libceph: drop return value from page vector copy routines
[deliverable/linux.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 /* It might be useful to have these defined elsewhere */
56
57 #define U8_MAX ((u8) (~0U))
58 #define U16_MAX ((u16) (~0U))
59 #define U32_MAX ((u32) (~0U))
60 #define U64_MAX ((u64) (~0ULL))
61
62 #define RBD_DRV_NAME "rbd"
63 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
64
65 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
66
67 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
68 #define RBD_MAX_SNAP_NAME_LEN \
69 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
70
71 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
72
73 #define RBD_SNAP_HEAD_NAME "-"
74
75 /* This allows a single page to hold an image name sent by OSD */
76 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
77 #define RBD_IMAGE_ID_LEN_MAX 64
78
79 #define RBD_OBJ_PREFIX_LEN_MAX 64
80
81 /* Feature bits */
82
83 #define RBD_FEATURE_LAYERING 1
84
85 /* Features supported by this (client software) implementation. */
86
87 #define RBD_FEATURES_ALL (0)
88
89 /*
90 * An RBD device name will be "rbd#", where the "rbd" comes from
91 * RBD_DRV_NAME above, and # is a unique integer identifier.
92 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
93 * enough to hold all possible device names.
94 */
95 #define DEV_NAME_LEN 32
96 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
97
98 /*
99 * block device image metadata (in-memory version)
100 */
101 struct rbd_image_header {
102 /* These four fields never change for a given rbd image */
103 char *object_prefix;
104 u64 features;
105 __u8 obj_order;
106 __u8 crypt_type;
107 __u8 comp_type;
108
109 /* The remaining fields need to be updated occasionally */
110 u64 image_size;
111 struct ceph_snap_context *snapc;
112 char *snap_names;
113 u64 *snap_sizes;
114
115 u64 obj_version;
116 };
117
118 /*
119 * An rbd image specification.
120 *
121 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
122 * identify an image. Each rbd_dev structure includes a pointer to
123 * an rbd_spec structure that encapsulates this identity.
124 *
125 * Each of the id's in an rbd_spec has an associated name. For a
126 * user-mapped image, the names are supplied and the id's associated
127 * with them are looked up. For a layered image, a parent image is
128 * defined by the tuple, and the names are looked up.
129 *
130 * An rbd_dev structure contains a parent_spec pointer which is
131 * non-null if the image it represents is a child in a layered
132 * image. This pointer will refer to the rbd_spec structure used
133 * by the parent rbd_dev for its own identity (i.e., the structure
134 * is shared between the parent and child).
135 *
136 * Since these structures are populated once, during the discovery
137 * phase of image construction, they are effectively immutable so
138 * we make no effort to synchronize access to them.
139 *
140 * Note that code herein does not assume the image name is known (it
141 * could be a null pointer).
142 */
143 struct rbd_spec {
144 u64 pool_id;
145 char *pool_name;
146
147 char *image_id;
148 char *image_name;
149
150 u64 snap_id;
151 char *snap_name;
152
153 struct kref kref;
154 };
155
156 /*
157 * an instance of the client. multiple devices may share an rbd client.
158 */
159 struct rbd_client {
160 struct ceph_client *client;
161 struct kref kref;
162 struct list_head node;
163 };
164
165 struct rbd_img_request;
166 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
167
168 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
169
170 struct rbd_obj_request;
171 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
172
173 enum obj_request_type {
174 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
175 };
176
177 struct rbd_obj_request {
178 const char *object_name;
179 u64 offset; /* object start byte */
180 u64 length; /* bytes from offset */
181
182 struct rbd_img_request *img_request;
183 struct list_head links; /* img_request->obj_requests */
184 u32 which; /* posn image request list */
185
186 enum obj_request_type type;
187 union {
188 struct bio *bio_list;
189 struct {
190 struct page **pages;
191 u32 page_count;
192 };
193 };
194
195 struct ceph_osd_request *osd_req;
196
197 u64 xferred; /* bytes transferred */
198 u64 version;
199 s32 result;
200 atomic_t done;
201
202 rbd_obj_callback_t callback;
203 struct completion completion;
204
205 struct kref kref;
206 };
207
208 struct rbd_img_request {
209 struct request *rq;
210 struct rbd_device *rbd_dev;
211 u64 offset; /* starting image byte offset */
212 u64 length; /* byte count from offset */
213 bool write_request; /* false for read */
214 union {
215 struct ceph_snap_context *snapc; /* for writes */
216 u64 snap_id; /* for reads */
217 };
218 spinlock_t completion_lock;/* protects next_completion */
219 u32 next_completion;
220 rbd_img_callback_t callback;
221
222 u32 obj_request_count;
223 struct list_head obj_requests; /* rbd_obj_request structs */
224
225 struct kref kref;
226 };
227
228 #define for_each_obj_request(ireq, oreq) \
229 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
230 #define for_each_obj_request_from(ireq, oreq) \
231 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
232 #define for_each_obj_request_safe(ireq, oreq, n) \
233 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
234
235 struct rbd_snap {
236 struct device dev;
237 const char *name;
238 u64 size;
239 struct list_head node;
240 u64 id;
241 u64 features;
242 };
243
244 struct rbd_mapping {
245 u64 size;
246 u64 features;
247 bool read_only;
248 };
249
250 /*
251 * a single device
252 */
253 struct rbd_device {
254 int dev_id; /* blkdev unique id */
255
256 int major; /* blkdev assigned major */
257 struct gendisk *disk; /* blkdev's gendisk and rq */
258
259 u32 image_format; /* Either 1 or 2 */
260 struct rbd_client *rbd_client;
261
262 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
263
264 spinlock_t lock; /* queue, flags, open_count */
265
266 struct rbd_image_header header;
267 unsigned long flags; /* possibly lock protected */
268 struct rbd_spec *spec;
269
270 char *header_name;
271
272 struct ceph_file_layout layout;
273
274 struct ceph_osd_event *watch_event;
275 struct rbd_obj_request *watch_request;
276
277 struct rbd_spec *parent_spec;
278 u64 parent_overlap;
279
280 /* protects updating the header */
281 struct rw_semaphore header_rwsem;
282
283 struct rbd_mapping mapping;
284
285 struct list_head node;
286
287 /* list of snapshots */
288 struct list_head snaps;
289
290 /* sysfs related */
291 struct device dev;
292 unsigned long open_count; /* protected by lock */
293 };
294
295 /*
296 * Flag bits for rbd_dev->flags. If atomicity is required,
297 * rbd_dev->lock is used to protect access.
298 *
299 * Currently, only the "removing" flag (which is coupled with the
300 * "open_count" field) requires atomic access.
301 */
302 enum rbd_dev_flags {
303 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
304 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
305 };
306
307 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
308
309 static LIST_HEAD(rbd_dev_list); /* devices */
310 static DEFINE_SPINLOCK(rbd_dev_list_lock);
311
312 static LIST_HEAD(rbd_client_list); /* clients */
313 static DEFINE_SPINLOCK(rbd_client_list_lock);
314
315 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
316 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
317
318 static void rbd_dev_release(struct device *dev);
319 static void rbd_remove_snap_dev(struct rbd_snap *snap);
320
321 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
322 size_t count);
323 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
324 size_t count);
325
326 static struct bus_attribute rbd_bus_attrs[] = {
327 __ATTR(add, S_IWUSR, NULL, rbd_add),
328 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
329 __ATTR_NULL
330 };
331
332 static struct bus_type rbd_bus_type = {
333 .name = "rbd",
334 .bus_attrs = rbd_bus_attrs,
335 };
336
337 static void rbd_root_dev_release(struct device *dev)
338 {
339 }
340
341 static struct device rbd_root_dev = {
342 .init_name = "rbd",
343 .release = rbd_root_dev_release,
344 };
345
346 static __printf(2, 3)
347 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
348 {
349 struct va_format vaf;
350 va_list args;
351
352 va_start(args, fmt);
353 vaf.fmt = fmt;
354 vaf.va = &args;
355
356 if (!rbd_dev)
357 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
358 else if (rbd_dev->disk)
359 printk(KERN_WARNING "%s: %s: %pV\n",
360 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
361 else if (rbd_dev->spec && rbd_dev->spec->image_name)
362 printk(KERN_WARNING "%s: image %s: %pV\n",
363 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
364 else if (rbd_dev->spec && rbd_dev->spec->image_id)
365 printk(KERN_WARNING "%s: id %s: %pV\n",
366 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
367 else /* punt */
368 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
369 RBD_DRV_NAME, rbd_dev, &vaf);
370 va_end(args);
371 }
372
373 #ifdef RBD_DEBUG
374 #define rbd_assert(expr) \
375 if (unlikely(!(expr))) { \
376 printk(KERN_ERR "\nAssertion failure in %s() " \
377 "at line %d:\n\n" \
378 "\trbd_assert(%s);\n\n", \
379 __func__, __LINE__, #expr); \
380 BUG(); \
381 }
382 #else /* !RBD_DEBUG */
383 # define rbd_assert(expr) ((void) 0)
384 #endif /* !RBD_DEBUG */
385
386 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
387 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
388
389 static int rbd_open(struct block_device *bdev, fmode_t mode)
390 {
391 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
392 bool removing = false;
393
394 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
395 return -EROFS;
396
397 spin_lock_irq(&rbd_dev->lock);
398 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
399 removing = true;
400 else
401 rbd_dev->open_count++;
402 spin_unlock_irq(&rbd_dev->lock);
403 if (removing)
404 return -ENOENT;
405
406 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
407 (void) get_device(&rbd_dev->dev);
408 set_device_ro(bdev, rbd_dev->mapping.read_only);
409 mutex_unlock(&ctl_mutex);
410
411 return 0;
412 }
413
414 static int rbd_release(struct gendisk *disk, fmode_t mode)
415 {
416 struct rbd_device *rbd_dev = disk->private_data;
417 unsigned long open_count_before;
418
419 spin_lock_irq(&rbd_dev->lock);
420 open_count_before = rbd_dev->open_count--;
421 spin_unlock_irq(&rbd_dev->lock);
422 rbd_assert(open_count_before > 0);
423
424 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
425 put_device(&rbd_dev->dev);
426 mutex_unlock(&ctl_mutex);
427
428 return 0;
429 }
430
431 static const struct block_device_operations rbd_bd_ops = {
432 .owner = THIS_MODULE,
433 .open = rbd_open,
434 .release = rbd_release,
435 };
436
437 /*
438 * Initialize an rbd client instance.
439 * We own *ceph_opts.
440 */
441 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
442 {
443 struct rbd_client *rbdc;
444 int ret = -ENOMEM;
445
446 dout("rbd_client_create\n");
447 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
448 if (!rbdc)
449 goto out_opt;
450
451 kref_init(&rbdc->kref);
452 INIT_LIST_HEAD(&rbdc->node);
453
454 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
455
456 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
457 if (IS_ERR(rbdc->client))
458 goto out_mutex;
459 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
460
461 ret = ceph_open_session(rbdc->client);
462 if (ret < 0)
463 goto out_err;
464
465 spin_lock(&rbd_client_list_lock);
466 list_add_tail(&rbdc->node, &rbd_client_list);
467 spin_unlock(&rbd_client_list_lock);
468
469 mutex_unlock(&ctl_mutex);
470
471 dout("rbd_client_create created %p\n", rbdc);
472 return rbdc;
473
474 out_err:
475 ceph_destroy_client(rbdc->client);
476 out_mutex:
477 mutex_unlock(&ctl_mutex);
478 kfree(rbdc);
479 out_opt:
480 if (ceph_opts)
481 ceph_destroy_options(ceph_opts);
482 return ERR_PTR(ret);
483 }
484
485 /*
486 * Find a ceph client with specific addr and configuration. If
487 * found, bump its reference count.
488 */
489 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
490 {
491 struct rbd_client *client_node;
492 bool found = false;
493
494 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
495 return NULL;
496
497 spin_lock(&rbd_client_list_lock);
498 list_for_each_entry(client_node, &rbd_client_list, node) {
499 if (!ceph_compare_options(ceph_opts, client_node->client)) {
500 kref_get(&client_node->kref);
501 found = true;
502 break;
503 }
504 }
505 spin_unlock(&rbd_client_list_lock);
506
507 return found ? client_node : NULL;
508 }
509
510 /*
511 * mount options
512 */
513 enum {
514 Opt_last_int,
515 /* int args above */
516 Opt_last_string,
517 /* string args above */
518 Opt_read_only,
519 Opt_read_write,
520 /* Boolean args above */
521 Opt_last_bool,
522 };
523
524 static match_table_t rbd_opts_tokens = {
525 /* int args above */
526 /* string args above */
527 {Opt_read_only, "read_only"},
528 {Opt_read_only, "ro"}, /* Alternate spelling */
529 {Opt_read_write, "read_write"},
530 {Opt_read_write, "rw"}, /* Alternate spelling */
531 /* Boolean args above */
532 {-1, NULL}
533 };
534
535 struct rbd_options {
536 bool read_only;
537 };
538
539 #define RBD_READ_ONLY_DEFAULT false
540
541 static int parse_rbd_opts_token(char *c, void *private)
542 {
543 struct rbd_options *rbd_opts = private;
544 substring_t argstr[MAX_OPT_ARGS];
545 int token, intval, ret;
546
547 token = match_token(c, rbd_opts_tokens, argstr);
548 if (token < 0)
549 return -EINVAL;
550
551 if (token < Opt_last_int) {
552 ret = match_int(&argstr[0], &intval);
553 if (ret < 0) {
554 pr_err("bad mount option arg (not int) "
555 "at '%s'\n", c);
556 return ret;
557 }
558 dout("got int token %d val %d\n", token, intval);
559 } else if (token > Opt_last_int && token < Opt_last_string) {
560 dout("got string token %d val %s\n", token,
561 argstr[0].from);
562 } else if (token > Opt_last_string && token < Opt_last_bool) {
563 dout("got Boolean token %d\n", token);
564 } else {
565 dout("got token %d\n", token);
566 }
567
568 switch (token) {
569 case Opt_read_only:
570 rbd_opts->read_only = true;
571 break;
572 case Opt_read_write:
573 rbd_opts->read_only = false;
574 break;
575 default:
576 rbd_assert(false);
577 break;
578 }
579 return 0;
580 }
581
582 /*
583 * Get a ceph client with specific addr and configuration, if one does
584 * not exist create it.
585 */
586 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
587 {
588 struct rbd_client *rbdc;
589
590 rbdc = rbd_client_find(ceph_opts);
591 if (rbdc) /* using an existing client */
592 ceph_destroy_options(ceph_opts);
593 else
594 rbdc = rbd_client_create(ceph_opts);
595
596 return rbdc;
597 }
598
599 /*
600 * Destroy ceph client
601 *
602 * Caller must hold rbd_client_list_lock.
603 */
604 static void rbd_client_release(struct kref *kref)
605 {
606 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
607
608 dout("rbd_release_client %p\n", rbdc);
609 spin_lock(&rbd_client_list_lock);
610 list_del(&rbdc->node);
611 spin_unlock(&rbd_client_list_lock);
612
613 ceph_destroy_client(rbdc->client);
614 kfree(rbdc);
615 }
616
617 /*
618 * Drop reference to ceph client node. If it's not referenced anymore, release
619 * it.
