x86: irq: fix apicinterrupts on 64 bits
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67
68 #ifdef CONFIG_PPC_OF
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #endif
72
73 #define PFX "ipmi_si: "
74
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
77
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC 10000
80 #define SI_USEC_PER_JIFFY (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
83 short timeout */
84
85 /* Bit for BMC global enables. */
86 #define IPMI_BMC_RCV_MSG_INTR 0x01
87 #define IPMI_BMC_EVT_MSG_INTR 0x02
88 #define IPMI_BMC_EVT_MSG_BUFF 0x04
89 #define IPMI_BMC_SYS_LOG 0x08
90
91 enum si_intf_state {
92 SI_NORMAL,
93 SI_GETTING_FLAGS,
94 SI_GETTING_EVENTS,
95 SI_CLEARING_FLAGS,
96 SI_CLEARING_FLAGS_THEN_SET_IRQ,
97 SI_GETTING_MESSAGES,
98 SI_ENABLE_INTERRUPTS1,
99 SI_ENABLE_INTERRUPTS2,
100 SI_DISABLE_INTERRUPTS1,
101 SI_DISABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
103 };
104
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG 2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
109
110 enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
114
115 #define DEVICE_NAME "ipmi_si"
116
117 static struct device_driver ipmi_driver = {
118 .name = DEVICE_NAME,
119 .bus = &platform_bus_type
120 };
121
122
123 /*
124 * Indexes into stats[] in smi_info below.
125 */
126 enum si_stat_indexes {
127 /*
128 * Number of times the driver requested a timer while an operation
129 * was in progress.
130 */
131 SI_STAT_short_timeouts = 0,
132
133 /*
134 * Number of times the driver requested a timer while nothing was in
135 * progress.
136 */
137 SI_STAT_long_timeouts,
138
139 /* Number of times the interface was idle while being polled. */
140 SI_STAT_idles,
141
142 /* Number of interrupts the driver handled. */
143 SI_STAT_interrupts,
144
145 /* Number of time the driver got an ATTN from the hardware. */
146 SI_STAT_attentions,
147
148 /* Number of times the driver requested flags from the hardware. */
149 SI_STAT_flag_fetches,
150
151 /* Number of times the hardware didn't follow the state machine. */
152 SI_STAT_hosed_count,
153
154 /* Number of completed messages. */
155 SI_STAT_complete_transactions,
156
157 /* Number of IPMI events received from the hardware. */
158 SI_STAT_events,
159
160 /* Number of watchdog pretimeouts. */
161 SI_STAT_watchdog_pretimeouts,
162
163 /* Number of asyncronous messages received. */
164 SI_STAT_incoming_messages,
165
166
167 /* This *must* remain last, add new values above this. */
168 SI_NUM_STATS
169 };
170
171 struct smi_info {
172 int intf_num;
173 ipmi_smi_t intf;
174 struct si_sm_data *si_sm;
175 struct si_sm_handlers *handlers;
176 enum si_type si_type;
177 spinlock_t si_lock;
178 spinlock_t msg_lock;
179 struct list_head xmit_msgs;
180 struct list_head hp_xmit_msgs;
181 struct ipmi_smi_msg *curr_msg;
182 enum si_intf_state si_state;
183
184 /*
185 * Used to handle the various types of I/O that can occur with
186 * IPMI
187 */
188 struct si_sm_io io;
189 int (*io_setup)(struct smi_info *info);
190 void (*io_cleanup)(struct smi_info *info);
191 int (*irq_setup)(struct smi_info *info);
192 void (*irq_cleanup)(struct smi_info *info);
193 unsigned int io_size;
194 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
195 void (*addr_source_cleanup)(struct smi_info *info);
196 void *addr_source_data;
197
198 /*
199 * Per-OEM handler, called from handle_flags(). Returns 1
200 * when handle_flags() needs to be re-run or 0 indicating it
201 * set si_state itself.
202 */
203 int (*oem_data_avail_handler)(struct smi_info *smi_info);
204
205 /*
206 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
207 * is set to hold the flags until we are done handling everything
208 * from the flags.
