Merge tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / bluetooth / btusb.c
1 /*
2 *
3 * Generic Bluetooth USB driver
4 *
5 * Copyright (C) 2005-2008 Marcel Holtmann <marcel@holtmann.org>
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/usb.h>
26 #include <linux/firmware.h>
27
28 #include <net/bluetooth/bluetooth.h>
29 #include <net/bluetooth/hci_core.h>
30
31 #define VERSION "0.7"
32
33 static bool disable_scofix;
34 static bool force_scofix;
35
36 static bool reset = 1;
37
38 static struct usb_driver btusb_driver;
39
40 #define BTUSB_IGNORE 0x01
41 #define BTUSB_DIGIANSWER 0x02
42 #define BTUSB_CSR 0x04
43 #define BTUSB_SNIFFER 0x08
44 #define BTUSB_BCM92035 0x10
45 #define BTUSB_BROKEN_ISOC 0x20
46 #define BTUSB_WRONG_SCO_MTU 0x40
47 #define BTUSB_ATH3012 0x80
48 #define BTUSB_INTEL 0x100
49 #define BTUSB_INTEL_BOOT 0x200
50 #define BTUSB_BCM_PATCHRAM 0x400
51 #define BTUSB_MARVELL 0x800
52 #define BTUSB_SWAVE 0x1000
53 #define BTUSB_INTEL_NEW 0x2000
54 #define BTUSB_AMP 0x4000
55
56 static const struct usb_device_id btusb_table[] = {
57 /* Generic Bluetooth USB device */
58 { USB_DEVICE_INFO(0xe0, 0x01, 0x01) },
59
60 /* Generic Bluetooth AMP device */
61 { USB_DEVICE_INFO(0xe0, 0x01, 0x04), .driver_info = BTUSB_AMP },
62
63 /* Apple-specific (Broadcom) devices */
64 { USB_VENDOR_AND_INTERFACE_INFO(0x05ac, 0xff, 0x01, 0x01) },
65
66 /* MediaTek MT76x0E */
67 { USB_DEVICE(0x0e8d, 0x763f) },
68
69 /* Broadcom SoftSailing reporting vendor specific */
70 { USB_DEVICE(0x0a5c, 0x21e1) },
71
72 /* Apple MacBookPro 7,1 */
73 { USB_DEVICE(0x05ac, 0x8213) },
74
75 /* Apple iMac11,1 */
76 { USB_DEVICE(0x05ac, 0x8215) },
77
78 /* Apple MacBookPro6,2 */
79 { USB_DEVICE(0x05ac, 0x8218) },
80
81 /* Apple MacBookAir3,1, MacBookAir3,2 */
82 { USB_DEVICE(0x05ac, 0x821b) },
83
84 /* Apple MacBookAir4,1 */
85 { USB_DEVICE(0x05ac, 0x821f) },
86
87 /* Apple MacBookPro8,2 */
88 { USB_DEVICE(0x05ac, 0x821a) },
89
90 /* Apple MacMini5,1 */
91 { USB_DEVICE(0x05ac, 0x8281) },
92
93 /* AVM BlueFRITZ! USB v2.0 */
94 { USB_DEVICE(0x057c, 0x3800), .driver_info = BTUSB_SWAVE },
95
96 /* Bluetooth Ultraport Module from IBM */
97 { USB_DEVICE(0x04bf, 0x030a) },
98
99 /* ALPS Modules with non-standard id */
100 { USB_DEVICE(0x044e, 0x3001) },
101 { USB_DEVICE(0x044e, 0x3002) },
102
103 /* Ericsson with non-standard id */
104 { USB_DEVICE(0x0bdb, 0x1002) },
105
106 /* Canyon CN-BTU1 with HID interfaces */
107 { USB_DEVICE(0x0c10, 0x0000) },
108
109 /* Broadcom BCM20702A0 */
110 { USB_DEVICE(0x0489, 0xe042) },
111 { USB_DEVICE(0x04ca, 0x2003) },
112 { USB_DEVICE(0x0b05, 0x17b5) },
113 { USB_DEVICE(0x0b05, 0x17cb) },
114 { USB_DEVICE(0x413c, 0x8197) },
115 { USB_DEVICE(0x13d3, 0x3404),
116 .driver_info = BTUSB_BCM_PATCHRAM },
117
118 /* Broadcom BCM20702B0 (Dynex/Insignia) */
119 { USB_DEVICE(0x19ff, 0x0239), .driver_info = BTUSB_BCM_PATCHRAM },
120
121 /* Foxconn - Hon Hai */
122 { USB_VENDOR_AND_INTERFACE_INFO(0x0489, 0xff, 0x01, 0x01),
123 .driver_info = BTUSB_BCM_PATCHRAM },
124
125 /* Lite-On Technology - Broadcom based */
126 { USB_VENDOR_AND_INTERFACE_INFO(0x04ca, 0xff, 0x01, 0x01),
127 .driver_info = BTUSB_BCM_PATCHRAM },
128
129 /* Broadcom devices with vendor specific id */
130 { USB_VENDOR_AND_INTERFACE_INFO(0x0a5c, 0xff, 0x01, 0x01),
131 .driver_info = BTUSB_BCM_PATCHRAM },
132
133 /* ASUSTek Computer - Broadcom based */
134 { USB_VENDOR_AND_INTERFACE_INFO(0x0b05, 0xff, 0x01, 0x01),
135 .driver_info = BTUSB_BCM_PATCHRAM },
136
137 /* Belkin F8065bf - Broadcom based */
138 { USB_VENDOR_AND_INTERFACE_INFO(0x050d, 0xff, 0x01, 0x01) },
139
140 /* IMC Networks - Broadcom based */
141 { USB_VENDOR_AND_INTERFACE_INFO(0x13d3, 0xff, 0x01, 0x01) },
142
143 /* Intel Bluetooth USB Bootloader (RAM module) */
144 { USB_DEVICE(0x8087, 0x0a5a),
145 .driver_info = BTUSB_INTEL_BOOT | BTUSB_BROKEN_ISOC },
146
147 { } /* Terminating entry */
148 };
149
150 MODULE_DEVICE_TABLE(usb, btusb_table);
151
152 static const struct usb_device_id blacklist_table[] = {
153 /* CSR BlueCore devices */
154 { USB_DEVICE(0x0a12, 0x0001), .driver_info = BTUSB_CSR },
155
156 /* Broadcom BCM2033 without firmware */
157 { USB_DEVICE(0x0a5c, 0x2033), .driver_info = BTUSB_IGNORE },
158
159 /* Atheros 3011 with sflash firmware */
160 { USB_DEVICE(0x0489, 0xe027), .driver_info = BTUSB_IGNORE },
161 { USB_DEVICE(0x0489, 0xe03d), .driver_info = BTUSB_IGNORE },
162 { USB_DEVICE(0x0930, 0x0215), .driver_info = BTUSB_IGNORE },
163 { USB_DEVICE(0x0cf3, 0x3002), .driver_info = BTUSB_IGNORE },
164 { USB_DEVICE(0x0cf3, 0xe019), .driver_info = BTUSB_IGNORE },
165 { USB_DEVICE(0x13d3, 0x3304), .driver_info = BTUSB_IGNORE },
166
167 /* Atheros AR9285 Malbec with sflash firmware */
168 { USB_DEVICE(0x03f0, 0x311d), .driver_info = BTUSB_IGNORE },
169
170 /* Atheros 3012 with sflash firmware */
171 { USB_DEVICE(0x0489, 0xe04d), .driver_info = BTUSB_ATH3012 },
172 { USB_DEVICE(0x0489, 0xe04e), .driver_info = BTUSB_ATH3012 },
173 { USB_DEVICE(0x0489, 0xe056), .driver_info = BTUSB_ATH3012 },
174 { USB_DEVICE(0x0489, 0xe057), .driver_info = BTUSB_ATH3012 },
175 { USB_DEVICE(0x0489, 0xe05f), .driver_info = BTUSB_ATH3012 },
176 { USB_DEVICE(0x0489, 0xe078), .driver_info = BTUSB_ATH3012 },
177 { USB_DEVICE(0x04c5, 0x1330), .driver_info = BTUSB_ATH3012 },
178 { USB_DEVICE(0x04ca, 0x3004), .driver_info = BTUSB_ATH3012 },
179 { USB_DEVICE(0x04ca, 0x3005), .driver_info = BTUSB_ATH3012 },
180 { USB_DEVICE(0x04ca, 0x3006), .driver_info = BTUSB_ATH3012 },
181 { USB_DEVICE(0x04ca, 0x3007), .driver_info = BTUSB_ATH3012 },
182 { USB_DEVICE(0x04ca, 0x3008), .driver_info = BTUSB_ATH3012 },
183 { USB_DEVICE(0x04ca, 0x300b), .driver_info = BTUSB_ATH3012 },
184 { USB_DEVICE(0x04ca, 0x3010), .driver_info = BTUSB_ATH3012 },
185 { USB_DEVICE(0x0930, 0x0219), .driver_info = BTUSB_ATH3012 },
186 { USB_DEVICE(0x0930, 0x0220), .driver_info = BTUSB_ATH3012 },
187 { USB_DEVICE(0x0930, 0x0227), .driver_info = BTUSB_ATH3012 },
188 { USB_DEVICE(0x0b05, 0x17d0), .driver_info = BTUSB_ATH3012 },
189 { USB_DEVICE(0x0cf3, 0x0036), .driver_info = BTUSB_ATH3012 },
190 { USB_DEVICE(0x0cf3, 0x3004), .driver_info = BTUSB_ATH3012 },
191 { USB_DEVICE(0x0cf3, 0x3008), .driver_info = BTUSB_ATH3012 },
192 { USB_DEVICE(0x0cf3, 0x311d), .driver_info = BTUSB_ATH3012 },
193 { USB_DEVICE(0x0cf3, 0x311e), .driver_info = BTUSB_ATH3012 },
194 { USB_DEVICE(0x0cf3, 0x311f), .driver_info = BTUSB_ATH3012 },
195 { USB_DEVICE(0x0cf3, 0x3121), .driver_info = BTUSB_ATH3012 },
196 { USB_DEVICE(0x0cf3, 0x817a), .driver_info = BTUSB_ATH3012 },
197 { USB_DEVICE(0x0cf3, 0xe003), .driver_info = BTUSB_ATH3012 },
198 { USB_DEVICE(0x0cf3, 0xe004), .driver_info = BTUSB_ATH3012 },
199 { USB_DEVICE(0x0cf3, 0xe005), .driver_info = BTUSB_ATH3012 },
200 { USB_DEVICE(0x13d3, 0x3362), .driver_info = BTUSB_ATH3012 },
201 { USB_DEVICE(0x13d3, 0x3375), .driver_info = BTUSB_ATH3012 },
202 { USB_DEVICE(0x13d3, 0x3393), .driver_info = BTUSB_ATH3012 },
203 { USB_DEVICE(0x13d3, 0x3402), .driver_info = BTUSB_ATH3012 },
204 { USB_DEVICE(0x13d3, 0x3408), .driver_info = BTUSB_ATH3012 },
205 { USB_DEVICE(0x13d3, 0x3423), .driver_info = BTUSB_ATH3012 },
206 { USB_DEVICE(0x13d3, 0x3432), .driver_info = BTUSB_ATH3012 },
207
208 /* Atheros AR5BBU12 with sflash firmware */
209 { USB_DEVICE(0x0489, 0xe02c), .driver_info = BTUSB_IGNORE },
210
211 /* Atheros AR5BBU12 with sflash firmware */
212 { USB_DEVICE(0x0489, 0xe036), .driver_info = BTUSB_ATH3012 },
213 { USB_DEVICE(0x0489, 0xe03c), .driver_info = BTUSB_ATH3012 },
214
215 /* Broadcom BCM2035 */
216 { USB_DEVICE(0x0a5c, 0x2009), .driver_info = BTUSB_BCM92035 },
217 { USB_DEVICE(0x0a5c, 0x200a), .driver_info = BTUSB_WRONG_SCO_MTU },
218 { USB_DEVICE(0x0a5c, 0x2035), .driver_info = BTUSB_WRONG_SCO_MTU },
219
220 /* Broadcom BCM2045 */
221 { USB_DEVICE(0x0a5c, 0x2039), .driver_info = BTUSB_WRONG_SCO_MTU },
222 { USB_DEVICE(0x0a5c, 0x2101), .driver_info = BTUSB_WRONG_SCO_MTU },
223
224 /* IBM/Lenovo ThinkPad with Broadcom chip */
225 { USB_DEVICE(0x0a5c, 0x201e), .driver_info = BTUSB_WRONG_SCO_MTU },
226 { USB_DEVICE(0x0a5c, 0x2110), .driver_info = BTUSB_WRONG_SCO_MTU },
227
228 /* HP laptop with Broadcom chip */
229 { USB_DEVICE(0x03f0, 0x171d), .driver_info = BTUSB_WRONG_SCO_MTU },
230
231 /* Dell laptop with Broadcom chip */
232 { USB_DEVICE(0x413c, 0x8126), .driver_info = BTUSB_WRONG_SCO_MTU },
233
234 /* Dell Wireless 370 and 410 devices */
235 { USB_DEVICE(0x413c, 0x8152), .driver_info = BTUSB_WRONG_SCO_MTU },
236 { USB_DEVICE(0x413c, 0x8156), .driver_info = BTUSB_WRONG_SCO_MTU },
237
238 /* Belkin F8T012 and F8T013 devices */
239 { USB_DEVICE(0x050d, 0x0012), .driver_info = BTUSB_WRONG_SCO_MTU },
240 { USB_DEVICE(0x050d, 0x0013), .driver_info = BTUSB_WRONG_SCO_MTU },
241
242 /* Asus WL-BTD202 device */
243 { USB_DEVICE(0x0b05, 0x1715), .driver_info = BTUSB_WRONG_SCO_MTU },
244
245 /* Kensington Bluetooth USB adapter */
246 { USB_DEVICE(0x047d, 0x105e), .driver_info = BTUSB_WRONG_SCO_MTU },
247
248 /* RTX Telecom based adapters with buggy SCO support */
249 { USB_DEVICE(0x0400, 0x0807), .driver_info = BTUSB_BROKEN_ISOC },
250 { USB_DEVICE(0x0400, 0x080a), .driver_info = BTUSB_BROKEN_ISOC },
251
252 /* CONWISE Technology based adapters with buggy SCO support */
253 { USB_DEVICE(0x0e5e, 0x6622), .driver_info = BTUSB_BROKEN_ISOC },
254
255 /* Roper Class 1 Bluetooth Dongle (Silicon Wave based) */
256 { USB_DEVICE(0x1300, 0x0001), .driver_info = BTUSB_SWAVE },
257
258 /* Digianswer devices */
259 { USB_DEVICE(0x08fd, 0x0001), .driver_info = BTUSB_DIGIANSWER },
260 { USB_DEVICE(0x08fd, 0x0002), .driver_info = BTUSB_IGNORE },
261
262 /* CSR BlueCore Bluetooth Sniffer */
263 { USB_DEVICE(0x0a12, 0x0002),
264 .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },
265
266 /* Frontline ComProbe Bluetooth Sniffer */
267 { USB_DEVICE(0x16d3, 0x0002),
268 .driver_info = BTUSB_SNIFFER | BTUSB_BROKEN_ISOC },
269
270 /* Marvell Bluetooth devices */
271 { USB_DEVICE(0x1286, 0x2044), .driver_info = BTUSB_MARVELL },
272 { USB_DEVICE(0x1286, 0x2046), .driver_info = BTUSB_MARVELL },
273
274 /* Intel Bluetooth devices */
275 { USB_DEVICE(0x8087, 0x07dc), .driver_info = BTUSB_INTEL },
276 { USB_DEVICE(0x8087, 0x0a2a), .driver_info = BTUSB_INTEL },