620 */
621 static void rbd_put_client(struct rbd_client *rbdc)
622 {
623 if (rbdc)
624 kref_put(&rbdc->kref, rbd_client_release);
625 }
626
627 static bool rbd_image_format_valid(u32 image_format)
628 {
629 return image_format == 1 || image_format == 2;
630 }
631
632 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
633 {
634 size_t size;
635 u32 snap_count;
636
637 /* The header has to start with the magic rbd header text */
638 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
639 return false;
640
641 /* The bio layer requires at least sector-sized I/O */
642
643 if (ondisk->options.order < SECTOR_SHIFT)
644 return false;
645
646 /* If we use u64 in a few spots we may be able to loosen this */
647
648 if (ondisk->options.order > 8 * sizeof (int) - 1)
649 return false;
650
651 /*
652 * The size of a snapshot header has to fit in a size_t, and
653 * that limits the number of snapshots.
654 */
655 snap_count = le32_to_cpu(ondisk->snap_count);
656 size = SIZE_MAX - sizeof (struct ceph_snap_context);
657 if (snap_count > size / sizeof (__le64))
658 return false;
659
660 /*
661 * Not only that, but the size of the entire the snapshot
662 * header must also be representable in a size_t.
663 */
664 size -= snap_count * sizeof (__le64);
665 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
666 return false;
667
668 return true;
669 }
670
671 /*
672 * Create a new header structure, translate header format from the on-disk
673 * header.
674 */
675 static int rbd_header_from_disk(struct rbd_image_header *header,
676 struct rbd_image_header_ondisk *ondisk)
677 {
678 u32 snap_count;
679 size_t len;
680 size_t size;
681 u32 i;
682
683 memset(header, 0, sizeof (*header));
684
685 snap_count = le32_to_cpu(ondisk->snap_count);
686
687 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
688 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
689 if (!header->object_prefix)
690 return -ENOMEM;
691 memcpy(header->object_prefix, ondisk->object_prefix, len);
692 header->object_prefix[len] = '\0';
693
694 if (snap_count) {
695 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
696
697 /* Save a copy of the snapshot names */
698
699 if (snap_names_len > (u64) SIZE_MAX)
700 return -EIO;
701 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
702 if (!header->snap_names)
703 goto out_err;
704 /*
705 * Note that rbd_dev_v1_header_read() guarantees
706 * the ondisk buffer we're working with has
707 * snap_names_len bytes beyond the end of the
708 * snapshot id array, this memcpy() is safe.
709 */
710 memcpy(header->snap_names, &ondisk->snaps[snap_count],
711 snap_names_len);
712
713 /* Record each snapshot's size */
714
715 size = snap_count * sizeof (*header->snap_sizes);
716 header->snap_sizes = kmalloc(size, GFP_KERNEL);
717 if (!header->snap_sizes)
718 goto out_err;
719 for (i = 0; i < snap_count; i++)
720 header->snap_sizes[i] =
721 le64_to_cpu(ondisk->snaps[i].image_size);
722 } else {
723 WARN_ON(ondisk->snap_names_len);
724 header->snap_names = NULL;
725 header->snap_sizes = NULL;
726 }
727
728 header->features = 0; /* No features support in v1 images */
729 header->obj_order = ondisk->options.order;
730 header->crypt_type = ondisk->options.crypt_type;
731 header->comp_type = ondisk->options.comp_type;
732
733 /* Allocate and fill in the snapshot context */
734
735 header->image_size = le64_to_cpu(ondisk->image_size);
736 size = sizeof (struct ceph_snap_context);
737 size += snap_count * sizeof (header->snapc->snaps[0]);
738 header->snapc = kzalloc(size, GFP_KERNEL);
739 if (!header->snapc)
740 goto out_err;
741
742 atomic_set(&header->snapc->nref, 1);
743 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
744 header->snapc->num_snaps = snap_count;
745 for (i = 0; i < snap_count; i++)
746 header->snapc->snaps[i] =
747 le64_to_cpu(ondisk->snaps[i].id);
748
749 return 0;
750
751 out_err:
752 kfree(header->snap_sizes);
753 header->snap_sizes = NULL;
754 kfree(header->snap_names);
755 header->snap_names = NULL;
756 kfree(header->object_prefix);
757 header->object_prefix = NULL;
758
759 return -ENOMEM;
760 }
761
762 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
763 {
764 struct rbd_snap *snap;
765
766 if (snap_id == CEPH_NOSNAP)
767 return RBD_SNAP_HEAD_NAME;
768
769 list_for_each_entry(snap, &rbd_dev->snaps, node)
770 if (snap_id == snap->id)
771 return snap->name;
772
773 return NULL;
774 }
775
776 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
777 {
778
779 struct rbd_snap *snap;
780
781 list_for_each_entry(snap, &rbd_dev->snaps, node) {
782 if (!strcmp(snap_name, snap->name)) {
783 rbd_dev->spec->snap_id = snap->id;
784 rbd_dev->mapping.size = snap->size;
785 rbd_dev->mapping.features = snap->features;
786
787 return 0;
788 }
789 }
790
791 return -ENOENT;
792 }
793
794 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
795 {
796 int ret;
797
798 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
799 sizeof (RBD_SNAP_HEAD_NAME))) {
800 rbd_dev->spec->snap_id = CEPH_NOSNAP;
801 rbd_dev->mapping.size = rbd_dev->header.image_size;
802 rbd_dev->mapping.features = rbd_dev->header.features;
803 ret = 0;
804 } else {
805 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
806 if (ret < 0)
807 goto done;
808 rbd_dev->mapping.read_only = true;
809 }
810 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
811
812 done:
813 return ret;
814 }
815
816 static void rbd_header_free(struct rbd_image_header *header)
817 {
818 kfree(header->object_prefix);
819 header->object_prefix = NULL;
820 kfree(header->snap_sizes);
821 header->snap_sizes = NULL;
822 kfree(header->snap_names);
823 header->snap_names = NULL;
824 ceph_put_snap_context(header->snapc);
825 header->snapc = NULL;
826 }
827
828 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
829 {
830 char *name;
831 u64 segment;
832 int ret;
833
834 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
835 if (!name)
836 return NULL;
837 segment = offset >> rbd_dev->header.obj_order;
838 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
839 rbd_dev->header.object_prefix, segment);
840 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
841 pr_err("error formatting segment name for #%llu (%d)\n",
842 segment, ret);
843 kfree(name);
844 name = NULL;
845 }
846
847 return name;
848 }
849
850 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
851 {
852 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
853
854 return offset & (segment_size - 1);
855 }
856
857 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
858 u64 offset, u64 length)
859 {
860 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
861
862 offset &= segment_size - 1;
863
864 rbd_assert(length <= U64_MAX - offset);
865 if (offset + length > segment_size)
866 length = segment_size - offset;
867
868 return length;
869 }
870
871 /*
872 * returns the size of an object in the image
873 */
874 static u64 rbd_obj_bytes(struct rbd_image_header *header)
875 {
876 return 1 << header->obj_order;
877 }
878
879 /*
880 * bio helpers
881 */
882
883 static void bio_chain_put(struct bio *chain)
884 {
885 struct bio *tmp;
886
887 while (chain) {
888 tmp = chain;
889 chain = chain->bi_next;
890 bio_put(tmp);
891 }
892 }
893
894 /*
895 * zeros a bio chain, starting at specific offset
896 */
897 static void zero_bio_chain(struct bio *chain, int start_ofs)
898 {
899 struct bio_vec *bv;
900 unsigned long flags;
901 void *buf;
902 int i;
903 int pos = 0;
904
905 while (chain) {
906 bio_for_each_segment(bv, chain, i) {
907 if (pos + bv->bv_len > start_ofs) {
908 int remainder = max(start_ofs - pos, 0);
909 buf = bvec_kmap_irq(bv, &flags);
910 memset(buf + remainder, 0,
911 bv->bv_len - remainder);
912 bvec_kunmap_irq(buf, &flags);
913 }
914 pos += bv->bv_len;
915 }
916
917 chain = chain->bi_next;
918 }
919 }
920
921 /*
922 * Clone a portion of a bio, starting at the given byte offset
923 * and continuing for the number of bytes indicated.
924 */
925 static struct bio *bio_clone_range(struct bio *bio_src,
926 unsigned int offset,
927 unsigned int len,
928 gfp_t gfpmask)
929 {
930 struct bio_vec *bv;
931 unsigned int resid;
932 unsigned short idx;
933 unsigned int voff;
934 unsigned short end_idx;
935 unsigned short vcnt;
936 struct bio *bio;
937
938 /* Handle the easy case for the caller */
939
940 if (!offset && len == bio_src->bi_size)
941 return bio_clone(bio_src, gfpmask);
942
943 if (WARN_ON_ONCE(!len))
944 return NULL;
945 if (WARN_ON_ONCE(len > bio_src->bi_size))
946 return NULL;
947 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
948 return NULL;
949
950 /* Find first affected segment... */
951
952 resid = offset;
953 __bio_for_each_segment(bv, bio_src, idx, 0) {
954 if (resid < bv->bv_len)
955 break;
956 resid -= bv->bv_len;
957 }
958 voff = resid;
959
960 /* ...and the last affected segment */
961
962 resid += len;
963 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
964 if (resid <= bv->bv_len)
965 break;
966 resid -= bv->bv_len;
967 }
968 vcnt = end_idx - idx + 1;
969
970 /* Build the clone */
971
972 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
973 if (!bio)
974 return NULL; /* ENOMEM */
975
976 bio->bi_bdev = bio_src->bi_bdev;
977 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
978 bio->bi_rw = bio_src->bi_rw;
979 bio->bi_flags |= 1 << BIO_CLONED;
980
981 /*
982 * Copy over our part of the bio_vec, then update the first
983 * and last (or only) entries.
984 */
985 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
986 vcnt * sizeof (struct bio_vec));
987 bio->bi_io_vec[0].bv_offset += voff;
988 if (vcnt > 1) {
989 bio->bi_io_vec[0].bv_len -= voff;
990 bio->bi_io_vec[vcnt - 1].bv_len = resid;
991 } else {
992 bio->bi_io_vec[0].bv_len = len;
993 }
994
995 bio->bi_vcnt = vcnt;
996 bio->bi_size = len;
997 bio->bi_idx = 0;
998
999 return bio;
1000 }
1001
1002 /*
1003 * Clone a portion of a bio chain, starting at the given byte offset
1004 * into the first bio in the source chain and continuing for the
1005 * number of bytes indicated. The result is another bio chain of
1006 * exactly the given length, or a null pointer on error.
1007 *
1008 * The bio_src and offset parameters are both in-out. On entry they
1009 * refer to the first source bio and the offset into that bio where
1010 * the start of data to be cloned is located.
1011 *
1012 * On return, bio_src is updated to refer to the bio in the source
1013 * chain that contains first un-cloned byte, and *offset will
1014 * contain the offset of that byte within that bio.
1015 */
1016 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1017 unsigned int *offset,
1018 unsigned int len,
1019 gfp_t gfpmask)
1020 {
1021 struct bio *bi = *bio_src;
1022 unsigned int off = *offset;
1023 struct bio *chain = NULL;
1024 struct bio **end;
1025
1026 /* Build up a chain of clone bios up to the limit */
1027
1028 if (!bi || off >= bi->bi_size || !len)
1029 return NULL; /* Nothing to clone */
1030
1031 end = &chain;
1032 while (len) {
1033 unsigned int bi_size;
1034 struct bio *bio;
1035
1036 if (!bi) {
1037 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1038 goto out_err; /* EINVAL; ran out of bio's */
1039 }
1040 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1041 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1042 if (!bio)
1043 goto out_err; /* ENOMEM */
1044
1045 *end = bio;
1046 end = &bio->bi_next;
1047
1048 off += bi_size;
1049 if (off == bi->bi_size) {
1050 bi = bi->bi_next;
1051 off = 0;
1052 }
1053 len -= bi_size;
1054 }
1055 *bio_src = bi;
1056 *offset = off;
1057
1058 return chain;
1059 out_err:
1060 bio_chain_put(chain);
1061
1062 return NULL;
1063 }
1064
1065 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1066 {
1067 kref_get(&obj_request->kref);
1068 }
1069
1070 static void rbd_obj_request_destroy(struct kref *kref);
1071 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1072 {
1073 rbd_assert(obj_request != NULL);
1074 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1075 }
1076
1077 static void rbd_img_request_get(struct rbd_img_request *img_request)
1078 {
1079 kref_get(&img_request->kref);
1080 }
1081
1082 static void rbd_img_request_destroy(struct kref *kref);
1083 static void rbd_img_request_put(struct rbd_img_request *img_request)
1084 {
1085 rbd_assert(img_request != NULL);
1086 kref_put(&img_request->kref, rbd_img_request_destroy);
1087 }
1088
1089 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1090 struct rbd_obj_request *obj_request)
1091 {
1092 rbd_assert(obj_request->img_request == NULL);
1093
1094 rbd_obj_request_get(obj_request);
1095 obj_request->img_request = img_request;
1096 obj_request->which = img_request->obj_request_count;
1097 rbd_assert(obj_request->which != BAD_WHICH);
1098 img_request->obj_request_count++;
1099 list_add_tail(&obj_request->links, &img_request->obj_requests);
1100 }
1101
1102 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1103 struct rbd_obj_request *obj_request)
1104 {
1105 rbd_assert(obj_request->which != BAD_WHICH);
1106
1107 list_del(&obj_request->links);
1108 rbd_assert(img_request->obj_request_count > 0);
1109 img_request->obj_request_count--;
1110 rbd_assert(obj_request->which == img_request->obj_request_count);
1111 obj_request->which = BAD_WHICH;
1112 rbd_assert(obj_request->img_request == img_request);
1113 obj_request->img_request = NULL;
1114 obj_request->callback = NULL;
1115 rbd_obj_request_put(obj_request);
1116 }
1117
1118 static bool obj_request_type_valid(enum obj_request_type type)
1119 {
1120 switch (type) {
1121 case OBJ_REQUEST_NODATA:
1122 case OBJ_REQUEST_BIO:
1123 case OBJ_REQUEST_PAGES:
1124 return true;
1125 default:
1126 return false;
1127 }
1128 }
1129
1130 struct ceph_osd_req_op *rbd_osd_req_op_create(u16 opcode, ...)