209 */
210 #define RECEIVE_MSG_AVAIL 0x01
211 #define EVENT_MSG_BUFFER_FULL 0x02
212 #define WDT_PRE_TIMEOUT_INT 0x08
213 #define OEM0_DATA_AVAIL 0x20
214 #define OEM1_DATA_AVAIL 0x40
215 #define OEM2_DATA_AVAIL 0x80
216 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
217 OEM1_DATA_AVAIL | \
218 OEM2_DATA_AVAIL)
219 unsigned char msg_flags;
220
221 /*
222 * If set to true, this will request events the next time the
223 * state machine is idle.
224 */
225 atomic_t req_events;
226
227 /*
228 * If true, run the state machine to completion on every send
229 * call. Generally used after a panic to make sure stuff goes
230 * out.
231 */
232 int run_to_completion;
233
234 /* The I/O port of an SI interface. */
235 int port;
236
237 /*
238 * The space between start addresses of the two ports. For
239 * instance, if the first port is 0xca2 and the spacing is 4, then
240 * the second port is 0xca6.
241 */
242 unsigned int spacing;
243
244 /* zero if no irq; */
245 int irq;
246
247 /* The timer for this si. */
248 struct timer_list si_timer;
249
250 /* The time (in jiffies) the last timeout occurred at. */
251 unsigned long last_timeout_jiffies;
252
253 /* Used to gracefully stop the timer without race conditions. */
254 atomic_t stop_operation;
255
256 /*
257 * The driver will disable interrupts when it gets into a
258 * situation where it cannot handle messages due to lack of
259 * memory. Once that situation clears up, it will re-enable
260 * interrupts.
261 */
262 int interrupt_disabled;
263
264 /* From the get device id response... */
265 struct ipmi_device_id device_id;
266
267 /* Driver model stuff. */
268 struct device *dev;
269 struct platform_device *pdev;
270
271 /*
272 * True if we allocated the device, false if it came from
273 * someplace else (like PCI).
274 */
275 int dev_registered;
276
277 /* Slave address, could be reported from DMI. */
278 unsigned char slave_addr;
279
280 /* Counters and things for the proc filesystem. */
281 atomic_t stats[SI_NUM_STATS];
282
283 struct task_struct *thread;
284
285 struct list_head link;
286 };
287
288 #define smi_inc_stat(smi, stat) \
289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292
293 #define SI_MAX_PARMS 4
294
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297
298 static int unload_when_empty = 1;
299
300 static int try_smi_init(struct smi_info *smi);
301 static void cleanup_one_si(struct smi_info *to_clean);
302
303 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
304 static int register_xaction_notifier(struct notifier_block *nb)
305 {
306 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
307 }
308
309 static void deliver_recv_msg(struct smi_info *smi_info,
310 struct ipmi_smi_msg *msg)
311 {
312 /* Deliver the message to the upper layer with the lock
313 released. */
314 spin_unlock(&(smi_info->si_lock));
315 ipmi_smi_msg_received(smi_info->intf, msg);
316 spin_lock(&(smi_info->si_lock));
317 }
318
319 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
320 {
321 struct ipmi_smi_msg *msg = smi_info->curr_msg;
322
323 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
324 cCode = IPMI_ERR_UNSPECIFIED;
325 /* else use it as is */
326
327 /* Make it a reponse */
328 msg->rsp[0] = msg->data[0] | 4;
329 msg->rsp[1] = msg->data[1];
330 msg->rsp[2] = cCode;
331 msg->rsp_size = 3;
332
333 smi_info->curr_msg = NULL;
334 deliver_recv_msg(smi_info, msg);
335 }
336
337 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
338 {
339 int rv;
340 struct list_head *entry = NULL;
341 #ifdef DEBUG_TIMING
342 struct timeval t;
343 #endif
344
345 /*
346 * No need to save flags, we aleady have interrupts off and we
347 * already hold the SMI lock.
