
357
358 struct rbd_spec *parent_spec;
359 u64 parent_overlap;
360 atomic_t parent_ref;
361 struct rbd_device *parent;
362
363 /* Block layer tags. */
364 struct blk_mq_tag_set tag_set;
365
366 /* protects updating the header */
367 struct rw_semaphore header_rwsem;
368
369 struct rbd_mapping mapping;
370
371 struct list_head node;
372
373 /* sysfs related */
374 struct device dev;
375 unsigned long open_count; /* protected by lock */
376 };
377
378 /*
379 * Flag bits for rbd_dev->flags. If atomicity is required,
380 * rbd_dev->lock is used to protect access.
381 *
382 * Currently, only the "removing" flag (which is coupled with the
383 * "open_count" field) requires atomic access.
384 */
385 enum rbd_dev_flags {
386 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
387 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
388 };
389
390 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
391
392 static LIST_HEAD(rbd_dev_list); /* devices */
393 static DEFINE_SPINLOCK(rbd_dev_list_lock);
394
395 static LIST_HEAD(rbd_client_list); /* clients */
396 static DEFINE_SPINLOCK(rbd_client_list_lock);
397
398 /* Slab caches for frequently-allocated structures */
399
400 static struct kmem_cache *rbd_img_request_cache;
401 static struct kmem_cache *rbd_obj_request_cache;
402 static struct kmem_cache *rbd_segment_name_cache;
403
404 static int rbd_major;
405 static DEFINE_IDA(rbd_dev_id_ida);
406
407 static struct workqueue_struct *rbd_wq;
408
409 /*
410 * Default to false for now, as single-major requires >= 0.75 version of
411 * userspace rbd utility.
412 */
413 static bool single_major = false;
414 module_param(single_major, bool, S_IRUGO);
415 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
416
417 static int rbd_img_request_submit(struct rbd_img_request *img_request);
418
419 static void rbd_dev_device_release(struct device *dev);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448 &bus_attr_add.attr,
449 &bus_attr_remove.attr,
450 &bus_attr_add_single_major.attr,
451 &bus_attr_remove_single_major.attr,
452 NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 struct attribute *attr, int index)
457 {
458 if (!single_major &&
459 (attr == &bus_attr_add_single_major.attr ||
460 attr == &bus_attr_remove_single_major.attr))
461 return 0;
462
463 return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467 .attrs = rbd_bus_attrs,
468 .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473 .name = "rbd",
474 .bus_groups = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482 .init_name = "rbd",
483 .release = rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 struct va_format vaf;
490 va_list args;
491
492 va_start(args, fmt);
493 vaf.fmt = fmt;
494 vaf.va = &args;
495
496 if (!rbd_dev)
497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 else if (rbd_dev->disk)
499 printk(KERN_WARNING "%s: %s: %pV\n",
500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 printk(KERN_WARNING "%s: image %s: %pV\n",
503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 printk(KERN_WARNING "%s: id %s: %pV\n",
506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 else /* punt */
508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 RBD_DRV_NAME, rbd_dev, &vaf);
510 va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr) \
515 if (unlikely(!(expr))) { \
516 printk(KERN_ERR "\nAssertion failure in %s() " \
517 "at line %d:\n\n" \
518 "\trbd_assert(%s);\n\n", \
519 __func__, __LINE__, #expr); \
520 BUG(); \
521 }
522 #else /* !RBD_DEBUG */
523 # define rbd_assert(expr) ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 u64 *snap_features);
541 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
542
543 static int rbd_open(struct block_device *bdev, fmode_t mode)
544 {
545 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
546 bool removing = false;
547
548 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
549 return -EROFS;
550
551 spin_lock_irq(&rbd_dev->lock);
552 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
553 removing = true;
554 else
555 rbd_dev->open_count++;
556 spin_unlock_irq(&rbd_dev->lock);
557 if (removing)
558 return -ENOENT;
559
560 (void) get_device(&rbd_dev->dev);
561
562 return 0;
563 }
564
565 static void rbd_release(struct gendisk *disk, fmode_t mode)
566 {
567 struct rbd_device *rbd_dev = disk->private_data;
568 unsigned long open_count_before;
569
570 spin_lock_irq(&rbd_dev->lock);
571 open_count_before = rbd_dev->open_count--;
572 spin_unlock_irq(&rbd_dev->lock);
573 rbd_assert(open_count_before > 0);
574
575 put_device(&rbd_dev->dev);
576 }
577
578 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
579 {
580 int ret = 0;
581 int val;
582 bool ro;
583 bool ro_changed = false;
584
585 /* get_user() may sleep, so call it before taking rbd_dev->lock */
586 if (get_user(val, (int __user *)(arg)))
587 return -EFAULT;
588
589 ro = val ? true : false;
590 /* Snapshot doesn't allow to write*/
591 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
592 return -EROFS;
593
594 spin_lock_irq(&rbd_dev->lock);
595 /* prevent others open this device */
596 if (rbd_dev->open_count > 1) {
597 ret = -EBUSY;
598 goto out;
599 }
600
601 if (rbd_dev->mapping.read_only != ro) {
602 rbd_dev->mapping.read_only = ro;
603 ro_changed = true;
604 }
605
606 out:
607 spin_unlock_irq(&rbd_dev->lock);
608 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
609 if (ret == 0 && ro_changed)
610 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
611
612 return ret;
613 }
614
615 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
616 unsigned int cmd, unsigned long arg)
617 {
618 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
619 int ret = 0;
620
621 switch (cmd) {
622 case BLKROSET:
623 ret = rbd_ioctl_set_ro(rbd_dev, arg);
624 break;
625 default:
626 ret = -ENOTTY;
627 }
628
629 return ret;
630 }
631
632 #ifdef CONFIG_COMPAT
633 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
634 unsigned int cmd, unsigned long arg)
635 {
636 return rbd_ioctl(bdev, mode, cmd, arg);
637 }
638 #endif /* CONFIG_COMPAT */
639
640 static const struct block_device_operations rbd_bd_ops = {
641 .owner = THIS_MODULE,
642 .open = rbd_open,
643 .release = rbd_release,
644 .ioctl = rbd_ioctl,
645 #ifdef CONFIG_COMPAT
646 .compat_ioctl = rbd_compat_ioctl,
647 #endif
648 };
649
650 /*
651 * Initialize an rbd client instance. Success or not, this function
652 * consumes ceph_opts. Caller holds client_mutex.
653 */
654 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
655 {
656 struct rbd_client *rbdc;
657 int ret = -ENOMEM;
658
659 dout("%s:\n", __func__);
660 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
661 if (!rbdc)
662 goto out_opt;
663
664 kref_init(&rbdc->kref);
665 INIT_LIST_HEAD(&rbdc->node);
666
667 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
668 if (IS_ERR(rbdc->client))
669 goto out_rbdc;
670 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
671
672 ret = ceph_open_session(rbdc->client);
673 if (ret < 0)
674 goto out_client;
675
676 spin_lock(&rbd_client_list_lock);
677 list_add_tail(&rbdc->node, &rbd_client_list);
678 spin_unlock(&rbd_client_list_lock);
679
680 dout("%s: rbdc %p\n", __func__, rbdc);
681
682 return rbdc;
683 out_client:
684 ceph_destroy_client(rbdc->client);
685 out_rbdc:
686 kfree(rbdc);
687 out_opt:
688 if (ceph_opts)
689 ceph_destroy_options(ceph_opts);
690 dout("%s: error %d\n", __func__, ret);
691
692 return ERR_PTR(ret);
693 }
694
695 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
696 {
697 kref_get(&rbdc->kref);
698
699 return rbdc;
700 }
701
702 /*
703 * Find a ceph client with specific addr and configuration. If
704 * found, bump its reference count.
705 */
706 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
707 {
708 struct rbd_client *client_node;
709 bool found = false;
710
711 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
712 return NULL;
713
714 spin_lock(&rbd_client_list_lock);
715 list_for_each_entry(client_node, &rbd_client_list, node) {
716 if (!ceph_compare_options(ceph_opts, client_node->client)) {
717 __rbd_get_client(client_node);
718
719 found = true;
720 break;
721 }
722 }
723 spin_unlock(&rbd_client_list_lock);
724
725 return found ? client_node : NULL;
726 }
727
728 /*
729 * (Per device) rbd map options
730 */
731 enum {
732 Opt_queue_depth,
733 Opt_last_int,
734 /* int args above */
735 Opt_last_string,
736 /* string args above */
737 Opt_read_only,
738 Opt_read_write,
739 Opt_err
740 };
741
742 static match_table_t rbd_opts_tokens = {
743 {Opt_queue_depth, "queue_depth=%d"},
744 /* int args above */
745 /* string args above */
746 {Opt_read_only, "read_only"},
747 {Opt_read_only, "ro"}, /* Alternate spelling */
748 {Opt_read_write, "read_write"},
749 {Opt_read_write, "rw"}, /* Alternate spelling */
750 {Opt_err, NULL}
751 };
752
753 struct rbd_options {
754 int queue_depth;
755 bool read_only;
756 };
757
758 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
759 #define RBD_READ_ONLY_DEFAULT false
760
761 static int parse_rbd_opts_token(char *c, void *private)
762 {
763 struct rbd_options *rbd_opts = private;
764 substring_t argstr[MAX_OPT_ARGS];
765 int token, intval, ret;
766
767 token = match_token(c, rbd_opts_tokens, argstr);
768 if (token < Opt_last_int) {
769 ret = match_int(&argstr[0], &intval);
770 if (ret < 0) {
771 pr_err("bad mount option arg (not int) at '%s'\n", c);
772 return ret;
773 }
774 dout("got int token %d val %d\n", token, intval);
775 } else if (token > Opt_last_int && token < Opt_last_string) {
776 dout("got string token %d val %s\n", token, argstr[0].from);
777 } else {
778 dout("got token %d\n", token);
779 }
780
781 switch (token) {
782 case Opt_queue_depth:
783 if (intval < 1) {
784 pr_err("queue_depth out of range\n");
785 return -EINVAL;
786 }
787 rbd_opts->queue_depth = intval;
788 break;
789 case Opt_read_only:
790 rbd_opts->read_only = true;
791 break;
792 case Opt_read_write:
793 rbd_opts->read_only = false;
794 break;
795 default:
796 /* libceph prints "bad option" msg */
797 return -EINVAL;
798 }
799
800 return 0;
801 }
802
803 static char* obj_op_name(enum obj_operation_type op_type)
804 {
805 switch (op_type) {
806 case OBJ_OP_READ:
807 return "read";
808 case OBJ_OP_WRITE:
809 return "write";
810 case OBJ_OP_DISCARD:
811 return "discard";
812 default:
813 return "???";
814 }
815 }
816
817 /*
818 * Get a ceph client with specific addr and configuration, if one does
819 * not exist create it. Either way, ceph_opts is consumed by this
820 * function.
821 */
822 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
823 {
824 struct rbd_client *rbdc;
825
826 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
827 rbdc = rbd_client_find(ceph_opts);
828 if (rbdc) /* using an existing client */
829 ceph_destroy_options(ceph_opts);
830 else
831 rbdc = rbd_client_create(ceph_opts);
832 mutex_unlock(&client_mutex);
833
834 return rbdc;
835 }
836
837 /*
838 * Destroy ceph client
839 *
840 * Caller must hold rbd_client_list_lock.
841 */
842 static void rbd_client_release(struct kref *kref)
843 {
844 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
845
846 dout("%s: rbdc %p\n", __func__, rbdc);
847 spin_lock(&rbd_client_list_lock);
848 list_del(&rbdc->node);
849 spin_unlock(&rbd_client_list_lock);
850
851 ceph_destroy_client(rbdc->client);
852 kfree(rbdc);
853 }
854
855 /*
856 * Drop reference to ceph client node. If it's not referenced anymore, release
857 * it.
858 */
859 static void rbd_put_client(struct rbd_client *rbdc)
860 {
861 if (rbdc)
862 kref_put(&rbdc->kref, rbd_client_release);
863 }
864
865 static bool rbd_image_format_valid(u32 image_format)
866 {
867 return image_format == 1 || image_format == 2;
868 }
869
870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
871 {
872 size_t size;
873 u32 snap_count;
874
875 /* The header has to start with the magic rbd header text */
876 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
877 return false;
878
879 /* The bio layer requires at least sector-sized I/O */
880
881 if (ondisk->options.order < SECTOR_SHIFT)
882 return false;
883
884 /* If we use u64 in a few spots we may be able to loosen this */
885
886 if (ondisk->options.order > 8 * sizeof (int) - 1)
887 return false;
888
889 /*
890 * The size of a snapshot header has to fit in a size_t, and
891 * that limits the number of snapshots.
892 */
893 snap_count = le32_to_cpu(ondisk->snap_count);
894 size = SIZE_MAX - sizeof (struct ceph_snap_context);
895 if (snap_count > size / sizeof (__le64))
896 return false;
897
898 /*
899 * Not only that, but the size of the entire the snapshot
900 * header must also be representable in a size_t.
901 */
902 size -= snap_count * sizeof (__le64);
903 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
904 return false;
905
906 return true;
907 }
908
909 /*
910 * Fill an rbd image header with information from the given format 1
911 * on-disk header.
912 */
913 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
914 struct rbd_image_header_ondisk *ondisk)
915 {
916 struct rbd_image_header *header = &rbd_dev->header;
917 bool first_time = header->object_prefix == NULL;
918 struct ceph_snap_context *snapc;
919 char *object_prefix = NULL;
920 char *snap_names = NULL;
921 u64 *snap_sizes = NULL;
922 u32 snap_count;
923 size_t size;
924 int ret = -ENOMEM;
925 u32 i;
926
927 /* Allocate this now to avoid having to handle failure below */
928
929 if (first_time) {
930 size_t len;
931
932 len = strnlen(ondisk->object_prefix,
933 sizeof (ondisk->object_prefix));
934 object_prefix = kmalloc(len + 1, GFP_KERNEL);
935 if (!object_prefix)
936 return -ENOMEM;
937 memcpy(object_prefix, ondisk->object_prefix, len);
938 object_prefix[len] = '\0';
939 }
940
941 /* Allocate the snapshot context and fill it in */
942
943 snap_count = le32_to_cpu(ondisk->snap_count);
944 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
945 if (!snapc)
946 goto out_err;
947 snapc->seq = le64_to_cpu(ondisk->snap_seq);
948 if (snap_count) {
949 struct rbd_image_snap_ondisk *snaps;
950 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
951
952 /* We'll keep a copy of the snapshot names... */
953
954 if (snap_names_len > (u64)SIZE_MAX)
955 goto out_2big;
956 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
957 if (!snap_names)
958 goto out_err;
959
960 /* ...as well as the array of their sizes. */
961
962 size = snap_count * sizeof (*header->snap_sizes);
963 snap_sizes = kmalloc(size, GFP_KERNEL);
964 if (!snap_sizes)
965 goto out_err;
966
967 /*
968 * Copy the names, and fill in each snapshot's id
969 * and size.
970 *
971 * Note that rbd_dev_v1_header_info() guarantees the
972 * ondisk buffer we're working with has
973 * snap_names_len bytes beyond the end of the
974 * snapshot id array, this memcpy() is safe.
975 */
976 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
977 snaps = ondisk->snaps;
978 for (i = 0; i < snap_count; i++) {
979 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
980 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
981 }
982 }
983
984 /* We won't fail any more, fill in the header */
985
986 if (first_time) {
987 header->object_prefix = object_prefix;
988 header->obj_order = ondisk->options.order;
989 header->crypt_type = ondisk->options.crypt_type;
990 header->comp_type = ondisk->options.comp_type;
991 /* The rest aren't used for format 1 images */
992 header->stripe_unit = 0;
993 header->stripe_count = 0;
994 header->features = 0;
995 } else {
996 ceph_put_snap_context(header->snapc);
997 kfree(header->snap_names);
998 kfree(header->snap_sizes);
999 }
1000
1001 /* The remaining fields always get updated (when we refresh) */
1002
1003 header->image_size = le64_to_cpu(ondisk->image_size);
1004 header->snapc = snapc;
1005 header->snap_names = snap_names;
1006 header->snap_sizes = snap_sizes;
1007
1008 return 0;
1009 out_2big:
1010 ret = -EIO;
1011 out_err:
1012 kfree(snap_sizes);
1013 kfree(snap_names);
1014 ceph_put_snap_context(snapc);
1015 kfree(object_prefix);
1016
1017 return ret;
1018 }
1019
1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1021 {
1022 const char *snap_name;
1023
1024 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1025
1026 /* Skip over names until we find the one we are looking for */
1027
1028 snap_name = rbd_dev->header.snap_names;
1029 while (which--)
1030 snap_name += strlen(snap_name) + 1;
1031
1032 return kstrdup(snap_name, GFP_KERNEL);
1033 }
1034
1035 /*
1036 * Snapshot id comparison function for use with qsort()/bsearch().
1037 * Note that result is for snapshots in *descending* order.
1038 */
1039 static int snapid_compare_reverse(const void *s1, const void *s2)
1040 {
1041 u64 snap_id1 = *(u64 *)s1;
1042 u64 snap_id2 = *(u64 *)s2;
1043
1044 if (snap_id1 < snap_id2)
1045 return 1;
1046 return snap_id1 == snap_id2 ? 0 : -1;
1047 }
1048
1049 /*
1050 * Search a snapshot context to see if the given snapshot id is
1051 * present.
1052 *
1053 * Returns the position of the snapshot id in the array if it's found,
1054 * or BAD_SNAP_INDEX otherwise.
1055 *
1056 * Note: The snapshot array is in kept sorted (by the osd) in
1057 * reverse order, highest snapshot id first.