277 { USB_DEVICE(0x8087, 0x0a2b), .driver_info = BTUSB_INTEL_NEW },
278
279 /* Other Intel Bluetooth devices */
280 { USB_VENDOR_AND_INTERFACE_INFO(0x8087, 0xe0, 0x01, 0x01),
281 .driver_info = BTUSB_IGNORE },
282
283 { } /* Terminating entry */
284 };
285
286 #define BTUSB_MAX_ISOC_FRAMES 10
287
288 #define BTUSB_INTR_RUNNING 0
289 #define BTUSB_BULK_RUNNING 1
290 #define BTUSB_ISOC_RUNNING 2
291 #define BTUSB_SUSPENDING 3
292 #define BTUSB_DID_ISO_RESUME 4
293 #define BTUSB_BOOTLOADER 5
294 #define BTUSB_DOWNLOADING 6
295 #define BTUSB_FIRMWARE_LOADED 7
296 #define BTUSB_FIRMWARE_FAILED 8
297 #define BTUSB_BOOTING 9
298
299 struct btusb_data {
300 struct hci_dev *hdev;
301 struct usb_device *udev;
302 struct usb_interface *intf;
303 struct usb_interface *isoc;
304
305 unsigned long flags;
306
307 struct work_struct work;
308 struct work_struct waker;
309
310 struct usb_anchor deferred;
311 struct usb_anchor tx_anchor;
312 int tx_in_flight;
313 spinlock_t txlock;
314
315 struct usb_anchor intr_anchor;
316 struct usb_anchor bulk_anchor;
317 struct usb_anchor isoc_anchor;
318 spinlock_t rxlock;
319
320 struct sk_buff *evt_skb;
321 struct sk_buff *acl_skb;
322 struct sk_buff *sco_skb;
323
324 struct usb_endpoint_descriptor *intr_ep;
325 struct usb_endpoint_descriptor *bulk_tx_ep;
326 struct usb_endpoint_descriptor *bulk_rx_ep;
327 struct usb_endpoint_descriptor *isoc_tx_ep;
328 struct usb_endpoint_descriptor *isoc_rx_ep;
329
330 __u8 cmdreq_type;
331 __u8 cmdreq;
332
333 unsigned int sco_num;
334 int isoc_altsetting;
335 int suspend_count;
336
337 int (*recv_event)(struct hci_dev *hdev, struct sk_buff *skb);
338 int (*recv_bulk)(struct btusb_data *data, void *buffer, int count);
339 };
340
341 static int btusb_wait_on_bit_timeout(void *word, int bit, unsigned long timeout,
342 unsigned mode)
343 {
344 might_sleep();
345 if (!test_bit(bit, word))
346 return 0;
347 return out_of_line_wait_on_bit_timeout(word, bit, bit_wait_timeout,
348 mode, timeout);
349 }
350
351 static inline void btusb_free_frags(struct btusb_data *data)
352 {
353 unsigned long flags;
354
355 spin_lock_irqsave(&data->rxlock, flags);
356
357 kfree_skb(data->evt_skb);
358 data->evt_skb = NULL;
359
360 kfree_skb(data->acl_skb);
361 data->acl_skb = NULL;
362
363 kfree_skb(data->sco_skb);
364 data->sco_skb = NULL;
365
366 spin_unlock_irqrestore(&data->rxlock, flags);
367 }
368
369 static int btusb_recv_intr(struct btusb_data *data, void *buffer, int count)
370 {
371 struct sk_buff *skb;
372 int err = 0;
373
374 spin_lock(&data->rxlock);
375 skb = data->evt_skb;
376
377 while (count) {
378 int len;
379
380 if (!skb) {
381 skb = bt_skb_alloc(HCI_MAX_EVENT_SIZE, GFP_ATOMIC);
382 if (!skb) {
383 err = -ENOMEM;
384 break;
385 }
386
387 bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
388 bt_cb(skb)->expect = HCI_EVENT_HDR_SIZE;
389 }
390
391 len = min_t(uint, bt_cb(skb)->expect, count);
392 memcpy(skb_put(skb, len), buffer, len);
393
394 count -= len;
395 buffer += len;
396 bt_cb(skb)->expect -= len;
397
398 if (skb->len == HCI_EVENT_HDR_SIZE) {
399 /* Complete event header */
400 bt_cb(skb)->expect = hci_event_hdr(skb)->plen;
401
402 if (skb_tailroom(skb) < bt_cb(skb)->expect) {
403 kfree_skb(skb);
404 skb = NULL;
405
406 err = -EILSEQ;
407 break;
408 }
409 }
410
411 if (bt_cb(skb)->expect == 0) {
412 /* Complete frame */
413 data->recv_event(data->hdev, skb);
414 skb = NULL;
415 }
416 }
417
418 data->evt_skb = skb;
419 spin_unlock(&data->rxlock);
420
421 return err;
422 }
423
424 static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count)
425 {
426 struct sk_buff *skb;
427 int err = 0;
428
429 spin_lock(&data->rxlock);
430 skb = data->acl_skb;
431
432 while (count) {
433 int len;
434
435 if (!skb) {
436 skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC);
437 if (!skb) {
438 err = -ENOMEM;
439 break;
440 }
441
442 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
443 bt_cb(skb)->expect = HCI_ACL_HDR_SIZE;
444 }
445
446 len = min_t(uint, bt_cb(skb)->expect, count);
447 memcpy(skb_put(skb, len), buffer, len);
448
449 count -= len;
450 buffer += len;
451 bt_cb(skb)->expect -= len;
452
453 if (skb->len == HCI_ACL_HDR_SIZE) {
454 __le16 dlen = hci_acl_hdr(skb)->dlen;
455
456 /* Complete ACL header */
457 bt_cb(skb)->expect = __le16_to_cpu(dlen);
458
459 if (skb_tailroom(skb) < bt_cb(skb)->expect) {
460 kfree_skb(skb);
461 skb = NULL;
462
463 err = -EILSEQ;
464 break;
465 }
466 }
467
468 if (bt_cb(skb)->expect == 0) {
469 /* Complete frame */
470 hci_recv_frame(data->hdev, skb);
471 skb = NULL;
472 }
473 }
474
475 data->acl_skb = skb;
476 spin_unlock(&data->rxlock);
477
478 return err;
479 }
480
481 static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count)
482 {
483 struct sk_buff *skb;
484 int err = 0;
485
486 spin_lock(&data->rxlock);
487 skb = data->sco_skb;
488
489 while (count) {
490 int len;
491
492 if (!skb) {
493 skb = bt_skb_alloc(HCI_MAX_SCO_SIZE, GFP_ATOMIC);
494 if (!skb) {
495 err = -ENOMEM;
496 break;
497 }
498
499 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
500 bt_cb(skb)->expect = HCI_SCO_HDR_SIZE;
501 }
502
503 len = min_t(uint, bt_cb(skb)->expect, count);
504 memcpy(skb_put(skb, len), buffer, len);
505
506 count -= len;
507 buffer += len;
508 bt_cb(skb)->expect -= len;
509
510 if (skb->len == HCI_SCO_HDR_SIZE) {
511 /* Complete SCO header */
512 bt_cb(skb)->expect = hci_sco_hdr(skb)->dlen;
513
514 if (skb_tailroom(skb) < bt_cb(skb)->expect) {
515 kfree_skb(skb);
516 skb = NULL;
517
518 err = -EILSEQ;
519 break;
520 }
521 }
522
523 if (bt_cb(skb)->expect == 0) {
524 /* Complete frame */
525 hci_recv_frame(data->hdev, skb);
526 skb = NULL;
527 }
528 }
529
530 data->sco_skb = skb;
531 spin_unlock(&data->rxlock);
532
533 return err;
534 }
535
536 static void btusb_intr_complete(struct urb *urb)
537 {
538 struct hci_dev *hdev = urb->context;
539 struct btusb_data *data = hci_get_drvdata(hdev);
540 int err;
541
542 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
543 urb->actual_length);
544
545 if (!test_bit(HCI_RUNNING, &hdev->flags))
546 return;
547
548 if (urb->status == 0) {
549 hdev->stat.byte_rx += urb->actual_length;
550
551 if (btusb_recv_intr(data, urb->transfer_buffer,
552 urb->actual_length) < 0) {
553 BT_ERR("%s corrupted event packet", hdev->name);
554 hdev->stat.err_rx++;
555 }
556 } else if (urb->status == -ENOENT) {
557 /* Avoid suspend failed when usb_kill_urb */
558 return;
559 }
560
561 if (!test_bit(BTUSB_INTR_RUNNING, &data->flags))
562 return;
563
564 usb_mark_last_busy(data->udev);
565 usb_anchor_urb(urb, &data->intr_anchor);
566
567 err = usb_submit_urb(urb, GFP_ATOMIC);
568 if (err < 0) {
569 /* -EPERM: urb is being killed;
570 * -ENODEV: device got disconnected */
571 if (err != -EPERM && err != -ENODEV)
572 BT_ERR("%s urb %p failed to resubmit (%d)",
573 hdev->name, urb, -err);
574 usb_unanchor_urb(urb);
575 }
576 }
577
578 static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags)
579 {
580 struct btusb_data *data = hci_get_drvdata(hdev);
581 struct urb *urb;
582 unsigned char *buf;
583 unsigned int pipe;
584 int err, size;
585
586 BT_DBG("%s", hdev->name);
587
588 if (!data->intr_ep)
589 return -ENODEV;
590
591 urb = usb_alloc_urb(0, mem_flags);
592 if (!urb)
593 return -ENOMEM;
594
595 size = le16_to_cpu(data->intr_ep->wMaxPacketSize);
596
597 buf = kmalloc(size, mem_flags);
598 if (!buf) {
599 usb_free_urb(urb);
600 return -ENOMEM;
601 }
602
603 pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress);
604
605 usb_fill_int_urb(urb, data->udev, pipe, buf, size,
606 btusb_intr_complete, hdev, data->intr_ep->bInterval);
607
608 urb->transfer_flags |= URB_FREE_BUFFER;
609
610 usb_anchor_urb(urb, &data->intr_anchor);
611
612 err = usb_submit_urb(urb, mem_flags);
613 if (err < 0) {
614 if (err != -EPERM && err != -ENODEV)
615 BT_ERR("%s urb %p submission failed (%d)",
616 hdev->name, urb, -err);
617 usb_unanchor_urb(urb);
618 }
619
620 usb_free_urb(urb);
621
622 return err;
623 }
624
625 static void btusb_bulk_complete(struct urb *urb)
626 {
627 struct hci_dev *hdev = urb->context;
628 struct btusb_data *data = hci_get_drvdata(hdev);
629 int err;
630
631 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
632 urb->actual_length);
633
634 if (!test_bit(HCI_RUNNING, &hdev->flags))
635 return;
636
637 if (urb->status == 0) {
638 hdev->stat.byte_rx += urb->actual_length;
639
640 if (data->recv_bulk(data, urb->transfer_buffer,
641 urb->actual_length) < 0) {
642 BT_ERR("%s corrupted ACL packet", hdev->name);
643 hdev->stat.err_rx++;
644 }
645 } else if (urb->status == -ENOENT) {
646 /* Avoid suspend failed when usb_kill_urb */
647 return;
648 }
649
650 if (!test_bit(BTUSB_BULK_RUNNING, &data->flags))
651 return;
652
653 usb_anchor_urb(urb, &data->bulk_anchor);
654 usb_mark_last_busy(data->udev);
655
656 err = usb_submit_urb(urb, GFP_ATOMIC);
657 if (err < 0) {
658 /* -EPERM: urb is being killed;
659 * -ENODEV: device got disconnected */
660 if (err != -EPERM && err != -ENODEV)
661 BT_ERR("%s urb %p failed to resubmit (%d)",
662 hdev->name, urb, -err);
663 usb_unanchor_urb(urb);
664 }
665 }
666
667 static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags)
668 {
669 struct btusb_data *data = hci_get_drvdata(hdev);
670 struct urb *urb;
671 unsigned char *buf;
672 unsigned int pipe;
673 int err, size = HCI_MAX_FRAME_SIZE;
674
675 BT_DBG("%s", hdev->name);
676
677 if (!data->bulk_rx_ep)
678 return -ENODEV;
679
680 urb = usb_alloc_urb(0, mem_flags);
681 if (!urb)
682 return -ENOMEM;
683
684 buf = kmalloc(size, mem_flags);
685 if (!buf) {
686 usb_free_urb(urb);
687 return -ENOMEM;
688 }
689
690 pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress);
691
692 usb_fill_bulk_urb(urb, data->udev, pipe, buf, size,
693 btusb_bulk_complete, hdev);
694
695 urb->transfer_flags |= URB_FREE_BUFFER;
696
697 usb_mark_last_busy(data->udev);
698 usb_anchor_urb(urb, &data->bulk_anchor);
699
700 err = usb_submit_urb(urb, mem_flags);
701 if (err < 0) {
702 if (err != -EPERM && err != -ENODEV)
703 BT_ERR("%s urb %p submission failed (%d)",
704 hdev->name, urb, -err);
705 usb_unanchor_urb(urb);
706 }
707
708 usb_free_urb(urb);
709