1131 {
1132 struct ceph_osd_req_op *op;
1133 va_list args;
1134 size_t size;
1135
1136 op = kzalloc(sizeof (*op), GFP_NOIO);
1137 if (!op)
1138 return NULL;
1139 op->op = opcode;
1140 va_start(args, opcode);
1141 switch (opcode) {
1142 case CEPH_OSD_OP_READ:
1143 case CEPH_OSD_OP_WRITE:
1144 /* rbd_osd_req_op_create(READ, offset, length) */
1145 /* rbd_osd_req_op_create(WRITE, offset, length) */
1146 op->extent.offset = va_arg(args, u64);
1147 op->extent.length = va_arg(args, u64);
1148 if (opcode == CEPH_OSD_OP_WRITE)
1149 op->payload_len = op->extent.length;
1150 break;
1151 case CEPH_OSD_OP_STAT:
1152 break;
1153 case CEPH_OSD_OP_CALL:
1154 /* rbd_osd_req_op_create(CALL, class, method, data, datalen) */
1155 op->cls.class_name = va_arg(args, char *);
1156 size = strlen(op->cls.class_name);
1157 rbd_assert(size <= (size_t) U8_MAX);
1158 op->cls.class_len = size;
1159 op->payload_len = size;
1160
1161 op->cls.method_name = va_arg(args, char *);
1162 size = strlen(op->cls.method_name);
1163 rbd_assert(size <= (size_t) U8_MAX);
1164 op->cls.method_len = size;
1165 op->payload_len += size;
1166
1167 op->cls.argc = 0;
1168 op->cls.indata = va_arg(args, void *);
1169 size = va_arg(args, size_t);
1170 rbd_assert(size <= (size_t) U32_MAX);
1171 op->cls.indata_len = (u32) size;
1172 op->payload_len += size;
1173 break;
1174 case CEPH_OSD_OP_NOTIFY_ACK:
1175 case CEPH_OSD_OP_WATCH:
1176 /* rbd_osd_req_op_create(NOTIFY_ACK, cookie, version) */
1177 /* rbd_osd_req_op_create(WATCH, cookie, version, flag) */
1178 op->watch.cookie = va_arg(args, u64);
1179 op->watch.ver = va_arg(args, u64);
1180 op->watch.ver = cpu_to_le64(op->watch.ver);
1181 if (opcode == CEPH_OSD_OP_WATCH && va_arg(args, int))
1182 op->watch.flag = (u8) 1;
1183 break;
1184 default:
1185 rbd_warn(NULL, "unsupported opcode %hu\n", opcode);
1186 kfree(op);
1187 op = NULL;
1188 break;
1189 }
1190 va_end(args);
1191
1192 return op;
1193 }
1194
1195 static void rbd_osd_req_op_destroy(struct ceph_osd_req_op *op)
1196 {
1197 kfree(op);
1198 }
1199
1200 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1201 struct rbd_obj_request *obj_request)
1202 {
1203 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1204 }
1205
1206 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1207 {
1208 if (img_request->callback)
1209 img_request->callback(img_request);
1210 else
1211 rbd_img_request_put(img_request);
1212 }
1213
1214 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1215
1216 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1217 {
1218 return wait_for_completion_interruptible(&obj_request->completion);
1219 }
1220
1221 static void obj_request_done_init(struct rbd_obj_request *obj_request)
1222 {
1223 atomic_set(&obj_request->done, 0);
1224 smp_wmb();
1225 }
1226
1227 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1228 {
1229 atomic_set(&obj_request->done, 1);
1230 smp_wmb();
1231 }
1232
1233 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1234 {
1235 smp_rmb();
1236 return atomic_read(&obj_request->done) != 0;
1237 }
1238
1239 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request,
1240 struct ceph_osd_op *op)
1241 {
1242 obj_request_done_set(obj_request);
1243 }
1244
1245 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1246 {
1247 if (obj_request->callback)
1248 obj_request->callback(obj_request);
1249 else
1250 complete_all(&obj_request->completion);
1251 }
1252
1253 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request,
1254 struct ceph_osd_op *op)
1255 {
1256 u64 xferred;
1257
1258 /*
1259 * We support a 64-bit length, but ultimately it has to be
1260 * passed to blk_end_request(), which takes an unsigned int.
1261 */
1262 xferred = le64_to_cpu(op->extent.length);
1263 rbd_assert(xferred < (u64) UINT_MAX);
1264 if (obj_request->result == (s32) -ENOENT) {
1265 zero_bio_chain(obj_request->bio_list, 0);
1266 obj_request->result = 0;
1267 } else if (xferred < obj_request->length && !obj_request->result) {
1268 zero_bio_chain(obj_request->bio_list, xferred);
1269 xferred = obj_request->length;
1270 }
1271 obj_request->xferred = xferred;
1272 obj_request_done_set(obj_request);
1273 }
1274
1275 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request,
1276 struct ceph_osd_op *op)
1277 {
1278 obj_request->xferred = le64_to_cpu(op->extent.length);
1279 obj_request_done_set(obj_request);
1280 }
1281
1282 /*
1283 * For a simple stat call there's nothing to do. We'll do more if
1284 * this is part of a write sequence for a layered image.
1285 */
1286 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request,
1287 struct ceph_osd_op *op)
1288 {
1289 obj_request_done_set(obj_request);
1290 }
1291
1292 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1293 struct ceph_msg *msg)
1294 {
1295 struct rbd_obj_request *obj_request = osd_req->r_priv;
1296 struct ceph_osd_reply_head *reply_head;
1297 struct ceph_osd_op *op;
1298 u32 num_ops;
1299 u16 opcode;
1300
1301 rbd_assert(osd_req == obj_request->osd_req);
1302 rbd_assert(!!obj_request->img_request ^
1303 (obj_request->which == BAD_WHICH));
1304
1305 obj_request->xferred = le32_to_cpu(msg->hdr.data_len);
1306 reply_head = msg->front.iov_base;
1307 obj_request->result = (s32) le32_to_cpu(reply_head->result);
1308 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1309
1310 num_ops = le32_to_cpu(reply_head->num_ops);
1311 WARN_ON(num_ops != 1); /* For now */
1312
1313 op = &reply_head->ops[0];
1314 opcode = le16_to_cpu(op->op);
1315 switch (opcode) {
1316 case CEPH_OSD_OP_READ:
1317 rbd_osd_read_callback(obj_request, op);
1318 break;
1319 case CEPH_OSD_OP_WRITE:
1320 rbd_osd_write_callback(obj_request, op);
1321 break;
1322 case CEPH_OSD_OP_STAT:
1323 rbd_osd_stat_callback(obj_request, op);
1324 break;
1325 case CEPH_OSD_OP_CALL:
1326 case CEPH_OSD_OP_NOTIFY_ACK:
1327 case CEPH_OSD_OP_WATCH:
1328 rbd_osd_trivial_callback(obj_request, op);
1329 break;
1330 default:
1331 rbd_warn(NULL, "%s: unsupported op %hu\n",
1332 obj_request->object_name, (unsigned short) opcode);
1333 break;
1334 }
1335
1336 if (obj_request_done_test(obj_request))
1337 rbd_obj_request_complete(obj_request);
1338 }
1339
1340 static struct ceph_osd_request *rbd_osd_req_create(
1341 struct rbd_device *rbd_dev,
1342 bool write_request,
1343 struct rbd_obj_request *obj_request,
1344 struct ceph_osd_req_op *op)
1345 {
1346 struct rbd_img_request *img_request = obj_request->img_request;
1347 struct ceph_snap_context *snapc = NULL;
1348 struct ceph_osd_client *osdc;
1349 struct ceph_osd_request *osd_req;
1350 struct timespec now;
1351 struct timespec *mtime;
1352 u64 snap_id = CEPH_NOSNAP;
1353 u64 offset = obj_request->offset;
1354 u64 length = obj_request->length;
1355
1356 if (img_request) {
1357 rbd_assert(img_request->write_request == write_request);
1358 if (img_request->write_request)
1359 snapc = img_request->snapc;
1360 else
1361 snap_id = img_request->snap_id;
1362 }
1363
1364 /* Allocate and initialize the request, for the single op */
1365
1366 osdc = &rbd_dev->rbd_client->client->osdc;
1367 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1368 if (!osd_req)
1369 return NULL; /* ENOMEM */
1370
1371 rbd_assert(obj_request_type_valid(obj_request->type));
1372 switch (obj_request->type) {
1373 case OBJ_REQUEST_NODATA:
1374 break; /* Nothing to do */
1375 case OBJ_REQUEST_BIO:
1376 rbd_assert(obj_request->bio_list != NULL);
1377 osd_req->r_bio = obj_request->bio_list;
1378 break;
1379 case OBJ_REQUEST_PAGES:
1380 osd_req->r_pages = obj_request->pages;
1381 osd_req->r_num_pages = obj_request->page_count;
1382 osd_req->r_page_alignment = offset & ~PAGE_MASK;
1383 break;
1384 }
1385
1386 if (write_request) {
1387 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1388 now = CURRENT_TIME;
1389 mtime = &now;
1390 } else {
1391 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1392 mtime = NULL; /* not needed for reads */
1393 offset = 0; /* These are not used... */
1394 length = 0; /* ...for osd read requests */
1395 }
1396
1397 osd_req->r_callback = rbd_osd_req_callback;
1398 osd_req->r_priv = obj_request;
1399
1400 osd_req->r_oid_len = strlen(obj_request->object_name);
1401 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1402 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1403
1404 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1405
1406 /* osd_req will get its own reference to snapc (if non-null) */
1407
1408 ceph_osdc_build_request(osd_req, offset, length, 1, op,
1409 snapc, snap_id, mtime);
1410
1411 return osd_req;
1412 }
1413
1414 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1415 {
1416 ceph_osdc_put_request(osd_req);
1417 }
1418
1419 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1420
1421 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1422 u64 offset, u64 length,
1423 enum obj_request_type type)
1424 {
1425 struct rbd_obj_request *obj_request;
1426 size_t size;
1427 char *name;
1428
1429 rbd_assert(obj_request_type_valid(type));
1430
1431 size = strlen(object_name) + 1;
1432 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1433 if (!obj_request)
1434 return NULL;
1435
1436 name = (char *)(obj_request + 1);
1437 obj_request->object_name = memcpy(name, object_name, size);
1438 obj_request->offset = offset;
1439 obj_request->length = length;
1440 obj_request->which = BAD_WHICH;
1441 obj_request->type = type;
1442 INIT_LIST_HEAD(&obj_request->links);
1443 obj_request_done_init(obj_request);
1444 init_completion(&obj_request->completion);
1445 kref_init(&obj_request->kref);
1446
1447 return obj_request;
1448 }
1449
1450 static void rbd_obj_request_destroy(struct kref *kref)
1451 {
1452 struct rbd_obj_request *obj_request;
1453
1454 obj_request = container_of(kref, struct rbd_obj_request, kref);
1455
1456 rbd_assert(obj_request->img_request == NULL);
1457 rbd_assert(obj_request->which == BAD_WHICH);
1458
1459 if (obj_request->osd_req)
1460 rbd_osd_req_destroy(obj_request->osd_req);
1461
1462 rbd_assert(obj_request_type_valid(obj_request->type));
1463 switch (obj_request->type) {
1464 case OBJ_REQUEST_NODATA:
1465 break; /* Nothing to do */
1466 case OBJ_REQUEST_BIO:
1467 if (obj_request->bio_list)
1468 bio_chain_put(obj_request->bio_list);
1469 break;
1470 case OBJ_REQUEST_PAGES:
1471 if (obj_request->pages)
1472 ceph_release_page_vector(obj_request->pages,
1473 obj_request->page_count);
1474 break;
1475 }
1476
1477 kfree(obj_request);
1478 }
1479
1480 /*
1481 * Caller is responsible for filling in the list of object requests
1482 * that comprises the image request, and the Linux request pointer
1483 * (if there is one).
1484 */
1485 struct rbd_img_request *rbd_img_request_create(struct rbd_device *rbd_dev,
1486 u64 offset, u64 length,
1487 bool write_request)
1488 {
1489 struct rbd_img_request *img_request;
1490 struct ceph_snap_context *snapc = NULL;
1491
1492 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1493 if (!img_request)
1494 return NULL;
1495
1496 if (write_request) {
1497 down_read(&rbd_dev->header_rwsem);
1498 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1499 up_read(&rbd_dev->header_rwsem);
1500 if (WARN_ON(!snapc)) {
1501 kfree(img_request);
1502 return NULL; /* Shouldn't happen */
1503 }
1504 }
1505
1506 img_request->rq = NULL;
1507 img_request->rbd_dev = rbd_dev;
1508 img_request->offset = offset;
1509 img_request->length = length;
1510 img_request->write_request = write_request;
1511 if (write_request)
1512 img_request->snapc = snapc;
1513 else
1514 img_request->snap_id = rbd_dev->spec->snap_id;
1515 spin_lock_init(&img_request->completion_lock);
1516 img_request->next_completion = 0;
1517 img_request->callback = NULL;
1518 img_request->obj_request_count = 0;
1519 INIT_LIST_HEAD(&img_request->obj_requests);
1520 kref_init(&img_request->kref);
1521
1522 rbd_img_request_get(img_request); /* Avoid a warning */
1523 rbd_img_request_put(img_request); /* TEMPORARY */
1524
1525 return img_request;
1526 }
1527
1528 static void rbd_img_request_destroy(struct kref *kref)
1529 {
1530 struct rbd_img_request *img_request;
1531 struct rbd_obj_request *obj_request;
1532 struct rbd_obj_request *next_obj_request;
1533
1534 img_request = container_of(kref, struct rbd_img_request, kref);
1535
1536 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1537 rbd_img_obj_request_del(img_request, obj_request);
1538 rbd_assert(img_request->obj_request_count == 0);
1539
1540 if (img_request->write_request)
1541 ceph_put_snap_context(img_request->snapc);
1542
1543 kfree(img_request);
1544 }
1545
1546 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1547 struct bio *bio_list)
1548 {
1549 struct rbd_device *rbd_dev = img_request->rbd_dev;
1550 struct rbd_obj_request *obj_request = NULL;
1551 struct rbd_obj_request *next_obj_request;
1552 unsigned int bio_offset;
1553 u64 image_offset;
1554 u64 resid;
1555 u16 opcode;
1556
1557 opcode = img_request->write_request ? CEPH_OSD_OP_WRITE
1558 : CEPH_OSD_OP_READ;
1559 bio_offset = 0;
1560 image_offset = img_request->offset;
1561 rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1562 resid = img_request->length;
1563 while (resid) {
1564 const char *object_name;
1565 unsigned int clone_size;
1566 struct ceph_osd_req_op *op;
1567 u64 offset;
1568 u64 length;
1569
1570 object_name = rbd_segment_name(rbd_dev, image_offset);
1571 if (!object_name)
1572 goto out_unwind;
1573 offset = rbd_segment_offset(rbd_dev, image_offset);
1574 length = rbd_segment_length(rbd_dev, image_offset, resid);
1575 obj_request = rbd_obj_request_create(object_name,
1576 offset, length,
1577 OBJ_REQUEST_BIO);
1578 kfree(object_name); /* object request has its own copy */
1579 if (!obj_request)
1580 goto out_unwind;
1581
1582 rbd_assert(length <= (u64) UINT_MAX);
1583 clone_size = (unsigned int) length;
1584 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1585 &bio_offset, clone_size,
1586 GFP_ATOMIC);
1587 if (!obj_request->bio_list)
1588 goto out_partial;
1589
1590 /*
1591 * Build up the op to use in building the osd
1592 * request. Note that the contents of the op are
1593 * copied by rbd_osd_req_create().
