rbd: prevent open for image being removed
[deliverable/linux.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 /* It might be useful to have these defined elsewhere */
56
57 #define U8_MAX ((u8) (~0U))
58 #define U16_MAX ((u16) (~0U))
59 #define U32_MAX ((u32) (~0U))
60 #define U64_MAX ((u64) (~0ULL))
61
62 #define RBD_DRV_NAME "rbd"
63 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
64
65 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
66
67 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
68 #define RBD_MAX_SNAP_NAME_LEN \
69 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
70
71 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
72
73 #define RBD_SNAP_HEAD_NAME "-"
74
75 /* This allows a single page to hold an image name sent by OSD */
76 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
77 #define RBD_IMAGE_ID_LEN_MAX 64
78
79 #define RBD_OBJ_PREFIX_LEN_MAX 64
80
81 /* Feature bits */
82
83 #define RBD_FEATURE_LAYERING 1
84
85 /* Features supported by this (client software) implementation. */
86
87 #define RBD_FEATURES_ALL (0)
88
89 /*
90 * An RBD device name will be "rbd#", where the "rbd" comes from
91 * RBD_DRV_NAME above, and # is a unique integer identifier.
92 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
93 * enough to hold all possible device names.
94 */
95 #define DEV_NAME_LEN 32
96 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
97
98 /*
99 * block device image metadata (in-memory version)
100 */
101 struct rbd_image_header {
102 /* These four fields never change for a given rbd image */
103 char *object_prefix;
104 u64 features;
105 __u8 obj_order;
106 __u8 crypt_type;
107 __u8 comp_type;
108
109 /* The remaining fields need to be updated occasionally */
110 u64 image_size;
111 struct ceph_snap_context *snapc;
112 char *snap_names;
113 u64 *snap_sizes;
114
115 u64 obj_version;
116 };
117
118 /*
119 * An rbd image specification.
120 *
121 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
122 * identify an image. Each rbd_dev structure includes a pointer to
123 * an rbd_spec structure that encapsulates this identity.
124 *
125 * Each of the id's in an rbd_spec has an associated name. For a
126 * user-mapped image, the names are supplied and the id's associated
127 * with them are looked up. For a layered image, a parent image is
128 * defined by the tuple, and the names are looked up.
129 *
130 * An rbd_dev structure contains a parent_spec pointer which is
131 * non-null if the image it represents is a child in a layered
132 * image. This pointer will refer to the rbd_spec structure used
133 * by the parent rbd_dev for its own identity (i.e., the structure
134 * is shared between the parent and child).
135 *
136 * Since these structures are populated once, during the discovery
137 * phase of image construction, they are effectively immutable so
138 * we make no effort to synchronize access to them.
139 *
140 * Note that code herein does not assume the image name is known (it
141 * could be a null pointer).
142 */
143 struct rbd_spec {
144 u64 pool_id;
145 char *pool_name;
146
147 char *image_id;
148 char *image_name;
149
150 u64 snap_id;
151 char *snap_name;
152
153 struct kref kref;
154 };
155
156 /*
157 * an instance of the client. multiple devices may share an rbd client.
158 */
159 struct rbd_client {
160 struct ceph_client *client;
161 struct kref kref;
162 struct list_head node;
163 };
164
165 struct rbd_img_request;
166 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
167
168 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
169
170 struct rbd_obj_request;
171 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
172
173 enum obj_request_type {
174 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
175 };
176
177 struct rbd_obj_request {
178 const char *object_name;
179 u64 offset; /* object start byte */
180 u64 length; /* bytes from offset */
181
182 struct rbd_img_request *img_request;
183 struct list_head links; /* img_request->obj_requests */
184 u32 which; /* posn image request list */
185
186 enum obj_request_type type;
187 union {
188 struct bio *bio_list;
189 struct {
190 struct page **pages;
191 u32 page_count;
192 };
193 };
194
195 struct ceph_osd_request *osd_req;
196
197 u64 xferred; /* bytes transferred */
198 u64 version;
199 s32 result;
200 atomic_t done;
201
202 rbd_obj_callback_t callback;
203 struct completion completion;
204
205 struct kref kref;
206 };
207
208 struct rbd_img_request {
209 struct request *rq;
210 struct rbd_device *rbd_dev;
211 u64 offset; /* starting image byte offset */
212 u64 length; /* byte count from offset */
213 bool write_request; /* false for read */
214 union {
215 struct ceph_snap_context *snapc; /* for writes */
216 u64 snap_id; /* for reads */
217 };
218 spinlock_t completion_lock;/* protects next_completion */
219 u32 next_completion;
220 rbd_img_callback_t callback;
221
222 u32 obj_request_count;
223 struct list_head obj_requests; /* rbd_obj_request structs */
224
225 struct kref kref;
226 };
227
228 #define for_each_obj_request(ireq, oreq) \
229 list_for_each_entry(oreq, &ireq->obj_requests, links)
230 #define for_each_obj_request_from(ireq, oreq) \
231 list_for_each_entry_from(oreq, &ireq->obj_requests, links)
232 #define for_each_obj_request_safe(ireq, oreq, n) \
233 list_for_each_entry_safe_reverse(oreq, n, &ireq->obj_requests, links)
234
235 struct rbd_snap {
236 struct device dev;
237 const char *name;
238 u64 size;
239 struct list_head node;
240 u64 id;
241 u64 features;
242 };
243
244 struct rbd_mapping {
245 u64 size;
246 u64 features;
247 bool read_only;
248 };
249
250 /*
251 * a single device
252 */
253 struct rbd_device {
254 int dev_id; /* blkdev unique id */
255
256 int major; /* blkdev assigned major */
257 struct gendisk *disk; /* blkdev's gendisk and rq */
258
259 u32 image_format; /* Either 1 or 2 */
260 struct rbd_client *rbd_client;
261
262 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
263
264 spinlock_t lock; /* queue, flags, open_count */
265
266 struct rbd_image_header header;
267 unsigned long flags; /* possibly lock protected */
268 struct rbd_spec *spec;
269
270 char *header_name;
271
272 struct ceph_file_layout layout;
273
274 struct ceph_osd_event *watch_event;
275 struct rbd_obj_request *watch_request;
276
277 struct rbd_spec *parent_spec;
278 u64 parent_overlap;
279
280 /* protects updating the header */
281 struct rw_semaphore header_rwsem;
282
283 struct rbd_mapping mapping;
284
285 struct list_head node;
286
287 /* list of snapshots */
288 struct list_head snaps;
289
290 /* sysfs related */
291 struct device dev;
292 unsigned long open_count; /* protected by lock */
293 };
294
295 /*
296 * Flag bits for rbd_dev->flags. If atomicity is required,
297 * rbd_dev->lock is used to protect access.
298 *
299 * Currently, only the "removing" flag (which is coupled with the
300 * "open_count" field) requires atomic access.
301 */
302 enum rbd_dev_flags {
303 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
304 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
305 };
306
307 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
308
309 static LIST_HEAD(rbd_dev_list); /* devices */
310 static DEFINE_SPINLOCK(rbd_dev_list_lock);
311
312 static LIST_HEAD(rbd_client_list); /* clients */
313 static DEFINE_SPINLOCK(rbd_client_list_lock);
314
315 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
316 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
317
318 static void rbd_dev_release(struct device *dev);
319 static void rbd_remove_snap_dev(struct rbd_snap *snap);
320
321 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
322 size_t count);
323 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
324 size_t count);
325
326 static struct bus_attribute rbd_bus_attrs[] = {
327 __ATTR(add, S_IWUSR, NULL, rbd_add),
328 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
329 __ATTR_NULL
330 };
331
332 static struct bus_type rbd_bus_type = {
333 .name = "rbd",
334 .bus_attrs = rbd_bus_attrs,
335 };
336
337 static void rbd_root_dev_release(struct device *dev)
338 {
339 }
340
341 static struct device rbd_root_dev = {
342 .init_name = "rbd",
343 .release = rbd_root_dev_release,
344 };
345
346 static __printf(2, 3)
347 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
348 {
349 struct va_format vaf;
350 va_list args;
351
352 va_start(args, fmt);
353 vaf.fmt = fmt;
354 vaf.va = &args;
355
356 if (!rbd_dev)
357 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
358 else if (rbd_dev->disk)
359 printk(KERN_WARNING "%s: %s: %pV\n",
360 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
361 else if (rbd_dev->spec && rbd_dev->spec->image_name)
362 printk(KERN_WARNING "%s: image %s: %pV\n",
363 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
364 else if (rbd_dev->spec && rbd_dev->spec->image_id)
365 printk(KERN_WARNING "%s: id %s: %pV\n",
366 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
367 else /* punt */
368 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
369 RBD_DRV_NAME, rbd_dev, &vaf);
370 va_end(args);
371 }
372
373 #ifdef RBD_DEBUG
374 #define rbd_assert(expr) \
375 if (unlikely(!(expr))) { \
376 printk(KERN_ERR "\nAssertion failure in %s() " \
377 "at line %d:\n\n" \
378 "\trbd_assert(%s);\n\n", \
379 __func__, __LINE__, #expr); \
380 BUG(); \
381 }
382 #else /* !RBD_DEBUG */
383 # define rbd_assert(expr) ((void) 0)
384 #endif /* !RBD_DEBUG */
385
386 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
387 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
388
389 static int rbd_open(struct block_device *bdev, fmode_t mode)
390 {
391 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
392 bool removing = false;
393
394 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
395 return -EROFS;
396
397 spin_lock(&rbd_dev->lock);
398 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
399 removing = true;
400 else
401 rbd_dev->open_count++;
402 spin_unlock(&rbd_dev->lock);
403 if (removing)
404 return -ENOENT;
405
406 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
407 (void) get_device(&rbd_dev->dev);
408 set_device_ro(bdev, rbd_dev->mapping.read_only);
409 mutex_unlock(&ctl_mutex);
410
411 return 0;
412 }
413
414 static int rbd_release(struct gendisk *disk, fmode_t mode)
415 {
416 struct rbd_device *rbd_dev = disk->private_data;
417 unsigned long open_count_before;
418
419 spin_lock(&rbd_dev->lock);
420 open_count_before = rbd_dev->open_count--;
421 spin_unlock(&rbd_dev->lock);
422 rbd_assert(open_count_before > 0);
423
424 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
425 put_device(&rbd_dev->dev);
426 mutex_unlock(&ctl_mutex);
427
428 return 0;
429 }
430
431 static const struct block_device_operations rbd_bd_ops = {
432 .owner = THIS_MODULE,
433 .open = rbd_open,
434 .release = rbd_release,
435 };
436
437 /*
438 * Initialize an rbd client instance.
439 * We own *ceph_opts.
440 */
441 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
442 {
443 struct rbd_client *rbdc;
444 int ret = -ENOMEM;
445
446 dout("rbd_client_create\n");
447 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
448 if (!rbdc)
449 goto out_opt;
450
451 kref_init(&rbdc->kref);
452 INIT_LIST_HEAD(&rbdc->node);
453
454 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
455
456 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
457 if (IS_ERR(rbdc->client))
458 goto out_mutex;
459 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
460
461 ret = ceph_open_session(rbdc->client);
462 if (ret < 0)
463 goto out_err;
464
465 spin_lock(&rbd_client_list_lock);
466 list_add_tail(&rbdc->node, &rbd_client_list);
467 spin_unlock(&rbd_client_list_lock);
468
469 mutex_unlock(&ctl_mutex);
470
471 dout("rbd_client_create created %p\n", rbdc);
472 return rbdc;
473
474 out_err:
475 ceph_destroy_client(rbdc->client);
476 out_mutex:
477 mutex_unlock(&ctl_mutex);
478 kfree(rbdc);
479 out_opt:
480 if (ceph_opts)
481 ceph_destroy_options(ceph_opts);
482 return ERR_PTR(ret);
483 }
484
485 /*
486 * Find a ceph client with specific addr and configuration. If
487 * found, bump its reference count.
488 */
489 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
490 {
491 struct rbd_client *client_node;
492 bool found = false;
493
494 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
495 return NULL;
496
497 spin_lock(&rbd_client_list_lock);
498 list_for_each_entry(client_node, &rbd_client_list, node) {
499 if (!ceph_compare_options(ceph_opts, client_node->client)) {
500 kref_get(&client_node->kref);
501 found = true;
502 break;
503 }
504 }
505 spin_unlock(&rbd_client_list_lock);
506
507 return found ? client_node : NULL;
508 }
509
510 /*
511 * mount options
512 */
513 enum {
514 Opt_last_int,
515 /* int args above */
516 Opt_last_string,
517 /* string args above */
518 Opt_read_only,
519 Opt_read_write,
520 /* Boolean args above */
521 Opt_last_bool,
522 };
523
524 static match_table_t rbd_opts_tokens = {
525 /* int args above */
526 /* string args above */
527 {Opt_read_only, "read_only"},
528 {Opt_read_only, "ro"}, /* Alternate spelling */
529 {Opt_read_write, "read_write"},
530 {Opt_read_write, "rw"}, /* Alternate spelling */
531 /* Boolean args above */
532 {-1, NULL}
533 };
534
535 struct rbd_options {
536 bool read_only;
537 };
538
539 #define RBD_READ_ONLY_DEFAULT false
540
541 static int parse_rbd_opts_token(char *c, void *private)
542 {
543 struct rbd_options *rbd_opts = private;
544 substring_t argstr[MAX_OPT_ARGS];
545 int token, intval, ret;
546
547 token = match_token(c, rbd_opts_tokens, argstr);
548 if (token < 0)
549 return -EINVAL;
550
551 if (token < Opt_last_int) {
552 ret = match_int(&argstr[0], &intval);
553 if (ret < 0) {
554 pr_err("bad mount option arg (not int) "
555 "at '%s'\n", c);
556 return ret;
557 }
558 dout("got int token %d val %d\n", token, intval);
559 } else if (token > Opt_last_int && token < Opt_last_string) {
560 dout("got string token %d val %s\n", token,
561 argstr[0].from);
562 } else if (token > Opt_last_string && token < Opt_last_bool) {
563 dout("got Boolean token %d\n", token);
564 } else {
565 dout("got token %d\n", token);
566 }
567
568 switch (token) {
569 case Opt_read_only:
570 rbd_opts->read_only = true;
571 break;
572 case Opt_read_write:
573 rbd_opts->read_only = false;
574 break;
575 default:
576 rbd_assert(false);
577 break;
578 }
579 return 0;
580 }
581
582 /*
583 * Get a ceph client with specific addr and configuration, if one does
584 * not exist create it.
585 */
586 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
587 {
588 struct rbd_client *rbdc;
589
590 rbdc = rbd_client_find(ceph_opts);
591 if (rbdc) /* using an existing client */
592 ceph_destroy_options(ceph_opts);
593 else
594 rbdc = rbd_client_create(ceph_opts);
595
596 return rbdc;
597 }
598
599 /*
600 * Destroy ceph client
601 *
602 * Caller must hold rbd_client_list_lock.