710 return err;
711 }
712
713 static void btusb_isoc_complete(struct urb *urb)
714 {
715 struct hci_dev *hdev = urb->context;
716 struct btusb_data *data = hci_get_drvdata(hdev);
717 int i, err;
718
719 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
720 urb->actual_length);
721
722 if (!test_bit(HCI_RUNNING, &hdev->flags))
723 return;
724
725 if (urb->status == 0) {
726 for (i = 0; i < urb->number_of_packets; i++) {
727 unsigned int offset = urb->iso_frame_desc[i].offset;
728 unsigned int length = urb->iso_frame_desc[i].actual_length;
729
730 if (urb->iso_frame_desc[i].status)
731 continue;
732
733 hdev->stat.byte_rx += length;
734
735 if (btusb_recv_isoc(data, urb->transfer_buffer + offset,
736 length) < 0) {
737 BT_ERR("%s corrupted SCO packet", hdev->name);
738 hdev->stat.err_rx++;
739 }
740 }
741 } else if (urb->status == -ENOENT) {
742 /* Avoid suspend failed when usb_kill_urb */
743 return;
744 }
745
746 if (!test_bit(BTUSB_ISOC_RUNNING, &data->flags))
747 return;
748
749 usb_anchor_urb(urb, &data->isoc_anchor);
750
751 err = usb_submit_urb(urb, GFP_ATOMIC);
752 if (err < 0) {
753 /* -EPERM: urb is being killed;
754 * -ENODEV: device got disconnected */
755 if (err != -EPERM && err != -ENODEV)
756 BT_ERR("%s urb %p failed to resubmit (%d)",
757 hdev->name, urb, -err);
758 usb_unanchor_urb(urb);
759 }
760 }
761
762 static inline void __fill_isoc_descriptor(struct urb *urb, int len, int mtu)
763 {
764 int i, offset = 0;
765
766 BT_DBG("len %d mtu %d", len, mtu);
767
768 for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu;
769 i++, offset += mtu, len -= mtu) {
770 urb->iso_frame_desc[i].offset = offset;
771 urb->iso_frame_desc[i].length = mtu;
772 }
773
774 if (len && i < BTUSB_MAX_ISOC_FRAMES) {
775 urb->iso_frame_desc[i].offset = offset;
776 urb->iso_frame_desc[i].length = len;
777 i++;
778 }
779
780 urb->number_of_packets = i;
781 }
782
783 static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags)
784 {
785 struct btusb_data *data = hci_get_drvdata(hdev);
786 struct urb *urb;
787 unsigned char *buf;
788 unsigned int pipe;
789 int err, size;
790
791 BT_DBG("%s", hdev->name);
792
793 if (!data->isoc_rx_ep)
794 return -ENODEV;
795
796 urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags);
797 if (!urb)
798 return -ENOMEM;
799
800 size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) *
801 BTUSB_MAX_ISOC_FRAMES;
802
803 buf = kmalloc(size, mem_flags);
804 if (!buf) {
805 usb_free_urb(urb);
806 return -ENOMEM;
807 }
808
809 pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress);
810
811 usb_fill_int_urb(urb, data->udev, pipe, buf, size, btusb_isoc_complete,
812 hdev, data->isoc_rx_ep->bInterval);
813
814 urb->transfer_flags = URB_FREE_BUFFER | URB_ISO_ASAP;
815
816 __fill_isoc_descriptor(urb, size,
817 le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize));
818
819 usb_anchor_urb(urb, &data->isoc_anchor);
820
821 err = usb_submit_urb(urb, mem_flags);
822 if (err < 0) {
823 if (err != -EPERM && err != -ENODEV)
824 BT_ERR("%s urb %p submission failed (%d)",
825 hdev->name, urb, -err);
826 usb_unanchor_urb(urb);
827 }
828
829 usb_free_urb(urb);
830
831 return err;
832 }
833
834 static void btusb_tx_complete(struct urb *urb)
835 {
836 struct sk_buff *skb = urb->context;
837 struct hci_dev *hdev = (struct hci_dev *)skb->dev;
838 struct btusb_data *data = hci_get_drvdata(hdev);
839
840 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
841 urb->actual_length);
842
843 if (!test_bit(HCI_RUNNING, &hdev->flags))
844 goto done;
845
846 if (!urb->status)
847 hdev->stat.byte_tx += urb->transfer_buffer_length;
848 else
849 hdev->stat.err_tx++;
850
851 done:
852 spin_lock(&data->txlock);
853 data->tx_in_flight--;
854 spin_unlock(&data->txlock);
855
856 kfree(urb->setup_packet);
857
858 kfree_skb(skb);
859 }
860
861 static void btusb_isoc_tx_complete(struct urb *urb)
862 {
863 struct sk_buff *skb = urb->context;
864 struct hci_dev *hdev = (struct hci_dev *)skb->dev;
865
866 BT_DBG("%s urb %p status %d count %d", hdev->name, urb, urb->status,
867 urb->actual_length);
868
869 if (!test_bit(HCI_RUNNING, &hdev->flags))
870 goto done;
871
872 if (!urb->status)
873 hdev->stat.byte_tx += urb->transfer_buffer_length;
874 else
875 hdev->stat.err_tx++;
876
877 done:
878 kfree(urb->setup_packet);
879
880 kfree_skb(skb);
881 }
882
883 static int btusb_open(struct hci_dev *hdev)
884 {
885 struct btusb_data *data = hci_get_drvdata(hdev);
886 int err;
887
888 BT_DBG("%s", hdev->name);
889
890 err = usb_autopm_get_interface(data->intf);
891 if (err < 0)
892 return err;
893
894 data->intf->needs_remote_wakeup = 1;
895
896 if (test_and_set_bit(HCI_RUNNING, &hdev->flags))
897 goto done;
898
899 if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags))
900 goto done;
901
902 err = btusb_submit_intr_urb(hdev, GFP_KERNEL);
903 if (err < 0)
904 goto failed;
905
906 err = btusb_submit_bulk_urb(hdev, GFP_KERNEL);
907 if (err < 0) {
908 usb_kill_anchored_urbs(&data->intr_anchor);
909 goto failed;
910 }
911
912 set_bit(BTUSB_BULK_RUNNING, &data->flags);
913 btusb_submit_bulk_urb(hdev, GFP_KERNEL);
914
915 done:
916 usb_autopm_put_interface(data->intf);
917 return 0;
918
919 failed:
920 clear_bit(BTUSB_INTR_RUNNING, &data->flags);
921 clear_bit(HCI_RUNNING, &hdev->flags);
922 usb_autopm_put_interface(data->intf);
923 return err;
924 }
925
926 static void btusb_stop_traffic(struct btusb_data *data)
927 {
928 usb_kill_anchored_urbs(&data->intr_anchor);
929 usb_kill_anchored_urbs(&data->bulk_anchor);
930 usb_kill_anchored_urbs(&data->isoc_anchor);
931 }
932
933 static int btusb_close(struct hci_dev *hdev)
934 {
935 struct btusb_data *data = hci_get_drvdata(hdev);
936 int err;
937
938 BT_DBG("%s", hdev->name);
939
940 if (!test_and_clear_bit(HCI_RUNNING, &hdev->flags))
941 return 0;
942
943 cancel_work_sync(&data->work);
944 cancel_work_sync(&data->waker);
945
946 clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
947 clear_bit(BTUSB_BULK_RUNNING, &data->flags);
948 clear_bit(BTUSB_INTR_RUNNING, &data->flags);
949
950 btusb_stop_traffic(data);
951 btusb_free_frags(data);
952
953 err = usb_autopm_get_interface(data->intf);
954 if (err < 0)
955 goto failed;
956
957 data->intf->needs_remote_wakeup = 0;
958 usb_autopm_put_interface(data->intf);
959
960 failed:
961 usb_scuttle_anchored_urbs(&data->deferred);
962 return 0;
963 }
964
965 static int btusb_flush(struct hci_dev *hdev)
966 {
967 struct btusb_data *data = hci_get_drvdata(hdev);
968
969 BT_DBG("%s", hdev->name);
970
971 usb_kill_anchored_urbs(&data->tx_anchor);
972 btusb_free_frags(data);
973
974 return 0;
975 }
976
977 static struct urb *alloc_ctrl_urb(struct hci_dev *hdev, struct sk_buff *skb)
978 {
979 struct btusb_data *data = hci_get_drvdata(hdev);
980 struct usb_ctrlrequest *dr;
981 struct urb *urb;
982 unsigned int pipe;
983
984 urb = usb_alloc_urb(0, GFP_KERNEL);
985 if (!urb)
986 return ERR_PTR(-ENOMEM);
987
988 dr = kmalloc(sizeof(*dr), GFP_KERNEL);
989 if (!dr) {
990 usb_free_urb(urb);
991 return ERR_PTR(-ENOMEM);
992 }
993
994 dr->bRequestType = data->cmdreq_type;
995 dr->bRequest = data->cmdreq;
996 dr->wIndex = 0;
997 dr->wValue = 0;
998 dr->wLength = __cpu_to_le16(skb->len);
999
1000 pipe = usb_sndctrlpipe(data->udev, 0x00);
1001
1002 usb_fill_control_urb(urb, data->udev, pipe, (void *)dr,
1003 skb->data, skb->len, btusb_tx_complete, skb);
1004
1005 skb->dev = (void *)hdev;
1006
1007 return urb;
1008 }
1009
1010 static struct urb *alloc_bulk_urb(struct hci_dev *hdev, struct sk_buff *skb)
1011 {
1012 struct btusb_data *data = hci_get_drvdata(hdev);
1013 struct urb *urb;
1014 unsigned int pipe;
1015
1016 if (!data->bulk_tx_ep)
1017 return ERR_PTR(-ENODEV);
1018
1019 urb = usb_alloc_urb(0, GFP_KERNEL);
1020 if (!urb)
1021 return ERR_PTR(-ENOMEM);
1022
1023 pipe = usb_sndbulkpipe(data->udev, data->bulk_tx_ep->bEndpointAddress);
1024
1025 usb_fill_bulk_urb(urb, data->udev, pipe,
1026 skb->data, skb->len, btusb_tx_complete, skb);
1027
1028 skb->dev = (void *)hdev;
1029
1030 return urb;
1031 }
1032
1033 static struct urb *alloc_isoc_urb(struct hci_dev *hdev, struct sk_buff *skb)
1034 {
1035 struct btusb_data *data = hci_get_drvdata(hdev);
1036 struct urb *urb;
1037 unsigned int pipe;
1038
1039 if (!data->isoc_tx_ep)
1040 return ERR_PTR(-ENODEV);
1041
1042 urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_KERNEL);
1043 if (!urb)
1044 return ERR_PTR(-ENOMEM);
1045
1046 pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress);
1047
1048 usb_fill_int_urb(urb, data->udev, pipe,
1049 skb->data, skb->len, btusb_isoc_tx_complete,
1050 skb, data->isoc_tx_ep->bInterval);
1051
1052 urb->transfer_flags = URB_ISO_ASAP;
1053
1054 __fill_isoc_descriptor(urb, skb->len,
1055 le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));
1056
1057 skb->dev = (void *)hdev;
1058
1059 return urb;
1060 }
1061
1062 static int submit_tx_urb(struct hci_dev *hdev, struct urb *urb)
1063 {
1064 struct btusb_data *data = hci_get_drvdata(hdev);
1065 int err;
1066
1067 usb_anchor_urb(urb, &data->tx_anchor);
1068
1069 err = usb_submit_urb(urb, GFP_KERNEL);
1070 if (err < 0) {
1071 if (err != -EPERM && err != -ENODEV)
1072 BT_ERR("%s urb %p submission failed (%d)",
1073 hdev->name, urb, -err);
1074 kfree(urb->setup_packet);
1075 usb_unanchor_urb(urb);
1076 } else {
1077 usb_mark_last_busy(data->udev);
1078 }
1079
1080 usb_free_urb(urb);
1081 return err;
1082 }
1083
1084 static int submit_or_queue_tx_urb(struct hci_dev *hdev, struct urb *urb)
1085 {
1086 struct btusb_data *data = hci_get_drvdata(hdev);
1087 unsigned long flags;
1088 bool suspending;
1089
1090 spin_lock_irqsave(&data->txlock, flags);
1091 suspending = test_bit(BTUSB_SUSPENDING, &data->flags);
1092 if (!suspending)
1093 data->tx_in_flight++;
1094 spin_unlock_irqrestore(&data->txlock, flags);
1095
1096 if (!suspending)
1097 return submit_tx_urb(hdev, urb);
1098
1099 usb_anchor_urb(urb, &data->deferred);
1100 schedule_work(&data->waker);
1101
1102 usb_free_urb(urb);
1103 return 0;
1104 }
1105
1106 static int btusb_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
1107 {
1108 struct urb *urb;
1109
1110 BT_DBG("%s", hdev->name);
1111
1112 if (!test_bit(HCI_RUNNING, &hdev->flags))