1058 */
1059 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1060 {
1061 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1062 u64 *found;
1063
1064 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1065 sizeof (snap_id), snapid_compare_reverse);
1066
1067 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1068 }
1069
1070 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1071 u64 snap_id)
1072 {
1073 u32 which;
1074 const char *snap_name;
1075
1076 which = rbd_dev_snap_index(rbd_dev, snap_id);
1077 if (which == BAD_SNAP_INDEX)
1078 return ERR_PTR(-ENOENT);
1079
1080 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1081 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1082 }
1083
1084 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1085 {
1086 if (snap_id == CEPH_NOSNAP)
1087 return RBD_SNAP_HEAD_NAME;
1088
1089 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1090 if (rbd_dev->image_format == 1)
1091 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1092
1093 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1094 }
1095
1096 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1097 u64 *snap_size)
1098 {
1099 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1100 if (snap_id == CEPH_NOSNAP) {
1101 *snap_size = rbd_dev->header.image_size;
1102 } else if (rbd_dev->image_format == 1) {
1103 u32 which;
1104
1105 which = rbd_dev_snap_index(rbd_dev, snap_id);
1106 if (which == BAD_SNAP_INDEX)
1107 return -ENOENT;
1108
1109 *snap_size = rbd_dev->header.snap_sizes[which];
1110 } else {
1111 u64 size = 0;
1112 int ret;
1113
1114 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1115 if (ret)
1116 return ret;
1117
1118 *snap_size = size;
1119 }
1120 return 0;
1121 }
1122
1123 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1124 u64 *snap_features)
1125 {
1126 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1127 if (snap_id == CEPH_NOSNAP) {
1128 *snap_features = rbd_dev->header.features;
1129 } else if (rbd_dev->image_format == 1) {
1130 *snap_features = 0; /* No features for format 1 */
1131 } else {
1132 u64 features = 0;
1133 int ret;
1134
1135 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1136 if (ret)
1137 return ret;
1138
1139 *snap_features = features;
1140 }
1141 return 0;
1142 }
1143
1144 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1145 {
1146 u64 snap_id = rbd_dev->spec->snap_id;
1147 u64 size = 0;
1148 u64 features = 0;
1149 int ret;
1150
1151 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1152 if (ret)
1153 return ret;
1154 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1155 if (ret)
1156 return ret;
1157
1158 rbd_dev->mapping.size = size;
1159 rbd_dev->mapping.features = features;
1160
1161 return 0;
1162 }
1163
1164 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1165 {
1166 rbd_dev->mapping.size = 0;
1167 rbd_dev->mapping.features = 0;
1168 }
1169
1170 static void rbd_segment_name_free(const char *name)
1171 {
1172 /* The explicit cast here is needed to drop the const qualifier */
1173
1174 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1175 }
1176
1177 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1178 {
1179 char *name;
1180 u64 segment;
1181 int ret;
1182 char *name_format;
1183
1184 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1185 if (!name)
1186 return NULL;
1187 segment = offset >> rbd_dev->header.obj_order;
1188 name_format = "%s.%012llx";
1189 if (rbd_dev->image_format == 2)
1190 name_format = "%s.%016llx";
1191 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1192 rbd_dev->header.object_prefix, segment);
1193 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1194 pr_err("error formatting segment name for #%llu (%d)\n",
1195 segment, ret);
1196 rbd_segment_name_free(name);
1197 name = NULL;
1198 }
1199
1200 return name;
1201 }
1202
1203 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1204 {
1205 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206
1207 return offset & (segment_size - 1);
1208 }
1209
1210 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1211 u64 offset, u64 length)
1212 {
1213 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1214
1215 offset &= segment_size - 1;
1216
1217 rbd_assert(length <= U64_MAX - offset);
1218 if (offset + length > segment_size)
1219 length = segment_size - offset;
1220
1221 return length;
1222 }
1223
1224 /*
1225 * returns the size of an object in the image
1226 */
1227 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1228 {
1229 return 1 << header->obj_order;
1230 }
1231
1232 /*
1233 * bio helpers
1234 */
1235
1236 static void bio_chain_put(struct bio *chain)
1237 {
1238 struct bio *tmp;
1239
1240 while (chain) {
1241 tmp = chain;
1242 chain = chain->bi_next;
1243 bio_put(tmp);
1244 }
1245 }
1246
1247 /*
1248 * zeros a bio chain, starting at specific offset
1249 */
1250 static void zero_bio_chain(struct bio *chain, int start_ofs)
1251 {
1252 struct bio_vec bv;
1253 struct bvec_iter iter;
1254 unsigned long flags;
1255 void *buf;
1256 int pos = 0;
1257
1258 while (chain) {
1259 bio_for_each_segment(bv, chain, iter) {
1260 if (pos + bv.bv_len > start_ofs) {
1261 int remainder = max(start_ofs - pos, 0);
1262 buf = bvec_kmap_irq(&bv, &flags);
1263 memset(buf + remainder, 0,
1264 bv.bv_len - remainder);
1265 flush_dcache_page(bv.bv_page);
1266 bvec_kunmap_irq(buf, &flags);
1267 }
1268 pos += bv.bv_len;
1269 }
1270
1271 chain = chain->bi_next;
1272 }
1273 }
1274
1275 /*
1276 * similar to zero_bio_chain(), zeros data defined by a page array,
1277 * starting at the given byte offset from the start of the array and
1278 * continuing up to the given end offset. The pages array is
1279 * assumed to be big enough to hold all bytes up to the end.
1280 */
1281 static void zero_pages(struct page **pages, u64 offset, u64 end)
1282 {
1283 struct page **page = &pages[offset >> PAGE_SHIFT];
1284
1285 rbd_assert(end > offset);
1286 rbd_assert(end - offset <= (u64)SIZE_MAX);
1287 while (offset < end) {
1288 size_t page_offset;
1289 size_t length;
1290 unsigned long flags;
1291 void *kaddr;
1292
1293 page_offset = offset & ~PAGE_MASK;
1294 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1295 local_irq_save(flags);
1296 kaddr = kmap_atomic(*page);
1297 memset(kaddr + page_offset, 0, length);
1298 flush_dcache_page(*page);
1299 kunmap_atomic(kaddr);
1300 local_irq_restore(flags);
1301
1302 offset += length;
1303 page++;
1304 }
1305 }
1306
1307 /*
1308 * Clone a portion of a bio, starting at the given byte offset
1309 * and continuing for the number of bytes indicated.
1310 */
1311 static struct bio *bio_clone_range(struct bio *bio_src,
1312 unsigned int offset,
1313 unsigned int len,
1314 gfp_t gfpmask)
1315 {
1316 struct bio *bio;
1317
1318 bio = bio_clone(bio_src, gfpmask);
1319 if (!bio)
1320 return NULL; /* ENOMEM */
1321
1322 bio_advance(bio, offset);
1323 bio->bi_iter.bi_size = len;
1324
1325 return bio;
1326 }
1327
1328 /*
1329 * Clone a portion of a bio chain, starting at the given byte offset
1330 * into the first bio in the source chain and continuing for the
1331 * number of bytes indicated. The result is another bio chain of
1332 * exactly the given length, or a null pointer on error.
1333 *
1334 * The bio_src and offset parameters are both in-out. On entry they
1335 * refer to the first source bio and the offset into that bio where
1336 * the start of data to be cloned is located.
1337 *
1338 * On return, bio_src is updated to refer to the bio in the source
1339 * chain that contains first un-cloned byte, and *offset will
1340 * contain the offset of that byte within that bio.
1341 */
1342 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1343 unsigned int *offset,
1344 unsigned int len,
1345 gfp_t gfpmask)
1346 {
1347 struct bio *bi = *bio_src;
1348 unsigned int off = *offset;
1349 struct bio *chain = NULL;
1350 struct bio **end;
1351
1352 /* Build up a chain of clone bios up to the limit */
1353
1354 if (!bi || off >= bi->bi_iter.bi_size || !len)
1355 return NULL; /* Nothing to clone */
1356
1357 end = &chain;
1358 while (len) {
1359 unsigned int bi_size;
1360 struct bio *bio;
1361
1362 if (!bi) {
1363 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1364 goto out_err; /* EINVAL; ran out of bio's */
1365 }
1366 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1367 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1368 if (!bio)
1369 goto out_err; /* ENOMEM */
1370
1371 *end = bio;
1372 end = &bio->bi_next;
1373
1374 off += bi_size;
1375 if (off == bi->bi_iter.bi_size) {
1376 bi = bi->bi_next;
1377 off = 0;
1378 }
1379 len -= bi_size;
1380 }
1381 *bio_src = bi;
1382 *offset = off;
1383
1384 return chain;
1385 out_err:
1386 bio_chain_put(chain);
1387
1388 return NULL;
1389 }
1390
1391 /*
1392 * The default/initial value for all object request flags is 0. For
1393 * each flag, once its value is set to 1 it is never reset to 0
1394 * again.
1395 */
1396 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1397 {
1398 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1399 struct rbd_device *rbd_dev;
1400
1401 rbd_dev = obj_request->img_request->rbd_dev;
1402 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1403 obj_request);
1404 }
1405 }
1406
1407 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1408 {
1409 smp_mb();
1410 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1411 }
1412
1413 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1414 {
1415 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1416 struct rbd_device *rbd_dev = NULL;
1417
1418 if (obj_request_img_data_test(obj_request))
1419 rbd_dev = obj_request->img_request->rbd_dev;
1420 rbd_warn(rbd_dev, "obj_request %p already marked done",
1421 obj_request);
1422 }
1423 }
1424
1425 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1426 {
1427 smp_mb();
1428 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1429 }
1430
1431 /*
1432 * This sets the KNOWN flag after (possibly) setting the EXISTS
1433 * flag. The latter is set based on the "exists" value provided.
1434 *
1435 * Note that for our purposes once an object exists it never goes
1436 * away again. It's possible that the response from two existence
1437 * checks are separated by the creation of the target object, and
1438 * the first ("doesn't exist") response arrives *after* the second
1439 * ("does exist"). In that case we ignore the second one.
1440 */
1441 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1442 bool exists)
1443 {
1444 if (exists)
1445 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1446 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1447 smp_mb();
1448 }
1449
1450 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1451 {
1452 smp_mb();
1453 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1454 }
1455
1456 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1457 {
1458 smp_mb();
1459 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1460 }
1461
1462 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1463 {
1464 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1465
1466 return obj_request->img_offset <
1467 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1468 }
1469
1470 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1471 {
1472 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1473 atomic_read(&obj_request->kref.refcount));
1474 kref_get(&obj_request->kref);
1475 }
1476
1477 static void rbd_obj_request_destroy(struct kref *kref);
1478 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1479 {
1480 rbd_assert(obj_request != NULL);
1481 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1482 atomic_read(&obj_request->kref.refcount));
1483 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1484 }
1485
1486 static void rbd_img_request_get(struct rbd_img_request *img_request)
1487 {
1488 dout("%s: img %p (was %d)\n", __func__, img_request,
1489 atomic_read(&img_request->kref.refcount));
1490 kref_get(&img_request->kref);
1491 }
1492
1493 static bool img_request_child_test(struct rbd_img_request *img_request);
1494 static void rbd_parent_request_destroy(struct kref *kref);
1495 static void rbd_img_request_destroy(struct kref *kref);
1496 static void rbd_img_request_put(struct rbd_img_request *img_request)
1497 {
1498 rbd_assert(img_request != NULL);
1499 dout("%s: img %p (was %d)\n", __func__, img_request,
1500 atomic_read(&img_request->kref.refcount));
1501 if (img_request_child_test(img_request))
1502 kref_put(&img_request->kref, rbd_parent_request_destroy);
1503 else
1504 kref_put(&img_request->kref, rbd_img_request_destroy);
1505 }
1506
1507 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1508 struct rbd_obj_request *obj_request)
1509 {
1510 rbd_assert(obj_request->img_request == NULL);
1511
1512 /* Image request now owns object's original reference */
1513 obj_request->img_request = img_request;
1514 obj_request->which = img_request->obj_request_count;
1515 rbd_assert(!obj_request_img_data_test(obj_request));
1516 obj_request_img_data_set(obj_request);
1517 rbd_assert(obj_request->which != BAD_WHICH);
1518 img_request->obj_request_count++;
1519 list_add_tail(&obj_request->links, &img_request->obj_requests);
1520 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1521 obj_request->which);
1522 }
1523
1524 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1525 struct rbd_obj_request *obj_request)
1526 {
1527 rbd_assert(obj_request->which != BAD_WHICH);
1528
1529 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1530 obj_request->which);
1531 list_del(&obj_request->links);
1532 rbd_assert(img_request->obj_request_count > 0);
1533 img_request->obj_request_count--;
1534 rbd_assert(obj_request->which == img_request->obj_request_count);
1535 obj_request->which = BAD_WHICH;
1536 rbd_assert(obj_request_img_data_test(obj_request));
1537 rbd_assert(obj_request->img_request == img_request);
1538 obj_request->img_request = NULL;
1539 obj_request->callback = NULL;
1540 rbd_obj_request_put(obj_request);
1541 }
1542
1543 static bool obj_request_type_valid(enum obj_request_type type)
1544 {
1545 switch (type) {
1546 case OBJ_REQUEST_NODATA:
1547 case OBJ_REQUEST_BIO:
1548 case OBJ_REQUEST_PAGES:
1549 return true;
1550 default:
1551 return false;
1552 }
1553 }
1554
1555 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1556 struct rbd_obj_request *obj_request)
1557 {
1558 dout("%s %p\n", __func__, obj_request);
1559 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1560 }
1561
1562 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1563 {
1564 dout("%s %p\n", __func__, obj_request);
1565 ceph_osdc_cancel_request(obj_request->osd_req);
1566 }
1567
1568 /*
1569 * Wait for an object request to complete. If interrupted, cancel the
1570 * underlying osd request.
1571 *
1572 * @timeout: in jiffies, 0 means "wait forever"
1573 */
1574 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1575 unsigned long timeout)
1576 {
1577 long ret;
1578
1579 dout("%s %p\n", __func__, obj_request);
1580 ret = wait_for_completion_interruptible_timeout(
1581 &obj_request->completion,
1582 ceph_timeout_jiffies(timeout));
1583 if (ret <= 0) {
1584 if (ret == 0)
1585 ret = -ETIMEDOUT;
1586 rbd_obj_request_end(obj_request);
1587 } else {
1588 ret = 0;
1589 }
1590
1591 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1592 return ret;
1593 }
1594
1595 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1596 {
1597 return __rbd_obj_request_wait(obj_request, 0);
1598 }
1599
1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1601 unsigned long timeout)
1602 {
1603 return __rbd_obj_request_wait(obj_request, timeout);
1604 }
1605
1606 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1607 {
1608
1609 dout("%s: img %p\n", __func__, img_request);
1610
1611 /*
1612 * If no error occurred, compute the aggregate transfer
1613 * count for the image request. We could instead use
1614 * atomic64_cmpxchg() to update it as each object request
1615 * completes; not clear which way is better off hand.
1616 */
1617 if (!img_request->result) {
1618 struct rbd_obj_request *obj_request;
1619 u64 xferred = 0;
1620
1621 for_each_obj_request(img_request, obj_request)
1622 xferred += obj_request->xferred;
1623 img_request->xferred = xferred;
1624 }
1625
1626 if (img_request->callback)
1627 img_request->callback(img_request);
1628 else
1629 rbd_img_request_put(img_request);
1630 }
1631
1632 /*
1633 * The default/initial value for all image request flags is 0. Each
1634 * is conditionally set to 1 at image request initialization time
1635 * and currently never change thereafter.
1636 */
1637 static void img_request_write_set(struct rbd_img_request *img_request)
1638 {
1639 set_bit(IMG_REQ_WRITE, &img_request->flags);
1640 smp_mb();
1641 }
1642
1643 static bool img_request_write_test(struct rbd_img_request *img_request)
1644 {
1645 smp_mb();
1646 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1647 }
1648
1649 /*
1650 * Set the discard flag when the img_request is an discard request
1651 */
1652 static void img_request_discard_set(struct rbd_img_request *img_request)
1653 {
1654 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1655 smp_mb();
1656 }
1657
1658 static bool img_request_discard_test(struct rbd_img_request *img_request)
1659 {
1660 smp_mb();
1661 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1662 }
1663
1664 static void img_request_child_set(struct rbd_img_request *img_request)
1665 {
1666 set_bit(IMG_REQ_CHILD, &img_request->flags);
1667 smp_mb();
1668 }
1669
1670 static void img_request_child_clear(struct rbd_img_request *img_request)
1671 {
1672 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1673 smp_mb();
1674 }
1675
1676 static bool img_request_child_test(struct rbd_img_request *img_request)
1677 {
1678 smp_mb();
1679 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1680 }
1681
1682 static void img_request_layered_set(struct rbd_img_request *img_request)
1683 {
1684 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1685 smp_mb();
1686 }
1687
1688 static void img_request_layered_clear(struct rbd_img_request *img_request)
1689 {
1690 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1691 smp_mb();
1692 }
1693
1694 static bool img_request_layered_test(struct rbd_img_request *img_request)
1695 {
1696 smp_mb();
1697 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1698 }
1699
1700 static enum obj_operation_type
1701 rbd_img_request_op_type(struct rbd_img_request *img_request)
1702 {
1703 if (img_request_write_test(img_request))
1704 return OBJ_OP_WRITE;
1705 else if (img_request_discard_test(img_request))
1706 return OBJ_OP_DISCARD;
1707 else
1708 return OBJ_OP_READ;
1709 }
1710
1711 static void
1712 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1713 {
1714 u64 xferred = obj_request->xferred;
1715 u64 length = obj_request->length;
1716
1717 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1718 obj_request, obj_request->img_request, obj_request->result,
1719 xferred, length);
1720 /*
1721 * ENOENT means a hole in the image. We zero-fill the entire
1722 * length of the request. A short read also implies zero-fill
1723 * to the end of the request. An error requires the whole
1724 * length of the request to be reported finished with an error
1725 * to the block layer. In each case we update the xferred
1726 * count to indicate the whole request was satisfied.
1727 */
1728 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1729 if (obj_request->result == -ENOENT) {
1730 if (obj_request->type == OBJ_REQUEST_BIO)
1731 zero_bio_chain(obj_request->bio_list, 0);
1732 else
1733 zero_pages(obj_request->pages, 0, length);
1734 obj_request->result = 0;
1735 } else if (xferred < length && !obj_request->result) {
1736 if (obj_request->type == OBJ_REQUEST_BIO)
1737 zero_bio_chain(obj_request->bio_list, xferred);
1738 else
1739 zero_pages(obj_request->pages, xferred, length);
1740 }
1741 obj_request->xferred = length;
1742 obj_request_done_set(obj_request);
1743 }
1744
1745 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1746 {
1747 dout("%s: obj %p cb %p\n", __func__, obj_request,
1748 obj_request->callback);
1749 if (obj_request->callback)
1750 obj_request->callback(obj_request);
1751 else
1752 complete_all(&obj_request->completion);
1753 }
1754
1755 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1756 {
1757 dout("%s: obj %p\n", __func__, obj_request);
1758 obj_request_done_set(obj_request);
1759 }
1760
1761 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1762 {
1763 struct rbd_img_request *img_request = NULL;
1764 struct rbd_device *rbd_dev = NULL;
1765 bool layered = false;
1766
1767 if (obj_request_img_data_test(obj_request)) {
1768 img_request = obj_request->img_request;
1769 layered = img_request && img_request_layered_test(img_request);
1770 rbd_dev = img_request->rbd_dev;
1771 }
1772
1773 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1774 obj_request, img_request, obj_request->result,
1775 obj_request->xferred, obj_request->length);
1776 if (layered && obj_request->result == -ENOENT &&
1777 obj_request->img_offset < rbd_dev->parent_overlap)
1778 rbd_img_parent_read(obj_request);
1779 else if (img_request)
1780 rbd_img_obj_request_read_callback(obj_request);
1781 else
1782 obj_request_done_set(obj_request);
1783 }
1784
1785 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1786 {
1787 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1788 obj_request->result, obj_request->length);
1789 /*
1790 * There is no such thing as a successful short write. Set
1791 * it to our originally-requested length.
1792 */
1793 obj_request->xferred = obj_request->length;
1794 obj_request_done_set(obj_request);
1795 }
1796
1797 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1798 {
1799 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1800 obj_request->result, obj_request->length);
1801 /*
1802 * There is no such thing as a successful short discard. Set
1803 * it to our originally-requested length.
1804 */
1805 obj_request->xferred = obj_request->length;
1806 /* discarding a non-existent object is not a problem */
1807 if (obj_request->result == -ENOENT)
1808 obj_request->result = 0;
1809 obj_request_done_set(obj_request);
1810 }
1811
1812 /*
1813 * For a simple stat call there's nothing to do. We'll do more if
1814 * this is part of a write sequence for a layered image.