603 */
604 static void rbd_client_release(struct kref *kref)
605 {
606 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
607
608 dout("rbd_release_client %p\n", rbdc);
609 spin_lock(&rbd_client_list_lock);
610 list_del(&rbdc->node);
611 spin_unlock(&rbd_client_list_lock);
612
613 ceph_destroy_client(rbdc->client);
614 kfree(rbdc);
615 }
616
617 /*
618 * Drop reference to ceph client node. If it's not referenced anymore, release
619 * it.
620 */
621 static void rbd_put_client(struct rbd_client *rbdc)
622 {
623 if (rbdc)
624 kref_put(&rbdc->kref, rbd_client_release);
625 }
626
627 static bool rbd_image_format_valid(u32 image_format)
628 {
629 return image_format == 1 || image_format == 2;
630 }
631
632 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
633 {
634 size_t size;
635 u32 snap_count;
636
637 /* The header has to start with the magic rbd header text */
638 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
639 return false;
640
641 /* The bio layer requires at least sector-sized I/O */
642
643 if (ondisk->options.order < SECTOR_SHIFT)
644 return false;
645
646 /* If we use u64 in a few spots we may be able to loosen this */
647
648 if (ondisk->options.order > 8 * sizeof (int) - 1)
649 return false;
650
651 /*
652 * The size of a snapshot header has to fit in a size_t, and
653 * that limits the number of snapshots.
654 */
655 snap_count = le32_to_cpu(ondisk->snap_count);
656 size = SIZE_MAX - sizeof (struct ceph_snap_context);
657 if (snap_count > size / sizeof (__le64))
658 return false;
659
660 /*
661 * Not only that, but the size of the entire the snapshot
662 * header must also be representable in a size_t.
663 */
664 size -= snap_count * sizeof (__le64);
665 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
666 return false;
667
668 return true;
669 }
670
671 /*
672 * Create a new header structure, translate header format from the on-disk
673 * header.
674 */
675 static int rbd_header_from_disk(struct rbd_image_header *header,
676 struct rbd_image_header_ondisk *ondisk)
677 {
678 u32 snap_count;
679 size_t len;
680 size_t size;
681 u32 i;
682
683 memset(header, 0, sizeof (*header));
684
685 snap_count = le32_to_cpu(ondisk->snap_count);
686
687 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
688 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
689 if (!header->object_prefix)
690 return -ENOMEM;
691 memcpy(header->object_prefix, ondisk->object_prefix, len);
692 header->object_prefix[len] = '\0';
693
694 if (snap_count) {
695 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
696
697 /* Save a copy of the snapshot names */
698
699 if (snap_names_len > (u64) SIZE_MAX)
700 return -EIO;
701 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
702 if (!header->snap_names)
703 goto out_err;
704 /*
705 * Note that rbd_dev_v1_header_read() guarantees
706 * the ondisk buffer we're working with has
707 * snap_names_len bytes beyond the end of the
708 * snapshot id array, this memcpy() is safe.
709 */
710 memcpy(header->snap_names, &ondisk->snaps[snap_count],
711 snap_names_len);
712
713 /* Record each snapshot's size */
714
715 size = snap_count * sizeof (*header->snap_sizes);
716 header->snap_sizes = kmalloc(size, GFP_KERNEL);
717 if (!header->snap_sizes)
718 goto out_err;
719 for (i = 0; i < snap_count; i++)
720 header->snap_sizes[i] =
721 le64_to_cpu(ondisk->snaps[i].image_size);
722 } else {
723 WARN_ON(ondisk->snap_names_len);
724 header->snap_names = NULL;
725 header->snap_sizes = NULL;
726 }
727
728 header->features = 0; /* No features support in v1 images */
729 header->obj_order = ondisk->options.order;
730 header->crypt_type = ondisk->options.crypt_type;
731 header->comp_type = ondisk->options.comp_type;
732
733 /* Allocate and fill in the snapshot context */
734
735 header->image_size = le64_to_cpu(ondisk->image_size);
736 size = sizeof (struct ceph_snap_context);
737 size += snap_count * sizeof (header->snapc->snaps[0]);
738 header->snapc = kzalloc(size, GFP_KERNEL);
739 if (!header->snapc)
740 goto out_err;
741
742 atomic_set(&header->snapc->nref, 1);
743 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
744 header->snapc->num_snaps = snap_count;
745 for (i = 0; i < snap_count; i++)
746 header->snapc->snaps[i] =
747 le64_to_cpu(ondisk->snaps[i].id);
748
749 return 0;
750
751 out_err:
752 kfree(header->snap_sizes);
753 header->snap_sizes = NULL;
754 kfree(header->snap_names);
755 header->snap_names = NULL;
756 kfree(header->object_prefix);
757 header->object_prefix = NULL;
758
759 return -ENOMEM;
760 }
761
762 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
763 {
764 struct rbd_snap *snap;
765
766 if (snap_id == CEPH_NOSNAP)
767 return RBD_SNAP_HEAD_NAME;
768
769 list_for_each_entry(snap, &rbd_dev->snaps, node)
770 if (snap_id == snap->id)
771 return snap->name;
772
773 return NULL;
774 }
775
776 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
777 {
778
779 struct rbd_snap *snap;
780
781 list_for_each_entry(snap, &rbd_dev->snaps, node) {
782 if (!strcmp(snap_name, snap->name)) {
783 rbd_dev->spec->snap_id = snap->id;
784 rbd_dev->mapping.size = snap->size;
785 rbd_dev->mapping.features = snap->features;
786
787 return 0;
788 }
789 }
790
791 return -ENOENT;
792 }
793
794 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
795 {
796 int ret;
797
798 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
799 sizeof (RBD_SNAP_HEAD_NAME))) {
800 rbd_dev->spec->snap_id = CEPH_NOSNAP;
801 rbd_dev->mapping.size = rbd_dev->header.image_size;
802 rbd_dev->mapping.features = rbd_dev->header.features;
803 ret = 0;
804 } else {
805 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
806 if (ret < 0)
807 goto done;
808 rbd_dev->mapping.read_only = true;
809 }
810 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
811
812 done:
813 return ret;
814 }
815
816 static void rbd_header_free(struct rbd_image_header *header)
817 {
818 kfree(header->object_prefix);
819 header->object_prefix = NULL;
820 kfree(header->snap_sizes);
821 header->snap_sizes = NULL;
822 kfree(header->snap_names);
823 header->snap_names = NULL;
824 ceph_put_snap_context(header->snapc);
825 header->snapc = NULL;
826 }
827
828 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
829 {
830 char *name;
831 u64 segment;
832 int ret;
833
834 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
835 if (!name)
836 return NULL;
837 segment = offset >> rbd_dev->header.obj_order;
838 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
839 rbd_dev->header.object_prefix, segment);
840 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
841 pr_err("error formatting segment name for #%llu (%d)\n",
842 segment, ret);
843 kfree(name);
844 name = NULL;
845 }
846
847 return name;
848 }
849
850 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
851 {
852 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
853
854 return offset & (segment_size - 1);
855 }
856
857 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
858 u64 offset, u64 length)
859 {
860 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
861
862 offset &= segment_size - 1;
863
864 rbd_assert(length <= U64_MAX - offset);
865 if (offset + length > segment_size)
866 length = segment_size - offset;
867
868 return length;
869 }
870
871 /*
872 * returns the size of an object in the image
873 */
874 static u64 rbd_obj_bytes(struct rbd_image_header *header)
875 {
876 return 1 << header->obj_order;
877 }
878
879 /*
880 * bio helpers
881 */
882
883 static void bio_chain_put(struct bio *chain)
884 {
885 struct bio *tmp;
886
887 while (chain) {
888 tmp = chain;
889 chain = chain->bi_next;
890 bio_put(tmp);
891 }
892 }
893
894 /*
895 * zeros a bio chain, starting at specific offset
896 */
897 static void zero_bio_chain(struct bio *chain, int start_ofs)
898 {
899 struct bio_vec *bv;
900 unsigned long flags;
901 void *buf;
902 int i;
903 int pos = 0;
904
905 while (chain) {
906 bio_for_each_segment(bv, chain, i) {
907 if (pos + bv->bv_len > start_ofs) {
908 int remainder = max(start_ofs - pos, 0);
909 buf = bvec_kmap_irq(bv, &flags);
910 memset(buf + remainder, 0,
911 bv->bv_len - remainder);
912 bvec_kunmap_irq(buf, &flags);
913 }
914 pos += bv->bv_len;
915 }
916
917 chain = chain->bi_next;
918 }
919 }
920
921 /*
922 * Clone a portion of a bio, starting at the given byte offset
923 * and continuing for the number of bytes indicated.
924 */
925 static struct bio *bio_clone_range(struct bio *bio_src,
926 unsigned int offset,
927 unsigned int len,
928 gfp_t gfpmask)
929 {
930 struct bio_vec *bv;
931 unsigned int resid;
932 unsigned short idx;
933 unsigned int voff;
934 unsigned short end_idx;
935 unsigned short vcnt;
936 struct bio *bio;
937
938 /* Handle the easy case for the caller */
939
940 if (!offset && len == bio_src->bi_size)
941 return bio_clone(bio_src, gfpmask);
942
943 if (WARN_ON_ONCE(!len))
944 return NULL;
945 if (WARN_ON_ONCE(len > bio_src->bi_size))
946 return NULL;
947 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
948 return NULL;
949
950 /* Find first affected segment... */
951
952 resid = offset;
953 __bio_for_each_segment(bv, bio_src, idx, 0) {
954 if (resid < bv->bv_len)
955 break;
956 resid -= bv->bv_len;
957 }
958 voff = resid;
959
960 /* ...and the last affected segment */
961
962 resid += len;
963 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
964 if (resid <= bv->bv_len)
965 break;
966 resid -= bv->bv_len;
967 }
968 vcnt = end_idx - idx + 1;
969
970 /* Build the clone */
971
972 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
973 if (!bio)
974 return NULL; /* ENOMEM */
975
976 bio->bi_bdev = bio_src->bi_bdev;
977 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
978 bio->bi_rw = bio_src->bi_rw;
979 bio->bi_flags |= 1 << BIO_CLONED;
980
981 /*
982 * Copy over our part of the bio_vec, then update the first
983 * and last (or only) entries.
984 */
985 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
986 vcnt * sizeof (struct bio_vec));
987 bio->bi_io_vec[0].bv_offset += voff;
988 if (vcnt > 1) {
989 bio->bi_io_vec[0].bv_len -= voff;
990 bio->bi_io_vec[vcnt - 1].bv_len = resid;
991 } else {
992 bio->bi_io_vec[0].bv_len = len;
993 }
994
995 bio->bi_vcnt = vcnt;
996 bio->bi_size = len;
997 bio->bi_idx = 0;
998
999 return bio;
1000 }
1001
1002 /*
1003 * Clone a portion of a bio chain, starting at the given byte offset
1004 * into the first bio in the source chain and continuing for the
1005 * number of bytes indicated. The result is another bio chain of
1006 * exactly the given length, or a null pointer on error.
1007 *
1008 * The bio_src and offset parameters are both in-out. On entry they
1009 * refer to the first source bio and the offset into that bio where
1010 * the start of data to be cloned is located.
1011 *
1012 * On return, bio_src is updated to refer to the bio in the source
1013 * chain that contains first un-cloned byte, and *offset will
1014 * contain the offset of that byte within that bio.
1015 */
1016 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1017 unsigned int *offset,
1018 unsigned int len,
1019 gfp_t gfpmask)
1020 {
1021 struct bio *bi = *bio_src;
1022 unsigned int off = *offset;
1023 struct bio *chain = NULL;
1024 struct bio **end;
1025
1026 /* Build up a chain of clone bios up to the limit */
1027
1028 if (!bi || off >= bi->bi_size || !len)
1029 return NULL; /* Nothing to clone */
1030
1031 end = &chain;
1032 while (len) {
1033 unsigned int bi_size;
1034 struct bio *bio;
1035
1036 if (!bi) {
1037 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1038 goto out_err; /* EINVAL; ran out of bio's */
1039 }
1040 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1041 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1042 if (!bio)
1043 goto out_err; /* ENOMEM */
1044
1045 *end = bio;
1046 end = &bio->bi_next;
1047
1048 off += bi_size;
1049 if (off == bi->bi_size) {
1050 bi = bi->bi_next;
1051 off = 0;
1052 }
1053 len -= bi_size;
1054 }
1055 *bio_src = bi;
1056 *offset = off;
1057
1058 return chain;
1059 out_err:
1060 bio_chain_put(chain);
1061
1062 return NULL;
1063 }
1064
1065 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1066 {
1067 kref_get(&obj_request->kref);
1068 }
1069
1070 static void rbd_obj_request_destroy(struct kref *kref);
1071 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1072 {
1073 rbd_assert(obj_request != NULL);
1074 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1075 }
1076
1077 static void rbd_img_request_get(struct rbd_img_request *img_request)
1078 {
1079 kref_get(&img_request->kref);
1080 }
1081
1082 static void rbd_img_request_destroy(struct kref *kref);
1083 static void rbd_img_request_put(struct rbd_img_request *img_request)
1084 {
1085 rbd_assert(img_request != NULL);
1086 kref_put(&img_request->kref, rbd_img_request_destroy);
1087 }
1088
1089 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1090 struct rbd_obj_request *obj_request)
1091 {
1092 rbd_assert(obj_request->img_request == NULL);
1093
1094 rbd_obj_request_get(obj_request);
1095 obj_request->img_request = img_request;
1096 obj_request->which = img_request->obj_request_count;
1097 rbd_assert(obj_request->which != BAD_WHICH);
1098 img_request->obj_request_count++;
1099 list_add_tail(&obj_request->links, &img_request->obj_requests);
1100 }
1101
1102 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1103 struct rbd_obj_request *obj_request)
1104 {
1105 rbd_assert(obj_request->which != BAD_WHICH);
1106
1107 list_del(&obj_request->links);
1108 rbd_assert(img_request->obj_request_count > 0);
1109 img_request->obj_request_count--;
1110 rbd_assert(obj_request->which == img_request->obj_request_count);
1111 obj_request->which = BAD_WHICH;
1112 rbd_assert(obj_request->img_request == img_request);
1113 obj_request->img_request = NULL;
1114 obj_request->callback = NULL;
1115 rbd_obj_request_put(obj_request);
1116 }
1117
1118 static bool obj_request_type_valid(enum obj_request_type type)
1119 {
1120 switch (type) {
1121 case OBJ_REQUEST_NODATA:
1122 case OBJ_REQUEST_BIO:
1123 case OBJ_REQUEST_PAGES:
1124 return true;
1125 default:
1126 return false;
1127 }
1128 }
1129
1130 struct ceph_osd_req_op *rbd_osd_req_op_create(u16 opcode, ...)