1113 return -EBUSY;
1114
1115 switch (bt_cb(skb)->pkt_type) {
1116 case HCI_COMMAND_PKT:
1117 urb = alloc_ctrl_urb(hdev, skb);
1118 if (IS_ERR(urb))
1119 return PTR_ERR(urb);
1120
1121 hdev->stat.cmd_tx++;
1122 return submit_or_queue_tx_urb(hdev, urb);
1123
1124 case HCI_ACLDATA_PKT:
1125 urb = alloc_bulk_urb(hdev, skb);
1126 if (IS_ERR(urb))
1127 return PTR_ERR(urb);
1128
1129 hdev->stat.acl_tx++;
1130 return submit_or_queue_tx_urb(hdev, urb);
1131
1132 case HCI_SCODATA_PKT:
1133 if (hci_conn_num(hdev, SCO_LINK) < 1)
1134 return -ENODEV;
1135
1136 urb = alloc_isoc_urb(hdev, skb);
1137 if (IS_ERR(urb))
1138 return PTR_ERR(urb);
1139
1140 hdev->stat.sco_tx++;
1141 return submit_tx_urb(hdev, urb);
1142 }
1143
1144 return -EILSEQ;
1145 }
1146
1147 static void btusb_notify(struct hci_dev *hdev, unsigned int evt)
1148 {
1149 struct btusb_data *data = hci_get_drvdata(hdev);
1150
1151 BT_DBG("%s evt %d", hdev->name, evt);
1152
1153 if (hci_conn_num(hdev, SCO_LINK) != data->sco_num) {
1154 data->sco_num = hci_conn_num(hdev, SCO_LINK);
1155 schedule_work(&data->work);
1156 }
1157 }
1158
1159 static inline int __set_isoc_interface(struct hci_dev *hdev, int altsetting)
1160 {
1161 struct btusb_data *data = hci_get_drvdata(hdev);
1162 struct usb_interface *intf = data->isoc;
1163 struct usb_endpoint_descriptor *ep_desc;
1164 int i, err;
1165
1166 if (!data->isoc)
1167 return -ENODEV;
1168
1169 err = usb_set_interface(data->udev, 1, altsetting);
1170 if (err < 0) {
1171 BT_ERR("%s setting interface failed (%d)", hdev->name, -err);
1172 return err;
1173 }
1174
1175 data->isoc_altsetting = altsetting;
1176
1177 data->isoc_tx_ep = NULL;
1178 data->isoc_rx_ep = NULL;
1179
1180 for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
1181 ep_desc = &intf->cur_altsetting->endpoint[i].desc;
1182
1183 if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) {
1184 data->isoc_tx_ep = ep_desc;
1185 continue;
1186 }
1187
1188 if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) {
1189 data->isoc_rx_ep = ep_desc;
1190 continue;
1191 }
1192 }
1193
1194 if (!data->isoc_tx_ep || !data->isoc_rx_ep) {
1195 BT_ERR("%s invalid SCO descriptors", hdev->name);
1196 return -ENODEV;
1197 }
1198
1199 return 0;
1200 }
1201
1202 static void btusb_work(struct work_struct *work)
1203 {
1204 struct btusb_data *data = container_of(work, struct btusb_data, work);
1205 struct hci_dev *hdev = data->hdev;
1206 int new_alts;
1207 int err;
1208
1209 if (data->sco_num > 0) {
1210 if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) {
1211 err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf);
1212 if (err < 0) {
1213 clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1214 usb_kill_anchored_urbs(&data->isoc_anchor);
1215 return;
1216 }
1217
1218 set_bit(BTUSB_DID_ISO_RESUME, &data->flags);
1219 }
1220
1221 if (hdev->voice_setting & 0x0020) {
1222 static const int alts[3] = { 2, 4, 5 };
1223
1224 new_alts = alts[data->sco_num - 1];
1225 } else {
1226 new_alts = data->sco_num;
1227 }
1228
1229 if (data->isoc_altsetting != new_alts) {
1230 clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1231 usb_kill_anchored_urbs(&data->isoc_anchor);
1232
1233 if (__set_isoc_interface(hdev, new_alts) < 0)
1234 return;
1235 }
1236
1237 if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
1238 if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0)
1239 clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1240 else
1241 btusb_submit_isoc_urb(hdev, GFP_KERNEL);
1242 }
1243 } else {
1244 clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
1245 usb_kill_anchored_urbs(&data->isoc_anchor);
1246
1247 __set_isoc_interface(hdev, 0);
1248 if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags))
1249 usb_autopm_put_interface(data->isoc ? data->isoc : data->intf);
1250 }
1251 }
1252
1253 static void btusb_waker(struct work_struct *work)
1254 {
1255 struct btusb_data *data = container_of(work, struct btusb_data, waker);
1256 int err;
1257
1258 err = usb_autopm_get_interface(data->intf);
1259 if (err < 0)
1260 return;
1261
1262 usb_autopm_put_interface(data->intf);
1263 }
1264
1265 static int btusb_setup_bcm92035(struct hci_dev *hdev)
1266 {
1267 struct sk_buff *skb;
1268 u8 val = 0x00;
1269
1270 BT_DBG("%s", hdev->name);
1271
1272 skb = __hci_cmd_sync(hdev, 0xfc3b, 1, &val, HCI_INIT_TIMEOUT);
1273 if (IS_ERR(skb))
1274 BT_ERR("BCM92035 command failed (%ld)", -PTR_ERR(skb));
1275 else
1276 kfree_skb(skb);
1277
1278 return 0;
1279 }
1280
1281 static int btusb_setup_csr(struct hci_dev *hdev)
1282 {
1283 struct hci_rp_read_local_version *rp;
1284 struct sk_buff *skb;
1285 int ret;
1286
1287 BT_DBG("%s", hdev->name);
1288
1289 skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
1290 HCI_INIT_TIMEOUT);
1291 if (IS_ERR(skb)) {
1292 BT_ERR("Reading local version failed (%ld)", -PTR_ERR(skb));
1293 return -PTR_ERR(skb);
1294 }
1295
1296 rp = (struct hci_rp_read_local_version *)skb->data;
1297
1298 if (!rp->status) {
1299 if (le16_to_cpu(rp->manufacturer) != 10) {
1300 /* Clear the reset quirk since this is not an actual
1301 * early Bluetooth 1.1 device from CSR.
1302 */
1303 clear_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
1304
1305 /* These fake CSR controllers have all a broken
1306 * stored link key handling and so just disable it.
1307 */
1308 set_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY,
1309 &hdev->quirks);
1310 }
1311 }
1312
1313 ret = -bt_to_errno(rp->status);
1314
1315 kfree_skb(skb);
1316
1317 return ret;
1318 }
1319
1320 struct intel_version {
1321 u8 status;
1322 u8 hw_platform;
1323 u8 hw_variant;
1324 u8 hw_revision;
1325 u8 fw_variant;
1326 u8 fw_revision;
1327 u8 fw_build_num;
1328 u8 fw_build_ww;
1329 u8 fw_build_yy;
1330 u8 fw_patch_num;
1331 } __packed;
1332
1333 struct intel_boot_params {
1334 __u8 status;
1335 __u8 otp_format;
1336 __u8 otp_content;
1337 __u8 otp_patch;
1338 __le16 dev_revid;
1339 __u8 secure_boot;
1340 __u8 key_from_hdr;
1341 __u8 key_type;
1342 __u8 otp_lock;
1343 __u8 api_lock;
1344 __u8 debug_lock;
1345 bdaddr_t otp_bdaddr;
1346 __u8 min_fw_build_nn;
1347 __u8 min_fw_build_cw;
1348 __u8 min_fw_build_yy;
1349 __u8 limited_cce;
1350 __u8 unlocked_state;
1351 } __packed;
1352
1353 static const struct firmware *btusb_setup_intel_get_fw(struct hci_dev *hdev,
1354 struct intel_version *ver)
1355 {
1356 const struct firmware *fw;
1357 char fwname[64];
1358 int ret;
1359
1360 snprintf(fwname, sizeof(fwname),
1361 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1362 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1363 ver->fw_variant, ver->fw_revision, ver->fw_build_num,
1364 ver->fw_build_ww, ver->fw_build_yy);
1365
1366 ret = request_firmware(&fw, fwname, &hdev->dev);
1367 if (ret < 0) {
1368 if (ret == -EINVAL) {
1369 BT_ERR("%s Intel firmware file request failed (%d)",
1370 hdev->name, ret);
1371 return NULL;
1372 }
1373
1374 BT_ERR("%s failed to open Intel firmware file: %s(%d)",
1375 hdev->name, fwname, ret);
1376
1377 /* If the correct firmware patch file is not found, use the
1378 * default firmware patch file instead
1379 */
1380 snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1381 ver->hw_platform, ver->hw_variant);
1382 if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1383 BT_ERR("%s failed to open default Intel fw file: %s",
1384 hdev->name, fwname);
1385 return NULL;
1386 }
1387 }
1388
1389 BT_INFO("%s: Intel Bluetooth firmware file: %s", hdev->name, fwname);
1390
1391 return fw;
1392 }
1393
1394 static int btusb_setup_intel_patching(struct hci_dev *hdev,
1395 const struct firmware *fw,
1396 const u8 **fw_ptr, int *disable_patch)
1397 {
1398 struct sk_buff *skb;
1399 struct hci_command_hdr *cmd;
1400 const u8 *cmd_param;
1401 struct hci_event_hdr *evt = NULL;
1402 const u8 *evt_param = NULL;
1403 int remain = fw->size - (*fw_ptr - fw->data);
1404
1405 /* The first byte indicates the types of the patch command or event.
1406 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1407 * in the current firmware buffer doesn't start with 0x01 or
1408 * the size of remain buffer is smaller than HCI command header,
1409 * the firmware file is corrupted and it should stop the patching
1410 * process.
1411 */
1412 if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1413 BT_ERR("%s Intel fw corrupted: invalid cmd read", hdev->name);
1414 return -EINVAL;
1415 }
1416 (*fw_ptr)++;
1417 remain--;
1418
1419 cmd = (struct hci_command_hdr *)(*fw_ptr);
1420 *fw_ptr += sizeof(*cmd);
1421 remain -= sizeof(*cmd);
1422
1423 /* Ensure that the remain firmware data is long enough than the length
1424 * of command parameter. If not, the firmware file is corrupted.
1425 */
1426 if (remain < cmd->plen) {
1427 BT_ERR("%s Intel fw corrupted: invalid cmd len", hdev->name);
1428 return -EFAULT;
1429 }
1430
1431 /* If there is a command that loads a patch in the firmware
1432 * file, then enable the patch upon success, otherwise just
1433 * disable the manufacturer mode, for example patch activation
1434 * is not required when the default firmware patch file is used
1435 * because there are no patch data to load.
1436 */
1437 if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1438 *disable_patch = 0;
1439
1440 cmd_param = *fw_ptr;
1441 *fw_ptr += cmd->plen;
1442 remain -= cmd->plen;
1443
1444 /* This reads the expected events when the above command is sent to the
1445 * device. Some vendor commands expects more than one events, for
1446 * example command status event followed by vendor specific event.
1447 * For this case, it only keeps the last expected event. so the command
1448 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1449 * last expected event.
1450 */
1451 while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1452 (*fw_ptr)++;
1453 remain--;
1454
1455 evt = (struct hci_event_hdr *)(*fw_ptr);
1456 *fw_ptr += sizeof(*evt);
1457 remain -= sizeof(*evt);
1458
1459 if (remain < evt->plen) {
1460 BT_ERR("%s Intel fw corrupted: invalid evt len",
1461 hdev->name);
1462 return -EFAULT;
1463 }
1464
1465 evt_param = *fw_ptr;
1466 *fw_ptr += evt->plen;
1467 remain -= evt->plen;
1468 }
1469
1470 /* Every HCI commands in the firmware file has its correspond event.