1815 */
1816 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1817 {
1818 dout("%s: obj %p\n", __func__, obj_request);
1819 obj_request_done_set(obj_request);
1820 }
1821
1822 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1823 {
1824 dout("%s: obj %p\n", __func__, obj_request);
1825
1826 if (obj_request_img_data_test(obj_request))
1827 rbd_osd_copyup_callback(obj_request);
1828 else
1829 obj_request_done_set(obj_request);
1830 }
1831
1832 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1833 struct ceph_msg *msg)
1834 {
1835 struct rbd_obj_request *obj_request = osd_req->r_priv;
1836 u16 opcode;
1837
1838 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1839 rbd_assert(osd_req == obj_request->osd_req);
1840 if (obj_request_img_data_test(obj_request)) {
1841 rbd_assert(obj_request->img_request);
1842 rbd_assert(obj_request->which != BAD_WHICH);
1843 } else {
1844 rbd_assert(obj_request->which == BAD_WHICH);
1845 }
1846
1847 if (osd_req->r_result < 0)
1848 obj_request->result = osd_req->r_result;
1849
1850 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1851
1852 /*
1853 * We support a 64-bit length, but ultimately it has to be
1854 * passed to the block layer, which just supports a 32-bit
1855 * length field.
1856 */
1857 obj_request->xferred = osd_req->r_reply_op_len[0];
1858 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1859
1860 opcode = osd_req->r_ops[0].op;
1861 switch (opcode) {
1862 case CEPH_OSD_OP_READ:
1863 rbd_osd_read_callback(obj_request);
1864 break;
1865 case CEPH_OSD_OP_SETALLOCHINT:
1866 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1867 /* fall through */
1868 case CEPH_OSD_OP_WRITE:
1869 rbd_osd_write_callback(obj_request);
1870 break;
1871 case CEPH_OSD_OP_STAT:
1872 rbd_osd_stat_callback(obj_request);
1873 break;
1874 case CEPH_OSD_OP_DELETE:
1875 case CEPH_OSD_OP_TRUNCATE:
1876 case CEPH_OSD_OP_ZERO:
1877 rbd_osd_discard_callback(obj_request);
1878 break;
1879 case CEPH_OSD_OP_CALL:
1880 rbd_osd_call_callback(obj_request);
1881 break;
1882 case CEPH_OSD_OP_NOTIFY_ACK:
1883 case CEPH_OSD_OP_WATCH:
1884 rbd_osd_trivial_callback(obj_request);
1885 break;
1886 default:
1887 rbd_warn(NULL, "%s: unsupported op %hu",
1888 obj_request->object_name, (unsigned short) opcode);
1889 break;
1890 }
1891
1892 if (obj_request_done_test(obj_request))
1893 rbd_obj_request_complete(obj_request);
1894 }
1895
1896 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1897 {
1898 struct rbd_img_request *img_request = obj_request->img_request;
1899 struct ceph_osd_request *osd_req = obj_request->osd_req;
1900 u64 snap_id;
1901
1902 rbd_assert(osd_req != NULL);
1903
1904 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1905 ceph_osdc_build_request(osd_req, obj_request->offset,
1906 NULL, snap_id, NULL);
1907 }
1908
1909 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1910 {
1911 struct rbd_img_request *img_request = obj_request->img_request;
1912 struct ceph_osd_request *osd_req = obj_request->osd_req;
1913 struct ceph_snap_context *snapc;
1914 struct timespec mtime = CURRENT_TIME;
1915
1916 rbd_assert(osd_req != NULL);
1917
1918 snapc = img_request ? img_request->snapc : NULL;
1919 ceph_osdc_build_request(osd_req, obj_request->offset,
1920 snapc, CEPH_NOSNAP, &mtime);
1921 }
1922
1923 /*
1924 * Create an osd request. A read request has one osd op (read).
1925 * A write request has either one (watch) or two (hint+write) osd ops.
1926 * (All rbd data writes are prefixed with an allocation hint op, but
1927 * technically osd watch is a write request, hence this distinction.)
1928 */
1929 static struct ceph_osd_request *rbd_osd_req_create(
1930 struct rbd_device *rbd_dev,
1931 enum obj_operation_type op_type,
1932 unsigned int num_ops,
1933 struct rbd_obj_request *obj_request)
1934 {
1935 struct ceph_snap_context *snapc = NULL;
1936 struct ceph_osd_client *osdc;
1937 struct ceph_osd_request *osd_req;
1938
1939 if (obj_request_img_data_test(obj_request) &&
1940 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1941 struct rbd_img_request *img_request = obj_request->img_request;
1942 if (op_type == OBJ_OP_WRITE) {
1943 rbd_assert(img_request_write_test(img_request));
1944 } else {
1945 rbd_assert(img_request_discard_test(img_request));
1946 }
1947 snapc = img_request->snapc;
1948 }
1949
1950 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1951
1952 /* Allocate and initialize the request, for the num_ops ops */
1953
1954 osdc = &rbd_dev->rbd_client->client->osdc;
1955 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1956 GFP_ATOMIC);
1957 if (!osd_req)
1958 return NULL; /* ENOMEM */
1959
1960 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1961 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1962 else
1963 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1964
1965 osd_req->r_callback = rbd_osd_req_callback;
1966 osd_req->r_priv = obj_request;
1967
1968 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1969 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1970
1971 return osd_req;
1972 }
1973
1974 /*
1975 * Create a copyup osd request based on the information in the object
1976 * request supplied. A copyup request has two or three osd ops, a
1977 * copyup method call, potentially a hint op, and a write or truncate
1978 * or zero op.
1979 */
1980 static struct ceph_osd_request *
1981 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1982 {
1983 struct rbd_img_request *img_request;
1984 struct ceph_snap_context *snapc;
1985 struct rbd_device *rbd_dev;
1986 struct ceph_osd_client *osdc;
1987 struct ceph_osd_request *osd_req;
1988 int num_osd_ops = 3;
1989
1990 rbd_assert(obj_request_img_data_test(obj_request));
1991 img_request = obj_request->img_request;
1992 rbd_assert(img_request);
1993 rbd_assert(img_request_write_test(img_request) ||
1994 img_request_discard_test(img_request));
1995
1996 if (img_request_discard_test(img_request))
1997 num_osd_ops = 2;
1998
1999 /* Allocate and initialize the request, for all the ops */
2000
2001 snapc = img_request->snapc;
2002 rbd_dev = img_request->rbd_dev;
2003 osdc = &rbd_dev->rbd_client->client->osdc;
2004 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2005 false, GFP_ATOMIC);
2006 if (!osd_req)
2007 return NULL; /* ENOMEM */
2008
2009 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2010 osd_req->r_callback = rbd_osd_req_callback;
2011 osd_req->r_priv = obj_request;
2012
2013 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2014 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2015
2016 return osd_req;
2017 }
2018
2019
2020 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2021 {
2022 ceph_osdc_put_request(osd_req);
2023 }
2024
2025 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2026
2027 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2028 u64 offset, u64 length,
2029 enum obj_request_type type)
2030 {
2031 struct rbd_obj_request *obj_request;
2032 size_t size;
2033 char *name;
2034
2035 rbd_assert(obj_request_type_valid(type));
2036
2037 size = strlen(object_name) + 1;
2038 name = kmalloc(size, GFP_NOIO);
2039 if (!name)
2040 return NULL;
2041
2042 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2043 if (!obj_request) {
2044 kfree(name);
2045 return NULL;
2046 }
2047
2048 obj_request->object_name = memcpy(name, object_name, size);
2049 obj_request->offset = offset;
2050 obj_request->length = length;
2051 obj_request->flags = 0;
2052 obj_request->which = BAD_WHICH;
2053 obj_request->type = type;
2054 INIT_LIST_HEAD(&obj_request->links);
2055 init_completion(&obj_request->completion);
2056 kref_init(&obj_request->kref);
2057
2058 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2059 offset, length, (int)type, obj_request);
2060
2061 return obj_request;
2062 }
2063
2064 static void rbd_obj_request_destroy(struct kref *kref)
2065 {
2066 struct rbd_obj_request *obj_request;
2067
2068 obj_request = container_of(kref, struct rbd_obj_request, kref);
2069
2070 dout("%s: obj %p\n", __func__, obj_request);
2071
2072 rbd_assert(obj_request->img_request == NULL);
2073 rbd_assert(obj_request->which == BAD_WHICH);
2074
2075 if (obj_request->osd_req)
2076 rbd_osd_req_destroy(obj_request->osd_req);
2077
2078 rbd_assert(obj_request_type_valid(obj_request->type));
2079 switch (obj_request->type) {
2080 case OBJ_REQUEST_NODATA:
2081 break; /* Nothing to do */
2082 case OBJ_REQUEST_BIO:
2083 if (obj_request->bio_list)
2084 bio_chain_put(obj_request->bio_list);
2085 break;
2086 case OBJ_REQUEST_PAGES:
2087 if (obj_request->pages)
2088 ceph_release_page_vector(obj_request->pages,
2089 obj_request->page_count);
2090 break;
2091 }
2092
2093 kfree(obj_request->object_name);
2094 obj_request->object_name = NULL;
2095 kmem_cache_free(rbd_obj_request_cache, obj_request);
2096 }
2097
2098 /* It's OK to call this for a device with no parent */
2099
2100 static void rbd_spec_put(struct rbd_spec *spec);
2101 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2102 {
2103 rbd_dev_remove_parent(rbd_dev);
2104 rbd_spec_put(rbd_dev->parent_spec);
2105 rbd_dev->parent_spec = NULL;
2106 rbd_dev->parent_overlap = 0;
2107 }
2108
2109 /*
2110 * Parent image reference counting is used to determine when an
2111 * image's parent fields can be safely torn down--after there are no
2112 * more in-flight requests to the parent image. When the last
2113 * reference is dropped, cleaning them up is safe.
2114 */
2115 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2116 {
2117 int counter;
2118
2119 if (!rbd_dev->parent_spec)
2120 return;
2121
2122 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2123 if (counter > 0)
2124 return;
2125
2126 /* Last reference; clean up parent data structures */
2127
2128 if (!counter)
2129 rbd_dev_unparent(rbd_dev);
2130 else
2131 rbd_warn(rbd_dev, "parent reference underflow");
2132 }
2133
2134 /*
2135 * If an image has a non-zero parent overlap, get a reference to its
2136 * parent.
2137 *
2138 * Returns true if the rbd device has a parent with a non-zero
2139 * overlap and a reference for it was successfully taken, or
2140 * false otherwise.
2141 */
2142 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2143 {
2144 int counter = 0;
2145
2146 if (!rbd_dev->parent_spec)
2147 return false;
2148
2149 down_read(&rbd_dev->header_rwsem);
2150 if (rbd_dev->parent_overlap)
2151 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2152 up_read(&rbd_dev->header_rwsem);
2153
2154 if (counter < 0)
2155 rbd_warn(rbd_dev, "parent reference overflow");
2156
2157 return counter > 0;
2158 }
2159
2160 /*
2161 * Caller is responsible for filling in the list of object requests
2162 * that comprises the image request, and the Linux request pointer
2163 * (if there is one).
2164 */
2165 static struct rbd_img_request *rbd_img_request_create(
2166 struct rbd_device *rbd_dev,
2167 u64 offset, u64 length,
2168 enum obj_operation_type op_type,
2169 struct ceph_snap_context *snapc)
2170 {
2171 struct rbd_img_request *img_request;
2172
2173 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2174 if (!img_request)
2175 return NULL;
2176
2177 img_request->rq = NULL;
2178 img_request->rbd_dev = rbd_dev;
2179 img_request->offset = offset;
2180 img_request->length = length;
2181 img_request->flags = 0;
2182 if (op_type == OBJ_OP_DISCARD) {
2183 img_request_discard_set(img_request);
2184 img_request->snapc = snapc;
2185 } else if (op_type == OBJ_OP_WRITE) {
2186 img_request_write_set(img_request);
2187 img_request->snapc = snapc;
2188 } else {
2189 img_request->snap_id = rbd_dev->spec->snap_id;
2190 }
2191 if (rbd_dev_parent_get(rbd_dev))
2192 img_request_layered_set(img_request);
2193 spin_lock_init(&img_request->completion_lock);
2194 img_request->next_completion = 0;
2195 img_request->callback = NULL;
2196 img_request->result = 0;
2197 img_request->obj_request_count = 0;
2198 INIT_LIST_HEAD(&img_request->obj_requests);
2199 kref_init(&img_request->kref);
2200
2201 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2202 obj_op_name(op_type), offset, length, img_request);
2203
2204 return img_request;
2205 }
2206
2207 static void rbd_img_request_destroy(struct kref *kref)
2208 {
2209 struct rbd_img_request *img_request;
2210 struct rbd_obj_request *obj_request;
2211 struct rbd_obj_request *next_obj_request;
2212
2213 img_request = container_of(kref, struct rbd_img_request, kref);
2214
2215 dout("%s: img %p\n", __func__, img_request);
2216
2217 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2218 rbd_img_obj_request_del(img_request, obj_request);
2219 rbd_assert(img_request->obj_request_count == 0);
2220
2221 if (img_request_layered_test(img_request)) {
2222 img_request_layered_clear(img_request);
2223 rbd_dev_parent_put(img_request->rbd_dev);
2224 }
2225
2226 if (img_request_write_test(img_request) ||
2227 img_request_discard_test(img_request))
2228 ceph_put_snap_context(img_request->snapc);
2229
2230 kmem_cache_free(rbd_img_request_cache, img_request);
2231 }
2232
2233 static struct rbd_img_request *rbd_parent_request_create(
2234 struct rbd_obj_request *obj_request,
2235 u64 img_offset, u64 length)
2236 {
2237 struct rbd_img_request *parent_request;
2238 struct rbd_device *rbd_dev;
2239
2240 rbd_assert(obj_request->img_request);
2241 rbd_dev = obj_request->img_request->rbd_dev;
2242
2243 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2244 length, OBJ_OP_READ, NULL);
2245 if (!parent_request)
2246 return NULL;
2247
2248 img_request_child_set(parent_request);
2249 rbd_obj_request_get(obj_request);
2250 parent_request->obj_request = obj_request;
2251
2252 return parent_request;
2253 }
2254
2255 static void rbd_parent_request_destroy(struct kref *kref)
2256 {
2257 struct rbd_img_request *parent_request;
2258 struct rbd_obj_request *orig_request;
2259
2260 parent_request = container_of(kref, struct rbd_img_request, kref);
2261 orig_request = parent_request->obj_request;
2262
2263 parent_request->obj_request = NULL;
2264 rbd_obj_request_put(orig_request);
2265 img_request_child_clear(parent_request);
2266
2267 rbd_img_request_destroy(kref);
2268 }
2269
2270 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2271 {
2272 struct rbd_img_request *img_request;
2273 unsigned int xferred;
2274 int result;
2275 bool more;
2276
2277 rbd_assert(obj_request_img_data_test(obj_request));
2278 img_request = obj_request->img_request;
2279
2280 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2281 xferred = (unsigned int)obj_request->xferred;
2282 result = obj_request->result;
2283 if (result) {
2284 struct rbd_device *rbd_dev = img_request->rbd_dev;
2285 enum obj_operation_type op_type;
2286
2287 if (img_request_discard_test(img_request))
2288 op_type = OBJ_OP_DISCARD;
2289 else if (img_request_write_test(img_request))
2290 op_type = OBJ_OP_WRITE;
2291 else
2292 op_type = OBJ_OP_READ;
2293
2294 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2295 obj_op_name(op_type), obj_request->length,
2296 obj_request->img_offset, obj_request->offset);
2297 rbd_warn(rbd_dev, " result %d xferred %x",
2298 result, xferred);
2299 if (!img_request->result)
2300 img_request->result = result;
2301 /*
2302 * Need to end I/O on the entire obj_request worth of
2303 * bytes in case of error.
2304 */
2305 xferred = obj_request->length;
2306 }
2307
2308 /* Image object requests don't own their page array */
2309
2310 if (obj_request->type == OBJ_REQUEST_PAGES) {
2311 obj_request->pages = NULL;
2312 obj_request->page_count = 0;
2313 }
2314
2315 if (img_request_child_test(img_request)) {
2316 rbd_assert(img_request->obj_request != NULL);
2317 more = obj_request->which < img_request->obj_request_count - 1;
2318 } else {
2319 rbd_assert(img_request->rq != NULL);
2320
2321 more = blk_update_request(img_request->rq, result, xferred);
2322 if (!more)
2323 __blk_mq_end_request(img_request->rq, result);
2324 }
2325
2326 return more;
2327 }
2328
2329 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2330 {
2331 struct rbd_img_request *img_request;
2332 u32 which = obj_request->which;
2333 bool more = true;
2334
2335 rbd_assert(obj_request_img_data_test(obj_request));
2336 img_request = obj_request->img_request;
2337
2338 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2339 rbd_assert(img_request != NULL);
2340 rbd_assert(img_request->obj_request_count > 0);
2341 rbd_assert(which != BAD_WHICH);
2342 rbd_assert(which < img_request->obj_request_count);
2343
2344 spin_lock_irq(&img_request->completion_lock);
2345 if (which != img_request->next_completion)
2346 goto out;
2347
2348 for_each_obj_request_from(img_request, obj_request) {
2349 rbd_assert(more);
2350 rbd_assert(which < img_request->obj_request_count);
2351
2352 if (!obj_request_done_test(obj_request))
2353 break;
2354 more = rbd_img_obj_end_request(obj_request);
2355 which++;
2356 }
2357
2358 rbd_assert(more ^ (which == img_request->obj_request_count));
2359 img_request->next_completion = which;
2360 out:
2361 spin_unlock_irq(&img_request->completion_lock);
2362 rbd_img_request_put(img_request);
2363
2364 if (!more)
2365 rbd_img_request_complete(img_request);
2366 }
2367
2368 /*
2369 * Add individual osd ops to the given ceph_osd_request and prepare
2370 * them for submission. num_ops is the current number of
2371 * osd operations already to the object request.
2372 */
2373 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2374 struct ceph_osd_request *osd_request,
2375 enum obj_operation_type op_type,
2376 unsigned int num_ops)
2377 {
2378 struct rbd_img_request *img_request = obj_request->img_request;
2379 struct rbd_device *rbd_dev = img_request->rbd_dev;
2380 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2381 u64 offset = obj_request->offset;
2382 u64 length = obj_request->length;
2383 u64 img_end;
2384 u16 opcode;
2385
2386 if (op_type == OBJ_OP_DISCARD) {
2387 if (!offset && length == object_size &&
2388 (!img_request_layered_test(img_request) ||
2389 !obj_request_overlaps_parent(obj_request))) {
2390 opcode = CEPH_OSD_OP_DELETE;
2391 } else if ((offset + length == object_size)) {
2392 opcode = CEPH_OSD_OP_TRUNCATE;
2393 } else {
2394 down_read(&rbd_dev->header_rwsem);
2395 img_end = rbd_dev->header.image_size;
2396 up_read(&rbd_dev->header_rwsem);
2397
2398 if (obj_request->img_offset + length == img_end)
2399 opcode = CEPH_OSD_OP_TRUNCATE;
2400 else
2401 opcode = CEPH_OSD_OP_ZERO;
2402 }
2403 } else if (op_type == OBJ_OP_WRITE) {
2404 opcode = CEPH_OSD_OP_WRITE;
2405 osd_req_op_alloc_hint_init(osd_request, num_ops,
2406 object_size, object_size);
2407 num_ops++;
2408 } else {
2409 opcode = CEPH_OSD_OP_READ;
2410 }
2411
2412 if (opcode == CEPH_OSD_OP_DELETE)
2413 osd_req_op_init(osd_request, num_ops, opcode, 0);
2414 else
2415 osd_req_op_extent_init(osd_request, num_ops, opcode,
2416 offset, length, 0, 0);
2417
2418 if (obj_request->type == OBJ_REQUEST_BIO)
2419 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2420 obj_request->bio_list, length);
2421 else if (obj_request->type == OBJ_REQUEST_PAGES)
2422 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2423 obj_request->pages, length,
2424 offset & ~PAGE_MASK, false, false);
2425
2426 /* Discards are also writes */
2427 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2428 rbd_osd_req_format_write(obj_request);
2429 else
2430 rbd_osd_req_format_read(obj_request);
2431 }
2432
2433 /*
2434 * Split up an image request into one or more object requests, each
2435 * to a different object. The "type" parameter indicates whether
2436 * "data_desc" is the pointer to the head of a list of bio
2437 * structures, or the base of a page array. In either case this
2438 * function assumes data_desc describes memory sufficient to hold
2439 * all data described by the image request.