1131 {
1132 struct ceph_osd_req_op *op;
1133 va_list args;
1134 size_t size;
1135
1136 op = kzalloc(sizeof (*op), GFP_NOIO);
1137 if (!op)
1138 return NULL;
1139 op->op = opcode;
1140 va_start(args, opcode);
1141 switch (opcode) {
1142 case CEPH_OSD_OP_READ:
1143 case CEPH_OSD_OP_WRITE:
1144 /* rbd_osd_req_op_create(READ, offset, length) */
1145 /* rbd_osd_req_op_create(WRITE, offset, length) */
1146 op->extent.offset = va_arg(args, u64);
1147 op->extent.length = va_arg(args, u64);
1148 if (opcode == CEPH_OSD_OP_WRITE)
1149 op->payload_len = op->extent.length;
1150 break;
1151 case CEPH_OSD_OP_CALL:
1152 /* rbd_osd_req_op_create(CALL, class, method, data, datalen) */
1153 op->cls.class_name = va_arg(args, char *);
1154 size = strlen(op->cls.class_name);
1155 rbd_assert(size <= (size_t) U8_MAX);
1156 op->cls.class_len = size;
1157 op->payload_len = size;
1158
1159 op->cls.method_name = va_arg(args, char *);
1160 size = strlen(op->cls.method_name);
1161 rbd_assert(size <= (size_t) U8_MAX);
1162 op->cls.method_len = size;
1163 op->payload_len += size;
1164
1165 op->cls.argc = 0;
1166 op->cls.indata = va_arg(args, void *);
1167 size = va_arg(args, size_t);
1168 rbd_assert(size <= (size_t) U32_MAX);
1169 op->cls.indata_len = (u32) size;
1170 op->payload_len += size;
1171 break;
1172 case CEPH_OSD_OP_NOTIFY_ACK:
1173 case CEPH_OSD_OP_WATCH:
1174 /* rbd_osd_req_op_create(NOTIFY_ACK, cookie, version) */
1175 /* rbd_osd_req_op_create(WATCH, cookie, version, flag) */
1176 op->watch.cookie = va_arg(args, u64);
1177 op->watch.ver = va_arg(args, u64);
1178 op->watch.ver = cpu_to_le64(op->watch.ver);
1179 if (opcode == CEPH_OSD_OP_WATCH && va_arg(args, int))
1180 op->watch.flag = (u8) 1;
1181 break;
1182 default:
1183 rbd_warn(NULL, "unsupported opcode %hu\n", opcode);
1184 kfree(op);
1185 op = NULL;
1186 break;
1187 }
1188 va_end(args);
1189
1190 return op;
1191 }
1192
1193 static void rbd_osd_req_op_destroy(struct ceph_osd_req_op *op)
1194 {
1195 kfree(op);
1196 }
1197
1198 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1199 struct rbd_obj_request *obj_request)
1200 {
1201 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1202 }
1203
1204 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1205 {
1206 if (img_request->callback)
1207 img_request->callback(img_request);
1208 else
1209 rbd_img_request_put(img_request);
1210 }
1211
1212 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1213
1214 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1215 {
1216 return wait_for_completion_interruptible(&obj_request->completion);
1217 }
1218
1219 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request,
1220 struct ceph_osd_op *op)
1221 {
1222 atomic_set(&obj_request->done, 1);
1223 }
1224
1225 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1226 {
1227 if (obj_request->callback)
1228 obj_request->callback(obj_request);
1229 else
1230 complete_all(&obj_request->completion);
1231 }
1232
1233 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request,
1234 struct ceph_osd_op *op)
1235 {
1236 u64 xferred;
1237
1238 /*
1239 * We support a 64-bit length, but ultimately it has to be
1240 * passed to blk_end_request(), which takes an unsigned int.
1241 */
1242 xferred = le64_to_cpu(op->extent.length);
1243 rbd_assert(xferred < (u64) UINT_MAX);
1244 if (obj_request->result == (s32) -ENOENT) {
1245 zero_bio_chain(obj_request->bio_list, 0);
1246 obj_request->result = 0;
1247 } else if (xferred < obj_request->length && !obj_request->result) {
1248 zero_bio_chain(obj_request->bio_list, xferred);
1249 xferred = obj_request->length;
1250 }
1251 obj_request->xferred = xferred;
1252 atomic_set(&obj_request->done, 1);
1253 }
1254
1255 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request,
1256 struct ceph_osd_op *op)
1257 {
1258 obj_request->xferred = le64_to_cpu(op->extent.length);
1259 atomic_set(&obj_request->done, 1);
1260 }
1261
1262 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1263 struct ceph_msg *msg)
1264 {
1265 struct rbd_obj_request *obj_request = osd_req->r_priv;
1266 struct ceph_osd_reply_head *reply_head;
1267 struct ceph_osd_op *op;
1268 u32 num_ops;
1269 u16 opcode;
1270
1271 rbd_assert(osd_req == obj_request->osd_req);
1272 rbd_assert(!!obj_request->img_request ^
1273 (obj_request->which == BAD_WHICH));
1274
1275 obj_request->xferred = le32_to_cpu(msg->hdr.data_len);
1276 reply_head = msg->front.iov_base;
1277 obj_request->result = (s32) le32_to_cpu(reply_head->result);
1278 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1279
1280 num_ops = le32_to_cpu(reply_head->num_ops);
1281 WARN_ON(num_ops != 1); /* For now */
1282
1283 op = &reply_head->ops[0];
1284 opcode = le16_to_cpu(op->op);
1285 switch (opcode) {
1286 case CEPH_OSD_OP_READ:
1287 rbd_osd_read_callback(obj_request, op);
1288 break;
1289 case CEPH_OSD_OP_WRITE:
1290 rbd_osd_write_callback(obj_request, op);
1291 break;
1292 case CEPH_OSD_OP_CALL:
1293 case CEPH_OSD_OP_NOTIFY_ACK:
1294 case CEPH_OSD_OP_WATCH:
1295 rbd_osd_trivial_callback(obj_request, op);
1296 break;
1297 default:
1298 rbd_warn(NULL, "%s: unsupported op %hu\n",
1299 obj_request->object_name, (unsigned short) opcode);
1300 break;
1301 }
1302
1303 if (atomic_read(&obj_request->done))
1304 rbd_obj_request_complete(obj_request);
1305 }
1306
1307 static struct ceph_osd_request *rbd_osd_req_create(
1308 struct rbd_device *rbd_dev,
1309 bool write_request,
1310 struct rbd_obj_request *obj_request,
1311 struct ceph_osd_req_op *op)
1312 {
1313 struct rbd_img_request *img_request = obj_request->img_request;
1314 struct ceph_snap_context *snapc = NULL;
1315 struct ceph_osd_client *osdc;
1316 struct ceph_osd_request *osd_req;
1317 struct timespec now;
1318 struct timespec *mtime;
1319 u64 snap_id = CEPH_NOSNAP;
1320 u64 offset = obj_request->offset;
1321 u64 length = obj_request->length;
1322
1323 if (img_request) {
1324 rbd_assert(img_request->write_request == write_request);
1325 if (img_request->write_request)
1326 snapc = img_request->snapc;
1327 else
1328 snap_id = img_request->snap_id;
1329 }
1330
1331 /* Allocate and initialize the request, for the single op */
1332
1333 osdc = &rbd_dev->rbd_client->client->osdc;
1334 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1335 if (!osd_req)
1336 return NULL; /* ENOMEM */
1337
1338 rbd_assert(obj_request_type_valid(obj_request->type));
1339 switch (obj_request->type) {
1340 case OBJ_REQUEST_NODATA:
1341 break; /* Nothing to do */
1342 case OBJ_REQUEST_BIO:
1343 rbd_assert(obj_request->bio_list != NULL);
1344 osd_req->r_bio = obj_request->bio_list;
1345 bio_get(osd_req->r_bio);
1346 /* osd client requires "num pages" even for bio */
1347 osd_req->r_num_pages = calc_pages_for(offset, length);
1348 break;
1349 case OBJ_REQUEST_PAGES:
1350 osd_req->r_pages = obj_request->pages;
1351 osd_req->r_num_pages = obj_request->page_count;
1352 osd_req->r_page_alignment = offset & ~PAGE_MASK;
1353 break;
1354 }
1355
1356 if (write_request) {
1357 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1358 now = CURRENT_TIME;
1359 mtime = &now;
1360 } else {
1361 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1362 mtime = NULL; /* not needed for reads */
1363 offset = 0; /* These are not used... */
1364 length = 0; /* ...for osd read requests */
1365 }
1366
1367 osd_req->r_callback = rbd_osd_req_callback;
1368 osd_req->r_priv = obj_request;
1369
1370 osd_req->r_oid_len = strlen(obj_request->object_name);
1371 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1372 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1373
1374 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1375
1376 /* osd_req will get its own reference to snapc (if non-null) */
1377
1378 ceph_osdc_build_request(osd_req, offset, length, 1, op,
1379 snapc, snap_id, mtime);
1380
1381 return osd_req;
1382 }
1383
1384 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1385 {
1386 ceph_osdc_put_request(osd_req);
1387 }
1388
1389 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1390
1391 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1392 u64 offset, u64 length,
1393 enum obj_request_type type)
1394 {
1395 struct rbd_obj_request *obj_request;
1396 size_t size;
1397 char *name;
1398
1399 rbd_assert(obj_request_type_valid(type));
1400
1401 size = strlen(object_name) + 1;
1402 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1403 if (!obj_request)
1404 return NULL;
1405
1406 name = (char *)(obj_request + 1);
1407 obj_request->object_name = memcpy(name, object_name, size);
1408 obj_request->offset = offset;
1409 obj_request->length = length;
1410 obj_request->which = BAD_WHICH;
1411 obj_request->type = type;
1412 INIT_LIST_HEAD(&obj_request->links);
1413 atomic_set(&obj_request->done, 0);
1414 init_completion(&obj_request->completion);
1415 kref_init(&obj_request->kref);
1416
1417 return obj_request;
1418 }
1419
1420 static void rbd_obj_request_destroy(struct kref *kref)
1421 {
1422 struct rbd_obj_request *obj_request;
1423
1424 obj_request = container_of(kref, struct rbd_obj_request, kref);
1425
1426 rbd_assert(obj_request->img_request == NULL);
1427 rbd_assert(obj_request->which == BAD_WHICH);
1428
1429 if (obj_request->osd_req)
1430 rbd_osd_req_destroy(obj_request->osd_req);
1431
1432 rbd_assert(obj_request_type_valid(obj_request->type));
1433 switch (obj_request->type) {
1434 case OBJ_REQUEST_NODATA:
1435 break; /* Nothing to do */
1436 case OBJ_REQUEST_BIO:
1437 if (obj_request->bio_list)
1438 bio_chain_put(obj_request->bio_list);
1439 break;
1440 case OBJ_REQUEST_PAGES:
1441 if (obj_request->pages)
1442 ceph_release_page_vector(obj_request->pages,
1443 obj_request->page_count);
1444 break;
1445 }
1446
1447 kfree(obj_request);
1448 }
1449
1450 /*
1451 * Caller is responsible for filling in the list of object requests
1452 * that comprises the image request, and the Linux request pointer
1453 * (if there is one).
1454 */
1455 struct rbd_img_request *rbd_img_request_create(struct rbd_device *rbd_dev,
1456 u64 offset, u64 length,
1457 bool write_request)
1458 {
1459 struct rbd_img_request *img_request;
1460 struct ceph_snap_context *snapc = NULL;
1461
1462 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1463 if (!img_request)
1464 return NULL;
1465
1466 if (write_request) {
1467 down_read(&rbd_dev->header_rwsem);
1468 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1469 up_read(&rbd_dev->header_rwsem);
1470 if (WARN_ON(!snapc)) {
1471 kfree(img_request);
1472 return NULL; /* Shouldn't happen */
1473 }
1474 }
1475
1476 img_request->rq = NULL;
1477 img_request->rbd_dev = rbd_dev;
1478 img_request->offset = offset;
1479 img_request->length = length;
1480 img_request->write_request = write_request;
1481 if (write_request)
1482 img_request->snapc = snapc;
1483 else
1484 img_request->snap_id = rbd_dev->spec->snap_id;
1485 spin_lock_init(&img_request->completion_lock);
1486 img_request->next_completion = 0;
1487 img_request->callback = NULL;
1488 img_request->obj_request_count = 0;
1489 INIT_LIST_HEAD(&img_request->obj_requests);
1490 kref_init(&img_request->kref);
1491
1492 rbd_img_request_get(img_request); /* Avoid a warning */
1493 rbd_img_request_put(img_request); /* TEMPORARY */
1494
1495 return img_request;
1496 }
1497
1498 static void rbd_img_request_destroy(struct kref *kref)
1499 {
1500 struct rbd_img_request *img_request;
1501 struct rbd_obj_request *obj_request;
1502 struct rbd_obj_request *next_obj_request;
1503
1504 img_request = container_of(kref, struct rbd_img_request, kref);
1505
1506 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1507 rbd_img_obj_request_del(img_request, obj_request);
1508 rbd_assert(img_request->obj_request_count == 0);
1509
1510 if (img_request->write_request)
1511 ceph_put_snap_context(img_request->snapc);
1512
1513 kfree(img_request);
1514 }
1515
1516 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1517 struct bio *bio_list)
1518 {
1519 struct rbd_device *rbd_dev = img_request->rbd_dev;
1520 struct rbd_obj_request *obj_request = NULL;
1521 struct rbd_obj_request *next_obj_request;
1522 unsigned int bio_offset;
1523 u64 image_offset;
1524 u64 resid;
1525 u16 opcode;
1526
1527 opcode = img_request->write_request ? CEPH_OSD_OP_WRITE
1528 : CEPH_OSD_OP_READ;
1529 bio_offset = 0;
1530 image_offset = img_request->offset;
1531 rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1532 resid = img_request->length;
1533 while (resid) {
1534 const char *object_name;
1535 unsigned int clone_size;
1536 struct ceph_osd_req_op *op;
1537 u64 offset;
1538 u64 length;
1539
1540 object_name = rbd_segment_name(rbd_dev, image_offset);
1541 if (!object_name)
1542 goto out_unwind;
1543 offset = rbd_segment_offset(rbd_dev, image_offset);
1544 length = rbd_segment_length(rbd_dev, image_offset, resid);
1545 obj_request = rbd_obj_request_create(object_name,
1546 offset, length,
1547 OBJ_REQUEST_BIO);
1548 kfree(object_name); /* object request has its own copy */
1549 if (!obj_request)
1550 goto out_unwind;
1551
1552 rbd_assert(length <= (u64) UINT_MAX);
1553 clone_size = (unsigned int) length;
1554 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1555 &bio_offset, clone_size,
1556 GFP_ATOMIC);
1557 if (!obj_request->bio_list)
1558 goto out_partial;
1559
1560 /*
1561 * Build up the op to use in building the osd
1562 * request. Note that the contents of the op are
1563 * copied by rbd_osd_req_create().