1594 */
1595 op = rbd_osd_req_op_create(opcode, offset, length);
1596 if (!op)
1597 goto out_partial;
1598 obj_request->osd_req = rbd_osd_req_create(rbd_dev,
1599 img_request->write_request,
1600 obj_request, op);
1601 rbd_osd_req_op_destroy(op);
1602 if (!obj_request->osd_req)
1603 goto out_partial;
1604 /* status and version are initially zero-filled */
1605
1606 rbd_img_obj_request_add(img_request, obj_request);
1607
1608 image_offset += length;
1609 resid -= length;
1610 }
1611
1612 return 0;
1613
1614 out_partial:
1615 rbd_obj_request_put(obj_request);
1616 out_unwind:
1617 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1618 rbd_obj_request_put(obj_request);
1619
1620 return -ENOMEM;
1621 }
1622
1623 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1624 {
1625 struct rbd_img_request *img_request;
1626 u32 which = obj_request->which;
1627 bool more = true;
1628
1629 img_request = obj_request->img_request;
1630 rbd_assert(img_request != NULL);
1631 rbd_assert(img_request->rq != NULL);
1632 rbd_assert(which != BAD_WHICH);
1633 rbd_assert(which < img_request->obj_request_count);
1634 rbd_assert(which >= img_request->next_completion);
1635
1636 spin_lock_irq(&img_request->completion_lock);
1637 if (which != img_request->next_completion)
1638 goto out;
1639
1640 for_each_obj_request_from(img_request, obj_request) {
1641 unsigned int xferred;
1642 int result;
1643
1644 rbd_assert(more);
1645 rbd_assert(which < img_request->obj_request_count);
1646
1647 if (!obj_request_done_test(obj_request))
1648 break;
1649
1650 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1651 xferred = (unsigned int) obj_request->xferred;
1652 result = (int) obj_request->result;
1653 if (result)
1654 rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1655 img_request->write_request ? "write" : "read",
1656 result, xferred);
1657
1658 more = blk_end_request(img_request->rq, result, xferred);
1659 which++;
1660 }
1661 rbd_assert(more ^ (which == img_request->obj_request_count));
1662 img_request->next_completion = which;
1663 out:
1664 spin_unlock_irq(&img_request->completion_lock);
1665
1666 if (!more)
1667 rbd_img_request_complete(img_request);
1668 }
1669
1670 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1671 {
1672 struct rbd_device *rbd_dev = img_request->rbd_dev;
1673 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1674 struct rbd_obj_request *obj_request;
1675
1676 for_each_obj_request(img_request, obj_request) {
1677 int ret;
1678
1679 obj_request->callback = rbd_img_obj_callback;
1680 ret = rbd_obj_request_submit(osdc, obj_request);
1681 if (ret)
1682 return ret;
1683 /*
1684 * The image request has its own reference to each
1685 * of its object requests, so we can safely drop the
1686 * initial one here.
1687 */
1688 rbd_obj_request_put(obj_request);
1689 }
1690
1691 return 0;
1692 }
1693
1694 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1695 u64 ver, u64 notify_id)
1696 {
1697 struct rbd_obj_request *obj_request;
1698 struct ceph_osd_req_op *op;
1699 struct ceph_osd_client *osdc;
1700 int ret;
1701
1702 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1703 OBJ_REQUEST_NODATA);
1704 if (!obj_request)
1705 return -ENOMEM;
1706
1707 ret = -ENOMEM;
1708 op = rbd_osd_req_op_create(CEPH_OSD_OP_NOTIFY_ACK, notify_id, ver);
1709 if (!op)
1710 goto out;
1711 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1712 obj_request, op);
1713 rbd_osd_req_op_destroy(op);
1714 if (!obj_request->osd_req)
1715 goto out;
1716
1717 osdc = &rbd_dev->rbd_client->client->osdc;
1718 obj_request->callback = rbd_obj_request_put;
1719 ret = rbd_obj_request_submit(osdc, obj_request);
1720 out:
1721 if (ret)
1722 rbd_obj_request_put(obj_request);
1723
1724 return ret;
1725 }
1726
1727 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1728 {
1729 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1730 u64 hver;
1731 int rc;
1732
1733 if (!rbd_dev)
1734 return;
1735
1736 dout("rbd_watch_cb %s notify_id=%llu opcode=%u\n",
1737 rbd_dev->header_name, (unsigned long long) notify_id,
1738 (unsigned int) opcode);
1739 rc = rbd_dev_refresh(rbd_dev, &hver);
1740 if (rc)
1741 rbd_warn(rbd_dev, "got notification but failed to "
1742 " update snaps: %d\n", rc);
1743
1744 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1745 }
1746
1747 /*
1748 * Request sync osd watch/unwatch. The value of "start" determines
1749 * whether a watch request is being initiated or torn down.
1750 */
1751 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1752 {
1753 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1754 struct rbd_obj_request *obj_request;
1755 struct ceph_osd_req_op *op;
1756 int ret;
1757
1758 rbd_assert(start ^ !!rbd_dev->watch_event);
1759 rbd_assert(start ^ !!rbd_dev->watch_request);
1760
1761 if (start) {
1762 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
1763 &rbd_dev->watch_event);
1764 if (ret < 0)
1765 return ret;
1766 rbd_assert(rbd_dev->watch_event != NULL);
1767 }
1768
1769 ret = -ENOMEM;
1770 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1771 OBJ_REQUEST_NODATA);
1772 if (!obj_request)
1773 goto out_cancel;
1774
1775 op = rbd_osd_req_op_create(CEPH_OSD_OP_WATCH,
1776 rbd_dev->watch_event->cookie,
1777 rbd_dev->header.obj_version, start);
1778 if (!op)
1779 goto out_cancel;
1780 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true,
1781 obj_request, op);
1782 rbd_osd_req_op_destroy(op);
1783 if (!obj_request->osd_req)
1784 goto out_cancel;
1785
1786 if (start)
1787 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1788 else
1789 ceph_osdc_unregister_linger_request(osdc,
1790 rbd_dev->watch_request->osd_req);
1791 ret = rbd_obj_request_submit(osdc, obj_request);
1792 if (ret)
1793 goto out_cancel;
1794 ret = rbd_obj_request_wait(obj_request);
1795 if (ret)
1796 goto out_cancel;
1797 ret = obj_request->result;
1798 if (ret)
1799 goto out_cancel;
1800
1801 /*
1802 * A watch request is set to linger, so the underlying osd
1803 * request won't go away until we unregister it. We retain
1804 * a pointer to the object request during that time (in
1805 * rbd_dev->watch_request), so we'll keep a reference to
1806 * it. We'll drop that reference (below) after we've
1807 * unregistered it.
1808 */
1809 if (start) {
1810 rbd_dev->watch_request = obj_request;
1811
1812 return 0;
1813 }
1814
1815 /* We have successfully torn down the watch request */
1816
1817 rbd_obj_request_put(rbd_dev->watch_request);
1818 rbd_dev->watch_request = NULL;
1819 out_cancel:
1820 /* Cancel the event if we're tearing down, or on error */
1821 ceph_osdc_cancel_event(rbd_dev->watch_event);
1822 rbd_dev->watch_event = NULL;
1823 if (obj_request)
1824 rbd_obj_request_put(obj_request);
1825
1826 return ret;
1827 }
1828
1829 /*
1830 * Synchronous osd object method call
1831 */
1832 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1833 const char *object_name,
1834 const char *class_name,
1835 const char *method_name,
1836 const char *outbound,
1837 size_t outbound_size,
1838 char *inbound,
1839 size_t inbound_size,
1840 u64 *version)
1841 {
1842 struct rbd_obj_request *obj_request;
1843 struct ceph_osd_client *osdc;
1844 struct ceph_osd_req_op *op;
1845 struct page **pages;
1846 u32 page_count;
1847 int ret;
1848
1849 /*
1850 * Method calls are ultimately read operations but they
1851 * don't involve object data (so no offset or length).
1852 * The result should placed into the inbound buffer
1853 * provided. They also supply outbound data--parameters for
1854 * the object method. Currently if this is present it will
1855 * be a snapshot id.
1856 */
1857 page_count = (u32) calc_pages_for(0, inbound_size);
1858 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1859 if (IS_ERR(pages))
1860 return PTR_ERR(pages);
1861
1862 ret = -ENOMEM;
1863 obj_request = rbd_obj_request_create(object_name, 0, 0,
1864 OBJ_REQUEST_PAGES);
1865 if (!obj_request)
1866 goto out;
1867
1868 obj_request->pages = pages;
1869 obj_request->page_count = page_count;
1870
1871 op = rbd_osd_req_op_create(CEPH_OSD_OP_CALL, class_name,
1872 method_name, outbound, outbound_size);
1873 if (!op)
1874 goto out;
1875 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1876 obj_request, op);
1877 rbd_osd_req_op_destroy(op);
1878 if (!obj_request->osd_req)
1879 goto out;
1880
1881 osdc = &rbd_dev->rbd_client->client->osdc;
1882 ret = rbd_obj_request_submit(osdc, obj_request);
1883 if (ret)
1884 goto out;
1885 ret = rbd_obj_request_wait(obj_request);
1886 if (ret)
1887 goto out;
1888
1889 ret = obj_request->result;
1890 if (ret < 0)
1891 goto out;
1892 ret = 0;
1893 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
1894 if (version)
1895 *version = obj_request->version;
1896 out:
1897 if (obj_request)
1898 rbd_obj_request_put(obj_request);
1899 else
1900 ceph_release_page_vector(pages, page_count);
1901
1902 return ret;
1903 }
1904
1905 static void rbd_request_fn(struct request_queue *q)
1906 {
1907 struct rbd_device *rbd_dev = q->queuedata;
1908 bool read_only = rbd_dev->mapping.read_only;
1909 struct request *rq;
1910 int result;
1911
1912 while ((rq = blk_fetch_request(q))) {
1913 bool write_request = rq_data_dir(rq) == WRITE;
1914 struct rbd_img_request *img_request;
1915 u64 offset;
1916 u64 length;
1917
1918 /* Ignore any non-FS requests that filter through. */
1919
1920 if (rq->cmd_type != REQ_TYPE_FS) {
1921 __blk_end_request_all(rq, 0);
1922 continue;
1923 }
1924
1925 spin_unlock_irq(q->queue_lock);
1926
1927 /* Disallow writes to a read-only device */
1928
1929 if (write_request) {
1930 result = -EROFS;
1931 if (read_only)
1932 goto end_request;
1933 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
1934 }
1935
1936 /*
1937 * Quit early if the mapped snapshot no longer
1938 * exists. It's still possible the snapshot will
1939 * have disappeared by the time our request arrives
1940 * at the osd, but there's no sense in sending it if
1941 * we already know.
1942 */
1943 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
1944 dout("request for non-existent snapshot");
1945 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
1946 result = -ENXIO;
1947 goto end_request;
1948 }
1949
1950 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
1951 length = (u64) blk_rq_bytes(rq);
1952
1953 result = -EINVAL;
1954 if (WARN_ON(offset && length > U64_MAX - offset + 1))
1955 goto end_request; /* Shouldn't happen */
1956
1957 result = -ENOMEM;
1958 img_request = rbd_img_request_create(rbd_dev, offset, length,
1959 write_request);
1960 if (!img_request)
1961 goto end_request;
1962
1963 img_request->rq = rq;
1964
1965 result = rbd_img_request_fill_bio(img_request, rq->bio);
1966 if (!result)
1967 result = rbd_img_request_submit(img_request);
1968 if (result)
1969 rbd_img_request_put(img_request);
1970 end_request:
1971 spin_lock_irq(q->queue_lock);
1972 if (result < 0) {
1973 rbd_warn(rbd_dev, "obj_request %s result %d\n",
1974 write_request ? "write" : "read", result);
1975 __blk_end_request_all(rq, result);
1976 }
1977 }
1978 }
1979
1980 /*
1981 * a queue callback. Makes sure that we don't create a bio that spans across
1982 * multiple osd objects. One exception would be with a single page bios,
1983 * which we handle later at bio_chain_clone_range()
1984 */
1985 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1986 struct bio_vec *bvec)
1987 {
1988 struct rbd_device *rbd_dev = q->queuedata;
1989 sector_t sector_offset;
1990 sector_t sectors_per_obj;
1991 sector_t obj_sector_offset;
1992 int ret;
1993
1994 /*
1995 * Find how far into its rbd object the partition-relative
1996 * bio start sector is to offset relative to the enclosing
1997 * device.
1998 */
1999 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2000 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2001 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2002
2003 /*
2004 * Compute the number of bytes from that offset to the end
2005 * of the object. Account for what's already used by the bio.
2006 */
2007 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2008 if (ret > bmd->bi_size)
2009 ret -= bmd->bi_size;
2010 else
2011 ret = 0;
2012
2013 /*
2014 * Don't send back more than was asked for. And if the bio
2015 * was empty, let the whole thing through because: "Note
2016 * that a block device *must* allow a single page to be
2017 * added to an empty bio."
2018 */
2019 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2020 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2021 ret = (int) bvec->bv_len;
2022
2023 return ret;
2024 }
2025
2026 static void rbd_free_disk(struct rbd_device *rbd_dev)
2027 {
2028 struct gendisk *disk = rbd_dev->disk;
2029
2030 if (!disk)
2031 return;
2032
2033 if (disk->flags & GENHD_FL_UP)
2034 del_gendisk(disk);
2035 if (disk->queue)
2036 blk_cleanup_queue(disk->queue);
2037 put_disk(disk);
2038 }
2039
2040 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2041 const char *object_name,
2042 u64 offset, u64 length,
2043 char *buf, u64 *version)
2044
2045 {
2046 struct ceph_osd_req_op *op;
2047 struct rbd_obj_request *obj_request;
2048 struct ceph_osd_client *osdc;
2049 struct page **pages = NULL;
2050 u32 page_count;
2051 size_t size;
2052 int ret;
2053
2054 page_count = (u32) calc_pages_for(offset, length);
2055 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2056 if (IS_ERR(pages))
2057 ret = PTR_ERR(pages);
2058
2059 ret = -ENOMEM;
2060 obj_request = rbd_obj_request_create(object_name, offset, length,
2061 OBJ_REQUEST_PAGES);
2062 if (!obj_request)
2063 goto out;
2064
2065 obj_request->pages = pages;
2066 obj_request->page_count = page_count;
2067
2068 op = rbd_osd_req_op_create(CEPH_OSD_OP_READ, offset, length);
2069 if (!op)
2070 goto out;
2071 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2072 obj_request, op);
2073 rbd_osd_req_op_destroy(op);
2074 if (!obj_request->osd_req)
2075 goto out;
2076
2077 osdc = &rbd_dev->rbd_client->client->osdc;
2078 ret = rbd_obj_request_submit(osdc, obj_request);
2079 if (ret)
2080 goto out;
2081 ret = rbd_obj_request_wait(obj_request);
2082 if (ret)
2083 goto out;
2084
2085 ret = obj_request->result;
2086 if (ret < 0)
2087 goto out;
2088
2089 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2090 size = (size_t) obj_request->xferred;
2091 ceph_copy_from_page_vector(pages, buf, 0, size);
2092 rbd_assert(size <= (size_t) INT_MAX);
2093 ret = (int) size;
2094 if (version)
2095 *version = obj_request->version;
2096 out:
2097 if (obj_request)
2098 rbd_obj_request_put(obj_request);
2099 else
2100 ceph_release_page_vector(pages, page_count);
2101
2102 return ret;
2103 }
2104
2105 /*
2106 * Read the complete header for the given rbd device.
2107 *
2108 * Returns a pointer to a dynamically-allocated buffer containing
2109 * the complete and validated header. Caller can pass the address
2110 * of a variable that will be filled in with the version of the
2111 * header object at the time it was read.