348 */
349 if (!smi_info->run_to_completion)
350 spin_lock(&(smi_info->msg_lock));
351
352 /* Pick the high priority queue first. */
353 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
354 entry = smi_info->hp_xmit_msgs.next;
355 } else if (!list_empty(&(smi_info->xmit_msgs))) {
356 entry = smi_info->xmit_msgs.next;
357 }
358
359 if (!entry) {
360 smi_info->curr_msg = NULL;
361 rv = SI_SM_IDLE;
362 } else {
363 int err;
364
365 list_del(entry);
366 smi_info->curr_msg = list_entry(entry,
367 struct ipmi_smi_msg,
368 link);
369 #ifdef DEBUG_TIMING
370 do_gettimeofday(&t);
371 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
372 #endif
373 err = atomic_notifier_call_chain(&xaction_notifier_list,
374 0, smi_info);
375 if (err & NOTIFY_STOP_MASK) {
376 rv = SI_SM_CALL_WITHOUT_DELAY;
377 goto out;
378 }
379 err = smi_info->handlers->start_transaction(
380 smi_info->si_sm,
381 smi_info->curr_msg->data,
382 smi_info->curr_msg->data_size);
383 if (err)
384 return_hosed_msg(smi_info, err);
385
386 rv = SI_SM_CALL_WITHOUT_DELAY;
387 }
388 out:
389 if (!smi_info->run_to_completion)
390 spin_unlock(&(smi_info->msg_lock));
391
392 return rv;
393 }
394
395 static void start_enable_irq(struct smi_info *smi_info)
396 {
397 unsigned char msg[2];
398
399 /*
400 * If we are enabling interrupts, we have to tell the
401 * BMC to use them.
402 */
403 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
404 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
405
406 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
407 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
408 }
409
410 static void start_disable_irq(struct smi_info *smi_info)
411 {
412 unsigned char msg[2];
413
414 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
415 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
416
417 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
418 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
419 }
420
421 static void start_clear_flags(struct smi_info *smi_info)
422 {
423 unsigned char msg[3];
424
425 /* Make sure the watchdog pre-timeout flag is not set at startup. */
426 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
428 msg[2] = WDT_PRE_TIMEOUT_INT;
429
430 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
431 smi_info->si_state = SI_CLEARING_FLAGS;
432 }
433
434 /*
435 * When we have a situtaion where we run out of memory and cannot
436 * allocate messages, we just leave them in the BMC and run the system
437 * polled until we can allocate some memory. Once we have some
438 * memory, we will re-enable the interrupt.
439 */
440 static inline void disable_si_irq(struct smi_info *smi_info)
441 {
442 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
443 start_disable_irq(smi_info);
444 smi_info->interrupt_disabled = 1;
445 }
446 }
447
448 static inline void enable_si_irq(struct smi_info *smi_info)
449 {
450 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
451 start_enable_irq(smi_info);
452 smi_info->interrupt_disabled = 0;
453 }
454 }
455
456 static void handle_flags(struct smi_info *smi_info)
457 {
458 retry:
459 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
460 /* Watchdog pre-timeout */
461 smi_inc_stat(smi_info, watchdog_pretimeouts);
462
463 start_clear_flags(smi_info);
464 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
465 spin_unlock(&(smi_info->si_lock));
466 ipmi_smi_watchdog_pretimeout(smi_info->intf);
467 spin_lock(&(smi_info->si_lock));
468 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
469 /* Messages available. */
470 smi_info->curr_msg = ipmi_alloc_smi_msg();
471 if (!smi_info->curr_msg) {
472 disable_si_irq(smi_info);
473 smi_info->si_state = SI_NORMAL;
474 return;
475 }
476 enable_si_irq(smi_info);
477
478 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
479 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
480 smi_info->curr_msg->data_size = 2;
481
482 smi_info->handlers->start_transaction(
483 smi_info->si_sm,
484 smi_info->curr_msg->data,
485 smi_info->curr_msg->data_size);
486 smi_info->si_state = SI_GETTING_MESSAGES;
487 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
488 /* Events available. */
489 smi_info->curr_msg = ipmi_alloc_smi_msg();
490 if (!smi_info->curr_msg) {
491 disable_si_irq(smi_info);
492 smi_info->si_state = SI_NORMAL;
493 return;
494 }
495 enable_si_irq(smi_info);
496
497 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
499 smi_info->curr_msg->data_size = 2;
500
501 smi_info->handlers->start_transaction(
502 smi_info->si_sm,
503 smi_info->curr_msg->data,
504 smi_info->curr_msg->data_size);
505 smi_info->si_state = SI_GETTING_EVENTS;
506 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
507 smi_info->oem_data_avail_handler) {
508 if (smi_info->oem_data_avail_handler(smi_info))
509 goto retry;
510 } else
511 smi_info->si_state = SI_NORMAL;
512 }
513
514 static void handle_transaction_done(struct smi_info *smi_info)
515 {
516 struct ipmi_smi_msg *msg;
517 #ifdef DEBUG_TIMING
518 struct timeval t;
519
520 do_gettimeofday(&t);
521 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
522 #endif
523 switch (smi_info->si_state) {
524 case SI_NORMAL:
525 if (!smi_info->curr_msg)
526 break;
527
528 smi_info->curr_msg->rsp_size
529 = smi_info->handlers->get_result(
530 smi_info->si_sm,
531 smi_info->curr_msg->rsp,
532 IPMI_MAX_MSG_LENGTH);
533
534 /*
535 * Do this here becase deliver_recv_msg() releases the
536 * lock, and a new message can be put in during the
537 * time the lock is released.