2440 */
2441 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2442 enum obj_request_type type,
2443 void *data_desc)
2444 {
2445 struct rbd_device *rbd_dev = img_request->rbd_dev;
2446 struct rbd_obj_request *obj_request = NULL;
2447 struct rbd_obj_request *next_obj_request;
2448 struct bio *bio_list = NULL;
2449 unsigned int bio_offset = 0;
2450 struct page **pages = NULL;
2451 enum obj_operation_type op_type;
2452 u64 img_offset;
2453 u64 resid;
2454
2455 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2456 (int)type, data_desc);
2457
2458 img_offset = img_request->offset;
2459 resid = img_request->length;
2460 rbd_assert(resid > 0);
2461 op_type = rbd_img_request_op_type(img_request);
2462
2463 if (type == OBJ_REQUEST_BIO) {
2464 bio_list = data_desc;
2465 rbd_assert(img_offset ==
2466 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2467 } else if (type == OBJ_REQUEST_PAGES) {
2468 pages = data_desc;
2469 }
2470
2471 while (resid) {
2472 struct ceph_osd_request *osd_req;
2473 const char *object_name;
2474 u64 offset;
2475 u64 length;
2476
2477 object_name = rbd_segment_name(rbd_dev, img_offset);
2478 if (!object_name)
2479 goto out_unwind;
2480 offset = rbd_segment_offset(rbd_dev, img_offset);
2481 length = rbd_segment_length(rbd_dev, img_offset, resid);
2482 obj_request = rbd_obj_request_create(object_name,
2483 offset, length, type);
2484 /* object request has its own copy of the object name */
2485 rbd_segment_name_free(object_name);
2486 if (!obj_request)
2487 goto out_unwind;
2488
2489 /*
2490 * set obj_request->img_request before creating the
2491 * osd_request so that it gets the right snapc
2492 */
2493 rbd_img_obj_request_add(img_request, obj_request);
2494
2495 if (type == OBJ_REQUEST_BIO) {
2496 unsigned int clone_size;
2497
2498 rbd_assert(length <= (u64)UINT_MAX);
2499 clone_size = (unsigned int)length;
2500 obj_request->bio_list =
2501 bio_chain_clone_range(&bio_list,
2502 &bio_offset,
2503 clone_size,
2504 GFP_ATOMIC);
2505 if (!obj_request->bio_list)
2506 goto out_unwind;
2507 } else if (type == OBJ_REQUEST_PAGES) {
2508 unsigned int page_count;
2509
2510 obj_request->pages = pages;
2511 page_count = (u32)calc_pages_for(offset, length);
2512 obj_request->page_count = page_count;
2513 if ((offset + length) & ~PAGE_MASK)
2514 page_count--; /* more on last page */
2515 pages += page_count;
2516 }
2517
2518 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2519 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2520 obj_request);
2521 if (!osd_req)
2522 goto out_unwind;
2523
2524 obj_request->osd_req = osd_req;
2525 obj_request->callback = rbd_img_obj_callback;
2526 obj_request->img_offset = img_offset;
2527
2528 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2529
2530 rbd_img_request_get(img_request);
2531
2532 img_offset += length;
2533 resid -= length;
2534 }
2535
2536 return 0;
2537
2538 out_unwind:
2539 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2540 rbd_img_obj_request_del(img_request, obj_request);
2541
2542 return -ENOMEM;
2543 }
2544
2545 static void
2546 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2547 {
2548 struct rbd_img_request *img_request;
2549 struct rbd_device *rbd_dev;
2550 struct page **pages;
2551 u32 page_count;
2552
2553 dout("%s: obj %p\n", __func__, obj_request);
2554
2555 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2556 obj_request->type == OBJ_REQUEST_NODATA);
2557 rbd_assert(obj_request_img_data_test(obj_request));
2558 img_request = obj_request->img_request;
2559 rbd_assert(img_request);
2560
2561 rbd_dev = img_request->rbd_dev;
2562 rbd_assert(rbd_dev);
2563
2564 pages = obj_request->copyup_pages;
2565 rbd_assert(pages != NULL);
2566 obj_request->copyup_pages = NULL;
2567 page_count = obj_request->copyup_page_count;
2568 rbd_assert(page_count);
2569 obj_request->copyup_page_count = 0;
2570 ceph_release_page_vector(pages, page_count);
2571
2572 /*
2573 * We want the transfer count to reflect the size of the
2574 * original write request. There is no such thing as a
2575 * successful short write, so if the request was successful
2576 * we can just set it to the originally-requested length.
2577 */
2578 if (!obj_request->result)
2579 obj_request->xferred = obj_request->length;
2580
2581 obj_request_done_set(obj_request);
2582 }
2583
2584 static void
2585 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2586 {
2587 struct rbd_obj_request *orig_request;
2588 struct ceph_osd_request *osd_req;
2589 struct ceph_osd_client *osdc;
2590 struct rbd_device *rbd_dev;
2591 struct page **pages;
2592 enum obj_operation_type op_type;
2593 u32 page_count;
2594 int img_result;
2595 u64 parent_length;
2596
2597 rbd_assert(img_request_child_test(img_request));
2598
2599 /* First get what we need from the image request */
2600
2601 pages = img_request->copyup_pages;
2602 rbd_assert(pages != NULL);
2603 img_request->copyup_pages = NULL;
2604 page_count = img_request->copyup_page_count;
2605 rbd_assert(page_count);
2606 img_request->copyup_page_count = 0;
2607
2608 orig_request = img_request->obj_request;
2609 rbd_assert(orig_request != NULL);
2610 rbd_assert(obj_request_type_valid(orig_request->type));
2611 img_result = img_request->result;
2612 parent_length = img_request->length;
2613 rbd_assert(parent_length == img_request->xferred);
2614 rbd_img_request_put(img_request);
2615
2616 rbd_assert(orig_request->img_request);
2617 rbd_dev = orig_request->img_request->rbd_dev;
2618 rbd_assert(rbd_dev);
2619
2620 /*
2621 * If the overlap has become 0 (most likely because the
2622 * image has been flattened) we need to free the pages
2623 * and re-submit the original write request.
2624 */
2625 if (!rbd_dev->parent_overlap) {
2626 struct ceph_osd_client *osdc;
2627
2628 ceph_release_page_vector(pages, page_count);
2629 osdc = &rbd_dev->rbd_client->client->osdc;
2630 img_result = rbd_obj_request_submit(osdc, orig_request);
2631 if (!img_result)
2632 return;
2633 }
2634
2635 if (img_result)
2636 goto out_err;
2637
2638 /*
2639 * The original osd request is of no use to use any more.
2640 * We need a new one that can hold the three ops in a copyup
2641 * request. Allocate the new copyup osd request for the
2642 * original request, and release the old one.
2643 */
2644 img_result = -ENOMEM;
2645 osd_req = rbd_osd_req_create_copyup(orig_request);
2646 if (!osd_req)
2647 goto out_err;
2648 rbd_osd_req_destroy(orig_request->osd_req);
2649 orig_request->osd_req = osd_req;
2650 orig_request->copyup_pages = pages;
2651 orig_request->copyup_page_count = page_count;
2652
2653 /* Initialize the copyup op */
2654
2655 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2656 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2657 false, false);
2658
2659 /* Add the other op(s) */
2660
2661 op_type = rbd_img_request_op_type(orig_request->img_request);
2662 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2663
2664 /* All set, send it off. */
2665
2666 osdc = &rbd_dev->rbd_client->client->osdc;
2667 img_result = rbd_obj_request_submit(osdc, orig_request);
2668 if (!img_result)
2669 return;
2670 out_err:
2671 /* Record the error code and complete the request */
2672
2673 orig_request->result = img_result;
2674 orig_request->xferred = 0;
2675 obj_request_done_set(orig_request);
2676 rbd_obj_request_complete(orig_request);
2677 }
2678
2679 /*
2680 * Read from the parent image the range of data that covers the
2681 * entire target of the given object request. This is used for
2682 * satisfying a layered image write request when the target of an
2683 * object request from the image request does not exist.
2684 *
2685 * A page array big enough to hold the returned data is allocated
2686 * and supplied to rbd_img_request_fill() as the "data descriptor."
2687 * When the read completes, this page array will be transferred to
2688 * the original object request for the copyup operation.
2689 *
2690 * If an error occurs, record it as the result of the original
2691 * object request and mark it done so it gets completed.
2692 */
2693 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2694 {
2695 struct rbd_img_request *img_request = NULL;
2696 struct rbd_img_request *parent_request = NULL;
2697 struct rbd_device *rbd_dev;
2698 u64 img_offset;
2699 u64 length;
2700 struct page **pages = NULL;
2701 u32 page_count;
2702 int result;
2703
2704 rbd_assert(obj_request_img_data_test(obj_request));
2705 rbd_assert(obj_request_type_valid(obj_request->type));
2706
2707 img_request = obj_request->img_request;
2708 rbd_assert(img_request != NULL);
2709 rbd_dev = img_request->rbd_dev;
2710 rbd_assert(rbd_dev->parent != NULL);
2711
2712 /*
2713 * Determine the byte range covered by the object in the
2714 * child image to which the original request was to be sent.
2715 */
2716 img_offset = obj_request->img_offset - obj_request->offset;
2717 length = (u64)1 << rbd_dev->header.obj_order;
2718
2719 /*
2720 * There is no defined parent data beyond the parent
2721 * overlap, so limit what we read at that boundary if
2722 * necessary.
2723 */
2724 if (img_offset + length > rbd_dev->parent_overlap) {
2725 rbd_assert(img_offset < rbd_dev->parent_overlap);
2726 length = rbd_dev->parent_overlap - img_offset;
2727 }
2728
2729 /*
2730 * Allocate a page array big enough to receive the data read
2731 * from the parent.
2732 */
2733 page_count = (u32)calc_pages_for(0, length);
2734 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2735 if (IS_ERR(pages)) {
2736 result = PTR_ERR(pages);
2737 pages = NULL;
2738 goto out_err;
2739 }
2740
2741 result = -ENOMEM;
2742 parent_request = rbd_parent_request_create(obj_request,
2743 img_offset, length);
2744 if (!parent_request)
2745 goto out_err;
2746
2747 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2748 if (result)
2749 goto out_err;
2750 parent_request->copyup_pages = pages;
2751 parent_request->copyup_page_count = page_count;
2752
2753 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2754 result = rbd_img_request_submit(parent_request);
2755 if (!result)
2756 return 0;
2757
2758 parent_request->copyup_pages = NULL;
2759 parent_request->copyup_page_count = 0;
2760 parent_request->obj_request = NULL;
2761 rbd_obj_request_put(obj_request);
2762 out_err:
2763 if (pages)
2764 ceph_release_page_vector(pages, page_count);
2765 if (parent_request)
2766 rbd_img_request_put(parent_request);
2767 obj_request->result = result;
2768 obj_request->xferred = 0;
2769 obj_request_done_set(obj_request);
2770
2771 return result;
2772 }
2773
2774 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2775 {
2776 struct rbd_obj_request *orig_request;
2777 struct rbd_device *rbd_dev;
2778 int result;
2779
2780 rbd_assert(!obj_request_img_data_test(obj_request));
2781
2782 /*
2783 * All we need from the object request is the original
2784 * request and the result of the STAT op. Grab those, then
2785 * we're done with the request.
2786 */
2787 orig_request = obj_request->obj_request;
2788 obj_request->obj_request = NULL;
2789 rbd_obj_request_put(orig_request);
2790 rbd_assert(orig_request);
2791 rbd_assert(orig_request->img_request);
2792
2793 result = obj_request->result;
2794 obj_request->result = 0;
2795
2796 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2797 obj_request, orig_request, result,
2798 obj_request->xferred, obj_request->length);
2799 rbd_obj_request_put(obj_request);
2800
2801 /*
2802 * If the overlap has become 0 (most likely because the
2803 * image has been flattened) we need to free the pages
2804 * and re-submit the original write request.
2805 */
2806 rbd_dev = orig_request->img_request->rbd_dev;
2807 if (!rbd_dev->parent_overlap) {
2808 struct ceph_osd_client *osdc;
2809
2810 osdc = &rbd_dev->rbd_client->client->osdc;
2811 result = rbd_obj_request_submit(osdc, orig_request);
2812 if (!result)
2813 return;
2814 }
2815
2816 /*
2817 * Our only purpose here is to determine whether the object
2818 * exists, and we don't want to treat the non-existence as
2819 * an error. If something else comes back, transfer the
2820 * error to the original request and complete it now.
2821 */
2822 if (!result) {
2823 obj_request_existence_set(orig_request, true);
2824 } else if (result == -ENOENT) {
2825 obj_request_existence_set(orig_request, false);
2826 } else if (result) {
2827 orig_request->result = result;
2828 goto out;
2829 }
2830
2831 /*
2832 * Resubmit the original request now that we have recorded
2833 * whether the target object exists.
2834 */
2835 orig_request->result = rbd_img_obj_request_submit(orig_request);
2836 out:
2837 if (orig_request->result)
2838 rbd_obj_request_complete(orig_request);
2839 }
2840
2841 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2842 {
2843 struct rbd_obj_request *stat_request;
2844 struct rbd_device *rbd_dev;
2845 struct ceph_osd_client *osdc;
2846 struct page **pages = NULL;
2847 u32 page_count;
2848 size_t size;
2849 int ret;
2850
2851 /*
2852 * The response data for a STAT call consists of:
2853 * le64 length;
2854 * struct {
2855 * le32 tv_sec;
2856 * le32 tv_nsec;
2857 * } mtime;
2858 */
2859 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2860 page_count = (u32)calc_pages_for(0, size);
2861 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2862 if (IS_ERR(pages))
2863 return PTR_ERR(pages);
2864
2865 ret = -ENOMEM;
2866 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2867 OBJ_REQUEST_PAGES);
2868 if (!stat_request)
2869 goto out;
2870
2871 rbd_obj_request_get(obj_request);
2872 stat_request->obj_request = obj_request;
2873 stat_request->pages = pages;
2874 stat_request->page_count = page_count;
2875
2876 rbd_assert(obj_request->img_request);
2877 rbd_dev = obj_request->img_request->rbd_dev;
2878 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2879 stat_request);
2880 if (!stat_request->osd_req)
2881 goto out;
2882 stat_request->callback = rbd_img_obj_exists_callback;
2883
2884 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2885 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2886 false, false);
2887 rbd_osd_req_format_read(stat_request);
2888
2889 osdc = &rbd_dev->rbd_client->client->osdc;
2890 ret = rbd_obj_request_submit(osdc, stat_request);
2891 out:
2892 if (ret)
2893 rbd_obj_request_put(obj_request);
2894
2895 return ret;
2896 }
2897
2898 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2899 {
2900 struct rbd_img_request *img_request;
2901 struct rbd_device *rbd_dev;
2902
2903 rbd_assert(obj_request_img_data_test(obj_request));
2904
2905 img_request = obj_request->img_request;
2906 rbd_assert(img_request);
2907 rbd_dev = img_request->rbd_dev;
2908
2909 /* Reads */
2910 if (!img_request_write_test(img_request) &&
2911 !img_request_discard_test(img_request))
2912 return true;
2913
2914 /* Non-layered writes */
2915 if (!img_request_layered_test(img_request))
2916 return true;
2917
2918 /*
2919 * Layered writes outside of the parent overlap range don't
2920 * share any data with the parent.
2921 */
2922 if (!obj_request_overlaps_parent(obj_request))
2923 return true;
2924
2925 /*
2926 * Entire-object layered writes - we will overwrite whatever
2927 * parent data there is anyway.
2928 */
2929 if (!obj_request->offset &&
2930 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2931 return true;
2932
2933 /*
2934 * If the object is known to already exist, its parent data has
2935 * already been copied.
2936 */
2937 if (obj_request_known_test(obj_request) &&
2938 obj_request_exists_test(obj_request))
2939 return true;
2940
2941 return false;
2942 }
2943
2944 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2945 {
2946 if (img_obj_request_simple(obj_request)) {
2947 struct rbd_device *rbd_dev;
2948 struct ceph_osd_client *osdc;
2949
2950 rbd_dev = obj_request->img_request->rbd_dev;
2951 osdc = &rbd_dev->rbd_client->client->osdc;
2952
2953 return rbd_obj_request_submit(osdc, obj_request);
2954 }
2955
2956 /*
2957 * It's a layered write. The target object might exist but
2958 * we may not know that yet. If we know it doesn't exist,
2959 * start by reading the data for the full target object from
2960 * the parent so we can use it for a copyup to the target.
2961 */
2962 if (obj_request_known_test(obj_request))
2963 return rbd_img_obj_parent_read_full(obj_request);
2964
2965 /* We don't know whether the target exists. Go find out. */
2966
2967 return rbd_img_obj_exists_submit(obj_request);
2968 }
2969
2970 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2971 {
2972 struct rbd_obj_request *obj_request;
2973 struct rbd_obj_request *next_obj_request;
2974
2975 dout("%s: img %p\n", __func__, img_request);
2976 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2977 int ret;
2978
2979 ret = rbd_img_obj_request_submit(obj_request);
2980 if (ret)
2981 return ret;
2982 }
2983
2984 return 0;
2985 }
2986
2987 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2988 {
2989 struct rbd_obj_request *obj_request;
2990 struct rbd_device *rbd_dev;
2991 u64 obj_end;
2992 u64 img_xferred;
2993 int img_result;
2994
2995 rbd_assert(img_request_child_test(img_request));
2996
2997 /* First get what we need from the image request and release it */
2998
2999 obj_request = img_request->obj_request;
3000 img_xferred = img_request->xferred;
3001 img_result = img_request->result;
3002 rbd_img_request_put(img_request);
3003
3004 /*
3005 * If the overlap has become 0 (most likely because the
3006 * image has been flattened) we need to re-submit the
3007 * original request.
3008 */
3009 rbd_assert(obj_request);
3010 rbd_assert(obj_request->img_request);
3011 rbd_dev = obj_request->img_request->rbd_dev;
3012 if (!rbd_dev->parent_overlap) {
3013 struct ceph_osd_client *osdc;
3014
3015 osdc = &rbd_dev->rbd_client->client->osdc;
3016 img_result = rbd_obj_request_submit(osdc, obj_request);
3017 if (!img_result)
3018 return;
3019 }
3020
3021 obj_request->result = img_result;
3022 if (obj_request->result)
3023 goto out;
3024
3025 /*
3026 * We need to zero anything beyond the parent overlap
3027 * boundary. Since rbd_img_obj_request_read_callback()
3028 * will zero anything beyond the end of a short read, an
3029 * easy way to do this is to pretend the data from the
3030 * parent came up short--ending at the overlap boundary.