2112 *
2113 * Returns a pointer-coded errno if a failure occurs.
2114 */
2115 static struct rbd_image_header_ondisk *
2116 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2117 {
2118 struct rbd_image_header_ondisk *ondisk = NULL;
2119 u32 snap_count = 0;
2120 u64 names_size = 0;
2121 u32 want_count;
2122 int ret;
2123
2124 /*
2125 * The complete header will include an array of its 64-bit
2126 * snapshot ids, followed by the names of those snapshots as
2127 * a contiguous block of NUL-terminated strings. Note that
2128 * the number of snapshots could change by the time we read
2129 * it in, in which case we re-read it.
2130 */
2131 do {
2132 size_t size;
2133
2134 kfree(ondisk);
2135
2136 size = sizeof (*ondisk);
2137 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2138 size += names_size;
2139 ondisk = kmalloc(size, GFP_KERNEL);
2140 if (!ondisk)
2141 return ERR_PTR(-ENOMEM);
2142
2143 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2144 0, size,
2145 (char *) ondisk, version);
2146 if (ret < 0)
2147 goto out_err;
2148 if (WARN_ON((size_t) ret < size)) {
2149 ret = -ENXIO;
2150 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2151 size, ret);
2152 goto out_err;
2153 }
2154 if (!rbd_dev_ondisk_valid(ondisk)) {
2155 ret = -ENXIO;
2156 rbd_warn(rbd_dev, "invalid header");
2157 goto out_err;
2158 }
2159
2160 names_size = le64_to_cpu(ondisk->snap_names_len);
2161 want_count = snap_count;
2162 snap_count = le32_to_cpu(ondisk->snap_count);
2163 } while (snap_count != want_count);
2164
2165 return ondisk;
2166
2167 out_err:
2168 kfree(ondisk);
2169
2170 return ERR_PTR(ret);
2171 }
2172
2173 /*
2174 * reload the ondisk the header
2175 */
2176 static int rbd_read_header(struct rbd_device *rbd_dev,
2177 struct rbd_image_header *header)
2178 {
2179 struct rbd_image_header_ondisk *ondisk;
2180 u64 ver = 0;
2181 int ret;
2182
2183 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2184 if (IS_ERR(ondisk))
2185 return PTR_ERR(ondisk);
2186 ret = rbd_header_from_disk(header, ondisk);
2187 if (ret >= 0)
2188 header->obj_version = ver;
2189 kfree(ondisk);
2190
2191 return ret;
2192 }
2193
2194 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2195 {
2196 struct rbd_snap *snap;
2197 struct rbd_snap *next;
2198
2199 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2200 rbd_remove_snap_dev(snap);
2201 }
2202
2203 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2204 {
2205 sector_t size;
2206
2207 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2208 return;
2209
2210 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2211 dout("setting size to %llu sectors", (unsigned long long) size);
2212 rbd_dev->mapping.size = (u64) size;
2213 set_capacity(rbd_dev->disk, size);
2214 }
2215
2216 /*
2217 * only read the first part of the ondisk header, without the snaps info
2218 */
2219 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2220 {
2221 int ret;
2222 struct rbd_image_header h;
2223
2224 ret = rbd_read_header(rbd_dev, &h);
2225 if (ret < 0)
2226 return ret;
2227
2228 down_write(&rbd_dev->header_rwsem);
2229
2230 /* Update image size, and check for resize of mapped image */
2231 rbd_dev->header.image_size = h.image_size;
2232 rbd_update_mapping_size(rbd_dev);
2233
2234 /* rbd_dev->header.object_prefix shouldn't change */
2235 kfree(rbd_dev->header.snap_sizes);
2236 kfree(rbd_dev->header.snap_names);
2237 /* osd requests may still refer to snapc */
2238 ceph_put_snap_context(rbd_dev->header.snapc);
2239
2240 if (hver)
2241 *hver = h.obj_version;
2242 rbd_dev->header.obj_version = h.obj_version;
2243 rbd_dev->header.image_size = h.image_size;
2244 rbd_dev->header.snapc = h.snapc;
2245 rbd_dev->header.snap_names = h.snap_names;
2246 rbd_dev->header.snap_sizes = h.snap_sizes;
2247 /* Free the extra copy of the object prefix */
2248 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2249 kfree(h.object_prefix);
2250
2251 ret = rbd_dev_snaps_update(rbd_dev);
2252 if (!ret)
2253 ret = rbd_dev_snaps_register(rbd_dev);
2254
2255 up_write(&rbd_dev->header_rwsem);
2256
2257 return ret;
2258 }
2259
2260 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2261 {
2262 int ret;
2263
2264 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2265 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2266 if (rbd_dev->image_format == 1)
2267 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2268 else
2269 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2270 mutex_unlock(&ctl_mutex);
2271
2272 return ret;
2273 }
2274
2275 static int rbd_init_disk(struct rbd_device *rbd_dev)
2276 {
2277 struct gendisk *disk;
2278 struct request_queue *q;
2279 u64 segment_size;
2280
2281 /* create gendisk info */
2282 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2283 if (!disk)
2284 return -ENOMEM;
2285
2286 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2287 rbd_dev->dev_id);
2288 disk->major = rbd_dev->major;
2289 disk->first_minor = 0;
2290 disk->fops = &rbd_bd_ops;
2291 disk->private_data = rbd_dev;
2292
2293 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2294 if (!q)
2295 goto out_disk;
2296
2297 /* We use the default size, but let's be explicit about it. */
2298 blk_queue_physical_block_size(q, SECTOR_SIZE);
2299
2300 /* set io sizes to object size */
2301 segment_size = rbd_obj_bytes(&rbd_dev->header);
2302 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2303 blk_queue_max_segment_size(q, segment_size);
2304 blk_queue_io_min(q, segment_size);
2305 blk_queue_io_opt(q, segment_size);
2306
2307 blk_queue_merge_bvec(q, rbd_merge_bvec);
2308 disk->queue = q;
2309
2310 q->queuedata = rbd_dev;
2311
2312 rbd_dev->disk = disk;
2313
2314 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2315
2316 return 0;
2317 out_disk:
2318 put_disk(disk);
2319
2320 return -ENOMEM;
2321 }
2322
2323 /*
2324 sysfs
2325 */
2326
2327 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2328 {
2329 return container_of(dev, struct rbd_device, dev);
2330 }
2331
2332 static ssize_t rbd_size_show(struct device *dev,
2333 struct device_attribute *attr, char *buf)
2334 {
2335 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2336 sector_t size;
2337
2338 down_read(&rbd_dev->header_rwsem);
2339 size = get_capacity(rbd_dev->disk);
2340 up_read(&rbd_dev->header_rwsem);
2341
2342 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2343 }
2344
2345 /*
2346 * Note this shows the features for whatever's mapped, which is not
2347 * necessarily the base image.
2348 */
2349 static ssize_t rbd_features_show(struct device *dev,
2350 struct device_attribute *attr, char *buf)
2351 {
2352 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2353
2354 return sprintf(buf, "0x%016llx\n",
2355 (unsigned long long) rbd_dev->mapping.features);
2356 }
2357
2358 static ssize_t rbd_major_show(struct device *dev,
2359 struct device_attribute *attr, char *buf)
2360 {
2361 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2362
2363 return sprintf(buf, "%d\n", rbd_dev->major);
2364 }
2365
2366 static ssize_t rbd_client_id_show(struct device *dev,
2367 struct device_attribute *attr, char *buf)
2368 {
2369 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2370
2371 return sprintf(buf, "client%lld\n",
2372 ceph_client_id(rbd_dev->rbd_client->client));
2373 }
2374
2375 static ssize_t rbd_pool_show(struct device *dev,
2376 struct device_attribute *attr, char *buf)
2377 {
2378 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2379
2380 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2381 }
2382
2383 static ssize_t rbd_pool_id_show(struct device *dev,
2384 struct device_attribute *attr, char *buf)
2385 {
2386 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2387
2388 return sprintf(buf, "%llu\n",
2389 (unsigned long long) rbd_dev->spec->pool_id);
2390 }
2391
2392 static ssize_t rbd_name_show(struct device *dev,
2393 struct device_attribute *attr, char *buf)
2394 {
2395 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2396
2397 if (rbd_dev->spec->image_name)
2398 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2399
2400 return sprintf(buf, "(unknown)\n");
2401 }
2402
2403 static ssize_t rbd_image_id_show(struct device *dev,
2404 struct device_attribute *attr, char *buf)
2405 {
2406 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2407
2408 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2409 }
2410
2411 /*
2412 * Shows the name of the currently-mapped snapshot (or
2413 * RBD_SNAP_HEAD_NAME for the base image).
2414 */
2415 static ssize_t rbd_snap_show(struct device *dev,
2416 struct device_attribute *attr,
2417 char *buf)
2418 {
2419 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2420
2421 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2422 }
2423
2424 /*
2425 * For an rbd v2 image, shows the pool id, image id, and snapshot id
2426 * for the parent image. If there is no parent, simply shows
2427 * "(no parent image)".
2428 */
2429 static ssize_t rbd_parent_show(struct device *dev,
2430 struct device_attribute *attr,
2431 char *buf)
2432 {
2433 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2434 struct rbd_spec *spec = rbd_dev->parent_spec;
2435 int count;
2436 char *bufp = buf;
2437
2438 if (!spec)
2439 return sprintf(buf, "(no parent image)\n");
2440
2441 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2442 (unsigned long long) spec->pool_id, spec->pool_name);
2443 if (count < 0)
2444 return count;
2445 bufp += count;
2446
2447 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2448 spec->image_name ? spec->image_name : "(unknown)");
2449 if (count < 0)
2450 return count;
2451 bufp += count;
2452
2453 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2454 (unsigned long long) spec->snap_id, spec->snap_name);
2455 if (count < 0)
2456 return count;
2457 bufp += count;
2458
2459 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2460 if (count < 0)
2461 return count;
2462 bufp += count;
2463
2464 return (ssize_t) (bufp - buf);
2465 }
2466
2467 static ssize_t rbd_image_refresh(struct device *dev,
2468 struct device_attribute *attr,
2469 const char *buf,
2470 size_t size)
2471 {
2472 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2473 int ret;
2474
2475 ret = rbd_dev_refresh(rbd_dev, NULL);
2476
2477 return ret < 0 ? ret : size;
2478 }
2479
2480 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2481 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2482 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2483 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2484 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2485 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2486 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2487 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2488 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2489 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2490 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2491
2492 static struct attribute *rbd_attrs[] = {
2493 &dev_attr_size.attr,
2494 &dev_attr_features.attr,
2495 &dev_attr_major.attr,
2496 &dev_attr_client_id.attr,
2497 &dev_attr_pool.attr,
2498 &dev_attr_pool_id.attr,
2499 &dev_attr_name.attr,
2500 &dev_attr_image_id.attr,
2501 &dev_attr_current_snap.attr,
2502 &dev_attr_parent.attr,
2503 &dev_attr_refresh.attr,
2504 NULL
2505 };
2506
2507 static struct attribute_group rbd_attr_group = {
2508 .attrs = rbd_attrs,
2509 };
2510
2511 static const struct attribute_group *rbd_attr_groups[] = {
2512 &rbd_attr_group,
2513 NULL
2514 };
2515
2516 static void rbd_sysfs_dev_release(struct device *dev)
2517 {
2518 }
2519
2520 static struct device_type rbd_device_type = {
2521 .name = "rbd",
2522 .groups = rbd_attr_groups,
2523 .release = rbd_sysfs_dev_release,
2524 };
2525
2526
2527 /*
2528 sysfs - snapshots
2529 */
2530
2531 static ssize_t rbd_snap_size_show(struct device *dev,
2532 struct device_attribute *attr,
2533 char *buf)
2534 {
2535 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2536
2537 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2538 }
2539
2540 static ssize_t rbd_snap_id_show(struct device *dev,
2541 struct device_attribute *attr,
2542 char *buf)
2543 {
2544 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2545
2546 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2547 }
2548
2549 static ssize_t rbd_snap_features_show(struct device *dev,
2550 struct device_attribute *attr,
2551 char *buf)
2552 {
2553 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2554
2555 return sprintf(buf, "0x%016llx\n",
2556 (unsigned long long) snap->features);
2557 }
2558
2559 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2560 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2561 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2562
2563 static struct attribute *rbd_snap_attrs[] = {
2564 &dev_attr_snap_size.attr,
2565 &dev_attr_snap_id.attr,
2566 &dev_attr_snap_features.attr,
2567 NULL,
2568 };
2569
2570 static struct attribute_group rbd_snap_attr_group = {
2571 .attrs = rbd_snap_attrs,
2572 };
2573
2574 static void rbd_snap_dev_release(struct device *dev)
2575 {
2576 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2577 kfree(snap->name);
2578 kfree(snap);
2579 }
2580
2581 static const struct attribute_group *rbd_snap_attr_groups[] = {
2582 &rbd_snap_attr_group,
2583 NULL
2584 };
2585
2586 static struct device_type rbd_snap_device_type = {
2587 .groups = rbd_snap_attr_groups,
2588 .release = rbd_snap_dev_release,
2589 };
2590
2591 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2592 {
2593 kref_get(&spec->kref);
2594
2595 return spec;
2596 }
2597
2598 static void rbd_spec_free(struct kref *kref);
2599 static void rbd_spec_put(struct rbd_spec *spec)
2600 {
2601 if (spec)
2602 kref_put(&spec->kref, rbd_spec_free);
2603 }
2604
2605 static struct rbd_spec *rbd_spec_alloc(void)
2606 {
2607 struct rbd_spec *spec;
2608
2609 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2610 if (!spec)
2611 return NULL;
2612 kref_init(&spec->kref);
2613
2614 rbd_spec_put(rbd_spec_get(spec)); /* TEMPORARY */
2615
2616 return spec;
2617 }
2618
2619 static void rbd_spec_free(struct kref *kref)
2620 {
2621 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2622
2623 kfree(spec->pool_name);
2624 kfree(spec->image_id);
2625 kfree(spec->image_name);
2626 kfree(spec->snap_name);
2627 kfree(spec);
2628 }
2629
2630 struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2631 struct rbd_spec *spec)
2632 {
2633 struct rbd_device *rbd_dev;
2634
2635 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2636 if (!rbd_dev)
2637 return NULL;
2638
2639 spin_lock_init(&rbd_dev->lock);
2640 rbd_dev->flags = 0;
2641 INIT_LIST_HEAD(&rbd_dev->node);
2642 INIT_LIST_HEAD(&rbd_dev->snaps);
2643 init_rwsem(&rbd_dev->header_rwsem);
2644
2645 rbd_dev->spec = spec;
2646 rbd_dev->rbd_client = rbdc;
2647
2648 /* Initialize the layout used for all rbd requests */
2649
2650 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2651 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2652 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2653 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2654
2655 return rbd_dev;
2656 }
2657
2658 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2659 {
2660 rbd_spec_put(rbd_dev->parent_spec);
2661 kfree(rbd_dev->header_name);
2662 rbd_put_client(rbd_dev->rbd_client);
2663 rbd_spec_put(rbd_dev->spec);
2664 kfree(rbd_dev);
2665 }
2666
2667 static bool rbd_snap_registered(struct rbd_snap *snap)
2668 {
2669 bool ret = snap->dev.type == &rbd_snap_device_type;
2670 bool reg = device_is_registered(&snap->dev);
2671
2672 rbd_assert(!ret ^ reg);
2673
2674 return ret;
2675 }
2676
2677 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2678 {
2679 list_del(&snap->node);
2680 if (device_is_registered(&snap->dev))
2681 device_unregister(&snap->dev);
2682 }
2683
2684 static int rbd_register_snap_dev(struct rbd_snap *snap,
2685 struct device *parent)
2686 {
2687 struct device *dev = &snap->dev;
2688 int ret;
2689
2690 dev->type = &rbd_snap_device_type;
2691 dev->parent = parent;
2692 dev->release = rbd_snap_dev_release;
2693 dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2694 dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2695
2696 ret = device_register(dev);
2697
2698 return ret;
2699 }
2700
2701 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2702 const char *snap_name,
2703 u64 snap_id, u64 snap_size,
2704 u64 snap_features)
2705 {
2706 struct rbd_snap *snap;
2707 int ret;
2708
2709 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2710 if (!snap)
2711 return ERR_PTR(-ENOMEM);
2712
2713 ret = -ENOMEM;
2714 snap->name = kstrdup(snap_name, GFP_KERNEL);
2715 if (!snap->name)
2716 goto err;
2717
2718 snap->id = snap_id;
2719 snap->size = snap_size;
2720 snap->features = snap_features;
2721
2722 return snap;
2723
2724 err:
2725 kfree(snap->name);
2726 kfree(snap);
2727
2728 return ERR_PTR(ret);
2729 }
2730
2731 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2732 u64 *snap_size, u64 *snap_features)
2733 {
2734 char *snap_name;
2735
2736 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2737
2738 *snap_size = rbd_dev->header.snap_sizes[which];
2739 *snap_features = 0; /* No features for v1 */
2740
2741 /* Skip over names until we find the one we are looking for */
2742
2743 snap_name = rbd_dev->header.snap_names;
2744 while (which--)
2745 snap_name += strlen(snap_name) + 1;
2746
2747 return snap_name;
2748 }
2749
2750 /*
2751 * Get the size and object order for an image snapshot, or if
2752 * snap_id is CEPH_NOSNAP, gets this information for the base
2753 * image.