538 */
539 msg = smi_info->curr_msg;
540 smi_info->curr_msg = NULL;
541 deliver_recv_msg(smi_info, msg);
542 break;
543
544 case SI_GETTING_FLAGS:
545 {
546 unsigned char msg[4];
547 unsigned int len;
548
549 /* We got the flags from the SMI, now handle them. */
550 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
551 if (msg[2] != 0) {
552 /* Error fetching flags, just give up for now. */
553 smi_info->si_state = SI_NORMAL;
554 } else if (len < 4) {
555 /*
556 * Hmm, no flags. That's technically illegal, but
557 * don't use uninitialized data.
558 */
559 smi_info->si_state = SI_NORMAL;
560 } else {
561 smi_info->msg_flags = msg[3];
562 handle_flags(smi_info);
563 }
564 break;
565 }
566
567 case SI_CLEARING_FLAGS:
568 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
569 {
570 unsigned char msg[3];
571
572 /* We cleared the flags. */
573 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
574 if (msg[2] != 0) {
575 /* Error clearing flags */
576 printk(KERN_WARNING
577 "ipmi_si: Error clearing flags: %2.2x\n",
578 msg[2]);
579 }
580 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
581 start_enable_irq(smi_info);
582 else
583 smi_info->si_state = SI_NORMAL;
584 break;
585 }
586
587 case SI_GETTING_EVENTS:
588 {
589 smi_info->curr_msg->rsp_size
590 = smi_info->handlers->get_result(
591 smi_info->si_sm,
592 smi_info->curr_msg->rsp,
593 IPMI_MAX_MSG_LENGTH);
594
595 /*
596 * Do this here becase deliver_recv_msg() releases the
597 * lock, and a new message can be put in during the
598 * time the lock is released.
599 */
600 msg = smi_info->curr_msg;
601 smi_info->curr_msg = NULL;
602 if (msg->rsp[2] != 0) {
603 /* Error getting event, probably done. */
604 msg->done(msg);
605
606 /* Take off the event flag. */
607 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
608 handle_flags(smi_info);
609 } else {
610 smi_inc_stat(smi_info, events);
611
612 /*
613 * Do this before we deliver the message
614 * because delivering the message releases the
615 * lock and something else can mess with the
616 * state.
617 */
618 handle_flags(smi_info);
619
620 deliver_recv_msg(smi_info, msg);
621 }
622 break;
623 }
624
625 case SI_GETTING_MESSAGES:
626 {
627 smi_info->curr_msg->rsp_size
628 = smi_info->handlers->get_result(
629 smi_info->si_sm,
630 smi_info->curr_msg->rsp,
631 IPMI_MAX_MSG_LENGTH);
632
633 /*
634 * Do this here becase deliver_recv_msg() releases the
635 * lock, and a new message can be put in during the
636 * time the lock is released.
637 */
638 msg = smi_info->curr_msg;
639 smi_info->curr_msg = NULL;
640 if (msg->rsp[2] != 0) {
641 /* Error getting event, probably done. */
642 msg->done(msg);
643
644 /* Take off the msg flag. */
645 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
646 handle_flags(smi_info);
647 } else {
648 smi_inc_stat(smi_info, incoming_messages);
649
650 /*
651 * Do this before we deliver the message
652 * because delivering the message releases the
653 * lock and something else can mess with the
654 * state.