1471 * If event is not found or remain is smaller than zero, the firmware
1472 * file is corrupted.
1473 */
1474 if (!evt || !evt_param || remain < 0) {
1475 BT_ERR("%s Intel fw corrupted: invalid evt read", hdev->name);
1476 return -EFAULT;
1477 }
1478
1479 skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1480 cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1481 if (IS_ERR(skb)) {
1482 BT_ERR("%s sending Intel patch command (0x%4.4x) failed (%ld)",
1483 hdev->name, cmd->opcode, PTR_ERR(skb));
1484 return PTR_ERR(skb);
1485 }
1486
1487 /* It ensures that the returned event matches the event data read from
1488 * the firmware file. At fist, it checks the length and then
1489 * the contents of the event.
1490 */
1491 if (skb->len != evt->plen) {
1492 BT_ERR("%s mismatch event length (opcode 0x%4.4x)", hdev->name,
1493 le16_to_cpu(cmd->opcode));
1494 kfree_skb(skb);
1495 return -EFAULT;
1496 }
1497
1498 if (memcmp(skb->data, evt_param, evt->plen)) {
1499 BT_ERR("%s mismatch event parameter (opcode 0x%4.4x)",
1500 hdev->name, le16_to_cpu(cmd->opcode));
1501 kfree_skb(skb);
1502 return -EFAULT;
1503 }
1504 kfree_skb(skb);
1505
1506 return 0;
1507 }
1508
1509 #define BDADDR_INTEL (&(bdaddr_t) {{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
1510
1511 static int btusb_check_bdaddr_intel(struct hci_dev *hdev)
1512 {
1513 struct sk_buff *skb;
1514 struct hci_rp_read_bd_addr *rp;
1515
1516 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
1517 HCI_INIT_TIMEOUT);
1518 if (IS_ERR(skb)) {
1519 BT_ERR("%s reading Intel device address failed (%ld)",
1520 hdev->name, PTR_ERR(skb));
1521 return PTR_ERR(skb);
1522 }
1523
1524 if (skb->len != sizeof(*rp)) {
1525 BT_ERR("%s Intel device address length mismatch", hdev->name);
1526 kfree_skb(skb);
1527 return -EIO;
1528 }
1529
1530 rp = (struct hci_rp_read_bd_addr *)skb->data;
1531 if (rp->status) {
1532 BT_ERR("%s Intel device address result failed (%02x)",
1533 hdev->name, rp->status);
1534 kfree_skb(skb);
1535 return -bt_to_errno(rp->status);
1536 }
1537
1538 /* For some Intel based controllers, the default Bluetooth device
1539 * address 00:03:19:9E:8B:00 can be found. These controllers are
1540 * fully operational, but have the danger of duplicate addresses
1541 * and that in turn can cause problems with Bluetooth operation.
1542 */
1543 if (!bacmp(&rp->bdaddr, BDADDR_INTEL)) {
1544 BT_ERR("%s found Intel default device address (%pMR)",
1545 hdev->name, &rp->bdaddr);
1546 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
1547 }
1548
1549 kfree_skb(skb);
1550
1551 return 0;
1552 }
1553
1554 static int btusb_setup_intel(struct hci_dev *hdev)
1555 {
1556 struct sk_buff *skb;
1557 const struct firmware *fw;
1558 const u8 *fw_ptr;
1559 int disable_patch;
1560 struct intel_version *ver;
1561
1562 const u8 mfg_enable[] = { 0x01, 0x00 };
1563 const u8 mfg_disable[] = { 0x00, 0x00 };
1564 const u8 mfg_reset_deactivate[] = { 0x00, 0x01 };
1565 const u8 mfg_reset_activate[] = { 0x00, 0x02 };
1566
1567 BT_DBG("%s", hdev->name);
1568
1569 /* The controller has a bug with the first HCI command sent to it
1570 * returning number of completed commands as zero. This would stall the
1571 * command processing in the Bluetooth core.
1572 *
1573 * As a workaround, send HCI Reset command first which will reset the
1574 * number of completed commands and allow normal command processing
1575 * from now on.
1576 */
1577 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
1578 if (IS_ERR(skb)) {
1579 BT_ERR("%s sending initial HCI reset command failed (%ld)",
1580 hdev->name, PTR_ERR(skb));
1581 return PTR_ERR(skb);
1582 }
1583 kfree_skb(skb);
1584
1585 /* Read Intel specific controller version first to allow selection of
1586 * which firmware file to load.
1587 *
1588 * The returned information are hardware variant and revision plus
1589 * firmware variant, revision and build number.
1590 */
1591 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
1592 if (IS_ERR(skb)) {
1593 BT_ERR("%s reading Intel fw version command failed (%ld)",
1594 hdev->name, PTR_ERR(skb));
1595 return PTR_ERR(skb);
1596 }
1597
1598 if (skb->len != sizeof(*ver)) {
1599 BT_ERR("%s Intel version event length mismatch", hdev->name);
1600 kfree_skb(skb);
1601 return -EIO;
1602 }
1603
1604 ver = (struct intel_version *)skb->data;
1605 if (ver->status) {
1606 BT_ERR("%s Intel fw version event failed (%02x)", hdev->name,
1607 ver->status);
1608 kfree_skb(skb);
1609 return -bt_to_errno(ver->status);
1610 }
1611
1612 BT_INFO("%s: read Intel version: %02x%02x%02x%02x%02x%02x%02x%02x%02x",
1613 hdev->name, ver->hw_platform, ver->hw_variant,
1614 ver->hw_revision, ver->fw_variant, ver->fw_revision,
1615 ver->fw_build_num, ver->fw_build_ww, ver->fw_build_yy,
1616 ver->fw_patch_num);
1617
1618 /* fw_patch_num indicates the version of patch the device currently
1619 * have. If there is no patch data in the device, it is always 0x00.
1620 * So, if it is other than 0x00, no need to patch the deivce again.
1621 */
1622 if (ver->fw_patch_num) {
1623 BT_INFO("%s: Intel device is already patched. patch num: %02x",
1624 hdev->name, ver->fw_patch_num);
1625 kfree_skb(skb);
1626 btusb_check_bdaddr_intel(hdev);
1627 return 0;
1628 }
1629
1630 /* Opens the firmware patch file based on the firmware version read
1631 * from the controller. If it fails to open the matching firmware
1632 * patch file, it tries to open the default firmware patch file.
1633 * If no patch file is found, allow the device to operate without
1634 * a patch.
1635 */
1636 fw = btusb_setup_intel_get_fw(hdev, ver);
1637 if (!fw) {
1638 kfree_skb(skb);
1639 btusb_check_bdaddr_intel(hdev);
1640 return 0;
1641 }
1642 fw_ptr = fw->data;
1643
1644 /* This Intel specific command enables the manufacturer mode of the
1645 * controller.
1646 *
1647 * Only while this mode is enabled, the driver can download the
1648 * firmware patch data and configuration parameters.
1649 */
1650 skb = __hci_cmd_sync(hdev, 0xfc11, 2, mfg_enable, HCI_INIT_TIMEOUT);
1651 if (IS_ERR(skb)) {
1652 BT_ERR("%s entering Intel manufacturer mode failed (%ld)",
1653 hdev->name, PTR_ERR(skb));
1654 release_firmware(fw);
1655 return PTR_ERR(skb);
1656 }
1657
1658 if (skb->data[0]) {
1659 u8 evt_status = skb->data[0];
1660
1661 BT_ERR("%s enable Intel manufacturer mode event failed (%02x)",
1662 hdev->name, evt_status);
1663 kfree_skb(skb);
1664 release_firmware(fw);
1665 return -bt_to_errno(evt_status);
1666 }
1667 kfree_skb(skb);
1668
1669 disable_patch = 1;
1670
1671 /* The firmware data file consists of list of Intel specific HCI
1672 * commands and its expected events. The first byte indicates the
1673 * type of the message, either HCI command or HCI event.
1674 *
1675 * It reads the command and its expected event from the firmware file,
1676 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1677 * the returned event is compared with the event read from the firmware
1678 * file and it will continue until all the messages are downloaded to
1679 * the controller.
1680 *
1681 * Once the firmware patching is completed successfully,
1682 * the manufacturer mode is disabled with reset and activating the
1683 * downloaded patch.
1684 *
1685 * If the firmware patching fails, the manufacturer mode is
1686 * disabled with reset and deactivating the patch.
1687 *
1688 * If the default patch file is used, no reset is done when disabling
1689 * the manufacturer.
1690 */
1691 while (fw->size > fw_ptr - fw->data) {
1692 int ret;
1693
1694 ret = btusb_setup_intel_patching(hdev, fw, &fw_ptr,
1695 &disable_patch);
1696 if (ret < 0)
1697 goto exit_mfg_deactivate;
1698 }
1699
1700 release_firmware(fw);
1701
1702 if (disable_patch)
1703 goto exit_mfg_disable;
1704
1705 /* Patching completed successfully and disable the manufacturer mode
1706 * with reset and activate the downloaded firmware patches.
1707 */
1708 skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_reset_activate),
1709 mfg_reset_activate, HCI_INIT_TIMEOUT);
1710 if (IS_ERR(skb)) {
1711 BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
1712 hdev->name, PTR_ERR(skb));
1713 return PTR_ERR(skb);
1714 }
1715 kfree_skb(skb);
1716
1717 BT_INFO("%s: Intel Bluetooth firmware patch completed and activated",
1718 hdev->name);
1719
1720 btusb_check_bdaddr_intel(hdev);
1721 return 0;
1722
1723 exit_mfg_disable:
1724 /* Disable the manufacturer mode without reset */
1725 skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_disable), mfg_disable,
1726 HCI_INIT_TIMEOUT);
1727 if (IS_ERR(skb)) {
1728 BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
1729 hdev->name, PTR_ERR(skb));
1730 return PTR_ERR(skb);
1731 }
1732 kfree_skb(skb);
1733
1734 BT_INFO("%s: Intel Bluetooth firmware patch completed", hdev->name);
1735
1736 btusb_check_bdaddr_intel(hdev);
1737 return 0;
1738
1739 exit_mfg_deactivate:
1740 release_firmware(fw);
1741
1742 /* Patching failed. Disable the manufacturer mode with reset and
1743 * deactivate the downloaded firmware patches.
1744 */
1745 skb = __hci_cmd_sync(hdev, 0xfc11, sizeof(mfg_reset_deactivate),
1746 mfg_reset_deactivate, HCI_INIT_TIMEOUT);
1747 if (IS_ERR(skb)) {
1748 BT_ERR("%s exiting Intel manufacturer mode failed (%ld)",
1749 hdev->name, PTR_ERR(skb));
1750 return PTR_ERR(skb);
1751 }
1752 kfree_skb(skb);
1753
1754 BT_INFO("%s: Intel Bluetooth firmware patch completed and deactivated",
1755 hdev->name);
1756
1757 btusb_check_bdaddr_intel(hdev);
1758 return 0;
1759 }
1760
1761 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
1762 {
1763 struct sk_buff *skb;
1764 struct hci_event_hdr *hdr;
1765 struct hci_ev_cmd_complete *evt;
1766
1767 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
1768 if (!skb)
1769 return -ENOMEM;
1770
1771 hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
1772 hdr->evt = HCI_EV_CMD_COMPLETE;
1773 hdr->plen = sizeof(*evt) + 1;
1774
1775 evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
1776 evt->ncmd = 0x01;
1777 evt->opcode = cpu_to_le16(opcode);
1778
1779 *skb_put(skb, 1) = 0x00;
1780
1781 bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
1782
1783 return hci_recv_frame(hdev, skb);
1784 }
1785
1786 static int btusb_recv_bulk_intel(struct btusb_data *data, void *buffer,
1787 int count)
1788 {
1789 /* When the device is in bootloader mode, then it can send
1790 * events via the bulk endpoint. These events are treated the
1791 * same way as the ones received from the interrupt endpoint.
1792 */
1793 if (test_bit(BTUSB_BOOTLOADER, &data->flags))
1794 return btusb_recv_intr(data, buffer, count);
1795
1796 return btusb_recv_bulk(data, buffer, count);
1797 }
1798
1799 static int btusb_recv_event_intel(struct hci_dev *hdev, struct sk_buff *skb)
1800 {
1801 struct btusb_data *data = hci_get_drvdata(hdev);
1802
1803 if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
1804 struct hci_event_hdr *hdr = (void *)skb->data;
1805
1806 /* When the firmware loading completes the device sends
1807 * out a vendor specific event indicating the result of
1808 * the firmware loading.
1809 */
1810 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
1811 skb->data[2] == 0x06) {
1812 if (skb->data[3] != 0x00)
1813 test_bit(BTUSB_FIRMWARE_FAILED, &data->flags);
1814
1815 if (test_and_clear_bit(BTUSB_DOWNLOADING,
1816 &data->flags) &&
1817 test_bit(BTUSB_FIRMWARE_LOADED, &data->flags)) {
1818 smp_mb__after_atomic();
1819 wake_up_bit(&data->flags, BTUSB_DOWNLOADING);
1820 }
1821 }
1822
1823 /* When switching to the operational firmware the device
1824 * sends a vendor specific event indicating that the bootup
1825 * completed.