2754 */
2755 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2756 u8 *order, u64 *snap_size)
2757 {
2758 __le64 snapid = cpu_to_le64(snap_id);
2759 int ret;
2760 struct {
2761 u8 order;
2762 __le64 size;
2763 } __attribute__ ((packed)) size_buf = { 0 };
2764
2765 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2766 "rbd", "get_size",
2767 (char *) &snapid, sizeof (snapid),
2768 (char *) &size_buf, sizeof (size_buf), NULL);
2769 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2770 if (ret < 0)
2771 return ret;
2772
2773 *order = size_buf.order;
2774 *snap_size = le64_to_cpu(size_buf.size);
2775
2776 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
2777 (unsigned long long) snap_id, (unsigned int) *order,
2778 (unsigned long long) *snap_size);
2779
2780 return 0;
2781 }
2782
2783 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2784 {
2785 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2786 &rbd_dev->header.obj_order,
2787 &rbd_dev->header.image_size);
2788 }
2789
2790 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2791 {
2792 void *reply_buf;
2793 int ret;
2794 void *p;
2795
2796 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2797 if (!reply_buf)
2798 return -ENOMEM;
2799
2800 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2801 "rbd", "get_object_prefix",
2802 NULL, 0,
2803 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2804 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2805 if (ret < 0)
2806 goto out;
2807
2808 p = reply_buf;
2809 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2810 p + RBD_OBJ_PREFIX_LEN_MAX,
2811 NULL, GFP_NOIO);
2812
2813 if (IS_ERR(rbd_dev->header.object_prefix)) {
2814 ret = PTR_ERR(rbd_dev->header.object_prefix);
2815 rbd_dev->header.object_prefix = NULL;
2816 } else {
2817 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
2818 }
2819
2820 out:
2821 kfree(reply_buf);
2822
2823 return ret;
2824 }
2825
2826 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2827 u64 *snap_features)
2828 {
2829 __le64 snapid = cpu_to_le64(snap_id);
2830 struct {
2831 __le64 features;
2832 __le64 incompat;
2833 } features_buf = { 0 };
2834 u64 incompat;
2835 int ret;
2836
2837 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2838 "rbd", "get_features",
2839 (char *) &snapid, sizeof (snapid),
2840 (char *) &features_buf, sizeof (features_buf),
2841 NULL);
2842 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2843 if (ret < 0)
2844 return ret;
2845
2846 incompat = le64_to_cpu(features_buf.incompat);
2847 if (incompat & ~RBD_FEATURES_ALL)
2848 return -ENXIO;
2849
2850 *snap_features = le64_to_cpu(features_buf.features);
2851
2852 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2853 (unsigned long long) snap_id,
2854 (unsigned long long) *snap_features,
2855 (unsigned long long) le64_to_cpu(features_buf.incompat));
2856
2857 return 0;
2858 }
2859
2860 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2861 {
2862 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2863 &rbd_dev->header.features);
2864 }
2865
2866 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2867 {
2868 struct rbd_spec *parent_spec;
2869 size_t size;
2870 void *reply_buf = NULL;
2871 __le64 snapid;
2872 void *p;
2873 void *end;
2874 char *image_id;
2875 u64 overlap;
2876 int ret;
2877
2878 parent_spec = rbd_spec_alloc();
2879 if (!parent_spec)
2880 return -ENOMEM;
2881
2882 size = sizeof (__le64) + /* pool_id */
2883 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
2884 sizeof (__le64) + /* snap_id */
2885 sizeof (__le64); /* overlap */
2886 reply_buf = kmalloc(size, GFP_KERNEL);
2887 if (!reply_buf) {
2888 ret = -ENOMEM;
2889 goto out_err;
2890 }
2891
2892 snapid = cpu_to_le64(CEPH_NOSNAP);
2893 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2894 "rbd", "get_parent",
2895 (char *) &snapid, sizeof (snapid),
2896 (char *) reply_buf, size, NULL);
2897 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2898 if (ret < 0)
2899 goto out_err;
2900
2901 ret = -ERANGE;
2902 p = reply_buf;
2903 end = (char *) reply_buf + size;
2904 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2905 if (parent_spec->pool_id == CEPH_NOPOOL)
2906 goto out; /* No parent? No problem. */
2907
2908 /* The ceph file layout needs to fit pool id in 32 bits */
2909
2910 ret = -EIO;
2911 if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2912 goto out;
2913
2914 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2915 if (IS_ERR(image_id)) {
2916 ret = PTR_ERR(image_id);
2917 goto out_err;
2918 }
2919 parent_spec->image_id = image_id;
2920 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2921 ceph_decode_64_safe(&p, end, overlap, out_err);
2922
2923 rbd_dev->parent_overlap = overlap;
2924 rbd_dev->parent_spec = parent_spec;
2925 parent_spec = NULL; /* rbd_dev now owns this */
2926 out:
2927 ret = 0;
2928 out_err:
2929 kfree(reply_buf);
2930 rbd_spec_put(parent_spec);
2931
2932 return ret;
2933 }
2934
2935 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
2936 {
2937 size_t image_id_size;
2938 char *image_id;
2939 void *p;
2940 void *end;
2941 size_t size;
2942 void *reply_buf = NULL;
2943 size_t len = 0;
2944 char *image_name = NULL;
2945 int ret;
2946
2947 rbd_assert(!rbd_dev->spec->image_name);
2948
2949 len = strlen(rbd_dev->spec->image_id);
2950 image_id_size = sizeof (__le32) + len;
2951 image_id = kmalloc(image_id_size, GFP_KERNEL);
2952 if (!image_id)
2953 return NULL;
2954
2955 p = image_id;
2956 end = (char *) image_id + image_id_size;
2957 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
2958
2959 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
2960 reply_buf = kmalloc(size, GFP_KERNEL);
2961 if (!reply_buf)
2962 goto out;
2963
2964 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
2965 "rbd", "dir_get_name",
2966 image_id, image_id_size,
2967 (char *) reply_buf, size, NULL);
2968 if (ret < 0)
2969 goto out;
2970 p = reply_buf;
2971 end = (char *) reply_buf + size;
2972 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
2973 if (IS_ERR(image_name))
2974 image_name = NULL;
2975 else
2976 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
2977 out:
2978 kfree(reply_buf);
2979 kfree(image_id);
2980
2981 return image_name;
2982 }
2983
2984 /*
2985 * When a parent image gets probed, we only have the pool, image,
2986 * and snapshot ids but not the names of any of them. This call
2987 * is made later to fill in those names. It has to be done after
2988 * rbd_dev_snaps_update() has completed because some of the
2989 * information (in particular, snapshot name) is not available
2990 * until then.
2991 */
2992 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
2993 {
2994 struct ceph_osd_client *osdc;
2995 const char *name;
2996 void *reply_buf = NULL;
2997 int ret;
2998
2999 if (rbd_dev->spec->pool_name)
3000 return 0; /* Already have the names */
3001
3002 /* Look up the pool name */
3003
3004 osdc = &rbd_dev->rbd_client->client->osdc;
3005 name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3006 if (!name) {
3007 rbd_warn(rbd_dev, "there is no pool with id %llu",
3008 rbd_dev->spec->pool_id); /* Really a BUG() */
3009 return -EIO;
3010 }
3011
3012 rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3013 if (!rbd_dev->spec->pool_name)
3014 return -ENOMEM;
3015
3016 /* Fetch the image name; tolerate failure here */
3017
3018 name = rbd_dev_image_name(rbd_dev);
3019 if (name)
3020 rbd_dev->spec->image_name = (char *) name;
3021 else
3022 rbd_warn(rbd_dev, "unable to get image name");
3023
3024 /* Look up the snapshot name. */
3025
3026 name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3027 if (!name) {
3028 rbd_warn(rbd_dev, "no snapshot with id %llu",
3029 rbd_dev->spec->snap_id); /* Really a BUG() */
3030 ret = -EIO;
3031 goto out_err;
3032 }
3033 rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3034 if(!rbd_dev->spec->snap_name)
3035 goto out_err;
3036
3037 return 0;
3038 out_err:
3039 kfree(reply_buf);
3040 kfree(rbd_dev->spec->pool_name);
3041 rbd_dev->spec->pool_name = NULL;
3042
3043 return ret;
3044 }
3045
3046 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3047 {
3048 size_t size;
3049 int ret;
3050 void *reply_buf;
3051 void *p;
3052 void *end;
3053 u64 seq;
3054 u32 snap_count;
3055 struct ceph_snap_context *snapc;
3056 u32 i;
3057
3058 /*
3059 * We'll need room for the seq value (maximum snapshot id),
3060 * snapshot count, and array of that many snapshot ids.
3061 * For now we have a fixed upper limit on the number we're
3062 * prepared to receive.
3063 */
3064 size = sizeof (__le64) + sizeof (__le32) +
3065 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3066 reply_buf = kzalloc(size, GFP_KERNEL);
3067 if (!reply_buf)
3068 return -ENOMEM;
3069
3070 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3071 "rbd", "get_snapcontext",
3072 NULL, 0,
3073 reply_buf, size, ver);
3074 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3075 if (ret < 0)
3076 goto out;
3077
3078 ret = -ERANGE;
3079 p = reply_buf;
3080 end = (char *) reply_buf + size;
3081 ceph_decode_64_safe(&p, end, seq, out);
3082 ceph_decode_32_safe(&p, end, snap_count, out);
3083
3084 /*
3085 * Make sure the reported number of snapshot ids wouldn't go
3086 * beyond the end of our buffer. But before checking that,
3087 * make sure the computed size of the snapshot context we
3088 * allocate is representable in a size_t.
3089 */
3090 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3091 / sizeof (u64)) {
3092 ret = -EINVAL;
3093 goto out;
3094 }
3095 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3096 goto out;
3097
3098 size = sizeof (struct ceph_snap_context) +
3099 snap_count * sizeof (snapc->snaps[0]);
3100 snapc = kmalloc(size, GFP_KERNEL);
3101 if (!snapc) {
3102 ret = -ENOMEM;
3103 goto out;
3104 }
3105
3106 atomic_set(&snapc->nref, 1);
3107 snapc->seq = seq;
3108 snapc->num_snaps = snap_count;
3109 for (i = 0; i < snap_count; i++)
3110 snapc->snaps[i] = ceph_decode_64(&p);
3111
3112 rbd_dev->header.snapc = snapc;
3113
3114 dout(" snap context seq = %llu, snap_count = %u\n",
3115 (unsigned long long) seq, (unsigned int) snap_count);
3116
3117 out:
3118 kfree(reply_buf);
3119
3120 return 0;
3121 }
3122
3123 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3124 {
3125 size_t size;
3126 void *reply_buf;
3127 __le64 snap_id;
3128 int ret;
3129 void *p;
3130 void *end;
3131 char *snap_name;
3132
3133 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3134 reply_buf = kmalloc(size, GFP_KERNEL);
3135 if (!reply_buf)
3136 return ERR_PTR(-ENOMEM);
3137
3138 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3139 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3140 "rbd", "get_snapshot_name",
3141 (char *) &snap_id, sizeof (snap_id),
3142 reply_buf, size, NULL);
3143 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3144 if (ret < 0)
3145 goto out;
3146
3147 p = reply_buf;
3148 end = (char *) reply_buf + size;
3149 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3150 if (IS_ERR(snap_name)) {
3151 ret = PTR_ERR(snap_name);
3152 goto out;
3153 } else {
3154 dout(" snap_id 0x%016llx snap_name = %s\n",
3155 (unsigned long long) le64_to_cpu(snap_id), snap_name);
3156 }
3157 kfree(reply_buf);
3158
3159 return snap_name;
3160 out:
3161 kfree(reply_buf);
3162
3163 return ERR_PTR(ret);
3164 }
3165
3166 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3167 u64 *snap_size, u64 *snap_features)
3168 {
3169 u64 snap_id;
3170 u8 order;
3171 int ret;
3172
3173 snap_id = rbd_dev->header.snapc->snaps[which];
3174 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3175 if (ret)
3176 return ERR_PTR(ret);
3177 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3178 if (ret)
3179 return ERR_PTR(ret);
3180
3181 return rbd_dev_v2_snap_name(rbd_dev, which);
3182 }
3183
3184 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3185 u64 *snap_size, u64 *snap_features)
3186 {
3187 if (rbd_dev->image_format == 1)
3188 return rbd_dev_v1_snap_info(rbd_dev, which,
3189 snap_size, snap_features);
3190 if (rbd_dev->image_format == 2)
3191 return rbd_dev_v2_snap_info(rbd_dev, which,
3192 snap_size, snap_features);
3193 return ERR_PTR(-EINVAL);
3194 }
3195
3196 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3197 {
3198 int ret;
3199 __u8 obj_order;
3200
3201 down_write(&rbd_dev->header_rwsem);
3202
3203 /* Grab old order first, to see if it changes */
3204
3205 obj_order = rbd_dev->header.obj_order,
3206 ret = rbd_dev_v2_image_size(rbd_dev);
3207 if (ret)
3208 goto out;
3209 if (rbd_dev->header.obj_order != obj_order) {
3210 ret = -EIO;
3211 goto out;
3212 }
3213 rbd_update_mapping_size(rbd_dev);
3214
3215 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3216 dout("rbd_dev_v2_snap_context returned %d\n", ret);
3217 if (ret)
3218 goto out;
3219 ret = rbd_dev_snaps_update(rbd_dev);
3220 dout("rbd_dev_snaps_update returned %d\n", ret);
3221 if (ret)
3222 goto out;
3223 ret = rbd_dev_snaps_register(rbd_dev);
3224 dout("rbd_dev_snaps_register returned %d\n", ret);
3225 out:
3226 up_write(&rbd_dev->header_rwsem);
3227
3228 return ret;
3229 }
3230
3231 /*
3232 * Scan the rbd device's current snapshot list and compare it to the
3233 * newly-received snapshot context. Remove any existing snapshots
3234 * not present in the new snapshot context. Add a new snapshot for
3235 * any snaphots in the snapshot context not in the current list.