1564 */
1565 op = rbd_osd_req_op_create(opcode, offset, length);
1566 if (!op)
1567 goto out_partial;
1568 obj_request->osd_req = rbd_osd_req_create(rbd_dev,
1569 img_request->write_request,
1570 obj_request, op);
1571 rbd_osd_req_op_destroy(op);
1572 if (!obj_request->osd_req)
1573 goto out_partial;
1574 /* status and version are initially zero-filled */
1575
1576 rbd_img_obj_request_add(img_request, obj_request);
1577
1578 image_offset += length;
1579 resid -= length;
1580 }
1581
1582 return 0;
1583
1584 out_partial:
1585 rbd_obj_request_put(obj_request);
1586 out_unwind:
1587 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1588 rbd_obj_request_put(obj_request);
1589
1590 return -ENOMEM;
1591 }
1592
1593 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1594 {
1595 struct rbd_img_request *img_request;
1596 u32 which = obj_request->which;
1597 bool more = true;
1598
1599 img_request = obj_request->img_request;
1600 rbd_assert(img_request != NULL);
1601 rbd_assert(img_request->rq != NULL);
1602 rbd_assert(which != BAD_WHICH);
1603 rbd_assert(which < img_request->obj_request_count);
1604 rbd_assert(which >= img_request->next_completion);
1605
1606 spin_lock_irq(&img_request->completion_lock);
1607 if (which != img_request->next_completion)
1608 goto out;
1609
1610 for_each_obj_request_from(img_request, obj_request) {
1611 unsigned int xferred;
1612 int result;
1613
1614 rbd_assert(more);
1615 rbd_assert(which < img_request->obj_request_count);
1616
1617 if (!atomic_read(&obj_request->done))
1618 break;
1619
1620 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1621 xferred = (unsigned int) obj_request->xferred;
1622 result = (int) obj_request->result;
1623 if (result)
1624 rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1625 img_request->write_request ? "write" : "read",
1626 result, xferred);
1627
1628 more = blk_end_request(img_request->rq, result, xferred);
1629 which++;
1630 }
1631 rbd_assert(more ^ (which == img_request->obj_request_count));
1632 img_request->next_completion = which;
1633 out:
1634 spin_unlock_irq(&img_request->completion_lock);
1635
1636 if (!more)
1637 rbd_img_request_complete(img_request);
1638 }
1639
1640 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1641 {
1642 struct rbd_device *rbd_dev = img_request->rbd_dev;
1643 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1644 struct rbd_obj_request *obj_request;
1645
1646 for_each_obj_request(img_request, obj_request) {
1647 int ret;
1648
1649 obj_request->callback = rbd_img_obj_callback;
1650 ret = rbd_obj_request_submit(osdc, obj_request);
1651 if (ret)
1652 return ret;
1653 /*
1654 * The image request has its own reference to each
1655 * of its object requests, so we can safely drop the
1656 * initial one here.
1657 */
1658 rbd_obj_request_put(obj_request);
1659 }
1660
1661 return 0;
1662 }
1663
1664 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1665 u64 ver, u64 notify_id)
1666 {
1667 struct rbd_obj_request *obj_request;
1668 struct ceph_osd_req_op *op;
1669 struct ceph_osd_client *osdc;
1670 int ret;
1671
1672 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1673 OBJ_REQUEST_NODATA);
1674 if (!obj_request)
1675 return -ENOMEM;
1676
1677 ret = -ENOMEM;
1678 op = rbd_osd_req_op_create(CEPH_OSD_OP_NOTIFY_ACK, notify_id, ver);
1679 if (!op)
1680 goto out;
1681 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1682 obj_request, op);
1683 rbd_osd_req_op_destroy(op);
1684 if (!obj_request->osd_req)
1685 goto out;
1686
1687 osdc = &rbd_dev->rbd_client->client->osdc;
1688 obj_request->callback = rbd_obj_request_put;
1689 ret = rbd_obj_request_submit(osdc, obj_request);
1690 out:
1691 if (ret)
1692 rbd_obj_request_put(obj_request);
1693
1694 return ret;
1695 }
1696
1697 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1698 {
1699 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1700 u64 hver;
1701 int rc;
1702
1703 if (!rbd_dev)
1704 return;
1705
1706 dout("rbd_watch_cb %s notify_id=%llu opcode=%u\n",
1707 rbd_dev->header_name, (unsigned long long) notify_id,
1708 (unsigned int) opcode);
1709 rc = rbd_dev_refresh(rbd_dev, &hver);
1710 if (rc)
1711 rbd_warn(rbd_dev, "got notification but failed to "
1712 " update snaps: %d\n", rc);
1713
1714 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1715 }
1716
1717 /*
1718 * Request sync osd watch/unwatch. The value of "start" determines
1719 * whether a watch request is being initiated or torn down.
1720 */
1721 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1722 {
1723 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1724 struct rbd_obj_request *obj_request;
1725 struct ceph_osd_req_op *op;
1726 int ret;
1727
1728 rbd_assert(start ^ !!rbd_dev->watch_event);
1729 rbd_assert(start ^ !!rbd_dev->watch_request);
1730
1731 if (start) {
1732 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0, rbd_dev,
1733 &rbd_dev->watch_event);
1734 if (ret < 0)
1735 return ret;
1736 rbd_assert(rbd_dev->watch_event != NULL);
1737 }
1738
1739 ret = -ENOMEM;
1740 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1741 OBJ_REQUEST_NODATA);
1742 if (!obj_request)
1743 goto out_cancel;
1744
1745 op = rbd_osd_req_op_create(CEPH_OSD_OP_WATCH,
1746 rbd_dev->watch_event->cookie,
1747 rbd_dev->header.obj_version, start);
1748 if (!op)
1749 goto out_cancel;
1750 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true,
1751 obj_request, op);
1752 rbd_osd_req_op_destroy(op);
1753 if (!obj_request->osd_req)
1754 goto out_cancel;
1755
1756 if (start)
1757 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1758 else
1759 ceph_osdc_unregister_linger_request(osdc,
1760 rbd_dev->watch_request->osd_req);
1761 ret = rbd_obj_request_submit(osdc, obj_request);
1762 if (ret)
1763 goto out_cancel;
1764 ret = rbd_obj_request_wait(obj_request);
1765 if (ret)
1766 goto out_cancel;
1767 ret = obj_request->result;
1768 if (ret)
1769 goto out_cancel;
1770
1771 /*
1772 * A watch request is set to linger, so the underlying osd
1773 * request won't go away until we unregister it. We retain
1774 * a pointer to the object request during that time (in
1775 * rbd_dev->watch_request), so we'll keep a reference to
1776 * it. We'll drop that reference (below) after we've
1777 * unregistered it.
1778 */
1779 if (start) {
1780 rbd_dev->watch_request = obj_request;
1781
1782 return 0;
1783 }
1784
1785 /* We have successfully torn down the watch request */
1786
1787 rbd_obj_request_put(rbd_dev->watch_request);
1788 rbd_dev->watch_request = NULL;
1789 out_cancel:
1790 /* Cancel the event if we're tearing down, or on error */
1791 ceph_osdc_cancel_event(rbd_dev->watch_event);
1792 rbd_dev->watch_event = NULL;
1793 if (obj_request)
1794 rbd_obj_request_put(obj_request);
1795
1796 return ret;
1797 }
1798
1799 /*
1800 * Synchronous osd object method call
1801 */
1802 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1803 const char *object_name,
1804 const char *class_name,
1805 const char *method_name,
1806 const char *outbound,
1807 size_t outbound_size,
1808 char *inbound,
1809 size_t inbound_size,
1810 u64 *version)
1811 {
1812 struct rbd_obj_request *obj_request;
1813 struct ceph_osd_client *osdc;
1814 struct ceph_osd_req_op *op;
1815 struct page **pages;
1816 u32 page_count;
1817 int ret;
1818
1819 /*
1820 * Method calls are ultimately read operations but they
1821 * don't involve object data (so no offset or length).
1822 * The result should placed into the inbound buffer
1823 * provided. They also supply outbound data--parameters for
1824 * the object method. Currently if this is present it will
1825 * be a snapshot id.
1826 */
1827 page_count = (u32) calc_pages_for(0, inbound_size);
1828 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1829 if (IS_ERR(pages))
1830 return PTR_ERR(pages);
1831
1832 ret = -ENOMEM;
1833 obj_request = rbd_obj_request_create(object_name, 0, 0,
1834 OBJ_REQUEST_PAGES);
1835 if (!obj_request)
1836 goto out;
1837
1838 obj_request->pages = pages;
1839 obj_request->page_count = page_count;
1840
1841 op = rbd_osd_req_op_create(CEPH_OSD_OP_CALL, class_name,
1842 method_name, outbound, outbound_size);
1843 if (!op)
1844 goto out;
1845 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1846 obj_request, op);
1847 rbd_osd_req_op_destroy(op);
1848 if (!obj_request->osd_req)
1849 goto out;
1850
1851 osdc = &rbd_dev->rbd_client->client->osdc;
1852 ret = rbd_obj_request_submit(osdc, obj_request);
1853 if (ret)
1854 goto out;
1855 ret = rbd_obj_request_wait(obj_request);
1856 if (ret)
1857 goto out;
1858
1859 ret = obj_request->result;
1860 if (ret < 0)
1861 goto out;
1862 ret = ceph_copy_from_page_vector(pages, inbound, 0,
1863 obj_request->xferred);
1864 if (version)
1865 *version = obj_request->version;
1866 out:
1867 if (obj_request)
1868 rbd_obj_request_put(obj_request);
1869 else
1870 ceph_release_page_vector(pages, page_count);
1871
1872 return ret;
1873 }
1874
1875 static void rbd_request_fn(struct request_queue *q)
1876 {
1877 struct rbd_device *rbd_dev = q->queuedata;
1878 bool read_only = rbd_dev->mapping.read_only;
1879 struct request *rq;
1880 int result;
1881
1882 while ((rq = blk_fetch_request(q))) {
1883 bool write_request = rq_data_dir(rq) == WRITE;
1884 struct rbd_img_request *img_request;
1885 u64 offset;
1886 u64 length;
1887
1888 /* Ignore any non-FS requests that filter through. */
1889
1890 if (rq->cmd_type != REQ_TYPE_FS) {
1891 __blk_end_request_all(rq, 0);
1892 continue;
1893 }
1894
1895 spin_unlock_irq(q->queue_lock);
1896
1897 /* Disallow writes to a read-only device */
1898
1899 if (write_request) {
1900 result = -EROFS;
1901 if (read_only)
1902 goto end_request;
1903 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
1904 }
1905
1906 /*
1907 * Quit early if the mapped snapshot no longer
1908 * exists. It's still possible the snapshot will
1909 * have disappeared by the time our request arrives
1910 * at the osd, but there's no sense in sending it if
1911 * we already know.
1912 */
1913 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
1914 dout("request for non-existent snapshot");
1915 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
1916 result = -ENXIO;
1917 goto end_request;
1918 }
1919
1920 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
1921 length = (u64) blk_rq_bytes(rq);
1922
1923 result = -EINVAL;
1924 if (WARN_ON(offset && length > U64_MAX - offset + 1))
1925 goto end_request; /* Shouldn't happen */
1926
1927 result = -ENOMEM;
1928 img_request = rbd_img_request_create(rbd_dev, offset, length,
1929 write_request);
1930 if (!img_request)
1931 goto end_request;
1932
1933 img_request->rq = rq;
1934
1935 result = rbd_img_request_fill_bio(img_request, rq->bio);
1936 if (!result)
1937 result = rbd_img_request_submit(img_request);
1938 if (result)
1939 rbd_img_request_put(img_request);
1940 end_request:
1941 spin_lock_irq(q->queue_lock);
1942 if (result < 0) {
1943 rbd_warn(rbd_dev, "obj_request %s result %d\n",
1944 write_request ? "write" : "read", result);
1945 __blk_end_request_all(rq, result);
1946 }
1947 }
1948 }
1949
1950 /*
1951 * a queue callback. Makes sure that we don't create a bio that spans across
1952 * multiple osd objects. One exception would be with a single page bios,
1953 * which we handle later at bio_chain_clone_range()
1954 */
1955 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1956 struct bio_vec *bvec)
1957 {
1958 struct rbd_device *rbd_dev = q->queuedata;
1959 sector_t sector_offset;
1960 sector_t sectors_per_obj;
1961 sector_t obj_sector_offset;
1962 int ret;
1963
1964 /*
1965 * Find how far into its rbd object the partition-relative
1966 * bio start sector is to offset relative to the enclosing
1967 * device.
1968 */
1969 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
1970 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1971 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
1972
1973 /*
1974 * Compute the number of bytes from that offset to the end
1975 * of the object. Account for what's already used by the bio.
1976 */
1977 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
1978 if (ret > bmd->bi_size)
1979 ret -= bmd->bi_size;
1980 else
1981 ret = 0;
1982
1983 /*
1984 * Don't send back more than was asked for. And if the bio
1985 * was empty, let the whole thing through because: "Note
1986 * that a block device *must* allow a single page to be
1987 * added to an empty bio."
1988 */
1989 rbd_assert(bvec->bv_len <= PAGE_SIZE);
1990 if (ret > (int) bvec->bv_len || !bmd->bi_size)
1991 ret = (int) bvec->bv_len;
1992
1993 return ret;
1994 }
1995
1996 static void rbd_free_disk(struct rbd_device *rbd_dev)
1997 {
1998 struct gendisk *disk = rbd_dev->disk;
1999
2000 if (!disk)
2001 return;
2002
2003 if (disk->flags & GENHD_FL_UP)
2004 del_gendisk(disk);
2005 if (disk->queue)
2006 blk_cleanup_queue(disk->queue);
2007 put_disk(disk);
2008 }
2009
2010 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2011 const char *object_name,
2012 u64 offset, u64 length,
2013 char *buf, u64 *version)
2014
2015 {
2016 struct ceph_osd_req_op *op;
2017 struct rbd_obj_request *obj_request;
2018 struct ceph_osd_client *osdc;
2019 struct page **pages = NULL;
2020 u32 page_count;
2021 int ret;
2022
2023 page_count = (u32) calc_pages_for(offset, length);
2024 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2025 if (IS_ERR(pages))
2026 ret = PTR_ERR(pages);
2027
2028 ret = -ENOMEM;
2029 obj_request = rbd_obj_request_create(object_name, offset, length,
2030 OBJ_REQUEST_PAGES);
2031 if (!obj_request)
2032 goto out;
2033
2034 obj_request->pages = pages;
2035 obj_request->page_count = page_count;
2036
2037 op = rbd_osd_req_op_create(CEPH_OSD_OP_READ, offset, length);
2038 if (!op)
2039 goto out;
2040 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2041 obj_request, op);
2042 rbd_osd_req_op_destroy(op);
2043 if (!obj_request->osd_req)
2044 goto out;
2045
2046 osdc = &rbd_dev->rbd_client->client->osdc;
2047 ret = rbd_obj_request_submit(osdc, obj_request);
2048 if (ret)
2049 goto out;
2050 ret = rbd_obj_request_wait(obj_request);
2051 if (ret)
2052 goto out;
2053
2054 ret = obj_request->result;
2055 if (ret < 0)
2056 goto out;
2057 ret = ceph_copy_from_page_vector(pages, buf, 0, obj_request->xferred);
2058 if (version)
2059 *version = obj_request->version;
2060 out:
2061 if (obj_request)
2062 rbd_obj_request_put(obj_request);
2063 else
2064 ceph_release_page_vector(pages, page_count);
2065
2066 return ret;
2067 }
2068
2069 /*
2070 * Read the complete header for the given rbd device.
2071 *
2072 * Returns a pointer to a dynamically-allocated buffer containing
2073 * the complete and validated header. Caller can pass the address
2074 * of a variable that will be filled in with the version of the
2075 * header object at the time it was read.
2076 *
2077 * Returns a pointer-coded errno if a failure occurs.