1826 */
1827 if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
1828 skb->data[2] == 0x02) {
1829 if (test_and_clear_bit(BTUSB_BOOTING, &data->flags)) {
1830 smp_mb__after_atomic();
1831 wake_up_bit(&data->flags, BTUSB_BOOTING);
1832 }
1833 }
1834 }
1835
1836 return hci_recv_frame(hdev, skb);
1837 }
1838
1839 static int btusb_send_frame_intel(struct hci_dev *hdev, struct sk_buff *skb)
1840 {
1841 struct btusb_data *data = hci_get_drvdata(hdev);
1842 struct urb *urb;
1843
1844 BT_DBG("%s", hdev->name);
1845
1846 if (!test_bit(HCI_RUNNING, &hdev->flags))
1847 return -EBUSY;
1848
1849 switch (bt_cb(skb)->pkt_type) {
1850 case HCI_COMMAND_PKT:
1851 if (test_bit(BTUSB_BOOTLOADER, &data->flags)) {
1852 struct hci_command_hdr *cmd = (void *)skb->data;
1853 __u16 opcode = le16_to_cpu(cmd->opcode);
1854
1855 /* When in bootloader mode and the command 0xfc09
1856 * is received, it needs to be send down the
1857 * bulk endpoint. So allocate a bulk URB instead.
1858 */
1859 if (opcode == 0xfc09)
1860 urb = alloc_bulk_urb(hdev, skb);
1861 else
1862 urb = alloc_ctrl_urb(hdev, skb);
1863
1864 /* When the 0xfc01 command is issued to boot into
1865 * the operational firmware, it will actually not
1866 * send a command complete event. To keep the flow
1867 * control working inject that event here.
1868 */
1869 if (opcode == 0xfc01)
1870 inject_cmd_complete(hdev, opcode);
1871 } else {
1872 urb = alloc_ctrl_urb(hdev, skb);
1873 }
1874 if (IS_ERR(urb))
1875 return PTR_ERR(urb);
1876
1877 hdev->stat.cmd_tx++;
1878 return submit_or_queue_tx_urb(hdev, urb);
1879
1880 case HCI_ACLDATA_PKT:
1881 urb = alloc_bulk_urb(hdev, skb);
1882 if (IS_ERR(urb))
1883 return PTR_ERR(urb);
1884
1885 hdev->stat.acl_tx++;
1886 return submit_or_queue_tx_urb(hdev, urb);
1887
1888 case HCI_SCODATA_PKT:
1889 if (hci_conn_num(hdev, SCO_LINK) < 1)
1890 return -ENODEV;
1891
1892 urb = alloc_isoc_urb(hdev, skb);
1893 if (IS_ERR(urb))
1894 return PTR_ERR(urb);
1895
1896 hdev->stat.sco_tx++;
1897 return submit_tx_urb(hdev, urb);
1898 }
1899
1900 return -EILSEQ;
1901 }
1902
1903 static int btusb_intel_secure_send(struct hci_dev *hdev, u8 fragment_type,
1904 u32 plen, const void *param)
1905 {
1906 while (plen > 0) {
1907 struct sk_buff *skb;
1908 u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
1909
1910 cmd_param[0] = fragment_type;
1911 memcpy(cmd_param + 1, param, fragment_len);
1912
1913 skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
1914 cmd_param, HCI_INIT_TIMEOUT);
1915 if (IS_ERR(skb))
1916 return PTR_ERR(skb);
1917
1918 kfree_skb(skb);
1919
1920 plen -= fragment_len;
1921 param += fragment_len;
1922 }
1923
1924 return 0;
1925 }
1926
1927 static void btusb_intel_version_info(struct hci_dev *hdev,
1928 struct intel_version *ver)
1929 {
1930 const char *variant;
1931
1932 switch (ver->fw_variant) {
1933 case 0x06:
1934 variant = "Bootloader";
1935 break;
1936 case 0x23:
1937 variant = "Firmware";
1938 break;
1939 default:
1940 return;
1941 }
1942
1943 BT_INFO("%s: %s revision %u.%u build %u week %u %u", hdev->name,
1944 variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
1945 ver->fw_build_num, ver->fw_build_ww, 2000 + ver->fw_build_yy);
1946 }
1947
1948 static int btusb_setup_intel_new(struct hci_dev *hdev)
1949 {
1950 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
1951 0x00, 0x08, 0x04, 0x00 };
1952 struct btusb_data *data = hci_get_drvdata(hdev);
1953 struct sk_buff *skb;
1954 struct intel_version *ver;
1955 struct intel_boot_params *params;
1956 const struct firmware *fw;
1957 const u8 *fw_ptr;
1958 char fwname[64];
1959 ktime_t calltime, delta, rettime;
1960 unsigned long long duration;
1961 int err;
1962
1963 BT_DBG("%s", hdev->name);
1964
1965 calltime = ktime_get();
1966
1967 /* Read the Intel version information to determine if the device
1968 * is in bootloader mode or if it already has operational firmware
1969 * loaded.
1970 */
1971 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
1972 if (IS_ERR(skb)) {
1973 BT_ERR("%s: Reading Intel version information failed (%ld)",
1974 hdev->name, PTR_ERR(skb));
1975 return PTR_ERR(skb);
1976 }
1977
1978 if (skb->len != sizeof(*ver)) {
1979 BT_ERR("%s: Intel version event size mismatch", hdev->name);
1980 kfree_skb(skb);
1981 return -EILSEQ;
1982 }
1983
1984 ver = (struct intel_version *)skb->data;
1985 if (ver->status) {
1986 BT_ERR("%s: Intel version command failure (%02x)",
1987 hdev->name, ver->status);
1988 err = -bt_to_errno(ver->status);
1989 kfree_skb(skb);
1990 return err;
1991 }
1992
1993 /* The hardware platform number has a fixed value of 0x37 and
1994 * for now only accept this single value.
1995 */
1996 if (ver->hw_platform != 0x37) {
1997 BT_ERR("%s: Unsupported Intel hardware platform (%u)",
1998 hdev->name, ver->hw_platform);
1999 kfree_skb(skb);
2000 return -EINVAL;
2001 }
2002
2003 /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
2004 * supported by this firmware loading method. This check has been
2005 * put in place to ensure correct forward compatibility options
2006 * when newer hardware variants come along.
2007 */
2008 if (ver->hw_variant != 0x0b) {
2009 BT_ERR("%s: Unsupported Intel hardware variant (%u)",
2010 hdev->name, ver->hw_variant);
2011 kfree_skb(skb);
2012 return -EINVAL;
2013 }
2014
2015 btusb_intel_version_info(hdev, ver);
2016
2017 /* The firmware variant determines if the device is in bootloader
2018 * mode or is running operational firmware. The value 0x06 identifies
2019 * the bootloader and the value 0x23 identifies the operational
2020 * firmware.
2021 *
2022 * When the operational firmware is already present, then only
2023 * the check for valid Bluetooth device address is needed. This
2024 * determines if the device will be added as configured or
2025 * unconfigured controller.
2026 *
2027 * It is not possible to use the Secure Boot Parameters in this
2028 * case since that command is only available in bootloader mode.
2029 */
2030 if (ver->fw_variant == 0x23) {
2031 kfree_skb(skb);
2032 clear_bit(BTUSB_BOOTLOADER, &data->flags);
2033 btusb_check_bdaddr_intel(hdev);
2034 return 0;
2035 }
2036
2037 /* If the device is not in bootloader mode, then the only possible
2038 * choice is to return an error and abort the device initialization.
2039 */
2040 if (ver->fw_variant != 0x06) {
2041 BT_ERR("%s: Unsupported Intel firmware variant (%u)",
2042 hdev->name, ver->fw_variant);
2043 kfree_skb(skb);
2044 return -ENODEV;
2045 }
2046
2047 kfree_skb(skb);
2048
2049 /* Read the secure boot parameters to identify the operating
2050 * details of the bootloader.
2051 */
2052 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
2053 if (IS_ERR(skb)) {
2054 BT_ERR("%s: Reading Intel boot parameters failed (%ld)",
2055 hdev->name, PTR_ERR(skb));
2056 return PTR_ERR(skb);
2057 }
2058
2059 if (skb->len != sizeof(*params)) {
2060 BT_ERR("%s: Intel boot parameters size mismatch", hdev->name);
2061 kfree_skb(skb);
2062 return -EILSEQ;
2063 }
2064
2065 params = (struct intel_boot_params *)skb->data;
2066 if (params->status) {
2067 BT_ERR("%s: Intel boot parameters command failure (%02x)",
2068 hdev->name, params->status);
2069 err = -bt_to_errno(params->status);
2070 kfree_skb(skb);
2071 return err;
2072 }
2073
2074 BT_INFO("%s: Device revision is %u", hdev->name,
2075 le16_to_cpu(params->dev_revid));
2076
2077 BT_INFO("%s: Secure boot is %s", hdev->name,
2078 params->secure_boot ? "enabled" : "disabled");
2079
2080 BT_INFO("%s: Minimum firmware build %u week %u %u", hdev->name,
2081 params->min_fw_build_nn, params->min_fw_build_cw,
2082 2000 + params->min_fw_build_yy);
2083
2084 /* It is required that every single firmware fragment is acknowledged
2085 * with a command complete event. If the boot parameters indicate
2086 * that this bootloader does not send them, then abort the setup.
2087 */
2088 if (params->limited_cce != 0x00) {
2089 BT_ERR("%s: Unsupported Intel firmware loading method (%u)",
2090 hdev->name, params->limited_cce);
2091 kfree_skb(skb);
2092 return -EINVAL;
2093 }
2094
2095 /* If the OTP has no valid Bluetooth device address, then there will
2096 * also be no valid address for the operational firmware.
2097 */
2098 if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2099 BT_INFO("%s: No device address configured", hdev->name);
2100 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2101 }
2102
2103 /* With this Intel bootloader only the hardware variant and device
2104 * revision information are used to select the right firmware.
2105 *
2106 * Currently this bootloader support is limited to hardware variant
2107 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
2108 */
2109 snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
2110 le16_to_cpu(params->dev_revid));
2111
2112 err = request_firmware(&fw, fwname, &hdev->dev);
2113 if (err < 0) {
2114 BT_ERR("%s: Failed to load Intel firmware file (%d)",
2115 hdev->name, err);
2116 kfree_skb(skb);
2117 return err;
2118 }
2119
2120 BT_INFO("%s: Found device firmware: %s", hdev->name, fwname);
2121
2122 kfree_skb(skb);
2123
2124 if (fw->size < 644) {
2125 BT_ERR("%s: Invalid size of firmware file (%zu)",
2126 hdev->name, fw->size);
2127 err = -EBADF;
2128 goto done;
2129 }
2130
2131 set_bit(BTUSB_DOWNLOADING, &data->flags);
2132
2133 /* Start the firmware download transaction with the Init fragment
2134 * represented by the 128 bytes of CSS header.
2135 */
2136 err = btusb_intel_secure_send(hdev, 0x00, 128, fw->data);
2137 if (err < 0) {
2138 BT_ERR("%s: Failed to send firmware header (%d)",
2139 hdev->name, err);
2140 goto done;
2141 }
2142
2143 /* Send the 256 bytes of public key information from the firmware
2144 * as the PKey fragment.
2145 */
2146 err = btusb_intel_secure_send(hdev, 0x03, 256, fw->data + 128);
2147 if (err < 0) {
2148 BT_ERR("%s: Failed to send firmware public key (%d)",
2149 hdev->name, err);
2150 goto done;
2151 }
2152
2153 /* Send the 256 bytes of signature information from the firmware
2154 * as the Sign fragment.
2155 */
2156 err = btusb_intel_secure_send(hdev, 0x02, 256, fw->data + 388);
2157 if (err < 0) {
2158 BT_ERR("%s: Failed to send firmware signature (%d)",
2159 hdev->name, err);
2160 goto done;
2161 }
2162
2163 fw_ptr = fw->data + 644;
2164
2165 while (fw_ptr - fw->data < fw->size) {
2166 struct hci_command_hdr *cmd = (void *)fw_ptr;
2167 u8 cmd_len;
2168
2169 cmd_len = sizeof(*cmd) + cmd->plen;
2170
2171 /* Send each command from the firmware data buffer as
2172 * a single Data fragment.
2173 */
2174 err = btusb_intel_secure_send(hdev, 0x01, cmd_len, fw_ptr);
2175 if (err < 0) {
2176 BT_ERR("%s: Failed to send firmware data (%d)",
2177 hdev->name, err);
2178 goto done;
2179 }
2180
2181 fw_ptr += cmd_len;
2182 }
2183
2184 set_bit(BTUSB_FIRMWARE_LOADED, &data->flags);
2185
2186 BT_INFO("%s: Waiting for firmware download to complete", hdev->name);
2187
2188 /* Before switching the device into operational mode and with that
2189 * booting the loaded firmware, wait for the bootloader notification
2190 * that all fragments have been successfully received.
2191 *
2192 * When the event processing receives the notification, then the
2193 * BTUSB_DOWNLOADING flag will be cleared.
2194 *
2195 * The firmware loading should not take longer than 5 seconds
2196 * and thus just timeout if that happens and fail the setup
2197 * of this device.