3031 */
3032 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3033 obj_end = obj_request->img_offset + obj_request->length;
3034 if (obj_end > rbd_dev->parent_overlap) {
3035 u64 xferred = 0;
3036
3037 if (obj_request->img_offset < rbd_dev->parent_overlap)
3038 xferred = rbd_dev->parent_overlap -
3039 obj_request->img_offset;
3040
3041 obj_request->xferred = min(img_xferred, xferred);
3042 } else {
3043 obj_request->xferred = img_xferred;
3044 }
3045 out:
3046 rbd_img_obj_request_read_callback(obj_request);
3047 rbd_obj_request_complete(obj_request);
3048 }
3049
3050 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3051 {
3052 struct rbd_img_request *img_request;
3053 int result;
3054
3055 rbd_assert(obj_request_img_data_test(obj_request));
3056 rbd_assert(obj_request->img_request != NULL);
3057 rbd_assert(obj_request->result == (s32) -ENOENT);
3058 rbd_assert(obj_request_type_valid(obj_request->type));
3059
3060 /* rbd_read_finish(obj_request, obj_request->length); */
3061 img_request = rbd_parent_request_create(obj_request,
3062 obj_request->img_offset,
3063 obj_request->length);
3064 result = -ENOMEM;
3065 if (!img_request)
3066 goto out_err;
3067
3068 if (obj_request->type == OBJ_REQUEST_BIO)
3069 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3070 obj_request->bio_list);
3071 else
3072 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3073 obj_request->pages);
3074 if (result)
3075 goto out_err;
3076
3077 img_request->callback = rbd_img_parent_read_callback;
3078 result = rbd_img_request_submit(img_request);
3079 if (result)
3080 goto out_err;
3081
3082 return;
3083 out_err:
3084 if (img_request)
3085 rbd_img_request_put(img_request);
3086 obj_request->result = result;
3087 obj_request->xferred = 0;
3088 obj_request_done_set(obj_request);
3089 }
3090
3091 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3092 {
3093 struct rbd_obj_request *obj_request;
3094 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3095 int ret;
3096
3097 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3098 OBJ_REQUEST_NODATA);
3099 if (!obj_request)
3100 return -ENOMEM;
3101
3102 ret = -ENOMEM;
3103 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3104 obj_request);
3105 if (!obj_request->osd_req)
3106 goto out;
3107
3108 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3109 notify_id, 0, 0);
3110 rbd_osd_req_format_read(obj_request);
3111
3112 ret = rbd_obj_request_submit(osdc, obj_request);
3113 if (ret)
3114 goto out;
3115 ret = rbd_obj_request_wait(obj_request);
3116 out:
3117 rbd_obj_request_put(obj_request);
3118
3119 return ret;
3120 }
3121
3122 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3123 {
3124 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3125 int ret;
3126
3127 if (!rbd_dev)
3128 return;
3129
3130 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3131 rbd_dev->header_name, (unsigned long long)notify_id,
3132 (unsigned int)opcode);
3133
3134 /*
3135 * Until adequate refresh error handling is in place, there is
3136 * not much we can do here, except warn.
3137 *
3138 * See http://tracker.ceph.com/issues/5040
3139 */
3140 ret = rbd_dev_refresh(rbd_dev);
3141 if (ret)
3142 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3143
3144 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3145 if (ret)
3146 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3147 }
3148
3149 /*
3150 * Send a (un)watch request and wait for the ack. Return a request
3151 * with a ref held on success or error.
3152 */
3153 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3154 struct rbd_device *rbd_dev,
3155 bool watch)
3156 {
3157 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3158 struct ceph_options *opts = osdc->client->options;
3159 struct rbd_obj_request *obj_request;
3160 int ret;
3161
3162 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3163 OBJ_REQUEST_NODATA);
3164 if (!obj_request)
3165 return ERR_PTR(-ENOMEM);
3166
3167 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3168 obj_request);
3169 if (!obj_request->osd_req) {
3170 ret = -ENOMEM;
3171 goto out;
3172 }
3173
3174 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3175 rbd_dev->watch_event->cookie, 0, watch);
3176 rbd_osd_req_format_write(obj_request);
3177
3178 if (watch)
3179 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3180
3181 ret = rbd_obj_request_submit(osdc, obj_request);
3182 if (ret)
3183 goto out;
3184
3185 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3186 if (ret)
3187 goto out;
3188
3189 ret = obj_request->result;
3190 if (ret) {
3191 if (watch)
3192 rbd_obj_request_end(obj_request);
3193 goto out;
3194 }
3195
3196 return obj_request;
3197
3198 out:
3199 rbd_obj_request_put(obj_request);
3200 return ERR_PTR(ret);
3201 }
3202
3203 /*
3204 * Initiate a watch request, synchronously.
3205 */
3206 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3207 {
3208 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3209 struct rbd_obj_request *obj_request;
3210 int ret;
3211
3212 rbd_assert(!rbd_dev->watch_event);
3213 rbd_assert(!rbd_dev->watch_request);
3214
3215 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3216 &rbd_dev->watch_event);
3217 if (ret < 0)
3218 return ret;
3219
3220 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3221 if (IS_ERR(obj_request)) {
3222 ceph_osdc_cancel_event(rbd_dev->watch_event);
3223 rbd_dev->watch_event = NULL;
3224 return PTR_ERR(obj_request);
3225 }
3226
3227 /*
3228 * A watch request is set to linger, so the underlying osd
3229 * request won't go away until we unregister it. We retain
3230 * a pointer to the object request during that time (in
3231 * rbd_dev->watch_request), so we'll keep a reference to it.
3232 * We'll drop that reference after we've unregistered it in
3233 * rbd_dev_header_unwatch_sync().
3234 */
3235 rbd_dev->watch_request = obj_request;
3236
3237 return 0;
3238 }
3239
3240 /*
3241 * Tear down a watch request, synchronously.
3242 */
3243 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3244 {
3245 struct rbd_obj_request *obj_request;
3246
3247 rbd_assert(rbd_dev->watch_event);
3248 rbd_assert(rbd_dev->watch_request);
3249
3250 rbd_obj_request_end(rbd_dev->watch_request);
3251 rbd_obj_request_put(rbd_dev->watch_request);
3252 rbd_dev->watch_request = NULL;
3253
3254 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3255 if (!IS_ERR(obj_request))
3256 rbd_obj_request_put(obj_request);
3257 else
3258 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3259 PTR_ERR(obj_request));
3260
3261 ceph_osdc_cancel_event(rbd_dev->watch_event);
3262 rbd_dev->watch_event = NULL;
3263 }
3264
3265 /*
3266 * Synchronous osd object method call. Returns the number of bytes
3267 * returned in the outbound buffer, or a negative error code.
3268 */
3269 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3270 const char *object_name,
3271 const char *class_name,
3272 const char *method_name,
3273 const void *outbound,
3274 size_t outbound_size,
3275 void *inbound,
3276 size_t inbound_size)
3277 {
3278 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3279 struct rbd_obj_request *obj_request;
3280 struct page **pages;
3281 u32 page_count;
3282 int ret;
3283
3284 /*
3285 * Method calls are ultimately read operations. The result
3286 * should placed into the inbound buffer provided. They
3287 * also supply outbound data--parameters for the object
3288 * method. Currently if this is present it will be a
3289 * snapshot id.
3290 */
3291 page_count = (u32)calc_pages_for(0, inbound_size);
3292 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3293 if (IS_ERR(pages))
3294 return PTR_ERR(pages);
3295
3296 ret = -ENOMEM;
3297 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3298 OBJ_REQUEST_PAGES);
3299 if (!obj_request)
3300 goto out;
3301
3302 obj_request->pages = pages;
3303 obj_request->page_count = page_count;
3304
3305 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3306 obj_request);
3307 if (!obj_request->osd_req)
3308 goto out;
3309
3310 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3311 class_name, method_name);
3312 if (outbound_size) {
3313 struct ceph_pagelist *pagelist;
3314
3315 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3316 if (!pagelist)
3317 goto out;
3318
3319 ceph_pagelist_init(pagelist);
3320 ceph_pagelist_append(pagelist, outbound, outbound_size);
3321 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3322 pagelist);
3323 }
3324 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3325 obj_request->pages, inbound_size,
3326 0, false, false);
3327 rbd_osd_req_format_read(obj_request);
3328
3329 ret = rbd_obj_request_submit(osdc, obj_request);
3330 if (ret)
3331 goto out;
3332 ret = rbd_obj_request_wait(obj_request);
3333 if (ret)
3334 goto out;
3335
3336 ret = obj_request->result;
3337 if (ret < 0)
3338 goto out;
3339
3340 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3341 ret = (int)obj_request->xferred;
3342 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3343 out:
3344 if (obj_request)
3345 rbd_obj_request_put(obj_request);
3346 else
3347 ceph_release_page_vector(pages, page_count);
3348
3349 return ret;
3350 }
3351
3352 static void rbd_queue_workfn(struct work_struct *work)
3353 {
3354 struct request *rq = blk_mq_rq_from_pdu(work);
3355 struct rbd_device *rbd_dev = rq->q->queuedata;
3356 struct rbd_img_request *img_request;
3357 struct ceph_snap_context *snapc = NULL;
3358 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3359 u64 length = blk_rq_bytes(rq);
3360 enum obj_operation_type op_type;
3361 u64 mapping_size;
3362 int result;
3363
3364 if (rq->cmd_type != REQ_TYPE_FS) {
3365 dout("%s: non-fs request type %d\n", __func__,
3366 (int) rq->cmd_type);
3367 result = -EIO;
3368 goto err;
3369 }
3370
3371 if (rq->cmd_flags & REQ_DISCARD)
3372 op_type = OBJ_OP_DISCARD;
3373 else if (rq->cmd_flags & REQ_WRITE)
3374 op_type = OBJ_OP_WRITE;
3375 else
3376 op_type = OBJ_OP_READ;
3377
3378 /* Ignore/skip any zero-length requests */
3379
3380 if (!length) {
3381 dout("%s: zero-length request\n", __func__);
3382 result = 0;
3383 goto err_rq;
3384 }
3385
3386 /* Only reads are allowed to a read-only device */
3387
3388 if (op_type != OBJ_OP_READ) {
3389 if (rbd_dev->mapping.read_only) {
3390 result = -EROFS;
3391 goto err_rq;
3392 }
3393 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3394 }
3395
3396 /*
3397 * Quit early if the mapped snapshot no longer exists. It's
3398 * still possible the snapshot will have disappeared by the
3399 * time our request arrives at the osd, but there's no sense in
3400 * sending it if we already know.
3401 */
3402 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3403 dout("request for non-existent snapshot");
3404 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3405 result = -ENXIO;
3406 goto err_rq;
3407 }
3408
3409 if (offset && length > U64_MAX - offset + 1) {
3410 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3411 length);
3412 result = -EINVAL;
3413 goto err_rq; /* Shouldn't happen */
3414 }
3415
3416 blk_mq_start_request(rq);
3417
3418 down_read(&rbd_dev->header_rwsem);
3419 mapping_size = rbd_dev->mapping.size;
3420 if (op_type != OBJ_OP_READ) {
3421 snapc = rbd_dev->header.snapc;
3422 ceph_get_snap_context(snapc);
3423 }
3424 up_read(&rbd_dev->header_rwsem);
3425
3426 if (offset + length > mapping_size) {
3427 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3428 length, mapping_size);
3429 result = -EIO;
3430 goto err_rq;
3431 }
3432
3433 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3434 snapc);
3435 if (!img_request) {
3436 result = -ENOMEM;
3437 goto err_rq;
3438 }
3439 img_request->rq = rq;
3440
3441 if (op_type == OBJ_OP_DISCARD)
3442 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3443 NULL);
3444 else
3445 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3446 rq->bio);
3447 if (result)
3448 goto err_img_request;
3449
3450 result = rbd_img_request_submit(img_request);
3451 if (result)
3452 goto err_img_request;
3453
3454 return;
3455
3456 err_img_request:
3457 rbd_img_request_put(img_request);
3458 err_rq:
3459 if (result)
3460 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3461 obj_op_name(op_type), length, offset, result);
3462 ceph_put_snap_context(snapc);
3463 err:
3464 blk_mq_end_request(rq, result);
3465 }
3466
3467 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3468 const struct blk_mq_queue_data *bd)
3469 {
3470 struct request *rq = bd->rq;
3471 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3472
3473 queue_work(rbd_wq, work);
3474 return BLK_MQ_RQ_QUEUE_OK;
3475 }
3476
3477 static void rbd_free_disk(struct rbd_device *rbd_dev)
3478 {
3479 struct gendisk *disk = rbd_dev->disk;
3480
3481 if (!disk)
3482 return;
3483
3484 rbd_dev->disk = NULL;
3485 if (disk->flags & GENHD_FL_UP) {
3486 del_gendisk(disk);
3487 if (disk->queue)
3488 blk_cleanup_queue(disk->queue);
3489 blk_mq_free_tag_set(&rbd_dev->tag_set);
3490 }
3491 put_disk(disk);
3492 }
3493
3494 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3495 const char *object_name,
3496 u64 offset, u64 length, void *buf)
3497
3498 {
3499 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3500 struct rbd_obj_request *obj_request;
3501 struct page **pages = NULL;
3502 u32 page_count;
3503 size_t size;
3504 int ret;
3505
3506 page_count = (u32) calc_pages_for(offset, length);
3507 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3508 if (IS_ERR(pages))
3509 return PTR_ERR(pages);
3510
3511 ret = -ENOMEM;
3512 obj_request = rbd_obj_request_create(object_name, offset, length,
3513 OBJ_REQUEST_PAGES);
3514 if (!obj_request)
3515 goto out;
3516
3517 obj_request->pages = pages;
3518 obj_request->page_count = page_count;
3519
3520 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3521 obj_request);
3522 if (!obj_request->osd_req)
3523 goto out;
3524
3525 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3526 offset, length, 0, 0);
3527 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3528 obj_request->pages,
3529 obj_request->length,
3530 obj_request->offset & ~PAGE_MASK,
3531 false, false);
3532 rbd_osd_req_format_read(obj_request);
3533
3534 ret = rbd_obj_request_submit(osdc, obj_request);
3535 if (ret)
3536 goto out;
3537 ret = rbd_obj_request_wait(obj_request);
3538 if (ret)
3539 goto out;
3540
3541 ret = obj_request->result;
3542 if (ret < 0)
3543 goto out;
3544
3545 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3546 size = (size_t) obj_request->xferred;
3547 ceph_copy_from_page_vector(pages, buf, 0, size);
3548 rbd_assert(size <= (size_t)INT_MAX);
3549 ret = (int)size;
3550 out:
3551 if (obj_request)
3552 rbd_obj_request_put(obj_request);
3553 else
3554 ceph_release_page_vector(pages, page_count);
3555
3556 return ret;
3557 }
3558
3559 /*
3560 * Read the complete header for the given rbd device. On successful
3561 * return, the rbd_dev->header field will contain up-to-date
3562 * information about the image.
3563 */
3564 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3565 {
3566 struct rbd_image_header_ondisk *ondisk = NULL;
3567 u32 snap_count = 0;
3568 u64 names_size = 0;
3569 u32 want_count;
3570 int ret;
3571
3572 /*
3573 * The complete header will include an array of its 64-bit
3574 * snapshot ids, followed by the names of those snapshots as
3575 * a contiguous block of NUL-terminated strings. Note that
3576 * the number of snapshots could change by the time we read
3577 * it in, in which case we re-read it.
3578 */
3579 do {
3580 size_t size;
3581
3582 kfree(ondisk);
3583
3584 size = sizeof (*ondisk);
3585 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3586 size += names_size;
3587 ondisk = kmalloc(size, GFP_KERNEL);
3588 if (!ondisk)
3589 return -ENOMEM;
3590
3591 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3592 0, size, ondisk);
3593 if (ret < 0)
3594 goto out;
3595 if ((size_t)ret < size) {
3596 ret = -ENXIO;
3597 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3598 size, ret);
3599 goto out;
3600 }
3601 if (!rbd_dev_ondisk_valid(ondisk)) {
3602 ret = -ENXIO;
3603 rbd_warn(rbd_dev, "invalid header");
3604 goto out;
3605 }
3606
3607 names_size = le64_to_cpu(ondisk->snap_names_len);
3608 want_count = snap_count;
3609 snap_count = le32_to_cpu(ondisk->snap_count);
3610 } while (snap_count != want_count);
3611
3612 ret = rbd_header_from_disk(rbd_dev, ondisk);
3613 out:
3614 kfree(ondisk);
3615
3616 return ret;
3617 }
3618
3619 /*
3620 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3621 * has disappeared from the (just updated) snapshot context.
3622 */
3623 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3624 {
3625 u64 snap_id;
3626
3627 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3628 return;
3629
3630 snap_id = rbd_dev->spec->snap_id;
3631 if (snap_id == CEPH_NOSNAP)
3632 return;
3633
3634 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3635 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3636 }
3637
3638 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3639 {
3640 sector_t size;
3641 bool removing;
3642
3643 /*
3644 * Don't hold the lock while doing disk operations,
3645 * or lock ordering will conflict with the bdev mutex via:
3646 * rbd_add() -> blkdev_get() -> rbd_open()
3647 */
3648 spin_lock_irq(&rbd_dev->lock);
3649 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3650 spin_unlock_irq(&rbd_dev->lock);
3651 /*
3652 * If the device is being removed, rbd_dev->disk has
3653 * been destroyed, so don't try to update its size
3654 */
3655 if (!removing) {
3656 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3657 dout("setting size to %llu sectors", (unsigned long long)size);
3658 set_capacity(rbd_dev->disk, size);
3659 revalidate_disk(rbd_dev->disk);
3660 }
3661 }
3662
3663 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3664 {
3665 u64 mapping_size;
3666 int ret;
3667
3668 down_write(&rbd_dev->header_rwsem);
3669 mapping_size = rbd_dev->mapping.size;
3670
3671 ret = rbd_dev_header_info(rbd_dev);
3672 if (ret)
3673 goto out;
3674
3675 /*
3676 * If there is a parent, see if it has disappeared due to the
3677 * mapped image getting flattened.
3678 */
3679 if (rbd_dev->parent) {
3680 ret = rbd_dev_v2_parent_info(rbd_dev);
3681 if (ret)
3682 goto out;
3683 }
3684
3685 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3686 rbd_dev->mapping.size = rbd_dev->header.image_size;
3687 } else {
3688 /* validate mapped snapshot's EXISTS flag */
3689 rbd_exists_validate(rbd_dev);
3690 }
3691
3692 out:
3693 up_write(&rbd_dev->header_rwsem);
3694 if (!ret && mapping_size != rbd_dev->mapping.size)
3695 rbd_dev_update_size(rbd_dev);
3696
3697 return ret;
3698 }
3699
3700 static int rbd_init_request(void *data, struct request *rq,
3701 unsigned int hctx_idx, unsigned int request_idx,
3702 unsigned int numa_node)
3703 {
3704 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3705
3706 INIT_WORK(work, rbd_queue_workfn);
3707 return 0;
3708 }
3709
3710 static struct blk_mq_ops rbd_mq_ops = {
3711 .queue_rq = rbd_queue_rq,
3712 .map_queue = blk_mq_map_queue,
3713 .init_request = rbd_init_request,
3714 };
3715
3716 static int rbd_init_disk(struct rbd_device *rbd_dev)
3717 {
3718 struct gendisk *disk;
3719 struct request_queue *q;
3720 u64 segment_size;
3721 int err;
3722
3723 /* create gendisk info */
3724 disk = alloc_disk(single_major ?