2078 */
2079 static struct rbd_image_header_ondisk *
2080 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2081 {
2082 struct rbd_image_header_ondisk *ondisk = NULL;
2083 u32 snap_count = 0;
2084 u64 names_size = 0;
2085 u32 want_count;
2086 int ret;
2087
2088 /*
2089 * The complete header will include an array of its 64-bit
2090 * snapshot ids, followed by the names of those snapshots as
2091 * a contiguous block of NUL-terminated strings. Note that
2092 * the number of snapshots could change by the time we read
2093 * it in, in which case we re-read it.
2094 */
2095 do {
2096 size_t size;
2097
2098 kfree(ondisk);
2099
2100 size = sizeof (*ondisk);
2101 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2102 size += names_size;
2103 ondisk = kmalloc(size, GFP_KERNEL);
2104 if (!ondisk)
2105 return ERR_PTR(-ENOMEM);
2106
2107 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2108 0, size,
2109 (char *) ondisk, version);
2110
2111 if (ret < 0)
2112 goto out_err;
2113 if (WARN_ON((size_t) ret < size)) {
2114 ret = -ENXIO;
2115 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2116 size, ret);
2117 goto out_err;
2118 }
2119 if (!rbd_dev_ondisk_valid(ondisk)) {
2120 ret = -ENXIO;
2121 rbd_warn(rbd_dev, "invalid header");
2122 goto out_err;
2123 }
2124
2125 names_size = le64_to_cpu(ondisk->snap_names_len);
2126 want_count = snap_count;
2127 snap_count = le32_to_cpu(ondisk->snap_count);
2128 } while (snap_count != want_count);
2129
2130 return ondisk;
2131
2132 out_err:
2133 kfree(ondisk);
2134
2135 return ERR_PTR(ret);
2136 }
2137
2138 /*
2139 * reload the ondisk the header
2140 */
2141 static int rbd_read_header(struct rbd_device *rbd_dev,
2142 struct rbd_image_header *header)
2143 {
2144 struct rbd_image_header_ondisk *ondisk;
2145 u64 ver = 0;
2146 int ret;
2147
2148 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2149 if (IS_ERR(ondisk))
2150 return PTR_ERR(ondisk);
2151 ret = rbd_header_from_disk(header, ondisk);
2152 if (ret >= 0)
2153 header->obj_version = ver;
2154 kfree(ondisk);
2155
2156 return ret;
2157 }
2158
2159 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2160 {
2161 struct rbd_snap *snap;
2162 struct rbd_snap *next;
2163
2164 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2165 rbd_remove_snap_dev(snap);
2166 }
2167
2168 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2169 {
2170 sector_t size;
2171
2172 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2173 return;
2174
2175 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2176 dout("setting size to %llu sectors", (unsigned long long) size);
2177 rbd_dev->mapping.size = (u64) size;
2178 set_capacity(rbd_dev->disk, size);
2179 }
2180
2181 /*
2182 * only read the first part of the ondisk header, without the snaps info
2183 */
2184 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2185 {
2186 int ret;
2187 struct rbd_image_header h;
2188
2189 ret = rbd_read_header(rbd_dev, &h);
2190 if (ret < 0)
2191 return ret;
2192
2193 down_write(&rbd_dev->header_rwsem);
2194
2195 /* Update image size, and check for resize of mapped image */
2196 rbd_dev->header.image_size = h.image_size;
2197 rbd_update_mapping_size(rbd_dev);
2198
2199 /* rbd_dev->header.object_prefix shouldn't change */
2200 kfree(rbd_dev->header.snap_sizes);
2201 kfree(rbd_dev->header.snap_names);
2202 /* osd requests may still refer to snapc */
2203 ceph_put_snap_context(rbd_dev->header.snapc);
2204
2205 if (hver)
2206 *hver = h.obj_version;
2207 rbd_dev->header.obj_version = h.obj_version;
2208 rbd_dev->header.image_size = h.image_size;
2209 rbd_dev->header.snapc = h.snapc;
2210 rbd_dev->header.snap_names = h.snap_names;
2211 rbd_dev->header.snap_sizes = h.snap_sizes;
2212 /* Free the extra copy of the object prefix */
2213 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2214 kfree(h.object_prefix);
2215
2216 ret = rbd_dev_snaps_update(rbd_dev);
2217 if (!ret)
2218 ret = rbd_dev_snaps_register(rbd_dev);
2219
2220 up_write(&rbd_dev->header_rwsem);
2221
2222 return ret;
2223 }
2224
2225 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2226 {
2227 int ret;
2228
2229 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2230 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2231 if (rbd_dev->image_format == 1)
2232 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2233 else
2234 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2235 mutex_unlock(&ctl_mutex);
2236
2237 return ret;
2238 }
2239
2240 static int rbd_init_disk(struct rbd_device *rbd_dev)
2241 {
2242 struct gendisk *disk;
2243 struct request_queue *q;
2244 u64 segment_size;
2245
2246 /* create gendisk info */
2247 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2248 if (!disk)
2249 return -ENOMEM;
2250
2251 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2252 rbd_dev->dev_id);
2253 disk->major = rbd_dev->major;
2254 disk->first_minor = 0;
2255 disk->fops = &rbd_bd_ops;
2256 disk->private_data = rbd_dev;
2257
2258 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2259 if (!q)
2260 goto out_disk;
2261
2262 /* We use the default size, but let's be explicit about it. */
2263 blk_queue_physical_block_size(q, SECTOR_SIZE);
2264
2265 /* set io sizes to object size */
2266 segment_size = rbd_obj_bytes(&rbd_dev->header);
2267 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2268 blk_queue_max_segment_size(q, segment_size);
2269 blk_queue_io_min(q, segment_size);
2270 blk_queue_io_opt(q, segment_size);
2271
2272 blk_queue_merge_bvec(q, rbd_merge_bvec);
2273 disk->queue = q;
2274
2275 q->queuedata = rbd_dev;
2276
2277 rbd_dev->disk = disk;
2278
2279 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2280
2281 return 0;
2282 out_disk:
2283 put_disk(disk);
2284
2285 return -ENOMEM;
2286 }
2287
2288 /*
2289 sysfs
2290 */
2291
2292 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2293 {
2294 return container_of(dev, struct rbd_device, dev);
2295 }
2296
2297 static ssize_t rbd_size_show(struct device *dev,
2298 struct device_attribute *attr, char *buf)
2299 {
2300 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2301 sector_t size;
2302
2303 down_read(&rbd_dev->header_rwsem);
2304 size = get_capacity(rbd_dev->disk);
2305 up_read(&rbd_dev->header_rwsem);
2306
2307 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2308 }
2309
2310 /*
2311 * Note this shows the features for whatever's mapped, which is not
2312 * necessarily the base image.
2313 */
2314 static ssize_t rbd_features_show(struct device *dev,
2315 struct device_attribute *attr, char *buf)
2316 {
2317 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2318
2319 return sprintf(buf, "0x%016llx\n",
2320 (unsigned long long) rbd_dev->mapping.features);
2321 }
2322
2323 static ssize_t rbd_major_show(struct device *dev,
2324 struct device_attribute *attr, char *buf)
2325 {
2326 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2327
2328 return sprintf(buf, "%d\n", rbd_dev->major);
2329 }
2330
2331 static ssize_t rbd_client_id_show(struct device *dev,
2332 struct device_attribute *attr, char *buf)
2333 {
2334 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2335
2336 return sprintf(buf, "client%lld\n",
2337 ceph_client_id(rbd_dev->rbd_client->client));
2338 }
2339
2340 static ssize_t rbd_pool_show(struct device *dev,
2341 struct device_attribute *attr, char *buf)
2342 {
2343 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2344
2345 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2346 }
2347
2348 static ssize_t rbd_pool_id_show(struct device *dev,
2349 struct device_attribute *attr, char *buf)
2350 {
2351 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2352
2353 return sprintf(buf, "%llu\n",
2354 (unsigned long long) rbd_dev->spec->pool_id);
2355 }
2356
2357 static ssize_t rbd_name_show(struct device *dev,
2358 struct device_attribute *attr, char *buf)
2359 {
2360 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2361
2362 if (rbd_dev->spec->image_name)
2363 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2364
2365 return sprintf(buf, "(unknown)\n");
2366 }
2367
2368 static ssize_t rbd_image_id_show(struct device *dev,
2369 struct device_attribute *attr, char *buf)
2370 {
2371 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2372
2373 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2374 }
2375
2376 /*
2377 * Shows the name of the currently-mapped snapshot (or
2378 * RBD_SNAP_HEAD_NAME for the base image).
2379 */
2380 static ssize_t rbd_snap_show(struct device *dev,
2381 struct device_attribute *attr,
2382 char *buf)
2383 {
2384 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2385
2386 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2387 }
2388
2389 /*
2390 * For an rbd v2 image, shows the pool id, image id, and snapshot id
2391 * for the parent image. If there is no parent, simply shows
2392 * "(no parent image)".
2393 */
2394 static ssize_t rbd_parent_show(struct device *dev,
2395 struct device_attribute *attr,
2396 char *buf)
2397 {
2398 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2399 struct rbd_spec *spec = rbd_dev->parent_spec;
2400 int count;
2401 char *bufp = buf;
2402
2403 if (!spec)
2404 return sprintf(buf, "(no parent image)\n");
2405
2406 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2407 (unsigned long long) spec->pool_id, spec->pool_name);
2408 if (count < 0)
2409 return count;
2410 bufp += count;
2411
2412 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2413 spec->image_name ? spec->image_name : "(unknown)");
2414 if (count < 0)
2415 return count;
2416 bufp += count;
2417
2418 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2419 (unsigned long long) spec->snap_id, spec->snap_name);
2420 if (count < 0)
2421 return count;
2422 bufp += count;
2423
2424 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2425 if (count < 0)
2426 return count;
2427 bufp += count;
2428
2429 return (ssize_t) (bufp - buf);
2430 }
2431
2432 static ssize_t rbd_image_refresh(struct device *dev,
2433 struct device_attribute *attr,
2434 const char *buf,
2435 size_t size)
2436 {
2437 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2438 int ret;
2439
2440 ret = rbd_dev_refresh(rbd_dev, NULL);
2441
2442 return ret < 0 ? ret : size;
2443 }
2444
2445 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2446 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2447 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2448 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2449 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2450 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2451 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2452 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2453 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2454 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2455 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2456
2457 static struct attribute *rbd_attrs[] = {
2458 &dev_attr_size.attr,
2459 &dev_attr_features.attr,
2460 &dev_attr_major.attr,
2461 &dev_attr_client_id.attr,
2462 &dev_attr_pool.attr,
2463 &dev_attr_pool_id.attr,
2464 &dev_attr_name.attr,
2465 &dev_attr_image_id.attr,
2466 &dev_attr_current_snap.attr,
2467 &dev_attr_parent.attr,
2468 &dev_attr_refresh.attr,
2469 NULL
2470 };
2471
2472 static struct attribute_group rbd_attr_group = {
2473 .attrs = rbd_attrs,
2474 };
2475
2476 static const struct attribute_group *rbd_attr_groups[] = {
2477 &rbd_attr_group,
2478 NULL
2479 };
2480
2481 static void rbd_sysfs_dev_release(struct device *dev)
2482 {
2483 }
2484
2485 static struct device_type rbd_device_type = {
2486 .name = "rbd",
2487 .groups = rbd_attr_groups,
2488 .release = rbd_sysfs_dev_release,
2489 };
2490
2491
2492 /*
2493 sysfs - snapshots
2494 */
2495
2496 static ssize_t rbd_snap_size_show(struct device *dev,
2497 struct device_attribute *attr,
2498 char *buf)
2499 {
2500 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2501
2502 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2503 }
2504
2505 static ssize_t rbd_snap_id_show(struct device *dev,
2506 struct device_attribute *attr,
2507 char *buf)
2508 {
2509 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2510
2511 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2512 }
2513
2514 static ssize_t rbd_snap_features_show(struct device *dev,
2515 struct device_attribute *attr,
2516 char *buf)
2517 {
2518 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2519
2520 return sprintf(buf, "0x%016llx\n",
2521 (unsigned long long) snap->features);
2522 }
2523
2524 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2525 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2526 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2527
2528 static struct attribute *rbd_snap_attrs[] = {
2529 &dev_attr_snap_size.attr,
2530 &dev_attr_snap_id.attr,
2531 &dev_attr_snap_features.attr,
2532 NULL,
2533 };
2534
2535 static struct attribute_group rbd_snap_attr_group = {
2536 .attrs = rbd_snap_attrs,
2537 };
2538
2539 static void rbd_snap_dev_release(struct device *dev)
2540 {
2541 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2542 kfree(snap->name);
2543 kfree(snap);
2544 }
2545
2546 static const struct attribute_group *rbd_snap_attr_groups[] = {
2547 &rbd_snap_attr_group,
2548 NULL
2549 };
2550
2551 static struct device_type rbd_snap_device_type = {
2552 .groups = rbd_snap_attr_groups,
2553 .release = rbd_snap_dev_release,
2554 };
2555
2556 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2557 {
2558 kref_get(&spec->kref);
2559
2560 return spec;
2561 }
2562
2563 static void rbd_spec_free(struct kref *kref);
2564 static void rbd_spec_put(struct rbd_spec *spec)
2565 {
2566 if (spec)
2567 kref_put(&spec->kref, rbd_spec_free);
2568 }
2569
2570 static struct rbd_spec *rbd_spec_alloc(void)
2571 {
2572 struct rbd_spec *spec;
2573
2574 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2575 if (!spec)
2576 return NULL;
2577 kref_init(&spec->kref);
2578
2579 rbd_spec_put(rbd_spec_get(spec)); /* TEMPORARY */
2580
2581 return spec;
2582 }
2583
2584 static void rbd_spec_free(struct kref *kref)
2585 {
2586 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2587
2588 kfree(spec->pool_name);
2589 kfree(spec->image_id);
2590 kfree(spec->image_name);
2591 kfree(spec->snap_name);
2592 kfree(spec);
2593 }
2594
2595 struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2596 struct rbd_spec *spec)
2597 {
2598 struct rbd_device *rbd_dev;
2599
2600 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2601 if (!rbd_dev)
2602 return NULL;
2603
2604 spin_lock_init(&rbd_dev->lock);
2605 rbd_dev->flags = 0;
2606 INIT_LIST_HEAD(&rbd_dev->node);
2607 INIT_LIST_HEAD(&rbd_dev->snaps);
2608 init_rwsem(&rbd_dev->header_rwsem);
2609
2610 rbd_dev->spec = spec;
2611 rbd_dev->rbd_client = rbdc;
2612
2613 /* Initialize the layout used for all rbd requests */
2614
2615 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2616 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2617 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2618 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2619
2620 return rbd_dev;
2621 }
2622
2623 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2624 {
2625 rbd_spec_put(rbd_dev->parent_spec);
2626 kfree(rbd_dev->header_name);
2627 rbd_put_client(rbd_dev->rbd_client);
2628 rbd_spec_put(rbd_dev->spec);
2629 kfree(rbd_dev);
2630 }
2631
2632 static bool rbd_snap_registered(struct rbd_snap *snap)
2633 {
2634 bool ret = snap->dev.type == &rbd_snap_device_type;
2635 bool reg = device_is_registered(&snap->dev);
2636
2637 rbd_assert(!ret ^ reg);
2638
2639 return ret;
2640 }
2641
2642 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2643 {
2644 list_del(&snap->node);
2645 if (device_is_registered(&snap->dev))
2646 device_unregister(&snap->dev);
2647 }
2648
2649 static int rbd_register_snap_dev(struct rbd_snap *snap,
2650 struct device *parent)
2651 {
2652 struct device *dev = &snap->dev;
2653 int ret;
2654
2655 dev->type = &rbd_snap_device_type;
2656 dev->parent = parent;
2657 dev->release = rbd_snap_dev_release;
2658 dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2659 dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2660
2661 ret = device_register(dev);
2662
2663 return ret;
2664 }
2665
2666 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2667 const char *snap_name,
2668 u64 snap_id, u64 snap_size,
2669 u64 snap_features)
2670 {
2671 struct rbd_snap *snap;
2672 int ret;
2673
2674 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2675 if (!snap)
2676 return ERR_PTR(-ENOMEM);
2677
2678 ret = -ENOMEM;
2679 snap->name = kstrdup(snap_name, GFP_KERNEL);
2680 if (!snap->name)
2681 goto err;
2682
2683 snap->id = snap_id;
2684 snap->size = snap_size;
2685 snap->features = snap_features;
2686
2687 return snap;
2688
2689 err:
2690 kfree(snap->name);
2691 kfree(snap);
2692
2693 return ERR_PTR(ret);
2694 }
2695
2696 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2697 u64 *snap_size, u64 *snap_features)
2698 {
2699 char *snap_name;
2700
2701 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2702
2703 *snap_size = rbd_dev->header.snap_sizes[which];
2704 *snap_features = 0; /* No features for v1 */
2705
2706 /* Skip over names until we find the one we are looking for */
2707
2708 snap_name = rbd_dev->header.snap_names;
2709 while (which--)
2710 snap_name += strlen(snap_name) + 1;
2711
2712 return snap_name;
2713 }
2714
2715 /*
2716 * Get the size and object order for an image snapshot, or if
2717 * snap_id is CEPH_NOSNAP, gets this information for the base
2718 * image.