2198 */
2199 err = btusb_wait_on_bit_timeout(&data->flags, BTUSB_DOWNLOADING,
2200 msecs_to_jiffies(5000),
2201 TASK_INTERRUPTIBLE);
2202 if (err == 1) {
2203 BT_ERR("%s: Firmware loading interrupted", hdev->name);
2204 err = -EINTR;
2205 goto done;
2206 }
2207
2208 if (err) {
2209 BT_ERR("%s: Firmware loading timeout", hdev->name);
2210 err = -ETIMEDOUT;
2211 goto done;
2212 }
2213
2214 if (test_bit(BTUSB_FIRMWARE_FAILED, &data->flags)) {
2215 BT_ERR("%s: Firmware loading failed", hdev->name);
2216 err = -ENOEXEC;
2217 goto done;
2218 }
2219
2220 rettime = ktime_get();
2221 delta = ktime_sub(rettime, calltime);
2222 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
2223
2224 BT_INFO("%s: Firmware loaded in %llu usecs", hdev->name, duration);
2225
2226 done:
2227 release_firmware(fw);
2228
2229 if (err < 0)
2230 return err;
2231
2232 calltime = ktime_get();
2233
2234 set_bit(BTUSB_BOOTING, &data->flags);
2235
2236 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
2237 HCI_INIT_TIMEOUT);
2238 if (IS_ERR(skb))
2239 return PTR_ERR(skb);
2240
2241 kfree_skb(skb);
2242
2243 /* The bootloader will not indicate when the device is ready. This
2244 * is done by the operational firmware sending bootup notification.
2245 *
2246 * Booting into operational firmware should not take longer than
2247 * 1 second. However if that happens, then just fail the setup
2248 * since something went wrong.
2249 */
2250 BT_INFO("%s: Waiting for device to boot", hdev->name);
2251
2252 err = btusb_wait_on_bit_timeout(&data->flags, BTUSB_BOOTING,
2253 msecs_to_jiffies(1000),
2254 TASK_INTERRUPTIBLE);
2255
2256 if (err == 1) {
2257 BT_ERR("%s: Device boot interrupted", hdev->name);
2258 return -EINTR;
2259 }
2260
2261 if (err) {
2262 BT_ERR("%s: Device boot timeout", hdev->name);
2263 return -ETIMEDOUT;
2264 }
2265
2266 rettime = ktime_get();
2267 delta = ktime_sub(rettime, calltime);
2268 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
2269
2270 BT_INFO("%s: Device booted in %llu usecs", hdev->name, duration);
2271
2272 clear_bit(BTUSB_BOOTLOADER, &data->flags);
2273
2274 return 0;
2275 }
2276
2277 static void btusb_hw_error_intel(struct hci_dev *hdev, u8 code)
2278 {
2279 struct sk_buff *skb;
2280 u8 type = 0x00;
2281
2282 BT_ERR("%s: Hardware error 0x%2.2x", hdev->name, code);
2283
2284 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
2285 if (IS_ERR(skb)) {
2286 BT_ERR("%s: Reset after hardware error failed (%ld)",
2287 hdev->name, PTR_ERR(skb));
2288 return;
2289 }
2290 kfree_skb(skb);
2291
2292 skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
2293 if (IS_ERR(skb)) {
2294 BT_ERR("%s: Retrieving Intel exception info failed (%ld)",
2295 hdev->name, PTR_ERR(skb));
2296 return;
2297 }
2298
2299 if (skb->len != 13) {
2300 BT_ERR("%s: Exception info size mismatch", hdev->name);
2301 kfree_skb(skb);
2302 return;
2303 }
2304
2305 if (skb->data[0] != 0x00) {
2306 BT_ERR("%s: Exception info command failure (%02x)",
2307 hdev->name, skb->data[0]);
2308 kfree_skb(skb);
2309 return;
2310 }
2311
2312 BT_ERR("%s: Exception info %s", hdev->name, (char *)(skb->data + 1));
2313
2314 kfree_skb(skb);
2315 }
2316
2317 static int btusb_set_bdaddr_intel(struct hci_dev *hdev, const bdaddr_t *bdaddr)
2318 {
2319 struct sk_buff *skb;
2320 long ret;
2321
2322 skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
2323 if (IS_ERR(skb)) {
2324 ret = PTR_ERR(skb);
2325 BT_ERR("%s: changing Intel device address failed (%ld)",
2326 hdev->name, ret);
2327 return ret;
2328 }
2329 kfree_skb(skb);
2330
2331 return 0;
2332 }
2333
2334 static int btusb_set_bdaddr_marvell(struct hci_dev *hdev,
2335 const bdaddr_t *bdaddr)
2336 {
2337 struct sk_buff *skb;
2338 u8 buf[8];
2339 long ret;
2340
2341 buf[0] = 0xfe;
2342 buf[1] = sizeof(bdaddr_t);
2343 memcpy(buf + 2, bdaddr, sizeof(bdaddr_t));
2344
2345 skb = __hci_cmd_sync(hdev, 0xfc22, sizeof(buf), buf, HCI_INIT_TIMEOUT);
2346 if (IS_ERR(skb)) {
2347 ret = PTR_ERR(skb);
2348 BT_ERR("%s: changing Marvell device address failed (%ld)",
2349 hdev->name, ret);
2350 return ret;
2351 }
2352 kfree_skb(skb);
2353
2354 return 0;
2355 }
2356
2357 #define BDADDR_BCM20702A0 (&(bdaddr_t) {{0x00, 0xa0, 0x02, 0x70, 0x20, 0x00}})
2358
2359 static int btusb_setup_bcm_patchram(struct hci_dev *hdev)
2360 {
2361 struct btusb_data *data = hci_get_drvdata(hdev);
2362 struct usb_device *udev = data->udev;
2363 char fw_name[64];
2364 const struct firmware *fw;
2365 const u8 *fw_ptr;
2366 size_t fw_size;
2367 const struct hci_command_hdr *cmd;
2368 const u8 *cmd_param;
2369 u16 opcode;
2370 struct sk_buff *skb;
2371 struct hci_rp_read_local_version *ver;
2372 struct hci_rp_read_bd_addr *bda;
2373 long ret;
2374
2375 snprintf(fw_name, sizeof(fw_name), "brcm/%s-%04x-%04x.hcd",
2376 udev->product ? udev->product : "BCM",
2377 le16_to_cpu(udev->descriptor.idVendor),
2378 le16_to_cpu(udev->descriptor.idProduct));
2379
2380 ret = request_firmware(&fw, fw_name, &hdev->dev);
2381 if (ret < 0) {
2382 BT_INFO("%s: BCM: patch %s not found", hdev->name, fw_name);
2383 return 0;
2384 }
2385
2386 /* Reset */
2387 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
2388 if (IS_ERR(skb)) {
2389 ret = PTR_ERR(skb);
2390 BT_ERR("%s: HCI_OP_RESET failed (%ld)", hdev->name, ret);
2391 goto done;
2392 }
2393 kfree_skb(skb);
2394
2395 /* Read Local Version Info */
2396 skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
2397 HCI_INIT_TIMEOUT);
2398 if (IS_ERR(skb)) {
2399 ret = PTR_ERR(skb);
2400 BT_ERR("%s: HCI_OP_READ_LOCAL_VERSION failed (%ld)",
2401 hdev->name, ret);
2402 goto done;
2403 }
2404
2405 if (skb->len != sizeof(*ver)) {
2406 BT_ERR("%s: HCI_OP_READ_LOCAL_VERSION event length mismatch",
2407 hdev->name);
2408 kfree_skb(skb);
2409 ret = -EIO;
2410 goto done;
2411 }
2412
2413 ver = (struct hci_rp_read_local_version *)skb->data;
2414 BT_INFO("%s: BCM: patching hci_ver=%02x hci_rev=%04x lmp_ver=%02x "
2415 "lmp_subver=%04x", hdev->name, ver->hci_ver, ver->hci_rev,
2416 ver->lmp_ver, ver->lmp_subver);
2417 kfree_skb(skb);
2418
2419 /* Start Download */
2420 skb = __hci_cmd_sync(hdev, 0xfc2e, 0, NULL, HCI_INIT_TIMEOUT);
2421 if (IS_ERR(skb)) {
2422 ret = PTR_ERR(skb);
2423 BT_ERR("%s: BCM: Download Minidrv command failed (%ld)",
2424 hdev->name, ret);
2425 goto reset_fw;
2426 }
2427 kfree_skb(skb);
2428
2429 /* 50 msec delay after Download Minidrv completes */
2430 msleep(50);
2431
2432 fw_ptr = fw->data;
2433 fw_size = fw->size;
2434
2435 while (fw_size >= sizeof(*cmd)) {
2436 cmd = (struct hci_command_hdr *)fw_ptr;
2437 fw_ptr += sizeof(*cmd);
2438 fw_size -= sizeof(*cmd);
2439
2440 if (fw_size < cmd->plen) {
2441 BT_ERR("%s: BCM: patch %s is corrupted",
2442 hdev->name, fw_name);
2443 ret = -EINVAL;
2444 goto reset_fw;
2445 }
2446
2447 cmd_param = fw_ptr;
2448 fw_ptr += cmd->plen;
2449 fw_size -= cmd->plen;
2450
2451 opcode = le16_to_cpu(cmd->opcode);
2452
2453 skb = __hci_cmd_sync(hdev, opcode, cmd->plen, cmd_param,
2454 HCI_INIT_TIMEOUT);
2455 if (IS_ERR(skb)) {
2456 ret = PTR_ERR(skb);
2457 BT_ERR("%s: BCM: patch command %04x failed (%ld)",
2458 hdev->name, opcode, ret);
2459 goto reset_fw;
2460 }
2461 kfree_skb(skb);
2462 }
2463
2464 /* 250 msec delay after Launch Ram completes */
2465 msleep(250);
2466
2467 reset_fw:
2468 /* Reset */
2469 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
2470 if (IS_ERR(skb)) {
2471 ret = PTR_ERR(skb);
2472 BT_ERR("%s: HCI_OP_RESET failed (%ld)", hdev->name, ret);
2473 goto done;
2474 }
2475 kfree_skb(skb);
2476
2477 /* Read Local Version Info */
2478 skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL,
2479 HCI_INIT_TIMEOUT);
2480 if (IS_ERR(skb)) {
2481 ret = PTR_ERR(skb);
2482 BT_ERR("%s: HCI_OP_READ_LOCAL_VERSION failed (%ld)",
2483 hdev->name, ret);
2484 goto done;
2485 }
2486
2487 if (skb->len != sizeof(*ver)) {
2488 BT_ERR("%s: HCI_OP_READ_LOCAL_VERSION event length mismatch",
2489 hdev->name);
2490 kfree_skb(skb);
2491 ret = -EIO;
2492 goto done;
2493 }
2494
2495 ver = (struct hci_rp_read_local_version *)skb->data;
2496 BT_INFO("%s: BCM: firmware hci_ver=%02x hci_rev=%04x lmp_ver=%02x "
2497 "lmp_subver=%04x", hdev->name, ver->hci_ver, ver->hci_rev,
2498 ver->lmp_ver, ver->lmp_subver);
2499 kfree_skb(skb);
2500
2501 /* Read BD Address */
2502 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
2503 HCI_INIT_TIMEOUT);
2504 if (IS_ERR(skb)) {
2505 ret = PTR_ERR(skb);
2506 BT_ERR("%s: HCI_OP_READ_BD_ADDR failed (%ld)",
2507 hdev->name, ret);
2508 goto done;
2509 }
2510
2511 if (skb->len != sizeof(*bda)) {
2512 BT_ERR("%s: HCI_OP_READ_BD_ADDR event length mismatch",
2513 hdev->name);
2514 kfree_skb(skb);
2515 ret = -EIO;
2516 goto done;
2517 }
2518
2519 bda = (struct hci_rp_read_bd_addr *)skb->data;
2520 if (bda->status) {
2521 BT_ERR("%s: HCI_OP_READ_BD_ADDR error status (%02x)",
2522 hdev->name, bda->status);
2523 kfree_skb(skb);
2524 ret = -bt_to_errno(bda->status);
2525 goto done;
2526 }
2527
2528 /* The address 00:20:70:02:A0:00 indicates a BCM20702A0 controller
2529 * with no configured address.