3725 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3726 RBD_MINORS_PER_MAJOR);
3727 if (!disk)
3728 return -ENOMEM;
3729
3730 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3731 rbd_dev->dev_id);
3732 disk->major = rbd_dev->major;
3733 disk->first_minor = rbd_dev->minor;
3734 if (single_major)
3735 disk->flags |= GENHD_FL_EXT_DEVT;
3736 disk->fops = &rbd_bd_ops;
3737 disk->private_data = rbd_dev;
3738
3739 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3740 rbd_dev->tag_set.ops = &rbd_mq_ops;
3741 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3742 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3743 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3744 rbd_dev->tag_set.nr_hw_queues = 1;
3745 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3746
3747 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3748 if (err)
3749 goto out_disk;
3750
3751 q = blk_mq_init_queue(&rbd_dev->tag_set);
3752 if (IS_ERR(q)) {
3753 err = PTR_ERR(q);
3754 goto out_tag_set;
3755 }
3756
3757 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3758 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3759
3760 /* set io sizes to object size */
3761 segment_size = rbd_obj_bytes(&rbd_dev->header);
3762 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3763 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3764 blk_queue_max_segment_size(q, segment_size);
3765 blk_queue_io_min(q, segment_size);
3766 blk_queue_io_opt(q, segment_size);
3767
3768 /* enable the discard support */
3769 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3770 q->limits.discard_granularity = segment_size;
3771 q->limits.discard_alignment = segment_size;
3772 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3773 q->limits.discard_zeroes_data = 1;
3774
3775 disk->queue = q;
3776
3777 q->queuedata = rbd_dev;
3778
3779 rbd_dev->disk = disk;
3780
3781 return 0;
3782 out_tag_set:
3783 blk_mq_free_tag_set(&rbd_dev->tag_set);
3784 out_disk:
3785 put_disk(disk);
3786 return err;
3787 }
3788
3789 /*
3790 sysfs
3791 */
3792
3793 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3794 {
3795 return container_of(dev, struct rbd_device, dev);
3796 }
3797
3798 static ssize_t rbd_size_show(struct device *dev,
3799 struct device_attribute *attr, char *buf)
3800 {
3801 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3802
3803 return sprintf(buf, "%llu\n",
3804 (unsigned long long)rbd_dev->mapping.size);
3805 }
3806
3807 /*
3808 * Note this shows the features for whatever's mapped, which is not
3809 * necessarily the base image.
3810 */
3811 static ssize_t rbd_features_show(struct device *dev,
3812 struct device_attribute *attr, char *buf)
3813 {
3814 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815
3816 return sprintf(buf, "0x%016llx\n",
3817 (unsigned long long)rbd_dev->mapping.features);
3818 }
3819
3820 static ssize_t rbd_major_show(struct device *dev,
3821 struct device_attribute *attr, char *buf)
3822 {
3823 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3824
3825 if (rbd_dev->major)
3826 return sprintf(buf, "%d\n", rbd_dev->major);
3827
3828 return sprintf(buf, "(none)\n");
3829 }
3830
3831 static ssize_t rbd_minor_show(struct device *dev,
3832 struct device_attribute *attr, char *buf)
3833 {
3834 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3835
3836 return sprintf(buf, "%d\n", rbd_dev->minor);
3837 }
3838
3839 static ssize_t rbd_client_id_show(struct device *dev,
3840 struct device_attribute *attr, char *buf)
3841 {
3842 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843
3844 return sprintf(buf, "client%lld\n",
3845 ceph_client_id(rbd_dev->rbd_client->client));
3846 }
3847
3848 static ssize_t rbd_pool_show(struct device *dev,
3849 struct device_attribute *attr, char *buf)
3850 {
3851 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3852
3853 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3854 }
3855
3856 static ssize_t rbd_pool_id_show(struct device *dev,
3857 struct device_attribute *attr, char *buf)
3858 {
3859 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860
3861 return sprintf(buf, "%llu\n",
3862 (unsigned long long) rbd_dev->spec->pool_id);
3863 }
3864
3865 static ssize_t rbd_name_show(struct device *dev,
3866 struct device_attribute *attr, char *buf)
3867 {
3868 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3869
3870 if (rbd_dev->spec->image_name)
3871 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3872
3873 return sprintf(buf, "(unknown)\n");
3874 }
3875
3876 static ssize_t rbd_image_id_show(struct device *dev,
3877 struct device_attribute *attr, char *buf)
3878 {
3879 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3880
3881 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3882 }
3883
3884 /*
3885 * Shows the name of the currently-mapped snapshot (or
3886 * RBD_SNAP_HEAD_NAME for the base image).
3887 */
3888 static ssize_t rbd_snap_show(struct device *dev,
3889 struct device_attribute *attr,
3890 char *buf)
3891 {
3892 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893
3894 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3895 }
3896
3897 /*
3898 * For a v2 image, shows the chain of parent images, separated by empty
3899 * lines. For v1 images or if there is no parent, shows "(no parent
3900 * image)".
3901 */
3902 static ssize_t rbd_parent_show(struct device *dev,
3903 struct device_attribute *attr,
3904 char *buf)
3905 {
3906 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3907 ssize_t count = 0;
3908
3909 if (!rbd_dev->parent)
3910 return sprintf(buf, "(no parent image)\n");
3911
3912 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3913 struct rbd_spec *spec = rbd_dev->parent_spec;
3914
3915 count += sprintf(&buf[count], "%s"
3916 "pool_id %llu\npool_name %s\n"
3917 "image_id %s\nimage_name %s\n"
3918 "snap_id %llu\nsnap_name %s\n"
3919 "overlap %llu\n",
3920 !count ? "" : "\n", /* first? */
3921 spec->pool_id, spec->pool_name,
3922 spec->image_id, spec->image_name ?: "(unknown)",
3923 spec->snap_id, spec->snap_name,
3924 rbd_dev->parent_overlap);
3925 }
3926
3927 return count;
3928 }
3929
3930 static ssize_t rbd_image_refresh(struct device *dev,
3931 struct device_attribute *attr,
3932 const char *buf,
3933 size_t size)
3934 {
3935 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3936 int ret;
3937
3938 ret = rbd_dev_refresh(rbd_dev);
3939 if (ret)
3940 return ret;
3941
3942 return size;
3943 }
3944
3945 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3946 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3947 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3948 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3949 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3950 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3951 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3952 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3953 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3954 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3955 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3956 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3957
3958 static struct attribute *rbd_attrs[] = {
3959 &dev_attr_size.attr,
3960 &dev_attr_features.attr,
3961 &dev_attr_major.attr,
3962 &dev_attr_minor.attr,
3963 &dev_attr_client_id.attr,
3964 &dev_attr_pool.attr,
3965 &dev_attr_pool_id.attr,
3966 &dev_attr_name.attr,
3967 &dev_attr_image_id.attr,
3968 &dev_attr_current_snap.attr,
3969 &dev_attr_parent.attr,
3970 &dev_attr_refresh.attr,
3971 NULL
3972 };
3973
3974 static struct attribute_group rbd_attr_group = {
3975 .attrs = rbd_attrs,
3976 };
3977
3978 static const struct attribute_group *rbd_attr_groups[] = {
3979 &rbd_attr_group,
3980 NULL
3981 };
3982
3983 static void rbd_sysfs_dev_release(struct device *dev)
3984 {
3985 }
3986
3987 static struct device_type rbd_device_type = {
3988 .name = "rbd",
3989 .groups = rbd_attr_groups,
3990 .release = rbd_sysfs_dev_release,
3991 };
3992
3993 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3994 {
3995 kref_get(&spec->kref);
3996
3997 return spec;
3998 }
3999
4000 static void rbd_spec_free(struct kref *kref);
4001 static void rbd_spec_put(struct rbd_spec *spec)
4002 {
4003 if (spec)
4004 kref_put(&spec->kref, rbd_spec_free);
4005 }
4006
4007 static struct rbd_spec *rbd_spec_alloc(void)
4008 {
4009 struct rbd_spec *spec;
4010
4011 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4012 if (!spec)
4013 return NULL;
4014
4015 spec->pool_id = CEPH_NOPOOL;
4016 spec->snap_id = CEPH_NOSNAP;
4017 kref_init(&spec->kref);
4018
4019 return spec;
4020 }
4021
4022 static void rbd_spec_free(struct kref *kref)
4023 {
4024 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4025
4026 kfree(spec->pool_name);
4027 kfree(spec->image_id);
4028 kfree(spec->image_name);
4029 kfree(spec->snap_name);
4030 kfree(spec);
4031 }
4032
4033 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4034 struct rbd_spec *spec,
4035 struct rbd_options *opts)
4036 {
4037 struct rbd_device *rbd_dev;
4038
4039 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4040 if (!rbd_dev)
4041 return NULL;
4042
4043 spin_lock_init(&rbd_dev->lock);
4044 rbd_dev->flags = 0;
4045 atomic_set(&rbd_dev->parent_ref, 0);
4046 INIT_LIST_HEAD(&rbd_dev->node);
4047 init_rwsem(&rbd_dev->header_rwsem);
4048
4049 rbd_dev->rbd_client = rbdc;
4050 rbd_dev->spec = spec;
4051 rbd_dev->opts = opts;
4052
4053 /* Initialize the layout used for all rbd requests */
4054
4055 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4056 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4057 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4058 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4059
4060 return rbd_dev;
4061 }
4062
4063 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4064 {
4065 rbd_put_client(rbd_dev->rbd_client);
4066 rbd_spec_put(rbd_dev->spec);
4067 kfree(rbd_dev->opts);
4068 kfree(rbd_dev);
4069 }
4070
4071 /*
4072 * Get the size and object order for an image snapshot, or if
4073 * snap_id is CEPH_NOSNAP, gets this information for the base
4074 * image.
4075 */
4076 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4077 u8 *order, u64 *snap_size)
4078 {
4079 __le64 snapid = cpu_to_le64(snap_id);
4080 int ret;
4081 struct {
4082 u8 order;
4083 __le64 size;
4084 } __attribute__ ((packed)) size_buf = { 0 };
4085
4086 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4087 "rbd", "get_size",
4088 &snapid, sizeof (snapid),
4089 &size_buf, sizeof (size_buf));
4090 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4091 if (ret < 0)
4092 return ret;
4093 if (ret < sizeof (size_buf))
4094 return -ERANGE;
4095
4096 if (order) {
4097 *order = size_buf.order;
4098 dout(" order %u", (unsigned int)*order);
4099 }
4100 *snap_size = le64_to_cpu(size_buf.size);
4101
4102 dout(" snap_id 0x%016llx snap_size = %llu\n",
4103 (unsigned long long)snap_id,
4104 (unsigned long long)*snap_size);
4105
4106 return 0;
4107 }
4108
4109 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4110 {
4111 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4112 &rbd_dev->header.obj_order,
4113 &rbd_dev->header.image_size);
4114 }
4115
4116 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4117 {
4118 void *reply_buf;
4119 int ret;
4120 void *p;
4121
4122 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4123 if (!reply_buf)
4124 return -ENOMEM;
4125
4126 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4127 "rbd", "get_object_prefix", NULL, 0,
4128 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4129 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4130 if (ret < 0)
4131 goto out;
4132
4133 p = reply_buf;
4134 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4135 p + ret, NULL, GFP_NOIO);
4136 ret = 0;
4137
4138 if (IS_ERR(rbd_dev->header.object_prefix)) {
4139 ret = PTR_ERR(rbd_dev->header.object_prefix);
4140 rbd_dev->header.object_prefix = NULL;
4141 } else {
4142 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4143 }
4144 out:
4145 kfree(reply_buf);
4146
4147 return ret;
4148 }
4149
4150 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4151 u64 *snap_features)
4152 {
4153 __le64 snapid = cpu_to_le64(snap_id);
4154 struct {
4155 __le64 features;
4156 __le64 incompat;
4157 } __attribute__ ((packed)) features_buf = { 0 };
4158 u64 incompat;
4159 int ret;
4160
4161 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4162 "rbd", "get_features",
4163 &snapid, sizeof (snapid),
4164 &features_buf, sizeof (features_buf));
4165 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4166 if (ret < 0)
4167 return ret;
4168 if (ret < sizeof (features_buf))
4169 return -ERANGE;
4170
4171 incompat = le64_to_cpu(features_buf.incompat);
4172 if (incompat & ~RBD_FEATURES_SUPPORTED)
4173 return -ENXIO;
4174
4175 *snap_features = le64_to_cpu(features_buf.features);
4176
4177 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4178 (unsigned long long)snap_id,
4179 (unsigned long long)*snap_features,
4180 (unsigned long long)le64_to_cpu(features_buf.incompat));
4181
4182 return 0;
4183 }
4184
4185 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4186 {
4187 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4188 &rbd_dev->header.features);
4189 }
4190
4191 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4192 {
4193 struct rbd_spec *parent_spec;
4194 size_t size;
4195 void *reply_buf = NULL;
4196 __le64 snapid;
4197 void *p;
4198 void *end;
4199 u64 pool_id;
4200 char *image_id;
4201 u64 snap_id;
4202 u64 overlap;
4203 int ret;
4204
4205 parent_spec = rbd_spec_alloc();
4206 if (!parent_spec)
4207 return -ENOMEM;
4208
4209 size = sizeof (__le64) + /* pool_id */
4210 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4211 sizeof (__le64) + /* snap_id */
4212 sizeof (__le64); /* overlap */
4213 reply_buf = kmalloc(size, GFP_KERNEL);
4214 if (!reply_buf) {
4215 ret = -ENOMEM;
4216 goto out_err;
4217 }
4218
4219 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4220 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4221 "rbd", "get_parent",
4222 &snapid, sizeof (snapid),
4223 reply_buf, size);
4224 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4225 if (ret < 0)
4226 goto out_err;
4227
4228 p = reply_buf;
4229 end = reply_buf + ret;
4230 ret = -ERANGE;
4231 ceph_decode_64_safe(&p, end, pool_id, out_err);
4232 if (pool_id == CEPH_NOPOOL) {
4233 /*
4234 * Either the parent never existed, or we have
4235 * record of it but the image got flattened so it no
4236 * longer has a parent. When the parent of a
4237 * layered image disappears we immediately set the
4238 * overlap to 0. The effect of this is that all new
4239 * requests will be treated as if the image had no
4240 * parent.
4241 */
4242 if (rbd_dev->parent_overlap) {
4243 rbd_dev->parent_overlap = 0;
4244 rbd_dev_parent_put(rbd_dev);
4245 pr_info("%s: clone image has been flattened\n",
4246 rbd_dev->disk->disk_name);
4247 }
4248
4249 goto out; /* No parent? No problem. */
4250 }
4251
4252 /* The ceph file layout needs to fit pool id in 32 bits */
4253
4254 ret = -EIO;
4255 if (pool_id > (u64)U32_MAX) {
4256 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4257 (unsigned long long)pool_id, U32_MAX);
4258 goto out_err;
4259 }
4260
4261 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4262 if (IS_ERR(image_id)) {
4263 ret = PTR_ERR(image_id);
4264 goto out_err;
4265 }
4266 ceph_decode_64_safe(&p, end, snap_id, out_err);
4267 ceph_decode_64_safe(&p, end, overlap, out_err);
4268
4269 /*
4270 * The parent won't change (except when the clone is
4271 * flattened, already handled that). So we only need to
4272 * record the parent spec we have not already done so.
4273 */
4274 if (!rbd_dev->parent_spec) {
4275 parent_spec->pool_id = pool_id;
4276 parent_spec->image_id = image_id;
4277 parent_spec->snap_id = snap_id;
4278 rbd_dev->parent_spec = parent_spec;
4279 parent_spec = NULL; /* rbd_dev now owns this */
4280 } else {
4281 kfree(image_id);
4282 }
4283
4284 /*
4285 * We always update the parent overlap. If it's zero we issue
4286 * a warning, as we will proceed as if there was no parent.
4287 */
4288 if (!overlap) {
4289 if (parent_spec) {
4290 /* refresh, careful to warn just once */
4291 if (rbd_dev->parent_overlap)
4292 rbd_warn(rbd_dev,
4293 "clone now standalone (overlap became 0)");
4294 } else {
4295 /* initial probe */
4296 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4297 }
4298 }
4299 rbd_dev->parent_overlap = overlap;
4300
4301 out:
4302 ret = 0;
4303 out_err:
4304 kfree(reply_buf);
4305 rbd_spec_put(parent_spec);
4306
4307 return ret;
4308 }
4309
4310 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4311 {
4312 struct {
4313 __le64 stripe_unit;
4314 __le64 stripe_count;
4315 } __attribute__ ((packed)) striping_info_buf = { 0 };
4316 size_t size = sizeof (striping_info_buf);
4317 void *p;
4318 u64 obj_size;
4319 u64 stripe_unit;
4320 u64 stripe_count;
4321 int ret;
4322
4323 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4324 "rbd", "get_stripe_unit_count", NULL, 0,
4325 (char *)&striping_info_buf, size);
4326 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4327 if (ret < 0)
4328 return ret;
4329 if (ret < size)
4330 return -ERANGE;
4331
4332 /*
4333 * We don't actually support the "fancy striping" feature
4334 * (STRIPINGV2) yet, but if the striping sizes are the
4335 * defaults the behavior is the same as before. So find
4336 * out, and only fail if the image has non-default values.
4337 */
4338 ret = -EINVAL;
4339 obj_size = (u64)1 << rbd_dev->header.obj_order;
4340 p = &striping_info_buf;
4341 stripe_unit = ceph_decode_64(&p);
4342 if (stripe_unit != obj_size) {
4343 rbd_warn(rbd_dev, "unsupported stripe unit "
4344 "(got %llu want %llu)",
4345 stripe_unit, obj_size);
4346 return -EINVAL;
4347 }
4348 stripe_count = ceph_decode_64(&p);
4349 if (stripe_count != 1) {
4350 rbd_warn(rbd_dev, "unsupported stripe count "
4351 "(got %llu want 1)", stripe_count);
4352 return -EINVAL;
4353 }
4354 rbd_dev->header.stripe_unit = stripe_unit;
4355 rbd_dev->header.stripe_count = stripe_count;
4356
4357 return 0;
4358 }
4359
4360 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4361 {
4362 size_t image_id_size;
4363 char *image_id;
4364 void *p;
4365 void *end;
4366 size_t size;
4367 void *reply_buf = NULL;
4368 size_t len = 0;
4369 char *image_name = NULL;
4370 int ret;
4371
4372 rbd_assert(!rbd_dev->spec->image_name);
4373
4374 len = strlen(rbd_dev->spec->image_id);
4375 image_id_size = sizeof (__le32) + len;
4376 image_id = kmalloc(image_id_size, GFP_KERNEL);
4377 if (!image_id)
4378 return NULL;
4379
4380 p = image_id;
4381 end = image_id + image_id_size;
4382 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4383
4384 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4385 reply_buf = kmalloc(size, GFP_KERNEL);
4386 if (!reply_buf)
4387 goto out;
4388
4389 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4390 "rbd", "dir_get_name",
4391 image_id, image_id_size,
4392 reply_buf, size);
4393 if (ret < 0)
4394 goto out;
4395 p = reply_buf;
4396 end = reply_buf + ret;
4397
4398 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4399 if (IS_ERR(image_name))
4400 image_name = NULL;
4401 else
4402 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4403 out:
4404 kfree(reply_buf);
4405 kfree(image_id);
4406
4407 return image_name;
4408 }
4409
4410 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4411 {
4412 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4413 const char *snap_name;
4414 u32 which = 0;
4415
4416 /* Skip over names until we find the one we are looking for */
4417
4418 snap_name = rbd_dev->header.snap_names;
4419 while (which < snapc->num_snaps) {
4420 if (!strcmp(name, snap_name))
4421 return snapc->snaps[which];
4422 snap_name += strlen(snap_name) + 1;
4423 which++;
4424 }
4425 return CEPH_NOSNAP;
4426 }
4427
4428 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4429 {
4430 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4431 u32 which;
4432 bool found = false;
4433 u64 snap_id;
4434
4435 for (which = 0; !found && which < snapc->num_snaps; which++) {
4436 const char *snap_name;
4437
4438 snap_id = snapc->snaps[which];
4439 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4440 if (IS_ERR(snap_name)) {
4441 /* ignore no-longer existing snapshots */
4442 if (PTR_ERR(snap_name) == -ENOENT)
4443 continue;
4444 else
4445 break;
4446 }
4447 found = !strcmp(name, snap_name);
4448 kfree(snap_name);
4449 }
4450 return found ? snap_id : CEPH_NOSNAP;
4451 }
4452
4453 /*
4454 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4455 * no snapshot by that name is found, or if an error occurs.