3236 * And verify there are no changes to snapshots we already know
3237 * about.
3238 *
3239 * Assumes the snapshots in the snapshot context are sorted by
3240 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
3241 * are also maintained in that order.)
3242 */
3243 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3244 {
3245 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3246 const u32 snap_count = snapc->num_snaps;
3247 struct list_head *head = &rbd_dev->snaps;
3248 struct list_head *links = head->next;
3249 u32 index = 0;
3250
3251 dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3252 while (index < snap_count || links != head) {
3253 u64 snap_id;
3254 struct rbd_snap *snap;
3255 char *snap_name;
3256 u64 snap_size = 0;
3257 u64 snap_features = 0;
3258
3259 snap_id = index < snap_count ? snapc->snaps[index]
3260 : CEPH_NOSNAP;
3261 snap = links != head ? list_entry(links, struct rbd_snap, node)
3262 : NULL;
3263 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3264
3265 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3266 struct list_head *next = links->next;
3267
3268 /*
3269 * A previously-existing snapshot is not in
3270 * the new snap context.
3271 *
3272 * If the now missing snapshot is the one the
3273 * image is mapped to, clear its exists flag
3274 * so we can avoid sending any more requests
3275 * to it.
3276 */
3277 if (rbd_dev->spec->snap_id == snap->id)
3278 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3279 rbd_remove_snap_dev(snap);
3280 dout("%ssnap id %llu has been removed\n",
3281 rbd_dev->spec->snap_id == snap->id ?
3282 "mapped " : "",
3283 (unsigned long long) snap->id);
3284
3285 /* Done with this list entry; advance */
3286
3287 links = next;
3288 continue;
3289 }
3290
3291 snap_name = rbd_dev_snap_info(rbd_dev, index,
3292 &snap_size, &snap_features);
3293 if (IS_ERR(snap_name))
3294 return PTR_ERR(snap_name);
3295
3296 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3297 (unsigned long long) snap_id);
3298 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3299 struct rbd_snap *new_snap;
3300
3301 /* We haven't seen this snapshot before */
3302
3303 new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3304 snap_id, snap_size, snap_features);
3305 if (IS_ERR(new_snap)) {
3306 int err = PTR_ERR(new_snap);
3307
3308 dout(" failed to add dev, error %d\n", err);
3309
3310 return err;
3311 }
3312
3313 /* New goes before existing, or at end of list */
3314
3315 dout(" added dev%s\n", snap ? "" : " at end\n");
3316 if (snap)
3317 list_add_tail(&new_snap->node, &snap->node);
3318 else
3319 list_add_tail(&new_snap->node, head);
3320 } else {
3321 /* Already have this one */
3322
3323 dout(" already present\n");
3324
3325 rbd_assert(snap->size == snap_size);
3326 rbd_assert(!strcmp(snap->name, snap_name));
3327 rbd_assert(snap->features == snap_features);
3328
3329 /* Done with this list entry; advance */
3330
3331 links = links->next;
3332 }
3333
3334 /* Advance to the next entry in the snapshot context */
3335
3336 index++;
3337 }
3338 dout("%s: done\n", __func__);
3339
3340 return 0;
3341 }
3342
3343 /*
3344 * Scan the list of snapshots and register the devices for any that
3345 * have not already been registered.
3346 */
3347 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3348 {
3349 struct rbd_snap *snap;
3350 int ret = 0;
3351
3352 dout("%s called\n", __func__);
3353 if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3354 return -EIO;
3355
3356 list_for_each_entry(snap, &rbd_dev->snaps, node) {
3357 if (!rbd_snap_registered(snap)) {
3358 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3359 if (ret < 0)
3360 break;
3361 }
3362 }
3363 dout("%s: returning %d\n", __func__, ret);
3364
3365 return ret;
3366 }
3367
3368 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3369 {
3370 struct device *dev;
3371 int ret;
3372
3373 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3374
3375 dev = &rbd_dev->dev;
3376 dev->bus = &rbd_bus_type;
3377 dev->type = &rbd_device_type;
3378 dev->parent = &rbd_root_dev;
3379 dev->release = rbd_dev_release;
3380 dev_set_name(dev, "%d", rbd_dev->dev_id);
3381 ret = device_register(dev);
3382
3383 mutex_unlock(&ctl_mutex);
3384
3385 return ret;
3386 }
3387
3388 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3389 {
3390 device_unregister(&rbd_dev->dev);
3391 }
3392
3393 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3394
3395 /*
3396 * Get a unique rbd identifier for the given new rbd_dev, and add
3397 * the rbd_dev to the global list. The minimum rbd id is 1.
3398 */
3399 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3400 {
3401 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3402
3403 spin_lock(&rbd_dev_list_lock);
3404 list_add_tail(&rbd_dev->node, &rbd_dev_list);
3405 spin_unlock(&rbd_dev_list_lock);
3406 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3407 (unsigned long long) rbd_dev->dev_id);
3408 }
3409
3410 /*
3411 * Remove an rbd_dev from the global list, and record that its
3412 * identifier is no longer in use.
3413 */
3414 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3415 {
3416 struct list_head *tmp;
3417 int rbd_id = rbd_dev->dev_id;
3418 int max_id;
3419
3420 rbd_assert(rbd_id > 0);
3421
3422 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3423 (unsigned long long) rbd_dev->dev_id);
3424 spin_lock(&rbd_dev_list_lock);
3425 list_del_init(&rbd_dev->node);
3426
3427 /*
3428 * If the id being "put" is not the current maximum, there
3429 * is nothing special we need to do.
3430 */
3431 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3432 spin_unlock(&rbd_dev_list_lock);
3433 return;
3434 }
3435
3436 /*
3437 * We need to update the current maximum id. Search the
3438 * list to find out what it is. We're more likely to find
3439 * the maximum at the end, so search the list backward.
3440 */
3441 max_id = 0;
3442 list_for_each_prev(tmp, &rbd_dev_list) {
3443 struct rbd_device *rbd_dev;
3444
3445 rbd_dev = list_entry(tmp, struct rbd_device, node);
3446 if (rbd_dev->dev_id > max_id)
3447 max_id = rbd_dev->dev_id;
3448 }
3449 spin_unlock(&rbd_dev_list_lock);
3450
3451 /*
3452 * The max id could have been updated by rbd_dev_id_get(), in
3453 * which case it now accurately reflects the new maximum.
3454 * Be careful not to overwrite the maximum value in that
3455 * case.
3456 */
3457 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3458 dout(" max dev id has been reset\n");
3459 }
3460
3461 /*
3462 * Skips over white space at *buf, and updates *buf to point to the
3463 * first found non-space character (if any). Returns the length of
3464 * the token (string of non-white space characters) found. Note
3465 * that *buf must be terminated with '\0'.
3466 */
3467 static inline size_t next_token(const char **buf)
3468 {
3469 /*
3470 * These are the characters that produce nonzero for
3471 * isspace() in the "C" and "POSIX" locales.
3472 */
3473 const char *spaces = " \f\n\r\t\v";
3474
3475 *buf += strspn(*buf, spaces); /* Find start of token */
3476
3477 return strcspn(*buf, spaces); /* Return token length */
3478 }
3479
3480 /*
3481 * Finds the next token in *buf, and if the provided token buffer is
3482 * big enough, copies the found token into it. The result, if
3483 * copied, is guaranteed to be terminated with '\0'. Note that *buf
3484 * must be terminated with '\0' on entry.
3485 *
3486 * Returns the length of the token found (not including the '\0').
3487 * Return value will be 0 if no token is found, and it will be >=
3488 * token_size if the token would not fit.
3489 *
3490 * The *buf pointer will be updated to point beyond the end of the
3491 * found token. Note that this occurs even if the token buffer is
3492 * too small to hold it.
3493 */
3494 static inline size_t copy_token(const char **buf,
3495 char *token,
3496 size_t token_size)
3497 {
3498 size_t len;
3499
3500 len = next_token(buf);
3501 if (len < token_size) {
3502 memcpy(token, *buf, len);
3503 *(token + len) = '\0';
3504 }
3505 *buf += len;
3506
3507 return len;
3508 }
3509
3510 /*
3511 * Finds the next token in *buf, dynamically allocates a buffer big
3512 * enough to hold a copy of it, and copies the token into the new
3513 * buffer. The copy is guaranteed to be terminated with '\0'. Note
3514 * that a duplicate buffer is created even for a zero-length token.
3515 *
3516 * Returns a pointer to the newly-allocated duplicate, or a null
3517 * pointer if memory for the duplicate was not available. If
3518 * the lenp argument is a non-null pointer, the length of the token
3519 * (not including the '\0') is returned in *lenp.
3520 *
3521 * If successful, the *buf pointer will be updated to point beyond
3522 * the end of the found token.
3523 *
3524 * Note: uses GFP_KERNEL for allocation.
3525 */
3526 static inline char *dup_token(const char **buf, size_t *lenp)
3527 {
3528 char *dup;
3529 size_t len;
3530
3531 len = next_token(buf);
3532 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3533 if (!dup)
3534 return NULL;
3535 *(dup + len) = '\0';
3536 *buf += len;
3537
3538 if (lenp)
3539 *lenp = len;
3540
3541 return dup;
3542 }
3543
3544 /*
3545 * Parse the options provided for an "rbd add" (i.e., rbd image
3546 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
3547 * and the data written is passed here via a NUL-terminated buffer.
3548 * Returns 0 if successful or an error code otherwise.
3549 *
3550 * The information extracted from these options is recorded in
3551 * the other parameters which return dynamically-allocated
3552 * structures:
3553 * ceph_opts
3554 * The address of a pointer that will refer to a ceph options
3555 * structure. Caller must release the returned pointer using
3556 * ceph_destroy_options() when it is no longer needed.
3557 * rbd_opts
3558 * Address of an rbd options pointer. Fully initialized by
3559 * this function; caller must release with kfree().
3560 * spec
3561 * Address of an rbd image specification pointer. Fully
3562 * initialized by this function based on parsed options.
3563 * Caller must release with rbd_spec_put().
3564 *
3565 * The options passed take this form:
3566 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3567 * where:
3568 * <mon_addrs>
3569 * A comma-separated list of one or more monitor addresses.
3570 * A monitor address is an ip address, optionally followed
3571 * by a port number (separated by a colon).
3572 * I.e.: ip1[:port1][,ip2[:port2]...]
3573 * <options>
3574 * A comma-separated list of ceph and/or rbd options.
3575 * <pool_name>
3576 * The name of the rados pool containing the rbd image.
3577 * <image_name>
3578 * The name of the image in that pool to map.
3579 * <snap_id>
3580 * An optional snapshot id. If provided, the mapping will
3581 * present data from the image at the time that snapshot was
3582 * created. The image head is used if no snapshot id is
3583 * provided. Snapshot mappings are always read-only.
3584 */
3585 static int rbd_add_parse_args(const char *buf,
3586 struct ceph_options **ceph_opts,
3587 struct rbd_options **opts,
3588 struct rbd_spec **rbd_spec)
3589 {
3590 size_t len;
3591 char *options;
3592 const char *mon_addrs;
3593 size_t mon_addrs_size;
3594 struct rbd_spec *spec = NULL;
3595 struct rbd_options *rbd_opts = NULL;
3596 struct ceph_options *copts;
3597 int ret;
3598
3599 /* The first four tokens are required */
3600
3601 len = next_token(&buf);
3602 if (!len) {
3603 rbd_warn(NULL, "no monitor address(es) provided");
3604 return -EINVAL;
3605 }
3606 mon_addrs = buf;
3607 mon_addrs_size = len + 1;
3608 buf += len;
3609
3610 ret = -EINVAL;
3611 options = dup_token(&buf, NULL);
3612 if (!options)
3613 return -ENOMEM;
3614 if (!*options) {
3615 rbd_warn(NULL, "no options provided");
3616 goto out_err;
3617 }
3618
3619 spec = rbd_spec_alloc();
3620 if (!spec)
3621 goto out_mem;
3622
3623 spec->pool_name = dup_token(&buf, NULL);
3624 if (!spec->pool_name)
3625 goto out_mem;
3626 if (!*spec->pool_name) {
3627 rbd_warn(NULL, "no pool name provided");
3628 goto out_err;
3629 }
3630
3631 spec->image_name = dup_token(&buf, NULL);
3632 if (!spec->image_name)
3633 goto out_mem;
3634 if (!*spec->image_name) {
3635 rbd_warn(NULL, "no image name provided");
3636 goto out_err;
3637 }
3638
3639 /*
3640 * Snapshot name is optional; default is to use "-"
3641 * (indicating the head/no snapshot).
3642 */
3643 len = next_token(&buf);
3644 if (!len) {
3645 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3646 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3647 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3648 ret = -ENAMETOOLONG;
3649 goto out_err;
3650 }
3651 spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3652 if (!spec->snap_name)
3653 goto out_mem;
3654 *(spec->snap_name + len) = '\0';
3655
3656 /* Initialize all rbd options to the defaults */
3657
3658 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3659 if (!rbd_opts)
3660 goto out_mem;
3661
3662 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3663
3664 copts = ceph_parse_options(options, mon_addrs,
3665 mon_addrs + mon_addrs_size - 1,
3666 parse_rbd_opts_token, rbd_opts);
3667 if (IS_ERR(copts)) {
3668 ret = PTR_ERR(copts);
3669 goto out_err;
3670 }
3671 kfree(options);
3672
3673 *ceph_opts = copts;
3674 *opts = rbd_opts;
3675 *rbd_spec = spec;
3676
3677 return 0;
3678 out_mem:
3679 ret = -ENOMEM;
3680 out_err:
3681 kfree(rbd_opts);
3682 rbd_spec_put(spec);
3683 kfree(options);
3684
3685 return ret;
3686 }
3687
3688 /*
3689 * An rbd format 2 image has a unique identifier, distinct from the
3690 * name given to it by the user. Internally, that identifier is
3691 * what's used to specify the names of objects related to the image.
3692 *
3693 * A special "rbd id" object is used to map an rbd image name to its
3694 * id. If that object doesn't exist, then there is no v2 rbd image
3695 * with the supplied name.
3696 *
3697 * This function will record the given rbd_dev's image_id field if
3698 * it can be determined, and in that case will return 0. If any
3699 * errors occur a negative errno will be returned and the rbd_dev's
3700 * image_id field will be unchanged (and should be NULL).