655 */
656 handle_flags(smi_info);
657
658 deliver_recv_msg(smi_info, msg);
659 }
660 break;
661 }
662
663 case SI_ENABLE_INTERRUPTS1:
664 {
665 unsigned char msg[4];
666
667 /* We got the flags from the SMI, now handle them. */
668 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
669 if (msg[2] != 0) {
670 printk(KERN_WARNING
671 "ipmi_si: Could not enable interrupts"
672 ", failed get, using polled mode.\n");
673 smi_info->si_state = SI_NORMAL;
674 } else {
675 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
676 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
677 msg[2] = (msg[3] |
678 IPMI_BMC_RCV_MSG_INTR |
679 IPMI_BMC_EVT_MSG_INTR);
680 smi_info->handlers->start_transaction(
681 smi_info->si_sm, msg, 3);
682 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
683 }
684 break;
685 }
686
687 case SI_ENABLE_INTERRUPTS2:
688 {
689 unsigned char msg[4];
690
691 /* We got the flags from the SMI, now handle them. */
692 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
693 if (msg[2] != 0) {
694 printk(KERN_WARNING
695 "ipmi_si: Could not enable interrupts"
696 ", failed set, using polled mode.\n");
697 }
698 smi_info->si_state = SI_NORMAL;
699 break;
700 }
701
702 case SI_DISABLE_INTERRUPTS1:
703 {
704 unsigned char msg[4];
705
706 /* We got the flags from the SMI, now handle them. */
707 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708 if (msg[2] != 0) {
709 printk(KERN_WARNING
710 "ipmi_si: Could not disable interrupts"
711 ", failed get.\n");
712 smi_info->si_state = SI_NORMAL;
713 } else {
714 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
715 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
716 msg[2] = (msg[3] &
717 ~(IPMI_BMC_RCV_MSG_INTR |
718 IPMI_BMC_EVT_MSG_INTR));
719 smi_info->handlers->start_transaction(
720 smi_info->si_sm, msg, 3);
721 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
722 }
723 break;
724 }
725
726 case SI_DISABLE_INTERRUPTS2:
727 {
728 unsigned char msg[4];
729
730 /* We got the flags from the SMI, now handle them. */
731 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
732 if (msg[2] != 0) {
733 printk(KERN_WARNING
734 "ipmi_si: Could not disable interrupts"
735 ", failed set.\n");
736 }
737 smi_info->si_state = SI_NORMAL;
738 break;
739 }
740 }
741 }
742
743 /*
744 * Called on timeouts and events. Timeouts should pass the elapsed
745 * time, interrupts should pass in zero. Must be called with
746 * si_lock held and interrupts disabled.
747 */
748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
749 int time)
750 {
751 enum si_sm_result si_sm_result;
752
753 restart:
754 /*
755 * There used to be a loop here that waited a little while
756 * (around 25us) before giving up. That turned out to be
757 * pointless, the minimum delays I was seeing were in the 300us
758 * range, which is far too long to wait in an interrupt. So
759 * we just run until the state machine tells us something
760 * happened or it needs a delay.
761 */
762 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
763 time = 0;
764 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
765 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
766
767 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
768 smi_inc_stat(smi_info, complete_transactions);
769
770 handle_transaction_done(smi_info);
771 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772 } else if (si_sm_result == SI_SM_HOSED) {
773 smi_inc_stat(smi_info, hosed_count);
774
775 /*
776 * Do the before return_hosed_msg, because that
777 * releases the lock.
778 */
779 smi_info->si_state = SI_NORMAL;
780 if (smi_info->curr_msg != NULL) {
781 /*
782 * If we were handling a user message, format
783 * a response to send to the upper layer to
784 * tell it about the error.
785 */
786 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
787 }
788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789 }
790
791 /*
792 * We prefer handling attn over new messages. But don't do
793 * this if there is not yet an upper layer to handle anything.
794 */
795 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
796 unsigned char msg[2];
797
798 smi_inc_stat(smi_info, attentions);
799
800 /*
801 * Got a attn, send down a get message flags to see
802 * what's causing it. It would be better to handle
803 * this in the upper layer, but due to the way
804 * interrupts work with the SMI, that's not really
805 * possible.
806 */
807 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
808 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
809
810 smi_info->handlers->start_transaction(
811 smi_info->si_sm, msg, 2);
812 smi_info->si_state = SI_GETTING_FLAGS;
813 goto restart;
814 }
815
816 /* If we are currently idle, try to start the next message. */
817 if (si_sm_result == SI_SM_IDLE) {
818 smi_inc_stat(smi_info, idles);
819
820 si_sm_result = start_next_msg(smi_info);
821 if (si_sm_result != SI_SM_IDLE)
822 goto restart;
823 }
824
825 if ((si_sm_result == SI_SM_IDLE)
826 && (atomic_read(&smi_info->req_events))) {
827 /*
828 * We are idle and the upper layer requested that I fetch
829 * events, so do so.