4456 */
4457 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4458 {
4459 if (rbd_dev->image_format == 1)
4460 return rbd_v1_snap_id_by_name(rbd_dev, name);
4461
4462 return rbd_v2_snap_id_by_name(rbd_dev, name);
4463 }
4464
4465 /*
4466 * An image being mapped will have everything but the snap id.
4467 */
4468 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4469 {
4470 struct rbd_spec *spec = rbd_dev->spec;
4471
4472 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4473 rbd_assert(spec->image_id && spec->image_name);
4474 rbd_assert(spec->snap_name);
4475
4476 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4477 u64 snap_id;
4478
4479 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4480 if (snap_id == CEPH_NOSNAP)
4481 return -ENOENT;
4482
4483 spec->snap_id = snap_id;
4484 } else {
4485 spec->snap_id = CEPH_NOSNAP;
4486 }
4487
4488 return 0;
4489 }
4490
4491 /*
4492 * A parent image will have all ids but none of the names.
4493 *
4494 * All names in an rbd spec are dynamically allocated. It's OK if we
4495 * can't figure out the name for an image id.
4496 */
4497 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4498 {
4499 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4500 struct rbd_spec *spec = rbd_dev->spec;
4501 const char *pool_name;
4502 const char *image_name;
4503 const char *snap_name;
4504 int ret;
4505
4506 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4507 rbd_assert(spec->image_id);
4508 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4509
4510 /* Get the pool name; we have to make our own copy of this */
4511
4512 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4513 if (!pool_name) {
4514 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4515 return -EIO;
4516 }
4517 pool_name = kstrdup(pool_name, GFP_KERNEL);
4518 if (!pool_name)
4519 return -ENOMEM;
4520
4521 /* Fetch the image name; tolerate failure here */
4522
4523 image_name = rbd_dev_image_name(rbd_dev);
4524 if (!image_name)
4525 rbd_warn(rbd_dev, "unable to get image name");
4526
4527 /* Fetch the snapshot name */
4528
4529 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4530 if (IS_ERR(snap_name)) {
4531 ret = PTR_ERR(snap_name);
4532 goto out_err;
4533 }
4534
4535 spec->pool_name = pool_name;
4536 spec->image_name = image_name;
4537 spec->snap_name = snap_name;
4538
4539 return 0;
4540
4541 out_err:
4542 kfree(image_name);
4543 kfree(pool_name);
4544 return ret;
4545 }
4546
4547 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4548 {
4549 size_t size;
4550 int ret;
4551 void *reply_buf;
4552 void *p;
4553 void *end;
4554 u64 seq;
4555 u32 snap_count;
4556 struct ceph_snap_context *snapc;
4557 u32 i;
4558
4559 /*
4560 * We'll need room for the seq value (maximum snapshot id),
4561 * snapshot count, and array of that many snapshot ids.
4562 * For now we have a fixed upper limit on the number we're
4563 * prepared to receive.
4564 */
4565 size = sizeof (__le64) + sizeof (__le32) +
4566 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4567 reply_buf = kzalloc(size, GFP_KERNEL);
4568 if (!reply_buf)
4569 return -ENOMEM;
4570
4571 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4572 "rbd", "get_snapcontext", NULL, 0,
4573 reply_buf, size);
4574 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4575 if (ret < 0)
4576 goto out;
4577
4578 p = reply_buf;
4579 end = reply_buf + ret;
4580 ret = -ERANGE;
4581 ceph_decode_64_safe(&p, end, seq, out);
4582 ceph_decode_32_safe(&p, end, snap_count, out);
4583
4584 /*
4585 * Make sure the reported number of snapshot ids wouldn't go
4586 * beyond the end of our buffer. But before checking that,
4587 * make sure the computed size of the snapshot context we
4588 * allocate is representable in a size_t.
4589 */
4590 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4591 / sizeof (u64)) {
4592 ret = -EINVAL;
4593 goto out;
4594 }
4595 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4596 goto out;
4597 ret = 0;
4598
4599 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4600 if (!snapc) {
4601 ret = -ENOMEM;
4602 goto out;
4603 }
4604 snapc->seq = seq;
4605 for (i = 0; i < snap_count; i++)
4606 snapc->snaps[i] = ceph_decode_64(&p);
4607
4608 ceph_put_snap_context(rbd_dev->header.snapc);
4609 rbd_dev->header.snapc = snapc;
4610
4611 dout(" snap context seq = %llu, snap_count = %u\n",
4612 (unsigned long long)seq, (unsigned int)snap_count);
4613 out:
4614 kfree(reply_buf);
4615
4616 return ret;
4617 }
4618
4619 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4620 u64 snap_id)
4621 {
4622 size_t size;
4623 void *reply_buf;
4624 __le64 snapid;
4625 int ret;
4626 void *p;
4627 void *end;
4628 char *snap_name;
4629
4630 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4631 reply_buf = kmalloc(size, GFP_KERNEL);
4632 if (!reply_buf)
4633 return ERR_PTR(-ENOMEM);
4634
4635 snapid = cpu_to_le64(snap_id);
4636 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4637 "rbd", "get_snapshot_name",
4638 &snapid, sizeof (snapid),
4639 reply_buf, size);
4640 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4641 if (ret < 0) {
4642 snap_name = ERR_PTR(ret);
4643 goto out;
4644 }
4645
4646 p = reply_buf;
4647 end = reply_buf + ret;
4648 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4649 if (IS_ERR(snap_name))
4650 goto out;
4651
4652 dout(" snap_id 0x%016llx snap_name = %s\n",
4653 (unsigned long long)snap_id, snap_name);
4654 out:
4655 kfree(reply_buf);
4656
4657 return snap_name;
4658 }
4659
4660 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4661 {
4662 bool first_time = rbd_dev->header.object_prefix == NULL;
4663 int ret;
4664
4665 ret = rbd_dev_v2_image_size(rbd_dev);
4666 if (ret)
4667 return ret;
4668
4669 if (first_time) {
4670 ret = rbd_dev_v2_header_onetime(rbd_dev);
4671 if (ret)
4672 return ret;
4673 }
4674
4675 ret = rbd_dev_v2_snap_context(rbd_dev);
4676 if (ret && first_time) {
4677 kfree(rbd_dev->header.object_prefix);
4678 rbd_dev->header.object_prefix = NULL;
4679 }
4680
4681 return ret;
4682 }
4683
4684 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4685 {
4686 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4687
4688 if (rbd_dev->image_format == 1)
4689 return rbd_dev_v1_header_info(rbd_dev);
4690
4691 return rbd_dev_v2_header_info(rbd_dev);
4692 }
4693
4694 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4695 {
4696 struct device *dev;
4697 int ret;
4698
4699 dev = &rbd_dev->dev;
4700 dev->bus = &rbd_bus_type;
4701 dev->type = &rbd_device_type;
4702 dev->parent = &rbd_root_dev;
4703 dev->release = rbd_dev_device_release;
4704 dev_set_name(dev, "%d", rbd_dev->dev_id);
4705 ret = device_register(dev);
4706
4707 return ret;
4708 }
4709
4710 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4711 {
4712 device_unregister(&rbd_dev->dev);
4713 }
4714
4715 /*
4716 * Get a unique rbd identifier for the given new rbd_dev, and add
4717 * the rbd_dev to the global list.
4718 */
4719 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4720 {
4721 int new_dev_id;
4722
4723 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4724 0, minor_to_rbd_dev_id(1 << MINORBITS),
4725 GFP_KERNEL);
4726 if (new_dev_id < 0)
4727 return new_dev_id;
4728
4729 rbd_dev->dev_id = new_dev_id;
4730
4731 spin_lock(&rbd_dev_list_lock);
4732 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4733 spin_unlock(&rbd_dev_list_lock);
4734
4735 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4736
4737 return 0;
4738 }
4739
4740 /*
4741 * Remove an rbd_dev from the global list, and record that its
4742 * identifier is no longer in use.
4743 */
4744 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4745 {
4746 spin_lock(&rbd_dev_list_lock);
4747 list_del_init(&rbd_dev->node);
4748 spin_unlock(&rbd_dev_list_lock);
4749
4750 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4751
4752 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4753 }
4754
4755 /*
4756 * Skips over white space at *buf, and updates *buf to point to the
4757 * first found non-space character (if any). Returns the length of
4758 * the token (string of non-white space characters) found. Note
4759 * that *buf must be terminated with '\0'.
4760 */
4761 static inline size_t next_token(const char **buf)
4762 {
4763 /*
4764 * These are the characters that produce nonzero for
4765 * isspace() in the "C" and "POSIX" locales.
4766 */
4767 const char *spaces = " \f\n\r\t\v";
4768
4769 *buf += strspn(*buf, spaces); /* Find start of token */
4770
4771 return strcspn(*buf, spaces); /* Return token length */
4772 }
4773
4774 /*
4775 * Finds the next token in *buf, dynamically allocates a buffer big
4776 * enough to hold a copy of it, and copies the token into the new
4777 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4778 * that a duplicate buffer is created even for a zero-length token.
4779 *
4780 * Returns a pointer to the newly-allocated duplicate, or a null
4781 * pointer if memory for the duplicate was not available. If
4782 * the lenp argument is a non-null pointer, the length of the token
4783 * (not including the '\0') is returned in *lenp.
4784 *
4785 * If successful, the *buf pointer will be updated to point beyond
4786 * the end of the found token.
4787 *
4788 * Note: uses GFP_KERNEL for allocation.
4789 */
4790 static inline char *dup_token(const char **buf, size_t *lenp)
4791 {
4792 char *dup;
4793 size_t len;
4794
4795 len = next_token(buf);
4796 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4797 if (!dup)
4798 return NULL;
4799 *(dup + len) = '\0';
4800 *buf += len;
4801
4802 if (lenp)
4803 *lenp = len;
4804
4805 return dup;
4806 }
4807
4808 /*
4809 * Parse the options provided for an "rbd add" (i.e., rbd image
4810 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4811 * and the data written is passed here via a NUL-terminated buffer.
4812 * Returns 0 if successful or an error code otherwise.
4813 *
4814 * The information extracted from these options is recorded in
4815 * the other parameters which return dynamically-allocated
4816 * structures:
4817 * ceph_opts
4818 * The address of a pointer that will refer to a ceph options
4819 * structure. Caller must release the returned pointer using
4820 * ceph_destroy_options() when it is no longer needed.
4821 * rbd_opts
4822 * Address of an rbd options pointer. Fully initialized by
4823 * this function; caller must release with kfree().
4824 * spec
4825 * Address of an rbd image specification pointer. Fully
4826 * initialized by this function based on parsed options.
4827 * Caller must release with rbd_spec_put().
4828 *
4829 * The options passed take this form:
4830 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4831 * where:
4832 * <mon_addrs>
4833 * A comma-separated list of one or more monitor addresses.
4834 * A monitor address is an ip address, optionally followed
4835 * by a port number (separated by a colon).
4836 * I.e.: ip1[:port1][,ip2[:port2]...]
4837 * <options>
4838 * A comma-separated list of ceph and/or rbd options.
4839 * <pool_name>
4840 * The name of the rados pool containing the rbd image.
4841 * <image_name>
4842 * The name of the image in that pool to map.
4843 * <snap_id>
4844 * An optional snapshot id. If provided, the mapping will
4845 * present data from the image at the time that snapshot was
4846 * created. The image head is used if no snapshot id is
4847 * provided. Snapshot mappings are always read-only.
4848 */
4849 static int rbd_add_parse_args(const char *buf,
4850 struct ceph_options **ceph_opts,
4851 struct rbd_options **opts,
4852 struct rbd_spec **rbd_spec)
4853 {
4854 size_t len;
4855 char *options;
4856 const char *mon_addrs;
4857 char *snap_name;
4858 size_t mon_addrs_size;
4859 struct rbd_spec *spec = NULL;
4860 struct rbd_options *rbd_opts = NULL;
4861 struct ceph_options *copts;
4862 int ret;
4863
4864 /* The first four tokens are required */
4865
4866 len = next_token(&buf);
4867 if (!len) {
4868 rbd_warn(NULL, "no monitor address(es) provided");
4869 return -EINVAL;
4870 }
4871 mon_addrs = buf;
4872 mon_addrs_size = len + 1;
4873 buf += len;
4874
4875 ret = -EINVAL;
4876 options = dup_token(&buf, NULL);
4877 if (!options)
4878 return -ENOMEM;
4879 if (!*options) {
4880 rbd_warn(NULL, "no options provided");
4881 goto out_err;
4882 }
4883
4884 spec = rbd_spec_alloc();
4885 if (!spec)
4886 goto out_mem;
4887
4888 spec->pool_name = dup_token(&buf, NULL);
4889 if (!spec->pool_name)
4890 goto out_mem;
4891 if (!*spec->pool_name) {
4892 rbd_warn(NULL, "no pool name provided");
4893 goto out_err;
4894 }
4895
4896 spec->image_name = dup_token(&buf, NULL);
4897 if (!spec->image_name)
4898 goto out_mem;
4899 if (!*spec->image_name) {
4900 rbd_warn(NULL, "no image name provided");
4901 goto out_err;
4902 }
4903
4904 /*
4905 * Snapshot name is optional; default is to use "-"
4906 * (indicating the head/no snapshot).
4907 */
4908 len = next_token(&buf);
4909 if (!len) {
4910 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4911 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4912 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4913 ret = -ENAMETOOLONG;
4914 goto out_err;
4915 }
4916 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4917 if (!snap_name)
4918 goto out_mem;
4919 *(snap_name + len) = '\0';
4920 spec->snap_name = snap_name;
4921
4922 /* Initialize all rbd options to the defaults */
4923
4924 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4925 if (!rbd_opts)
4926 goto out_mem;
4927
4928 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4929 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4930
4931 copts = ceph_parse_options(options, mon_addrs,
4932 mon_addrs + mon_addrs_size - 1,
4933 parse_rbd_opts_token, rbd_opts);
4934 if (IS_ERR(copts)) {
4935 ret = PTR_ERR(copts);
4936 goto out_err;
4937 }
4938 kfree(options);
4939
4940 *ceph_opts = copts;
4941 *opts = rbd_opts;
4942 *rbd_spec = spec;
4943
4944 return 0;
4945 out_mem:
4946 ret = -ENOMEM;
4947 out_err:
4948 kfree(rbd_opts);
4949 rbd_spec_put(spec);
4950 kfree(options);
4951
4952 return ret;
4953 }
4954
4955 /*
4956 * Return pool id (>= 0) or a negative error code.
4957 */
4958 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4959 {
4960 struct ceph_options *opts = rbdc->client->options;
4961 u64 newest_epoch;
4962 int tries = 0;
4963 int ret;
4964
4965 again:
4966 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4967 if (ret == -ENOENT && tries++ < 1) {
4968 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4969 &newest_epoch);
4970 if (ret < 0)
4971 return ret;
4972
4973 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4974 ceph_monc_request_next_osdmap(&rbdc->client->monc);
4975 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4976 newest_epoch,
4977 opts->mount_timeout);
4978 goto again;
4979 } else {
4980 /* the osdmap we have is new enough */
4981 return -ENOENT;
4982 }
4983 }
4984
4985 return ret;
4986 }
4987
4988 /*
4989 * An rbd format 2 image has a unique identifier, distinct from the
4990 * name given to it by the user. Internally, that identifier is
4991 * what's used to specify the names of objects related to the image.
4992 *
4993 * A special "rbd id" object is used to map an rbd image name to its
4994 * id. If that object doesn't exist, then there is no v2 rbd image
4995 * with the supplied name.
4996 *
4997 * This function will record the given rbd_dev's image_id field if
4998 * it can be determined, and in that case will return 0. If any
4999 * errors occur a negative errno will be returned and the rbd_dev's
5000 * image_id field will be unchanged (and should be NULL).
5001 */
5002 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5003 {
5004 int ret;
5005 size_t size;
5006 char *object_name;
5007 void *response;
5008 char *image_id;
5009
5010 /*
5011 * When probing a parent image, the image id is already
5012 * known (and the image name likely is not). There's no
5013 * need to fetch the image id again in this case. We
5014 * do still need to set the image format though.
5015 */
5016 if (rbd_dev->spec->image_id) {
5017 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5018
5019 return 0;
5020 }
5021
5022 /*
5023 * First, see if the format 2 image id file exists, and if
5024 * so, get the image's persistent id from it.
5025 */
5026 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5027 object_name = kmalloc(size, GFP_NOIO);
5028 if (!object_name)
5029 return -ENOMEM;
5030 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5031 dout("rbd id object name is %s\n", object_name);
5032
5033 /* Response will be an encoded string, which includes a length */
5034
5035 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5036 response = kzalloc(size, GFP_NOIO);
5037 if (!response) {
5038 ret = -ENOMEM;
5039 goto out;
5040 }
5041
5042 /* If it doesn't exist we'll assume it's a format 1 image */
5043
5044 ret = rbd_obj_method_sync(rbd_dev, object_name,
5045 "rbd", "get_id", NULL, 0,
5046 response, RBD_IMAGE_ID_LEN_MAX);
5047 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5048 if (ret == -ENOENT) {
5049 image_id = kstrdup("", GFP_KERNEL);
5050 ret = image_id ? 0 : -ENOMEM;
5051 if (!ret)
5052 rbd_dev->image_format = 1;
5053 } else if (ret >= 0) {
5054 void *p = response;
5055
5056 image_id = ceph_extract_encoded_string(&p, p + ret,
5057 NULL, GFP_NOIO);
5058 ret = PTR_ERR_OR_ZERO(image_id);
5059 if (!ret)
5060 rbd_dev->image_format = 2;
5061 }
5062
5063 if (!ret) {
5064 rbd_dev->spec->image_id = image_id;
5065 dout("image_id is %s\n", image_id);
5066 }
5067 out:
5068 kfree(response);
5069 kfree(object_name);
5070
5071 return ret;
5072 }
5073
5074 /*
5075 * Undo whatever state changes are made by v1 or v2 header info
5076 * call.
5077 */
5078 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5079 {
5080 struct rbd_image_header *header;
5081
5082 rbd_dev_parent_put(rbd_dev);
5083
5084 /* Free dynamic fields from the header, then zero it out */
5085
5086 header = &rbd_dev->header;
5087 ceph_put_snap_context(header->snapc);
5088 kfree(header->snap_sizes);
5089 kfree(header->snap_names);
5090 kfree(header->object_prefix);
5091 memset(header, 0, sizeof (*header));
5092 }
5093
5094 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5095 {
5096 int ret;
5097
5098 ret = rbd_dev_v2_object_prefix(rbd_dev);
5099 if (ret)
5100 goto out_err;
5101
5102 /*
5103 * Get the and check features for the image. Currently the
5104 * features are assumed to never change.