2719 */
2720 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2721 u8 *order, u64 *snap_size)
2722 {
2723 __le64 snapid = cpu_to_le64(snap_id);
2724 int ret;
2725 struct {
2726 u8 order;
2727 __le64 size;
2728 } __attribute__ ((packed)) size_buf = { 0 };
2729
2730 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2731 "rbd", "get_size",
2732 (char *) &snapid, sizeof (snapid),
2733 (char *) &size_buf, sizeof (size_buf), NULL);
2734 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2735 if (ret < 0)
2736 return ret;
2737
2738 *order = size_buf.order;
2739 *snap_size = le64_to_cpu(size_buf.size);
2740
2741 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
2742 (unsigned long long) snap_id, (unsigned int) *order,
2743 (unsigned long long) *snap_size);
2744
2745 return 0;
2746 }
2747
2748 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2749 {
2750 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2751 &rbd_dev->header.obj_order,
2752 &rbd_dev->header.image_size);
2753 }
2754
2755 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2756 {
2757 void *reply_buf;
2758 int ret;
2759 void *p;
2760
2761 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2762 if (!reply_buf)
2763 return -ENOMEM;
2764
2765 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2766 "rbd", "get_object_prefix",
2767 NULL, 0,
2768 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2769 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2770 if (ret < 0)
2771 goto out;
2772 ret = 0; /* rbd_obj_method_sync() can return positive */
2773
2774 p = reply_buf;
2775 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2776 p + RBD_OBJ_PREFIX_LEN_MAX,
2777 NULL, GFP_NOIO);
2778
2779 if (IS_ERR(rbd_dev->header.object_prefix)) {
2780 ret = PTR_ERR(rbd_dev->header.object_prefix);
2781 rbd_dev->header.object_prefix = NULL;
2782 } else {
2783 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
2784 }
2785
2786 out:
2787 kfree(reply_buf);
2788
2789 return ret;
2790 }
2791
2792 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2793 u64 *snap_features)
2794 {
2795 __le64 snapid = cpu_to_le64(snap_id);
2796 struct {
2797 __le64 features;
2798 __le64 incompat;
2799 } features_buf = { 0 };
2800 u64 incompat;
2801 int ret;
2802
2803 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2804 "rbd", "get_features",
2805 (char *) &snapid, sizeof (snapid),
2806 (char *) &features_buf, sizeof (features_buf),
2807 NULL);
2808 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2809 if (ret < 0)
2810 return ret;
2811
2812 incompat = le64_to_cpu(features_buf.incompat);
2813 if (incompat & ~RBD_FEATURES_ALL)
2814 return -ENXIO;
2815
2816 *snap_features = le64_to_cpu(features_buf.features);
2817
2818 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2819 (unsigned long long) snap_id,
2820 (unsigned long long) *snap_features,
2821 (unsigned long long) le64_to_cpu(features_buf.incompat));
2822
2823 return 0;
2824 }
2825
2826 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2827 {
2828 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2829 &rbd_dev->header.features);
2830 }
2831
2832 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2833 {
2834 struct rbd_spec *parent_spec;
2835 size_t size;
2836 void *reply_buf = NULL;
2837 __le64 snapid;
2838 void *p;
2839 void *end;
2840 char *image_id;
2841 u64 overlap;
2842 int ret;
2843
2844 parent_spec = rbd_spec_alloc();
2845 if (!parent_spec)
2846 return -ENOMEM;
2847
2848 size = sizeof (__le64) + /* pool_id */
2849 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
2850 sizeof (__le64) + /* snap_id */
2851 sizeof (__le64); /* overlap */
2852 reply_buf = kmalloc(size, GFP_KERNEL);
2853 if (!reply_buf) {
2854 ret = -ENOMEM;
2855 goto out_err;
2856 }
2857
2858 snapid = cpu_to_le64(CEPH_NOSNAP);
2859 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2860 "rbd", "get_parent",
2861 (char *) &snapid, sizeof (snapid),
2862 (char *) reply_buf, size, NULL);
2863 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2864 if (ret < 0)
2865 goto out_err;
2866
2867 ret = -ERANGE;
2868 p = reply_buf;
2869 end = (char *) reply_buf + size;
2870 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2871 if (parent_spec->pool_id == CEPH_NOPOOL)
2872 goto out; /* No parent? No problem. */
2873
2874 /* The ceph file layout needs to fit pool id in 32 bits */
2875
2876 ret = -EIO;
2877 if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2878 goto out;
2879
2880 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2881 if (IS_ERR(image_id)) {
2882 ret = PTR_ERR(image_id);
2883 goto out_err;
2884 }
2885 parent_spec->image_id = image_id;
2886 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2887 ceph_decode_64_safe(&p, end, overlap, out_err);
2888
2889 rbd_dev->parent_overlap = overlap;
2890 rbd_dev->parent_spec = parent_spec;
2891 parent_spec = NULL; /* rbd_dev now owns this */
2892 out:
2893 ret = 0;
2894 out_err:
2895 kfree(reply_buf);
2896 rbd_spec_put(parent_spec);
2897
2898 return ret;
2899 }
2900
2901 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
2902 {
2903 size_t image_id_size;
2904 char *image_id;
2905 void *p;
2906 void *end;
2907 size_t size;
2908 void *reply_buf = NULL;
2909 size_t len = 0;
2910 char *image_name = NULL;
2911 int ret;
2912
2913 rbd_assert(!rbd_dev->spec->image_name);
2914
2915 len = strlen(rbd_dev->spec->image_id);
2916 image_id_size = sizeof (__le32) + len;
2917 image_id = kmalloc(image_id_size, GFP_KERNEL);
2918 if (!image_id)
2919 return NULL;
2920
2921 p = image_id;
2922 end = (char *) image_id + image_id_size;
2923 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
2924
2925 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
2926 reply_buf = kmalloc(size, GFP_KERNEL);
2927 if (!reply_buf)
2928 goto out;
2929
2930 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
2931 "rbd", "dir_get_name",
2932 image_id, image_id_size,
2933 (char *) reply_buf, size, NULL);
2934 if (ret < 0)
2935 goto out;
2936 p = reply_buf;
2937 end = (char *) reply_buf + size;
2938 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
2939 if (IS_ERR(image_name))
2940 image_name = NULL;
2941 else
2942 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
2943 out:
2944 kfree(reply_buf);
2945 kfree(image_id);
2946
2947 return image_name;
2948 }
2949
2950 /*
2951 * When a parent image gets probed, we only have the pool, image,
2952 * and snapshot ids but not the names of any of them. This call
2953 * is made later to fill in those names. It has to be done after
2954 * rbd_dev_snaps_update() has completed because some of the
2955 * information (in particular, snapshot name) is not available
2956 * until then.
2957 */
2958 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
2959 {
2960 struct ceph_osd_client *osdc;
2961 const char *name;
2962 void *reply_buf = NULL;
2963 int ret;
2964
2965 if (rbd_dev->spec->pool_name)
2966 return 0; /* Already have the names */
2967
2968 /* Look up the pool name */
2969
2970 osdc = &rbd_dev->rbd_client->client->osdc;
2971 name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
2972 if (!name) {
2973 rbd_warn(rbd_dev, "there is no pool with id %llu",
2974 rbd_dev->spec->pool_id); /* Really a BUG() */
2975 return -EIO;
2976 }
2977
2978 rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
2979 if (!rbd_dev->spec->pool_name)
2980 return -ENOMEM;
2981
2982 /* Fetch the image name; tolerate failure here */
2983
2984 name = rbd_dev_image_name(rbd_dev);
2985 if (name)
2986 rbd_dev->spec->image_name = (char *) name;
2987 else
2988 rbd_warn(rbd_dev, "unable to get image name");
2989
2990 /* Look up the snapshot name. */
2991
2992 name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
2993 if (!name) {
2994 rbd_warn(rbd_dev, "no snapshot with id %llu",
2995 rbd_dev->spec->snap_id); /* Really a BUG() */
2996 ret = -EIO;
2997 goto out_err;
2998 }
2999 rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3000 if(!rbd_dev->spec->snap_name)
3001 goto out_err;
3002
3003 return 0;
3004 out_err:
3005 kfree(reply_buf);
3006 kfree(rbd_dev->spec->pool_name);
3007 rbd_dev->spec->pool_name = NULL;
3008
3009 return ret;
3010 }
3011
3012 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3013 {
3014 size_t size;
3015 int ret;
3016 void *reply_buf;
3017 void *p;
3018 void *end;
3019 u64 seq;
3020 u32 snap_count;
3021 struct ceph_snap_context *snapc;
3022 u32 i;
3023
3024 /*
3025 * We'll need room for the seq value (maximum snapshot id),
3026 * snapshot count, and array of that many snapshot ids.
3027 * For now we have a fixed upper limit on the number we're
3028 * prepared to receive.
3029 */
3030 size = sizeof (__le64) + sizeof (__le32) +
3031 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3032 reply_buf = kzalloc(size, GFP_KERNEL);
3033 if (!reply_buf)
3034 return -ENOMEM;
3035
3036 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3037 "rbd", "get_snapcontext",
3038 NULL, 0,
3039 reply_buf, size, ver);
3040 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3041 if (ret < 0)
3042 goto out;
3043
3044 ret = -ERANGE;
3045 p = reply_buf;
3046 end = (char *) reply_buf + size;
3047 ceph_decode_64_safe(&p, end, seq, out);
3048 ceph_decode_32_safe(&p, end, snap_count, out);
3049
3050 /*
3051 * Make sure the reported number of snapshot ids wouldn't go
3052 * beyond the end of our buffer. But before checking that,
3053 * make sure the computed size of the snapshot context we
3054 * allocate is representable in a size_t.
3055 */
3056 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3057 / sizeof (u64)) {
3058 ret = -EINVAL;
3059 goto out;
3060 }
3061 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3062 goto out;
3063
3064 size = sizeof (struct ceph_snap_context) +
3065 snap_count * sizeof (snapc->snaps[0]);
3066 snapc = kmalloc(size, GFP_KERNEL);
3067 if (!snapc) {
3068 ret = -ENOMEM;
3069 goto out;
3070 }
3071
3072 atomic_set(&snapc->nref, 1);
3073 snapc->seq = seq;
3074 snapc->num_snaps = snap_count;
3075 for (i = 0; i < snap_count; i++)
3076 snapc->snaps[i] = ceph_decode_64(&p);
3077
3078 rbd_dev->header.snapc = snapc;
3079
3080 dout(" snap context seq = %llu, snap_count = %u\n",
3081 (unsigned long long) seq, (unsigned int) snap_count);
3082
3083 out:
3084 kfree(reply_buf);
3085
3086 return 0;
3087 }
3088
3089 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3090 {
3091 size_t size;
3092 void *reply_buf;
3093 __le64 snap_id;
3094 int ret;
3095 void *p;
3096 void *end;
3097 char *snap_name;
3098
3099 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3100 reply_buf = kmalloc(size, GFP_KERNEL);
3101 if (!reply_buf)
3102 return ERR_PTR(-ENOMEM);
3103
3104 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3105 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3106 "rbd", "get_snapshot_name",
3107 (char *) &snap_id, sizeof (snap_id),
3108 reply_buf, size, NULL);
3109 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3110 if (ret < 0)
3111 goto out;
3112
3113 p = reply_buf;
3114 end = (char *) reply_buf + size;
3115 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3116 if (IS_ERR(snap_name)) {
3117 ret = PTR_ERR(snap_name);
3118 goto out;
3119 } else {
3120 dout(" snap_id 0x%016llx snap_name = %s\n",
3121 (unsigned long long) le64_to_cpu(snap_id), snap_name);
3122 }
3123 kfree(reply_buf);
3124
3125 return snap_name;
3126 out:
3127 kfree(reply_buf);
3128
3129 return ERR_PTR(ret);
3130 }
3131
3132 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3133 u64 *snap_size, u64 *snap_features)
3134 {
3135 u64 snap_id;
3136 u8 order;
3137 int ret;
3138
3139 snap_id = rbd_dev->header.snapc->snaps[which];
3140 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3141 if (ret)
3142 return ERR_PTR(ret);
3143 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3144 if (ret)
3145 return ERR_PTR(ret);
3146
3147 return rbd_dev_v2_snap_name(rbd_dev, which);
3148 }
3149
3150 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3151 u64 *snap_size, u64 *snap_features)
3152 {
3153 if (rbd_dev->image_format == 1)
3154 return rbd_dev_v1_snap_info(rbd_dev, which,
3155 snap_size, snap_features);
3156 if (rbd_dev->image_format == 2)
3157 return rbd_dev_v2_snap_info(rbd_dev, which,
3158 snap_size, snap_features);
3159 return ERR_PTR(-EINVAL);
3160 }
3161
3162 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3163 {
3164 int ret;
3165 __u8 obj_order;
3166
3167 down_write(&rbd_dev->header_rwsem);
3168
3169 /* Grab old order first, to see if it changes */
3170
3171 obj_order = rbd_dev->header.obj_order,
3172 ret = rbd_dev_v2_image_size(rbd_dev);
3173 if (ret)
3174 goto out;
3175 if (rbd_dev->header.obj_order != obj_order) {
3176 ret = -EIO;
3177 goto out;
3178 }
3179 rbd_update_mapping_size(rbd_dev);
3180
3181 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3182 dout("rbd_dev_v2_snap_context returned %d\n", ret);
3183 if (ret)
3184 goto out;
3185 ret = rbd_dev_snaps_update(rbd_dev);
3186 dout("rbd_dev_snaps_update returned %d\n", ret);
3187 if (ret)
3188 goto out;
3189 ret = rbd_dev_snaps_register(rbd_dev);
3190 dout("rbd_dev_snaps_register returned %d\n", ret);
3191 out:
3192 up_write(&rbd_dev->header_rwsem);
3193
3194 return ret;
3195 }
3196
3197 /*
3198 * Scan the rbd device's current snapshot list and compare it to the
3199 * newly-received snapshot context. Remove any existing snapshots
3200 * not present in the new snapshot context. Add a new snapshot for
3201 * any snaphots in the snapshot context not in the current list.