830 */
831 atomic_set(&smi_info->req_events, 0);
832
833 smi_info->curr_msg = ipmi_alloc_smi_msg();
834 if (!smi_info->curr_msg)
835 goto out;
836
837 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
838 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
839 smi_info->curr_msg->data_size = 2;
840
841 smi_info->handlers->start_transaction(
842 smi_info->si_sm,
843 smi_info->curr_msg->data,
844 smi_info->curr_msg->data_size);
845 smi_info->si_state = SI_GETTING_EVENTS;
846 goto restart;
847 }
848 out:
849 return si_sm_result;
850 }
851
852 static void sender(void *send_info,
853 struct ipmi_smi_msg *msg,
854 int priority)
855 {
856 struct smi_info *smi_info = send_info;
857 enum si_sm_result result;
858 unsigned long flags;
859 #ifdef DEBUG_TIMING
860 struct timeval t;
861 #endif
862
863 if (atomic_read(&smi_info->stop_operation)) {
864 msg->rsp[0] = msg->data[0] | 4;
865 msg->rsp[1] = msg->data[1];
866 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
867 msg->rsp_size = 3;
868 deliver_recv_msg(smi_info, msg);
869 return;
870 }
871
872 #ifdef DEBUG_TIMING
873 do_gettimeofday(&t);
874 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
875 #endif
876
877 if (smi_info->run_to_completion) {
878 /*
879 * If we are running to completion, then throw it in
880 * the list and run transactions until everything is
881 * clear. Priority doesn't matter here.
882 */
883
884 /*
885 * Run to completion means we are single-threaded, no
886 * need for locks.
887 */
888 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
889
890 result = smi_event_handler(smi_info, 0);
891 while (result != SI_SM_IDLE) {
892 udelay(SI_SHORT_TIMEOUT_USEC);
893 result = smi_event_handler(smi_info,
894 SI_SHORT_TIMEOUT_USEC);
895 }
896 return;
897 }
898
899 spin_lock_irqsave(&smi_info->msg_lock, flags);
900 if (priority > 0)
901 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
902 else
903 list_add_tail(&msg->link, &smi_info->xmit_msgs);
904 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
905
906 spin_lock_irqsave(&smi_info->si_lock, flags);
907 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
908 start_next_msg(smi_info);
909 spin_unlock_irqrestore(&smi_info->si_lock, flags);
910 }
911
912 static void set_run_to_completion(void *send_info, int i_run_to_completion)
913 {
914 struct smi_info *smi_info = send_info;
915 enum si_sm_result result;
916
917 smi_info->run_to_completion = i_run_to_completion;
918 if (i_run_to_completion) {
919 result = smi_event_handler(smi_info, 0);
920 while (result != SI_SM_IDLE) {
921 udelay(SI_SHORT_TIMEOUT_USEC);
922 result = smi_event_handler(smi_info,
923 SI_SHORT_TIMEOUT_USEC);
924 }
925 }
926 }
927
928 static int ipmi_thread(void *data)
929 {
930 struct smi_info *smi_info = data;
931 unsigned long flags;
932 enum si_sm_result smi_result;
933
934 set_user_nice(current, 19);
935 while (!kthread_should_stop()) {
936 spin_lock_irqsave(&(smi_info->si_lock), flags);
937 smi_result = smi_event_handler(smi_info, 0);
938 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
939 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
940 ; /* do nothing */
941 else if (smi_result == SI_SM_CALL_WITH_DELAY)
942 schedule();
943 else
944 schedule_timeout_interruptible(1);
945 }
946 return 0;
947 }
948
949
950 static void poll(void *send_info)
951 {
952 struct smi_info *smi_info = send_info;
953 unsigned long flags;
954
955 /*
956 * Make sure there is some delay in the poll loop so we can
957 * drive time forward and timeout things.