3701 */
3702 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3703 {
3704 int ret;
3705 size_t size;
3706 char *object_name;
3707 void *response;
3708 void *p;
3709
3710 /*
3711 * When probing a parent image, the image id is already
3712 * known (and the image name likely is not). There's no
3713 * need to fetch the image id again in this case.
3714 */
3715 if (rbd_dev->spec->image_id)
3716 return 0;
3717
3718 /*
3719 * First, see if the format 2 image id file exists, and if
3720 * so, get the image's persistent id from it.
3721 */
3722 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3723 object_name = kmalloc(size, GFP_NOIO);
3724 if (!object_name)
3725 return -ENOMEM;
3726 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3727 dout("rbd id object name is %s\n", object_name);
3728
3729 /* Response will be an encoded string, which includes a length */
3730
3731 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3732 response = kzalloc(size, GFP_NOIO);
3733 if (!response) {
3734 ret = -ENOMEM;
3735 goto out;
3736 }
3737
3738 ret = rbd_obj_method_sync(rbd_dev, object_name,
3739 "rbd", "get_id",
3740 NULL, 0,
3741 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3742 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3743 if (ret < 0)
3744 goto out;
3745
3746 p = response;
3747 rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3748 p + RBD_IMAGE_ID_LEN_MAX,
3749 NULL, GFP_NOIO);
3750 if (IS_ERR(rbd_dev->spec->image_id)) {
3751 ret = PTR_ERR(rbd_dev->spec->image_id);
3752 rbd_dev->spec->image_id = NULL;
3753 } else {
3754 dout("image_id is %s\n", rbd_dev->spec->image_id);
3755 }
3756 out:
3757 kfree(response);
3758 kfree(object_name);
3759
3760 return ret;
3761 }
3762
3763 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3764 {
3765 int ret;
3766 size_t size;
3767
3768 /* Version 1 images have no id; empty string is used */
3769
3770 rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3771 if (!rbd_dev->spec->image_id)
3772 return -ENOMEM;
3773
3774 /* Record the header object name for this rbd image. */
3775
3776 size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3777 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3778 if (!rbd_dev->header_name) {
3779 ret = -ENOMEM;
3780 goto out_err;
3781 }
3782 sprintf(rbd_dev->header_name, "%s%s",
3783 rbd_dev->spec->image_name, RBD_SUFFIX);
3784
3785 /* Populate rbd image metadata */
3786
3787 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3788 if (ret < 0)
3789 goto out_err;
3790
3791 /* Version 1 images have no parent (no layering) */
3792
3793 rbd_dev->parent_spec = NULL;
3794 rbd_dev->parent_overlap = 0;
3795
3796 rbd_dev->image_format = 1;
3797
3798 dout("discovered version 1 image, header name is %s\n",
3799 rbd_dev->header_name);
3800
3801 return 0;
3802
3803 out_err:
3804 kfree(rbd_dev->header_name);
3805 rbd_dev->header_name = NULL;
3806 kfree(rbd_dev->spec->image_id);
3807 rbd_dev->spec->image_id = NULL;
3808
3809 return ret;
3810 }
3811
3812 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3813 {
3814 size_t size;
3815 int ret;
3816 u64 ver = 0;
3817
3818 /*
3819 * Image id was filled in by the caller. Record the header
3820 * object name for this rbd image.
3821 */
3822 size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3823 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3824 if (!rbd_dev->header_name)
3825 return -ENOMEM;
3826 sprintf(rbd_dev->header_name, "%s%s",
3827 RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3828
3829 /* Get the size and object order for the image */
3830
3831 ret = rbd_dev_v2_image_size(rbd_dev);
3832 if (ret < 0)
3833 goto out_err;
3834
3835 /* Get the object prefix (a.k.a. block_name) for the image */
3836
3837 ret = rbd_dev_v2_object_prefix(rbd_dev);
3838 if (ret < 0)
3839 goto out_err;
3840
3841 /* Get the and check features for the image */
3842
3843 ret = rbd_dev_v2_features(rbd_dev);
3844 if (ret < 0)
3845 goto out_err;
3846
3847 /* If the image supports layering, get the parent info */
3848
3849 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3850 ret = rbd_dev_v2_parent_info(rbd_dev);
3851 if (ret < 0)
3852 goto out_err;
3853 }
3854
3855 /* crypto and compression type aren't (yet) supported for v2 images */
3856
3857 rbd_dev->header.crypt_type = 0;
3858 rbd_dev->header.comp_type = 0;
3859
3860 /* Get the snapshot context, plus the header version */
3861
3862 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3863 if (ret)
3864 goto out_err;
3865 rbd_dev->header.obj_version = ver;
3866
3867 rbd_dev->image_format = 2;
3868
3869 dout("discovered version 2 image, header name is %s\n",
3870 rbd_dev->header_name);
3871
3872 return 0;
3873 out_err:
3874 rbd_dev->parent_overlap = 0;
3875 rbd_spec_put(rbd_dev->parent_spec);
3876 rbd_dev->parent_spec = NULL;
3877 kfree(rbd_dev->header_name);
3878 rbd_dev->header_name = NULL;
3879 kfree(rbd_dev->header.object_prefix);
3880 rbd_dev->header.object_prefix = NULL;
3881
3882 return ret;
3883 }
3884
3885 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3886 {
3887 int ret;
3888
3889 /* no need to lock here, as rbd_dev is not registered yet */
3890 ret = rbd_dev_snaps_update(rbd_dev);
3891 if (ret)
3892 return ret;
3893
3894 ret = rbd_dev_probe_update_spec(rbd_dev);
3895 if (ret)
3896 goto err_out_snaps;
3897
3898 ret = rbd_dev_set_mapping(rbd_dev);
3899 if (ret)
3900 goto err_out_snaps;
3901
3902 /* generate unique id: find highest unique id, add one */
3903 rbd_dev_id_get(rbd_dev);
3904
3905 /* Fill in the device name, now that we have its id. */
3906 BUILD_BUG_ON(DEV_NAME_LEN
3907 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3908 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3909
3910 /* Get our block major device number. */
3911
3912 ret = register_blkdev(0, rbd_dev->name);
3913 if (ret < 0)
3914 goto err_out_id;
3915 rbd_dev->major = ret;
3916
3917 /* Set up the blkdev mapping. */
3918
3919 ret = rbd_init_disk(rbd_dev);
3920 if (ret)
3921 goto err_out_blkdev;
3922
3923 ret = rbd_bus_add_dev(rbd_dev);
3924 if (ret)
3925 goto err_out_disk;
3926
3927 /*
3928 * At this point cleanup in the event of an error is the job
3929 * of the sysfs code (initiated by rbd_bus_del_dev()).
3930 */
3931 down_write(&rbd_dev->header_rwsem);
3932 ret = rbd_dev_snaps_register(rbd_dev);
3933 up_write(&rbd_dev->header_rwsem);
3934 if (ret)
3935 goto err_out_bus;
3936
3937 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
3938 if (ret)
3939 goto err_out_bus;
3940
3941 /* Everything's ready. Announce the disk to the world. */
3942
3943 add_disk(rbd_dev->disk);
3944
3945 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3946 (unsigned long long) rbd_dev->mapping.size);
3947
3948 return ret;
3949 err_out_bus:
3950 /* this will also clean up rest of rbd_dev stuff */
3951
3952 rbd_bus_del_dev(rbd_dev);
3953
3954 return ret;
3955 err_out_disk:
3956 rbd_free_disk(rbd_dev);
3957 err_out_blkdev:
3958 unregister_blkdev(rbd_dev->major, rbd_dev->name);
3959 err_out_id:
3960 rbd_dev_id_put(rbd_dev);
3961 err_out_snaps:
3962 rbd_remove_all_snaps(rbd_dev);
3963
3964 return ret;
3965 }
3966
3967 /*
3968 * Probe for the existence of the header object for the given rbd
3969 * device. For format 2 images this includes determining the image
3970 * id.
3971 */
3972 static int rbd_dev_probe(struct rbd_device *rbd_dev)
3973 {
3974 int ret;
3975
3976 /*
3977 * Get the id from the image id object. If it's not a
3978 * format 2 image, we'll get ENOENT back, and we'll assume
3979 * it's a format 1 image.
3980 */
3981 ret = rbd_dev_image_id(rbd_dev);
3982 if (ret)
3983 ret = rbd_dev_v1_probe(rbd_dev);
3984 else
3985 ret = rbd_dev_v2_probe(rbd_dev);
3986 if (ret) {
3987 dout("probe failed, returning %d\n", ret);
3988
3989 return ret;
3990 }
3991
3992 ret = rbd_dev_probe_finish(rbd_dev);
3993 if (ret)
3994 rbd_header_free(&rbd_dev->header);
3995
3996 return ret;
3997 }
3998
3999 static ssize_t rbd_add(struct bus_type *bus,
4000 const char *buf,
4001 size_t count)
4002 {
4003 struct rbd_device *rbd_dev = NULL;
4004 struct ceph_options *ceph_opts = NULL;
4005 struct rbd_options *rbd_opts = NULL;
4006 struct rbd_spec *spec = NULL;
4007 struct rbd_client *rbdc;
4008 struct ceph_osd_client *osdc;
4009 int rc = -ENOMEM;
4010
4011 if (!try_module_get(THIS_MODULE))
4012 return -ENODEV;
4013
4014 /* parse add command */
4015 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4016 if (rc < 0)
4017 goto err_out_module;
4018
4019 rbdc = rbd_get_client(ceph_opts);
4020 if (IS_ERR(rbdc)) {
4021 rc = PTR_ERR(rbdc);
4022 goto err_out_args;
4023 }
4024 ceph_opts = NULL; /* rbd_dev client now owns this */
4025
4026 /* pick the pool */
4027 osdc = &rbdc->client->osdc;
4028 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4029 if (rc < 0)
4030 goto err_out_client;
4031 spec->pool_id = (u64) rc;
4032
4033 /* The ceph file layout needs to fit pool id in 32 bits */
4034
4035 if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4036 rc = -EIO;
4037 goto err_out_client;
4038 }
4039
4040 rbd_dev = rbd_dev_create(rbdc, spec);
4041 if (!rbd_dev)
4042 goto err_out_client;
4043 rbdc = NULL; /* rbd_dev now owns this */
4044 spec = NULL; /* rbd_dev now owns this */
4045
4046 rbd_dev->mapping.read_only = rbd_opts->read_only;
4047 kfree(rbd_opts);
4048 rbd_opts = NULL; /* done with this */
4049
4050 rc = rbd_dev_probe(rbd_dev);
4051 if (rc < 0)
4052 goto err_out_rbd_dev;
4053
4054 return count;
4055 err_out_rbd_dev:
4056 rbd_dev_destroy(rbd_dev);
4057 err_out_client:
4058 rbd_put_client(rbdc);
4059 err_out_args:
4060 if (ceph_opts)
4061 ceph_destroy_options(ceph_opts);
4062 kfree(rbd_opts);
4063 rbd_spec_put(spec);
4064 err_out_module:
4065 module_put(THIS_MODULE);
4066
4067 dout("Error adding device %s\n", buf);
4068
4069 return (ssize_t) rc;
4070 }
4071
4072 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4073 {
4074 struct list_head *tmp;
4075 struct rbd_device *rbd_dev;
4076
4077 spin_lock(&rbd_dev_list_lock);
4078 list_for_each(tmp, &rbd_dev_list) {
4079 rbd_dev = list_entry(tmp, struct rbd_device, node);
4080 if (rbd_dev->dev_id == dev_id) {
4081 spin_unlock(&rbd_dev_list_lock);
4082 return rbd_dev;
4083 }
4084 }
4085 spin_unlock(&rbd_dev_list_lock);
4086 return NULL;
4087 }
4088
4089 static void rbd_dev_release(struct device *dev)
4090 {
4091 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4092
4093 if (rbd_dev->watch_event)
4094 rbd_dev_header_watch_sync(rbd_dev, 0);
4095
4096 /* clean up and free blkdev */
4097 rbd_free_disk(rbd_dev);
4098 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4099
4100 /* release allocated disk header fields */
4101 rbd_header_free(&rbd_dev->header);
4102
4103 /* done with the id, and with the rbd_dev */
4104 rbd_dev_id_put(rbd_dev);
4105 rbd_assert(rbd_dev->rbd_client != NULL);
4106 rbd_dev_destroy(rbd_dev);
4107
4108 /* release module ref */
4109 module_put(THIS_MODULE);
4110 }
4111
4112 static ssize_t rbd_remove(struct bus_type *bus,
4113 const char *buf,
4114 size_t count)
4115 {
4116 struct rbd_device *rbd_dev = NULL;
4117 int target_id, rc;
4118 unsigned long ul;
4119 int ret = count;
4120
4121 rc = strict_strtoul(buf, 10, &ul);
4122 if (rc)
4123 return rc;
4124
4125 /* convert to int; abort if we lost anything in the conversion */
4126 target_id = (int) ul;
4127 if (target_id != ul)
4128 return -EINVAL;
4129
4130 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4131
4132 rbd_dev = __rbd_get_dev(target_id);
4133 if (!rbd_dev) {
4134 ret = -ENOENT;
4135 goto done;
4136 }
4137
4138 spin_lock_irq(&rbd_dev->lock);
4139 if (rbd_dev->open_count)
4140 ret = -EBUSY;
4141 else
4142 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4143 spin_unlock_irq(&rbd_dev->lock);
4144 if (ret < 0)
4145 goto done;
4146
4147 rbd_remove_all_snaps(rbd_dev);
4148 rbd_bus_del_dev(rbd_dev);
4149
4150 done:
4151 mutex_unlock(&ctl_mutex);
4152
4153 return ret;
4154 }
4155
4156 /*
4157 * create control files in sysfs
4158 * /sys/bus/rbd/...
4159 */
4160 static int rbd_sysfs_init(void)
4161 {
4162 int ret;
4163
4164 ret = device_register(&rbd_root_dev);
4165 if (ret < 0)
4166 return ret;
4167
4168 ret = bus_register(&rbd_bus_type);
4169 if (ret < 0)
4170 device_unregister(&rbd_root_dev);
4171
4172 return ret;
4173 }
4174
4175 static void rbd_sysfs_cleanup(void)
4176 {
4177 bus_unregister(&rbd_bus_type);
4178 device_unregister(&rbd_root_dev);
4179 }
4180
4181 int __init rbd_init(void)
4182 {
4183 int rc;
4184
4185 if (!libceph_compatible(NULL)) {
4186 rbd_warn(NULL, "libceph incompatibility (quitting)");
4187
4188 return -EINVAL;
4189 }
4190 rc = rbd_sysfs_init();
4191 if (rc)
4192 return rc;
4193 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4194 return 0;
4195 }
4196
4197 void __exit rbd_exit(void)
4198 {
4199 rbd_sysfs_cleanup();
4200 }
4201
4202 module_init(rbd_init);
4203 module_exit(rbd_exit);
4204
4205 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4206 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4207 MODULE_DESCRIPTION("rados block device");
4208
4209 /* following authorship retained from original osdblk.c */
4210 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4211
4212 MODULE_LICENSE("GPL");
This page took 0.113876 seconds and 6 git commands to generate.