3202 * And verify there are no changes to snapshots we already know
3203 * about.
3204 *
3205 * Assumes the snapshots in the snapshot context are sorted by
3206 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
3207 * are also maintained in that order.)
3208 */
3209 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3210 {
3211 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3212 const u32 snap_count = snapc->num_snaps;
3213 struct list_head *head = &rbd_dev->snaps;
3214 struct list_head *links = head->next;
3215 u32 index = 0;
3216
3217 dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3218 while (index < snap_count || links != head) {
3219 u64 snap_id;
3220 struct rbd_snap *snap;
3221 char *snap_name;
3222 u64 snap_size = 0;
3223 u64 snap_features = 0;
3224
3225 snap_id = index < snap_count ? snapc->snaps[index]
3226 : CEPH_NOSNAP;
3227 snap = links != head ? list_entry(links, struct rbd_snap, node)
3228 : NULL;
3229 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3230
3231 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3232 struct list_head *next = links->next;
3233
3234 /*
3235 * A previously-existing snapshot is not in
3236 * the new snap context.
3237 *
3238 * If the now missing snapshot is the one the
3239 * image is mapped to, clear its exists flag
3240 * so we can avoid sending any more requests
3241 * to it.
3242 */
3243 if (rbd_dev->spec->snap_id == snap->id)
3244 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3245 rbd_remove_snap_dev(snap);
3246 dout("%ssnap id %llu has been removed\n",
3247 rbd_dev->spec->snap_id == snap->id ?
3248 "mapped " : "",
3249 (unsigned long long) snap->id);
3250
3251 /* Done with this list entry; advance */
3252
3253 links = next;
3254 continue;
3255 }
3256
3257 snap_name = rbd_dev_snap_info(rbd_dev, index,
3258 &snap_size, &snap_features);
3259 if (IS_ERR(snap_name))
3260 return PTR_ERR(snap_name);
3261
3262 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3263 (unsigned long long) snap_id);
3264 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3265 struct rbd_snap *new_snap;
3266
3267 /* We haven't seen this snapshot before */
3268
3269 new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3270 snap_id, snap_size, snap_features);
3271 if (IS_ERR(new_snap)) {
3272 int err = PTR_ERR(new_snap);
3273
3274 dout(" failed to add dev, error %d\n", err);
3275
3276 return err;
3277 }
3278
3279 /* New goes before existing, or at end of list */
3280
3281 dout(" added dev%s\n", snap ? "" : " at end\n");
3282 if (snap)
3283 list_add_tail(&new_snap->node, &snap->node);
3284 else
3285 list_add_tail(&new_snap->node, head);
3286 } else {
3287 /* Already have this one */
3288
3289 dout(" already present\n");
3290
3291 rbd_assert(snap->size == snap_size);
3292 rbd_assert(!strcmp(snap->name, snap_name));
3293 rbd_assert(snap->features == snap_features);
3294
3295 /* Done with this list entry; advance */
3296
3297 links = links->next;
3298 }
3299
3300 /* Advance to the next entry in the snapshot context */
3301
3302 index++;
3303 }
3304 dout("%s: done\n", __func__);
3305
3306 return 0;
3307 }
3308
3309 /*
3310 * Scan the list of snapshots and register the devices for any that
3311 * have not already been registered.
3312 */
3313 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3314 {
3315 struct rbd_snap *snap;
3316 int ret = 0;
3317
3318 dout("%s called\n", __func__);
3319 if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3320 return -EIO;
3321
3322 list_for_each_entry(snap, &rbd_dev->snaps, node) {
3323 if (!rbd_snap_registered(snap)) {
3324 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3325 if (ret < 0)
3326 break;
3327 }
3328 }
3329 dout("%s: returning %d\n", __func__, ret);
3330
3331 return ret;
3332 }
3333
3334 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3335 {
3336 struct device *dev;
3337 int ret;
3338
3339 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3340
3341 dev = &rbd_dev->dev;
3342 dev->bus = &rbd_bus_type;
3343 dev->type = &rbd_device_type;
3344 dev->parent = &rbd_root_dev;
3345 dev->release = rbd_dev_release;
3346 dev_set_name(dev, "%d", rbd_dev->dev_id);
3347 ret = device_register(dev);
3348
3349 mutex_unlock(&ctl_mutex);
3350
3351 return ret;
3352 }
3353
3354 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3355 {
3356 device_unregister(&rbd_dev->dev);
3357 }
3358
3359 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3360
3361 /*
3362 * Get a unique rbd identifier for the given new rbd_dev, and add
3363 * the rbd_dev to the global list. The minimum rbd id is 1.
3364 */
3365 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3366 {
3367 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3368
3369 spin_lock(&rbd_dev_list_lock);
3370 list_add_tail(&rbd_dev->node, &rbd_dev_list);
3371 spin_unlock(&rbd_dev_list_lock);
3372 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3373 (unsigned long long) rbd_dev->dev_id);
3374 }
3375
3376 /*
3377 * Remove an rbd_dev from the global list, and record that its
3378 * identifier is no longer in use.
3379 */
3380 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3381 {
3382 struct list_head *tmp;
3383 int rbd_id = rbd_dev->dev_id;
3384 int max_id;
3385
3386 rbd_assert(rbd_id > 0);
3387
3388 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3389 (unsigned long long) rbd_dev->dev_id);
3390 spin_lock(&rbd_dev_list_lock);
3391 list_del_init(&rbd_dev->node);
3392
3393 /*
3394 * If the id being "put" is not the current maximum, there
3395 * is nothing special we need to do.
3396 */
3397 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3398 spin_unlock(&rbd_dev_list_lock);
3399 return;
3400 }
3401
3402 /*
3403 * We need to update the current maximum id. Search the
3404 * list to find out what it is. We're more likely to find
3405 * the maximum at the end, so search the list backward.
3406 */
3407 max_id = 0;
3408 list_for_each_prev(tmp, &rbd_dev_list) {
3409 struct rbd_device *rbd_dev;
3410
3411 rbd_dev = list_entry(tmp, struct rbd_device, node);
3412 if (rbd_dev->dev_id > max_id)
3413 max_id = rbd_dev->dev_id;
3414 }
3415 spin_unlock(&rbd_dev_list_lock);
3416
3417 /*
3418 * The max id could have been updated by rbd_dev_id_get(), in
3419 * which case it now accurately reflects the new maximum.
3420 * Be careful not to overwrite the maximum value in that
3421 * case.
3422 */
3423 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3424 dout(" max dev id has been reset\n");
3425 }
3426
3427 /*
3428 * Skips over white space at *buf, and updates *buf to point to the
3429 * first found non-space character (if any). Returns the length of
3430 * the token (string of non-white space characters) found. Note
3431 * that *buf must be terminated with '\0'.
3432 */
3433 static inline size_t next_token(const char **buf)
3434 {
3435 /*
3436 * These are the characters that produce nonzero for
3437 * isspace() in the "C" and "POSIX" locales.
3438 */
3439 const char *spaces = " \f\n\r\t\v";
3440
3441 *buf += strspn(*buf, spaces); /* Find start of token */
3442
3443 return strcspn(*buf, spaces); /* Return token length */
3444 }
3445
3446 /*
3447 * Finds the next token in *buf, and if the provided token buffer is
3448 * big enough, copies the found token into it. The result, if
3449 * copied, is guaranteed to be terminated with '\0'. Note that *buf
3450 * must be terminated with '\0' on entry.
3451 *
3452 * Returns the length of the token found (not including the '\0').
3453 * Return value will be 0 if no token is found, and it will be >=
3454 * token_size if the token would not fit.
3455 *
3456 * The *buf pointer will be updated to point beyond the end of the
3457 * found token. Note that this occurs even if the token buffer is
3458 * too small to hold it.
3459 */
3460 static inline size_t copy_token(const char **buf,
3461 char *token,
3462 size_t token_size)
3463 {
3464 size_t len;
3465
3466 len = next_token(buf);
3467 if (len < token_size) {
3468 memcpy(token, *buf, len);
3469 *(token + len) = '\0';
3470 }
3471 *buf += len;
3472
3473 return len;
3474 }
3475
3476 /*
3477 * Finds the next token in *buf, dynamically allocates a buffer big
3478 * enough to hold a copy of it, and copies the token into the new
3479 * buffer. The copy is guaranteed to be terminated with '\0'. Note
3480 * that a duplicate buffer is created even for a zero-length token.
3481 *
3482 * Returns a pointer to the newly-allocated duplicate, or a null
3483 * pointer if memory for the duplicate was not available. If
3484 * the lenp argument is a non-null pointer, the length of the token
3485 * (not including the '\0') is returned in *lenp.
3486 *
3487 * If successful, the *buf pointer will be updated to point beyond
3488 * the end of the found token.
3489 *
3490 * Note: uses GFP_KERNEL for allocation.
3491 */
3492 static inline char *dup_token(const char **buf, size_t *lenp)
3493 {
3494 char *dup;
3495 size_t len;
3496
3497 len = next_token(buf);
3498 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3499 if (!dup)
3500 return NULL;
3501 *(dup + len) = '\0';
3502 *buf += len;
3503
3504 if (lenp)
3505 *lenp = len;
3506
3507 return dup;
3508 }
3509
3510 /*
3511 * Parse the options provided for an "rbd add" (i.e., rbd image
3512 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
3513 * and the data written is passed here via a NUL-terminated buffer.
3514 * Returns 0 if successful or an error code otherwise.
3515 *
3516 * The information extracted from these options is recorded in
3517 * the other parameters which return dynamically-allocated
3518 * structures:
3519 * ceph_opts
3520 * The address of a pointer that will refer to a ceph options
3521 * structure. Caller must release the returned pointer using
3522 * ceph_destroy_options() when it is no longer needed.
3523 * rbd_opts
3524 * Address of an rbd options pointer. Fully initialized by
3525 * this function; caller must release with kfree().
3526 * spec
3527 * Address of an rbd image specification pointer. Fully
3528 * initialized by this function based on parsed options.
3529 * Caller must release with rbd_spec_put().
3530 *
3531 * The options passed take this form:
3532 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3533 * where:
3534 * <mon_addrs>
3535 * A comma-separated list of one or more monitor addresses.
3536 * A monitor address is an ip address, optionally followed
3537 * by a port number (separated by a colon).
3538 * I.e.: ip1[:port1][,ip2[:port2]...]
3539 * <options>
3540 * A comma-separated list of ceph and/or rbd options.
3541 * <pool_name>
3542 * The name of the rados pool containing the rbd image.
3543 * <image_name>
3544 * The name of the image in that pool to map.
3545 * <snap_id>
3546 * An optional snapshot id. If provided, the mapping will
3547 * present data from the image at the time that snapshot was
3548 * created. The image head is used if no snapshot id is
3549 * provided. Snapshot mappings are always read-only.
3550 */
3551 static int rbd_add_parse_args(const char *buf,
3552 struct ceph_options **ceph_opts,
3553 struct rbd_options **opts,
3554 struct rbd_spec **rbd_spec)
3555 {
3556 size_t len;
3557 char *options;
3558 const char *mon_addrs;
3559 size_t mon_addrs_size;
3560 struct rbd_spec *spec = NULL;
3561 struct rbd_options *rbd_opts = NULL;
3562 struct ceph_options *copts;
3563 int ret;
3564
3565 /* The first four tokens are required */
3566
3567 len = next_token(&buf);
3568 if (!len) {
3569 rbd_warn(NULL, "no monitor address(es) provided");
3570 return -EINVAL;
3571 }
3572 mon_addrs = buf;
3573 mon_addrs_size = len + 1;
3574 buf += len;
3575
3576 ret = -EINVAL;
3577 options = dup_token(&buf, NULL);
3578 if (!options)
3579 return -ENOMEM;
3580 if (!*options) {
3581 rbd_warn(NULL, "no options provided");
3582 goto out_err;
3583 }
3584
3585 spec = rbd_spec_alloc();
3586 if (!spec)
3587 goto out_mem;
3588
3589 spec->pool_name = dup_token(&buf, NULL);
3590 if (!spec->pool_name)
3591 goto out_mem;
3592 if (!*spec->pool_name) {
3593 rbd_warn(NULL, "no pool name provided");
3594 goto out_err;
3595 }
3596
3597 spec->image_name = dup_token(&buf, NULL);
3598 if (!spec->image_name)
3599 goto out_mem;
3600 if (!*spec->image_name) {
3601 rbd_warn(NULL, "no image name provided");
3602 goto out_err;
3603 }
3604
3605 /*
3606 * Snapshot name is optional; default is to use "-"
3607 * (indicating the head/no snapshot).
3608 */
3609 len = next_token(&buf);
3610 if (!len) {
3611 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3612 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3613 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3614 ret = -ENAMETOOLONG;
3615 goto out_err;
3616 }
3617 spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3618 if (!spec->snap_name)
3619 goto out_mem;
3620 *(spec->snap_name + len) = '\0';
3621
3622 /* Initialize all rbd options to the defaults */
3623
3624 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3625 if (!rbd_opts)
3626 goto out_mem;
3627
3628 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3629
3630 copts = ceph_parse_options(options, mon_addrs,
3631 mon_addrs + mon_addrs_size - 1,
3632 parse_rbd_opts_token, rbd_opts);
3633 if (IS_ERR(copts)) {
3634 ret = PTR_ERR(copts);
3635 goto out_err;
3636 }
3637 kfree(options);
3638
3639 *ceph_opts = copts;
3640 *opts = rbd_opts;
3641 *rbd_spec = spec;
3642
3643 return 0;
3644 out_mem:
3645 ret = -ENOMEM;
3646 out_err:
3647 kfree(rbd_opts);
3648 rbd_spec_put(spec);
3649 kfree(options);
3650
3651 return ret;
3652 }
3653
3654 /*
3655 * An rbd format 2 image has a unique identifier, distinct from the
3656 * name given to it by the user. Internally, that identifier is
3657 * what's used to specify the names of objects related to the image.
3658 *
3659 * A special "rbd id" object is used to map an rbd image name to its
3660 * id. If that object doesn't exist, then there is no v2 rbd image
3661 * with the supplied name.