2530 */
2531 if (!bacmp(&bda->bdaddr, BDADDR_BCM20702A0)) {
2532 BT_INFO("%s: BCM: using default device address (%pMR)",
2533 hdev->name, &bda->bdaddr);
2534 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2535 }
2536
2537 kfree_skb(skb);
2538
2539 done:
2540 release_firmware(fw);
2541
2542 return ret;
2543 }
2544
2545 static int btusb_set_bdaddr_bcm(struct hci_dev *hdev, const bdaddr_t *bdaddr)
2546 {
2547 struct sk_buff *skb;
2548 long ret;
2549
2550 skb = __hci_cmd_sync(hdev, 0xfc01, 6, bdaddr, HCI_INIT_TIMEOUT);
2551 if (IS_ERR(skb)) {
2552 ret = PTR_ERR(skb);
2553 BT_ERR("%s: BCM: Change address command failed (%ld)",
2554 hdev->name, ret);
2555 return ret;
2556 }
2557 kfree_skb(skb);
2558
2559 return 0;
2560 }
2561
2562 static int btusb_set_bdaddr_ath3012(struct hci_dev *hdev,
2563 const bdaddr_t *bdaddr)
2564 {
2565 struct sk_buff *skb;
2566 u8 buf[10];
2567 long ret;
2568
2569 buf[0] = 0x01;
2570 buf[1] = 0x01;
2571 buf[2] = 0x00;
2572 buf[3] = sizeof(bdaddr_t);
2573 memcpy(buf + 4, bdaddr, sizeof(bdaddr_t));
2574
2575 skb = __hci_cmd_sync(hdev, 0xfc0b, sizeof(buf), buf, HCI_INIT_TIMEOUT);
2576 if (IS_ERR(skb)) {
2577 ret = PTR_ERR(skb);
2578 BT_ERR("%s: Change address command failed (%ld)",
2579 hdev->name, ret);
2580 return ret;
2581 }
2582 kfree_skb(skb);
2583
2584 return 0;
2585 }
2586
2587 static int btusb_probe(struct usb_interface *intf,
2588 const struct usb_device_id *id)
2589 {
2590 struct usb_endpoint_descriptor *ep_desc;
2591 struct btusb_data *data;
2592 struct hci_dev *hdev;
2593 int i, err;
2594
2595 BT_DBG("intf %p id %p", intf, id);
2596
2597 /* interface numbers are hardcoded in the spec */
2598 if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
2599 return -ENODEV;
2600
2601 if (!id->driver_info) {
2602 const struct usb_device_id *match;
2603
2604 match = usb_match_id(intf, blacklist_table);
2605 if (match)
2606 id = match;
2607 }
2608
2609 if (id->driver_info == BTUSB_IGNORE)
2610 return -ENODEV;
2611
2612 if (id->driver_info & BTUSB_ATH3012) {
2613 struct usb_device *udev = interface_to_usbdev(intf);
2614
2615 /* Old firmware would otherwise let ath3k driver load
2616 * patch and sysconfig files */
2617 if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001)
2618 return -ENODEV;
2619 }
2620
2621 data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
2622 if (!data)
2623 return -ENOMEM;
2624
2625 for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
2626 ep_desc = &intf->cur_altsetting->endpoint[i].desc;
2627
2628 if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
2629 data->intr_ep = ep_desc;
2630 continue;
2631 }
2632
2633 if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
2634 data->bulk_tx_ep = ep_desc;
2635 continue;
2636 }
2637
2638 if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
2639 data->bulk_rx_ep = ep_desc;
2640 continue;
2641 }
2642 }
2643
2644 if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep)
2645 return -ENODEV;
2646
2647 if (id->driver_info & BTUSB_AMP) {
2648 data->cmdreq_type = USB_TYPE_CLASS | 0x01;
2649 data->cmdreq = 0x2b;
2650 } else {
2651 data->cmdreq_type = USB_TYPE_CLASS;
2652 data->cmdreq = 0x00;
2653 }
2654
2655 data->udev = interface_to_usbdev(intf);
2656 data->intf = intf;
2657
2658 INIT_WORK(&data->work, btusb_work);
2659 INIT_WORK(&data->waker, btusb_waker);
2660 init_usb_anchor(&data->deferred);
2661 init_usb_anchor(&data->tx_anchor);
2662 spin_lock_init(&data->txlock);
2663
2664 init_usb_anchor(&data->intr_anchor);
2665 init_usb_anchor(&data->bulk_anchor);
2666 init_usb_anchor(&data->isoc_anchor);
2667 spin_lock_init(&data->rxlock);
2668
2669 if (id->driver_info & BTUSB_INTEL_NEW) {
2670 data->recv_event = btusb_recv_event_intel;
2671 data->recv_bulk = btusb_recv_bulk_intel;
2672 set_bit(BTUSB_BOOTLOADER, &data->flags);
2673 } else {
2674 data->recv_event = hci_recv_frame;
2675 data->recv_bulk = btusb_recv_bulk;
2676 }
2677
2678 hdev = hci_alloc_dev();
2679 if (!hdev)
2680 return -ENOMEM;
2681
2682 hdev->bus = HCI_USB;
2683 hci_set_drvdata(hdev, data);
2684
2685 if (id->driver_info & BTUSB_AMP)
2686 hdev->dev_type = HCI_AMP;
2687 else
2688 hdev->dev_type = HCI_BREDR;
2689
2690 data->hdev = hdev;
2691
2692 SET_HCIDEV_DEV(hdev, &intf->dev);
2693
2694 hdev->open = btusb_open;
2695 hdev->close = btusb_close;
2696 hdev->flush = btusb_flush;
2697 hdev->send = btusb_send_frame;
2698 hdev->notify = btusb_notify;
2699
2700 if (id->driver_info & BTUSB_BCM92035)
2701 hdev->setup = btusb_setup_bcm92035;
2702
2703 if (id->driver_info & BTUSB_BCM_PATCHRAM) {
2704 hdev->setup = btusb_setup_bcm_patchram;
2705 hdev->set_bdaddr = btusb_set_bdaddr_bcm;
2706 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2707 }
2708
2709 if (id->driver_info & BTUSB_INTEL) {
2710 hdev->setup = btusb_setup_intel;
2711 hdev->set_bdaddr = btusb_set_bdaddr_intel;
2712 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2713 }
2714
2715 if (id->driver_info & BTUSB_INTEL_NEW) {
2716 hdev->send = btusb_send_frame_intel;
2717 hdev->setup = btusb_setup_intel_new;
2718 hdev->hw_error = btusb_hw_error_intel;
2719 hdev->set_bdaddr = btusb_set_bdaddr_intel;
2720 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2721 }
2722
2723 if (id->driver_info & BTUSB_MARVELL)
2724 hdev->set_bdaddr = btusb_set_bdaddr_marvell;
2725
2726 if (id->driver_info & BTUSB_SWAVE) {
2727 set_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks);
2728 set_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks);
2729 }
2730
2731 if (id->driver_info & BTUSB_INTEL_BOOT)
2732 set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
2733
2734 if (id->driver_info & BTUSB_ATH3012) {
2735 hdev->set_bdaddr = btusb_set_bdaddr_ath3012;
2736 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2737 }
2738
2739 if (id->driver_info & BTUSB_AMP) {
2740 /* AMP controllers do not support SCO packets */
2741 data->isoc = NULL;
2742 } else {
2743 /* Interface numbers are hardcoded in the specification */
2744 data->isoc = usb_ifnum_to_if(data->udev, 1);
2745 }
2746
2747 if (!reset)
2748 set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
2749
2750 if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) {
2751 if (!disable_scofix)
2752 set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks);
2753 }
2754
2755 if (id->driver_info & BTUSB_BROKEN_ISOC)
2756 data->isoc = NULL;
2757
2758 if (id->driver_info & BTUSB_DIGIANSWER) {
2759 data->cmdreq_type = USB_TYPE_VENDOR;
2760 set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
2761 }
2762
2763 if (id->driver_info & BTUSB_CSR) {
2764 struct usb_device *udev = data->udev;
2765 u16 bcdDevice = le16_to_cpu(udev->descriptor.bcdDevice);
2766
2767 /* Old firmware would otherwise execute USB reset */
2768 if (bcdDevice < 0x117)
2769 set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
2770
2771 /* Fake CSR devices with broken commands */
2772 if (bcdDevice <= 0x100)
2773 hdev->setup = btusb_setup_csr;
2774 }
2775
2776 if (id->driver_info & BTUSB_SNIFFER) {
2777 struct usb_device *udev = data->udev;
2778
2779 /* New sniffer firmware has crippled HCI interface */
2780 if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997)
2781 set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);
2782 }
2783
2784 if (id->driver_info & BTUSB_INTEL_BOOT) {
2785 /* A bug in the bootloader causes that interrupt interface is
2786 * only enabled after receiving SetInterface(0, AltSetting=0).
2787 */
2788 err = usb_set_interface(data->udev, 0, 0);
2789 if (err < 0) {
2790 BT_ERR("failed to set interface 0, alt 0 %d", err);
2791 hci_free_dev(hdev);
2792 return err;
2793 }
2794 }
2795
2796 if (data->isoc) {
2797 err = usb_driver_claim_interface(&btusb_driver,
2798 data->isoc, data);
2799 if (err < 0) {
2800 hci_free_dev(hdev);
2801 return err;
2802 }
2803 }
2804
2805 err = hci_register_dev(hdev);
2806 if (err < 0) {
2807 hci_free_dev(hdev);
2808 return err;
2809 }
2810
2811 usb_set_intfdata(intf, data);
2812
2813 return 0;
2814 }
2815
2816 static void btusb_disconnect(struct usb_interface *intf)
2817 {
2818 struct btusb_data *data = usb_get_intfdata(intf);
2819 struct hci_dev *hdev;
2820
2821 BT_DBG("intf %p", intf);
2822
2823 if (!data)
2824 return;
2825
2826 hdev = data->hdev;
2827 usb_set_intfdata(data->intf, NULL);
2828
2829 if (data->isoc)
2830 usb_set_intfdata(data->isoc, NULL);
2831
2832 hci_unregister_dev(hdev);
2833
2834 if (intf == data->isoc)
2835 usb_driver_release_interface(&btusb_driver, data->intf);
2836 else if (data->isoc)
2837 usb_driver_release_interface(&btusb_driver, data->isoc);
2838
2839 hci_free_dev(hdev);
2840 }
2841
2842 #ifdef CONFIG_PM
2843 static int btusb_suspend(struct usb_interface *intf, pm_message_t message)
2844 {
2845 struct btusb_data *data = usb_get_intfdata(intf);
2846
2847 BT_DBG("intf %p", intf);
2848
2849 if (data->suspend_count++)
2850 return 0;
2851
2852 spin_lock_irq(&data->txlock);
2853 if (!(PMSG_IS_AUTO(message) && data->tx_in_flight)) {
2854 set_bit(BTUSB_SUSPENDING, &data->flags);
2855 spin_unlock_irq(&data->txlock);
2856 } else {
2857 spin_unlock_irq(&data->txlock);
2858 data->suspend_count--;
2859 return -EBUSY;
2860 }
2861
2862 cancel_work_sync(&data->work);
2863
2864 btusb_stop_traffic(data);
2865 usb_kill_anchored_urbs(&data->tx_anchor);
2866
2867 return 0;
2868 }
2869
2870 static void play_deferred(struct btusb_data *data)
2871 {
2872 struct urb *urb;
2873 int err;
2874
2875 while ((urb = usb_get_from_anchor(&data->deferred))) {
2876 err = usb_submit_urb(urb, GFP_ATOMIC);
2877 if (err < 0)
2878 break;
2879
2880 data->tx_in_flight++;
2881 }
2882 usb_scuttle_anchored_urbs(&data->deferred);
2883 }
2884
2885 static int btusb_resume(struct usb_interface *intf)
2886 {
2887 struct btusb_data *data = usb_get_intfdata(intf);
2888 struct hci_dev *hdev = data->hdev;
2889 int err = 0;
2890
2891 BT_DBG("intf %p", intf);
2892
2893 if (--data->suspend_count)
2894 return 0;
2895
2896 if (!test_bit(HCI_RUNNING, &hdev->flags))
2897 goto done;
2898
2899 if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) {
2900 err = btusb_submit_intr_urb(hdev, GFP_NOIO);
2901 if (err < 0) {
2902 clear_bit(BTUSB_INTR_RUNNING, &data->flags);
2903 goto failed;
2904 }
2905 }
2906
2907 if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) {
2908 err = btusb_submit_bulk_urb(hdev, GFP_NOIO);
2909 if (err < 0) {
2910 clear_bit(BTUSB_BULK_RUNNING, &data->flags);
2911 goto failed;
2912 }
2913
2914 btusb_submit_bulk_urb(hdev, GFP_NOIO);
2915 }
2916
2917 if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) {
2918 if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0)
2919 clear_bit(BTUSB_ISOC_RUNNING, &data->flags);
2920 else
2921 btusb_submit_isoc_urb(hdev, GFP_NOIO);
2922 }
2923
2924 spin_lock_irq(&data->txlock);
2925 play_deferred(data);
2926 clear_bit(BTUSB_SUSPENDING, &data->flags);
2927 spin_unlock_irq(&data->txlock);
2928 schedule_work(&data->work);
2929
2930 return 0;
2931
2932 failed:
2933 usb_scuttle_anchored_urbs(&data->deferred);
2934 done:
2935 spin_lock_irq(&data->txlock);
2936 clear_bit(BTUSB_SUSPENDING, &data->flags);
2937 spin_unlock_irq(&data->txlock);
2938
2939 return err;
2940 }
2941 #endif
2942
2943 static struct usb_driver btusb_driver = {
2944 .name = "btusb",
2945 .probe = btusb_probe,
2946 .disconnect = btusb_disconnect,
2947 #ifdef CONFIG_PM
2948 .suspend = btusb_suspend,
2949 .resume = btusb_resume,
2950 #endif
2951 .id_table = btusb_table,
2952 .supports_autosuspend = 1,
2953 .disable_hub_initiated_lpm = 1,
2954 };
2955
2956 module_usb_driver(btusb_driver);
2957
2958 module_param(disable_scofix, bool, 0644);
2959 MODULE_PARM_DESC(disable_scofix, "Disable fixup of wrong SCO buffer size");
2960
2961 module_param(force_scofix, bool, 0644);
2962 MODULE_PARM_DESC(force_scofix, "Force fixup of wrong SCO buffers size");
2963
2964 module_param(reset, bool, 0644);
2965 MODULE_PARM_DESC(reset, "Send HCI reset command on initialization");
2966
2967 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
2968 MODULE_DESCRIPTION("Generic Bluetooth USB driver ver " VERSION);
2969 MODULE_VERSION(VERSION);
2970 MODULE_LICENSE("GPL");
This page took 0.098516 seconds and 5 git commands to generate.