5105 */
5106 ret = rbd_dev_v2_features(rbd_dev);
5107 if (ret)
5108 goto out_err;
5109
5110 /* If the image supports fancy striping, get its parameters */
5111
5112 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5113 ret = rbd_dev_v2_striping_info(rbd_dev);
5114 if (ret < 0)
5115 goto out_err;
5116 }
5117 /* No support for crypto and compression type format 2 images */
5118
5119 return 0;
5120 out_err:
5121 rbd_dev->header.features = 0;
5122 kfree(rbd_dev->header.object_prefix);
5123 rbd_dev->header.object_prefix = NULL;
5124
5125 return ret;
5126 }
5127
5128 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5129 {
5130 struct rbd_device *parent = NULL;
5131 struct rbd_spec *parent_spec;
5132 struct rbd_client *rbdc;
5133 int ret;
5134
5135 if (!rbd_dev->parent_spec)
5136 return 0;
5137 /*
5138 * We need to pass a reference to the client and the parent
5139 * spec when creating the parent rbd_dev. Images related by
5140 * parent/child relationships always share both.
5141 */
5142 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5143 rbdc = __rbd_get_client(rbd_dev->rbd_client);
5144
5145 ret = -ENOMEM;
5146 parent = rbd_dev_create(rbdc, parent_spec, NULL);
5147 if (!parent)
5148 goto out_err;
5149
5150 ret = rbd_dev_image_probe(parent, false);
5151 if (ret < 0)
5152 goto out_err;
5153 rbd_dev->parent = parent;
5154 atomic_set(&rbd_dev->parent_ref, 1);
5155
5156 return 0;
5157 out_err:
5158 if (parent) {
5159 rbd_dev_unparent(rbd_dev);
5160 rbd_dev_destroy(parent);
5161 } else {
5162 rbd_put_client(rbdc);
5163 rbd_spec_put(parent_spec);
5164 }
5165
5166 return ret;
5167 }
5168
5169 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5170 {
5171 int ret;
5172
5173 /* Get an id and fill in device name. */
5174
5175 ret = rbd_dev_id_get(rbd_dev);
5176 if (ret)
5177 return ret;
5178
5179 BUILD_BUG_ON(DEV_NAME_LEN
5180 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5181 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5182
5183 /* Record our major and minor device numbers. */
5184
5185 if (!single_major) {
5186 ret = register_blkdev(0, rbd_dev->name);
5187 if (ret < 0)
5188 goto err_out_id;
5189
5190 rbd_dev->major = ret;
5191 rbd_dev->minor = 0;
5192 } else {
5193 rbd_dev->major = rbd_major;
5194 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5195 }
5196
5197 /* Set up the blkdev mapping. */
5198
5199 ret = rbd_init_disk(rbd_dev);
5200 if (ret)
5201 goto err_out_blkdev;
5202
5203 ret = rbd_dev_mapping_set(rbd_dev);
5204 if (ret)
5205 goto err_out_disk;
5206
5207 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5208 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5209
5210 ret = rbd_bus_add_dev(rbd_dev);
5211 if (ret)
5212 goto err_out_mapping;
5213
5214 /* Everything's ready. Announce the disk to the world. */
5215
5216 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5217 add_disk(rbd_dev->disk);
5218
5219 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5220 (unsigned long long) rbd_dev->mapping.size);
5221
5222 return ret;
5223
5224 err_out_mapping:
5225 rbd_dev_mapping_clear(rbd_dev);
5226 err_out_disk:
5227 rbd_free_disk(rbd_dev);
5228 err_out_blkdev:
5229 if (!single_major)
5230 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5231 err_out_id:
5232 rbd_dev_id_put(rbd_dev);
5233 rbd_dev_mapping_clear(rbd_dev);
5234
5235 return ret;
5236 }
5237
5238 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5239 {
5240 struct rbd_spec *spec = rbd_dev->spec;
5241 size_t size;
5242
5243 /* Record the header object name for this rbd image. */
5244
5245 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5246
5247 if (rbd_dev->image_format == 1)
5248 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5249 else
5250 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5251
5252 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5253 if (!rbd_dev->header_name)
5254 return -ENOMEM;
5255
5256 if (rbd_dev->image_format == 1)
5257 sprintf(rbd_dev->header_name, "%s%s",
5258 spec->image_name, RBD_SUFFIX);
5259 else
5260 sprintf(rbd_dev->header_name, "%s%s",
5261 RBD_HEADER_PREFIX, spec->image_id);
5262 return 0;
5263 }
5264
5265 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5266 {
5267 rbd_dev_unprobe(rbd_dev);
5268 kfree(rbd_dev->header_name);
5269 rbd_dev->header_name = NULL;
5270 rbd_dev->image_format = 0;
5271 kfree(rbd_dev->spec->image_id);
5272 rbd_dev->spec->image_id = NULL;
5273
5274 rbd_dev_destroy(rbd_dev);
5275 }
5276
5277 /*
5278 * Probe for the existence of the header object for the given rbd
5279 * device. If this image is the one being mapped (i.e., not a
5280 * parent), initiate a watch on its header object before using that
5281 * object to get detailed information about the rbd image.
5282 */
5283 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5284 {
5285 int ret;
5286
5287 /*
5288 * Get the id from the image id object. Unless there's an
5289 * error, rbd_dev->spec->image_id will be filled in with
5290 * a dynamically-allocated string, and rbd_dev->image_format
5291 * will be set to either 1 or 2.
5292 */
5293 ret = rbd_dev_image_id(rbd_dev);
5294 if (ret)
5295 return ret;
5296
5297 ret = rbd_dev_header_name(rbd_dev);
5298 if (ret)
5299 goto err_out_format;
5300
5301 if (mapping) {
5302 ret = rbd_dev_header_watch_sync(rbd_dev);
5303 if (ret) {
5304 if (ret == -ENOENT)
5305 pr_info("image %s/%s does not exist\n",
5306 rbd_dev->spec->pool_name,
5307 rbd_dev->spec->image_name);
5308 goto out_header_name;
5309 }
5310 }
5311
5312 ret = rbd_dev_header_info(rbd_dev);
5313 if (ret)
5314 goto err_out_watch;
5315
5316 /*
5317 * If this image is the one being mapped, we have pool name and
5318 * id, image name and id, and snap name - need to fill snap id.
5319 * Otherwise this is a parent image, identified by pool, image
5320 * and snap ids - need to fill in names for those ids.
5321 */
5322 if (mapping)
5323 ret = rbd_spec_fill_snap_id(rbd_dev);
5324 else
5325 ret = rbd_spec_fill_names(rbd_dev);
5326 if (ret) {
5327 if (ret == -ENOENT)
5328 pr_info("snap %s/%s@%s does not exist\n",
5329 rbd_dev->spec->pool_name,
5330 rbd_dev->spec->image_name,
5331 rbd_dev->spec->snap_name);
5332 goto err_out_probe;
5333 }
5334
5335 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5336 ret = rbd_dev_v2_parent_info(rbd_dev);
5337 if (ret)
5338 goto err_out_probe;
5339
5340 /*
5341 * Need to warn users if this image is the one being
5342 * mapped and has a parent.
5343 */
5344 if (mapping && rbd_dev->parent_spec)
5345 rbd_warn(rbd_dev,
5346 "WARNING: kernel layering is EXPERIMENTAL!");
5347 }
5348
5349 ret = rbd_dev_probe_parent(rbd_dev);
5350 if (ret)
5351 goto err_out_probe;
5352
5353 dout("discovered format %u image, header name is %s\n",
5354 rbd_dev->image_format, rbd_dev->header_name);
5355 return 0;
5356
5357 err_out_probe:
5358 rbd_dev_unprobe(rbd_dev);
5359 err_out_watch:
5360 if (mapping)
5361 rbd_dev_header_unwatch_sync(rbd_dev);
5362 out_header_name:
5363 kfree(rbd_dev->header_name);
5364 rbd_dev->header_name = NULL;
5365 err_out_format:
5366 rbd_dev->image_format = 0;
5367 kfree(rbd_dev->spec->image_id);
5368 rbd_dev->spec->image_id = NULL;
5369 return ret;
5370 }
5371
5372 static ssize_t do_rbd_add(struct bus_type *bus,
5373 const char *buf,
5374 size_t count)
5375 {
5376 struct rbd_device *rbd_dev = NULL;
5377 struct ceph_options *ceph_opts = NULL;
5378 struct rbd_options *rbd_opts = NULL;
5379 struct rbd_spec *spec = NULL;
5380 struct rbd_client *rbdc;
5381 bool read_only;
5382 int rc = -ENOMEM;
5383
5384 if (!try_module_get(THIS_MODULE))
5385 return -ENODEV;
5386
5387 /* parse add command */
5388 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5389 if (rc < 0)
5390 goto err_out_module;
5391
5392 rbdc = rbd_get_client(ceph_opts);
5393 if (IS_ERR(rbdc)) {
5394 rc = PTR_ERR(rbdc);
5395 goto err_out_args;
5396 }
5397
5398 /* pick the pool */
5399 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5400 if (rc < 0) {
5401 if (rc == -ENOENT)
5402 pr_info("pool %s does not exist\n", spec->pool_name);
5403 goto err_out_client;
5404 }
5405 spec->pool_id = (u64)rc;
5406
5407 /* The ceph file layout needs to fit pool id in 32 bits */
5408
5409 if (spec->pool_id > (u64)U32_MAX) {
5410 rbd_warn(NULL, "pool id too large (%llu > %u)",
5411 (unsigned long long)spec->pool_id, U32_MAX);
5412 rc = -EIO;
5413 goto err_out_client;
5414 }
5415
5416 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5417 if (!rbd_dev)
5418 goto err_out_client;
5419 rbdc = NULL; /* rbd_dev now owns this */
5420 spec = NULL; /* rbd_dev now owns this */
5421 rbd_opts = NULL; /* rbd_dev now owns this */
5422
5423 rc = rbd_dev_image_probe(rbd_dev, true);
5424 if (rc < 0)
5425 goto err_out_rbd_dev;
5426
5427 /* If we are mapping a snapshot it must be marked read-only */
5428
5429 read_only = rbd_dev->opts->read_only;
5430 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5431 read_only = true;
5432 rbd_dev->mapping.read_only = read_only;
5433
5434 rc = rbd_dev_device_setup(rbd_dev);
5435 if (rc) {
5436 /*
5437 * rbd_dev_header_unwatch_sync() can't be moved into
5438 * rbd_dev_image_release() without refactoring, see
5439 * commit 1f3ef78861ac.
5440 */
5441 rbd_dev_header_unwatch_sync(rbd_dev);
5442 rbd_dev_image_release(rbd_dev);
5443 goto err_out_module;
5444 }
5445
5446 return count;
5447
5448 err_out_rbd_dev:
5449 rbd_dev_destroy(rbd_dev);
5450 err_out_client:
5451 rbd_put_client(rbdc);
5452 err_out_args:
5453 rbd_spec_put(spec);
5454 kfree(rbd_opts);
5455 err_out_module:
5456 module_put(THIS_MODULE);
5457
5458 dout("Error adding device %s\n", buf);
5459
5460 return (ssize_t)rc;
5461 }
5462
5463 static ssize_t rbd_add(struct bus_type *bus,
5464 const char *buf,
5465 size_t count)
5466 {
5467 if (single_major)
5468 return -EINVAL;
5469
5470 return do_rbd_add(bus, buf, count);
5471 }
5472
5473 static ssize_t rbd_add_single_major(struct bus_type *bus,
5474 const char *buf,
5475 size_t count)
5476 {
5477 return do_rbd_add(bus, buf, count);
5478 }
5479
5480 static void rbd_dev_device_release(struct device *dev)
5481 {
5482 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5483
5484 rbd_free_disk(rbd_dev);
5485 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5486 rbd_dev_mapping_clear(rbd_dev);
5487 if (!single_major)
5488 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5489 rbd_dev_id_put(rbd_dev);
5490 rbd_dev_mapping_clear(rbd_dev);
5491 }
5492
5493 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5494 {
5495 while (rbd_dev->parent) {
5496 struct rbd_device *first = rbd_dev;
5497 struct rbd_device *second = first->parent;
5498 struct rbd_device *third;
5499
5500 /*
5501 * Follow to the parent with no grandparent and
5502 * remove it.
5503 */
5504 while (second && (third = second->parent)) {
5505 first = second;
5506 second = third;
5507 }
5508 rbd_assert(second);
5509 rbd_dev_image_release(second);
5510 first->parent = NULL;
5511 first->parent_overlap = 0;
5512
5513 rbd_assert(first->parent_spec);
5514 rbd_spec_put(first->parent_spec);
5515 first->parent_spec = NULL;
5516 }
5517 }
5518
5519 static ssize_t do_rbd_remove(struct bus_type *bus,
5520 const char *buf,
5521 size_t count)
5522 {
5523 struct rbd_device *rbd_dev = NULL;
5524 struct list_head *tmp;
5525 int dev_id;
5526 unsigned long ul;
5527 bool already = false;
5528 int ret;
5529
5530 ret = kstrtoul(buf, 10, &ul);
5531 if (ret)
5532 return ret;
5533
5534 /* convert to int; abort if we lost anything in the conversion */
5535 dev_id = (int)ul;
5536 if (dev_id != ul)
5537 return -EINVAL;
5538
5539 ret = -ENOENT;
5540 spin_lock(&rbd_dev_list_lock);
5541 list_for_each(tmp, &rbd_dev_list) {
5542 rbd_dev = list_entry(tmp, struct rbd_device, node);
5543 if (rbd_dev->dev_id == dev_id) {
5544 ret = 0;
5545 break;
5546 }
5547 }
5548 if (!ret) {
5549 spin_lock_irq(&rbd_dev->lock);
5550 if (rbd_dev->open_count)
5551 ret = -EBUSY;
5552 else
5553 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5554 &rbd_dev->flags);
5555 spin_unlock_irq(&rbd_dev->lock);
5556 }
5557 spin_unlock(&rbd_dev_list_lock);
5558 if (ret < 0 || already)
5559 return ret;
5560
5561 rbd_dev_header_unwatch_sync(rbd_dev);
5562 /*
5563 * flush remaining watch callbacks - these must be complete
5564 * before the osd_client is shutdown
5565 */
5566 dout("%s: flushing notifies", __func__);
5567 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5568
5569 /*
5570 * Don't free anything from rbd_dev->disk until after all
5571 * notifies are completely processed. Otherwise
5572 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5573 * in a potential use after free of rbd_dev->disk or rbd_dev.
5574 */
5575 rbd_bus_del_dev(rbd_dev);
5576 rbd_dev_image_release(rbd_dev);
5577 module_put(THIS_MODULE);
5578
5579 return count;
5580 }
5581
5582 static ssize_t rbd_remove(struct bus_type *bus,
5583 const char *buf,
5584 size_t count)
5585 {
5586 if (single_major)
5587 return -EINVAL;
5588
5589 return do_rbd_remove(bus, buf, count);
5590 }
5591
5592 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5593 const char *buf,
5594 size_t count)
5595 {
5596 return do_rbd_remove(bus, buf, count);
5597 }
5598
5599 /*
5600 * create control files in sysfs
5601 * /sys/bus/rbd/...
5602 */
5603 static int rbd_sysfs_init(void)
5604 {
5605 int ret;
5606
5607 ret = device_register(&rbd_root_dev);
5608 if (ret < 0)
5609 return ret;
5610
5611 ret = bus_register(&rbd_bus_type);
5612 if (ret < 0)
5613 device_unregister(&rbd_root_dev);
5614
5615 return ret;
5616 }
5617
5618 static void rbd_sysfs_cleanup(void)
5619 {
5620 bus_unregister(&rbd_bus_type);
5621 device_unregister(&rbd_root_dev);
5622 }
5623
5624 static int rbd_slab_init(void)
5625 {
5626 rbd_assert(!rbd_img_request_cache);
5627 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5628 sizeof (struct rbd_img_request),
5629 __alignof__(struct rbd_img_request),
5630 0, NULL);
5631 if (!rbd_img_request_cache)
5632 return -ENOMEM;
5633
5634 rbd_assert(!rbd_obj_request_cache);
5635 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5636 sizeof (struct rbd_obj_request),
5637 __alignof__(struct rbd_obj_request),
5638 0, NULL);
5639 if (!rbd_obj_request_cache)
5640 goto out_err;
5641
5642 rbd_assert(!rbd_segment_name_cache);
5643 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5644 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5645 if (rbd_segment_name_cache)
5646 return 0;
5647 out_err:
5648 if (rbd_obj_request_cache) {
5649 kmem_cache_destroy(rbd_obj_request_cache);
5650 rbd_obj_request_cache = NULL;
5651 }
5652
5653 kmem_cache_destroy(rbd_img_request_cache);
5654 rbd_img_request_cache = NULL;
5655
5656 return -ENOMEM;
5657 }
5658
5659 static void rbd_slab_exit(void)
5660 {
5661 rbd_assert(rbd_segment_name_cache);
5662 kmem_cache_destroy(rbd_segment_name_cache);
5663 rbd_segment_name_cache = NULL;
5664
5665 rbd_assert(rbd_obj_request_cache);
5666 kmem_cache_destroy(rbd_obj_request_cache);
5667 rbd_obj_request_cache = NULL;
5668
5669 rbd_assert(rbd_img_request_cache);
5670 kmem_cache_destroy(rbd_img_request_cache);
5671 rbd_img_request_cache = NULL;
5672 }
5673
5674 static int __init rbd_init(void)
5675 {
5676 int rc;
5677
5678 if (!libceph_compatible(NULL)) {
5679 rbd_warn(NULL, "libceph incompatibility (quitting)");
5680 return -EINVAL;
5681 }
5682
5683 rc = rbd_slab_init();
5684 if (rc)
5685 return rc;
5686
5687 /*
5688 * The number of active work items is limited by the number of
5689 * rbd devices * queue depth, so leave @max_active at default.
5690 */
5691 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5692 if (!rbd_wq) {
5693 rc = -ENOMEM;
5694 goto err_out_slab;
5695 }
5696
5697 if (single_major) {
5698 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5699 if (rbd_major < 0) {
5700 rc = rbd_major;
5701 goto err_out_wq;
5702 }
5703 }
5704
5705 rc = rbd_sysfs_init();
5706 if (rc)
5707 goto err_out_blkdev;
5708
5709 if (single_major)
5710 pr_info("loaded (major %d)\n", rbd_major);
5711 else
5712 pr_info("loaded\n");
5713
5714 return 0;
5715
5716 err_out_blkdev:
5717 if (single_major)
5718 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5719 err_out_wq:
5720 destroy_workqueue(rbd_wq);
5721 err_out_slab:
5722 rbd_slab_exit();
5723 return rc;
5724 }
5725
5726 static void __exit rbd_exit(void)
5727 {
5728 ida_destroy(&rbd_dev_id_ida);
5729 rbd_sysfs_cleanup();
5730 if (single_major)
5731 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5732 destroy_workqueue(rbd_wq);
5733 rbd_slab_exit();
5734 }
5735
5736 module_init(rbd_init);
5737 module_exit(rbd_exit);
5738
5739 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5740 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5741 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5742 /* following authorship retained from original osdblk.c */
5743 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5744
5745 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5746 MODULE_LICENSE("GPL");
This page took 0.214537 seconds and 5 git commands to generate.