3662 *
3663 * This function will record the given rbd_dev's image_id field if
3664 * it can be determined, and in that case will return 0. If any
3665 * errors occur a negative errno will be returned and the rbd_dev's
3666 * image_id field will be unchanged (and should be NULL).
3667 */
3668 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3669 {
3670 int ret;
3671 size_t size;
3672 char *object_name;
3673 void *response;
3674 void *p;
3675
3676 /*
3677 * When probing a parent image, the image id is already
3678 * known (and the image name likely is not). There's no
3679 * need to fetch the image id again in this case.
3680 */
3681 if (rbd_dev->spec->image_id)
3682 return 0;
3683
3684 /*
3685 * First, see if the format 2 image id file exists, and if
3686 * so, get the image's persistent id from it.
3687 */
3688 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3689 object_name = kmalloc(size, GFP_NOIO);
3690 if (!object_name)
3691 return -ENOMEM;
3692 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3693 dout("rbd id object name is %s\n", object_name);
3694
3695 /* Response will be an encoded string, which includes a length */
3696
3697 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3698 response = kzalloc(size, GFP_NOIO);
3699 if (!response) {
3700 ret = -ENOMEM;
3701 goto out;
3702 }
3703
3704 ret = rbd_obj_method_sync(rbd_dev, object_name,
3705 "rbd", "get_id",
3706 NULL, 0,
3707 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3708 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3709 if (ret < 0)
3710 goto out;
3711 ret = 0; /* rbd_obj_method_sync() can return positive */
3712
3713 p = response;
3714 rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3715 p + RBD_IMAGE_ID_LEN_MAX,
3716 NULL, GFP_NOIO);
3717 if (IS_ERR(rbd_dev->spec->image_id)) {
3718 ret = PTR_ERR(rbd_dev->spec->image_id);
3719 rbd_dev->spec->image_id = NULL;
3720 } else {
3721 dout("image_id is %s\n", rbd_dev->spec->image_id);
3722 }
3723 out:
3724 kfree(response);
3725 kfree(object_name);
3726
3727 return ret;
3728 }
3729
3730 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3731 {
3732 int ret;
3733 size_t size;
3734
3735 /* Version 1 images have no id; empty string is used */
3736
3737 rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3738 if (!rbd_dev->spec->image_id)
3739 return -ENOMEM;
3740
3741 /* Record the header object name for this rbd image. */
3742
3743 size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3744 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3745 if (!rbd_dev->header_name) {
3746 ret = -ENOMEM;
3747 goto out_err;
3748 }
3749 sprintf(rbd_dev->header_name, "%s%s",
3750 rbd_dev->spec->image_name, RBD_SUFFIX);
3751
3752 /* Populate rbd image metadata */
3753
3754 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3755 if (ret < 0)
3756 goto out_err;
3757
3758 /* Version 1 images have no parent (no layering) */
3759
3760 rbd_dev->parent_spec = NULL;
3761 rbd_dev->parent_overlap = 0;
3762
3763 rbd_dev->image_format = 1;
3764
3765 dout("discovered version 1 image, header name is %s\n",
3766 rbd_dev->header_name);
3767
3768 return 0;
3769
3770 out_err:
3771 kfree(rbd_dev->header_name);
3772 rbd_dev->header_name = NULL;
3773 kfree(rbd_dev->spec->image_id);
3774 rbd_dev->spec->image_id = NULL;
3775
3776 return ret;
3777 }
3778
3779 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3780 {
3781 size_t size;
3782 int ret;
3783 u64 ver = 0;
3784
3785 /*
3786 * Image id was filled in by the caller. Record the header
3787 * object name for this rbd image.
3788 */
3789 size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3790 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3791 if (!rbd_dev->header_name)
3792 return -ENOMEM;
3793 sprintf(rbd_dev->header_name, "%s%s",
3794 RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3795
3796 /* Get the size and object order for the image */
3797
3798 ret = rbd_dev_v2_image_size(rbd_dev);
3799 if (ret < 0)
3800 goto out_err;
3801
3802 /* Get the object prefix (a.k.a. block_name) for the image */
3803
3804 ret = rbd_dev_v2_object_prefix(rbd_dev);
3805 if (ret < 0)
3806 goto out_err;
3807
3808 /* Get the and check features for the image */
3809
3810 ret = rbd_dev_v2_features(rbd_dev);
3811 if (ret < 0)
3812 goto out_err;
3813
3814 /* If the image supports layering, get the parent info */
3815
3816 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3817 ret = rbd_dev_v2_parent_info(rbd_dev);
3818 if (ret < 0)
3819 goto out_err;
3820 }
3821
3822 /* crypto and compression type aren't (yet) supported for v2 images */
3823
3824 rbd_dev->header.crypt_type = 0;
3825 rbd_dev->header.comp_type = 0;
3826
3827 /* Get the snapshot context, plus the header version */
3828
3829 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3830 if (ret)
3831 goto out_err;
3832 rbd_dev->header.obj_version = ver;
3833
3834 rbd_dev->image_format = 2;
3835
3836 dout("discovered version 2 image, header name is %s\n",
3837 rbd_dev->header_name);
3838
3839 return 0;
3840 out_err:
3841 rbd_dev->parent_overlap = 0;
3842 rbd_spec_put(rbd_dev->parent_spec);
3843 rbd_dev->parent_spec = NULL;
3844 kfree(rbd_dev->header_name);
3845 rbd_dev->header_name = NULL;
3846 kfree(rbd_dev->header.object_prefix);
3847 rbd_dev->header.object_prefix = NULL;
3848
3849 return ret;
3850 }
3851
3852 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3853 {
3854 int ret;
3855
3856 /* no need to lock here, as rbd_dev is not registered yet */
3857 ret = rbd_dev_snaps_update(rbd_dev);
3858 if (ret)
3859 return ret;
3860
3861 ret = rbd_dev_probe_update_spec(rbd_dev);
3862 if (ret)
3863 goto err_out_snaps;
3864
3865 ret = rbd_dev_set_mapping(rbd_dev);
3866 if (ret)
3867 goto err_out_snaps;
3868
3869 /* generate unique id: find highest unique id, add one */
3870 rbd_dev_id_get(rbd_dev);
3871
3872 /* Fill in the device name, now that we have its id. */
3873 BUILD_BUG_ON(DEV_NAME_LEN
3874 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3875 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3876
3877 /* Get our block major device number. */
3878
3879 ret = register_blkdev(0, rbd_dev->name);
3880 if (ret < 0)
3881 goto err_out_id;
3882 rbd_dev->major = ret;
3883
3884 /* Set up the blkdev mapping. */
3885
3886 ret = rbd_init_disk(rbd_dev);
3887 if (ret)
3888 goto err_out_blkdev;
3889
3890 ret = rbd_bus_add_dev(rbd_dev);
3891 if (ret)
3892 goto err_out_disk;
3893
3894 /*
3895 * At this point cleanup in the event of an error is the job
3896 * of the sysfs code (initiated by rbd_bus_del_dev()).
3897 */
3898 down_write(&rbd_dev->header_rwsem);
3899 ret = rbd_dev_snaps_register(rbd_dev);
3900 up_write(&rbd_dev->header_rwsem);
3901 if (ret)
3902 goto err_out_bus;
3903
3904 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
3905 if (ret)
3906 goto err_out_bus;
3907
3908 /* Everything's ready. Announce the disk to the world. */
3909
3910 add_disk(rbd_dev->disk);
3911
3912 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3913 (unsigned long long) rbd_dev->mapping.size);
3914
3915 return ret;
3916 err_out_bus:
3917 /* this will also clean up rest of rbd_dev stuff */
3918
3919 rbd_bus_del_dev(rbd_dev);
3920
3921 return ret;
3922 err_out_disk:
3923 rbd_free_disk(rbd_dev);
3924 err_out_blkdev:
3925 unregister_blkdev(rbd_dev->major, rbd_dev->name);
3926 err_out_id:
3927 rbd_dev_id_put(rbd_dev);
3928 err_out_snaps:
3929 rbd_remove_all_snaps(rbd_dev);
3930
3931 return ret;
3932 }
3933
3934 /*
3935 * Probe for the existence of the header object for the given rbd
3936 * device. For format 2 images this includes determining the image
3937 * id.
3938 */
3939 static int rbd_dev_probe(struct rbd_device *rbd_dev)
3940 {
3941 int ret;
3942
3943 /*
3944 * Get the id from the image id object. If it's not a
3945 * format 2 image, we'll get ENOENT back, and we'll assume
3946 * it's a format 1 image.
3947 */
3948 ret = rbd_dev_image_id(rbd_dev);
3949 if (ret)
3950 ret = rbd_dev_v1_probe(rbd_dev);
3951 else
3952 ret = rbd_dev_v2_probe(rbd_dev);
3953 if (ret) {
3954 dout("probe failed, returning %d\n", ret);
3955
3956 return ret;
3957 }
3958
3959 ret = rbd_dev_probe_finish(rbd_dev);
3960 if (ret)
3961 rbd_header_free(&rbd_dev->header);
3962
3963 return ret;
3964 }
3965
3966 static ssize_t rbd_add(struct bus_type *bus,
3967 const char *buf,
3968 size_t count)
3969 {
3970 struct rbd_device *rbd_dev = NULL;
3971 struct ceph_options *ceph_opts = NULL;
3972 struct rbd_options *rbd_opts = NULL;
3973 struct rbd_spec *spec = NULL;
3974 struct rbd_client *rbdc;
3975 struct ceph_osd_client *osdc;
3976 int rc = -ENOMEM;
3977
3978 if (!try_module_get(THIS_MODULE))
3979 return -ENODEV;
3980
3981 /* parse add command */
3982 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
3983 if (rc < 0)
3984 goto err_out_module;
3985
3986 rbdc = rbd_get_client(ceph_opts);
3987 if (IS_ERR(rbdc)) {
3988 rc = PTR_ERR(rbdc);
3989 goto err_out_args;
3990 }
3991 ceph_opts = NULL; /* rbd_dev client now owns this */
3992
3993 /* pick the pool */
3994 osdc = &rbdc->client->osdc;
3995 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
3996 if (rc < 0)
3997 goto err_out_client;
3998 spec->pool_id = (u64) rc;
3999
4000 /* The ceph file layout needs to fit pool id in 32 bits */
4001
4002 if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4003 rc = -EIO;
4004 goto err_out_client;
4005 }
4006
4007 rbd_dev = rbd_dev_create(rbdc, spec);
4008 if (!rbd_dev)
4009 goto err_out_client;
4010 rbdc = NULL; /* rbd_dev now owns this */
4011 spec = NULL; /* rbd_dev now owns this */
4012
4013 rbd_dev->mapping.read_only = rbd_opts->read_only;
4014 kfree(rbd_opts);
4015 rbd_opts = NULL; /* done with this */
4016
4017 rc = rbd_dev_probe(rbd_dev);
4018 if (rc < 0)
4019 goto err_out_rbd_dev;
4020
4021 return count;
4022 err_out_rbd_dev:
4023 rbd_dev_destroy(rbd_dev);
4024 err_out_client:
4025 rbd_put_client(rbdc);
4026 err_out_args:
4027 if (ceph_opts)
4028 ceph_destroy_options(ceph_opts);
4029 kfree(rbd_opts);
4030 rbd_spec_put(spec);
4031 err_out_module:
4032 module_put(THIS_MODULE);
4033
4034 dout("Error adding device %s\n", buf);
4035
4036 return (ssize_t) rc;
4037 }
4038
4039 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4040 {
4041 struct list_head *tmp;
4042 struct rbd_device *rbd_dev;
4043
4044 spin_lock(&rbd_dev_list_lock);
4045 list_for_each(tmp, &rbd_dev_list) {
4046 rbd_dev = list_entry(tmp, struct rbd_device, node);
4047 if (rbd_dev->dev_id == dev_id) {
4048 spin_unlock(&rbd_dev_list_lock);
4049 return rbd_dev;
4050 }
4051 }
4052 spin_unlock(&rbd_dev_list_lock);
4053 return NULL;
4054 }
4055
4056 static void rbd_dev_release(struct device *dev)
4057 {
4058 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4059
4060 if (rbd_dev->watch_event)
4061 rbd_dev_header_watch_sync(rbd_dev, 0);
4062
4063 /* clean up and free blkdev */
4064 rbd_free_disk(rbd_dev);
4065 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4066
4067 /* release allocated disk header fields */
4068 rbd_header_free(&rbd_dev->header);
4069
4070 /* done with the id, and with the rbd_dev */
4071 rbd_dev_id_put(rbd_dev);
4072 rbd_assert(rbd_dev->rbd_client != NULL);
4073 rbd_dev_destroy(rbd_dev);
4074
4075 /* release module ref */
4076 module_put(THIS_MODULE);
4077 }
4078
4079 static ssize_t rbd_remove(struct bus_type *bus,
4080 const char *buf,
4081 size_t count)
4082 {
4083 struct rbd_device *rbd_dev = NULL;
4084 int target_id, rc;
4085 unsigned long ul;
4086 int ret = count;
4087
4088 rc = strict_strtoul(buf, 10, &ul);
4089 if (rc)
4090 return rc;
4091
4092 /* convert to int; abort if we lost anything in the conversion */
4093 target_id = (int) ul;
4094 if (target_id != ul)
4095 return -EINVAL;
4096
4097 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4098
4099 rbd_dev = __rbd_get_dev(target_id);
4100 if (!rbd_dev) {
4101 ret = -ENOENT;
4102 goto done;
4103 }
4104
4105 spin_lock(&rbd_dev->lock);
4106 if (rbd_dev->open_count)
4107 ret = -EBUSY;
4108 else
4109 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4110 spin_unlock(&rbd_dev->lock);
4111 if (ret < 0)
4112 goto done;
4113
4114 rbd_remove_all_snaps(rbd_dev);
4115 rbd_bus_del_dev(rbd_dev);
4116
4117 done:
4118 mutex_unlock(&ctl_mutex);
4119
4120 return ret;
4121 }
4122
4123 /*
4124 * create control files in sysfs
4125 * /sys/bus/rbd/...
4126 */
4127 static int rbd_sysfs_init(void)
4128 {
4129 int ret;
4130
4131 ret = device_register(&rbd_root_dev);
4132 if (ret < 0)
4133 return ret;
4134
4135 ret = bus_register(&rbd_bus_type);
4136 if (ret < 0)
4137 device_unregister(&rbd_root_dev);
4138
4139 return ret;
4140 }
4141
4142 static void rbd_sysfs_cleanup(void)
4143 {
4144 bus_unregister(&rbd_bus_type);
4145 device_unregister(&rbd_root_dev);
4146 }
4147
4148 int __init rbd_init(void)
4149 {
4150 int rc;
4151
4152 rc = rbd_sysfs_init();
4153 if (rc)
4154 return rc;
4155 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4156 return 0;
4157 }
4158
4159 void __exit rbd_exit(void)
4160 {
4161 rbd_sysfs_cleanup();
4162 }
4163
4164 module_init(rbd_init);
4165 module_exit(rbd_exit);
4166
4167 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4168 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4169 MODULE_DESCRIPTION("rados block device");
4170
4171 /* following authorship retained from original osdblk.c */
4172 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4173
4174 MODULE_LICENSE("GPL");
This page took 0.189615 seconds and 6 git commands to generate.