958 */
959 udelay(10);
960 spin_lock_irqsave(&smi_info->si_lock, flags);
961 smi_event_handler(smi_info, 10);
962 spin_unlock_irqrestore(&smi_info->si_lock, flags);
963 }
964
965 static void request_events(void *send_info)
966 {
967 struct smi_info *smi_info = send_info;
968
969 if (atomic_read(&smi_info->stop_operation))
970 return;
971
972 atomic_set(&smi_info->req_events, 1);
973 }
974
975 static int initialized;
976
977 static void smi_timeout(unsigned long data)
978 {
979 struct smi_info *smi_info = (struct smi_info *) data;
980 enum si_sm_result smi_result;
981 unsigned long flags;
982 unsigned long jiffies_now;
983 long time_diff;
984 #ifdef DEBUG_TIMING
985 struct timeval t;
986 #endif
987
988 spin_lock_irqsave(&(smi_info->si_lock), flags);
989 #ifdef DEBUG_TIMING
990 do_gettimeofday(&t);
991 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
992 #endif
993 jiffies_now = jiffies;
994 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
995 * SI_USEC_PER_JIFFY);
996 smi_result = smi_event_handler(smi_info, time_diff);
997
998 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
999
1000 smi_info->last_timeout_jiffies = jiffies_now;
1001
1002 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1003 /* Running with interrupts, only do long timeouts. */
1004 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1005 smi_inc_stat(smi_info, long_timeouts);
1006 goto do_add_timer;
1007 }
1008
1009 /*
1010 * If the state machine asks for a short delay, then shorten
1011 * the timer timeout.
1012 */
1013 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1014 smi_inc_stat(smi_info, short_timeouts);
1015 smi_info->si_timer.expires = jiffies + 1;
1016 } else {
1017 smi_inc_stat(smi_info, long_timeouts);
1018 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1019 }
1020
1021 do_add_timer:
1022 add_timer(&(smi_info->si_timer));
1023 }
1024
1025 static irqreturn_t si_irq_handler(int irq, void *data)
1026 {
1027 struct smi_info *smi_info = data;
1028 unsigned long flags;
1029 #ifdef DEBUG_TIMING
1030 struct timeval t;
1031 #endif
1032
1033 spin_lock_irqsave(&(smi_info->si_lock), flags);
1034
1035 smi_inc_stat(smi_info, interrupts);
1036
1037 #ifdef DEBUG_TIMING
1038 do_gettimeofday(&t);
1039 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1040 #endif
1041 smi_event_handler(smi_info, 0);
1042 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1043 return IRQ_HANDLED;
1044 }
1045
1046 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1047 {
1048 struct smi_info *smi_info = data;
1049 /* We need to clear the IRQ flag for the BT interface. */
1050 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1051 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053 return si_irq_handler(irq, data);
1054 }
1055
1056 static int smi_start_processing(void *send_info,
1057 ipmi_smi_t intf)
1058 {
1059 struct smi_info *new_smi = send_info;
1060 int enable = 0;
1061
1062 new_smi->intf = intf;
1063
1064 /* Try to claim any interrupts. */
1065 if (new_smi->irq_setup)
1066 new_smi->irq_setup(new_smi);
1067
1068 /* Set up the timer that drives the interface. */
1069 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1070 new_smi->last_timeout_jiffies = jiffies;
1071 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1072
1073 /*
1074 * Check if the user forcefully enabled the daemon.
1075 */
1076 if (new_smi->intf_num < num_force_kipmid)
1077 enable = force_kipmid[new_smi->intf_num];
1078 /*
1079 * The BT interface is efficient enough to not need a thread,
1080 * and there is no need for a thread if we have interrupts.
1081 */
1082 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1083 enable = 1;
1084
1085 if (enable) {
1086 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1087 "kipmi%d", new_smi->intf_num);
1088 if (IS_ERR(new_smi->thread)) {
1089 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1090 " kernel thread due to error %ld, only using"
1091 " timers to drive the interface\n",
1092 PTR_ERR(new_smi->thread));
1093 new_smi->thread = NULL;
1094 }
1095 }
1096
1097 return 0;
1098 }
1099
1100 static void set_maintenance_mode(void *send_info, int enable)
1101 {
1102 struct smi_info *smi_info = send_info;
1103
1104 if (!enable)
1105 atomic_set(&smi_info->req_events, 0);
1106 }
1107
1108 static struct ipmi_smi_handlers handlers = {
1109 .owner = THIS_MODULE,
1110 .start_processing = smi_start_processing,
1111 .sender = sender,
1112 .request_events = request_events,
1113 .set_maintenance_mode = set_maintenance_mode,
1114 .set_run_to_completion = set_run_to_completion,
1115 .poll = poll,
1116 };
1117
1118 /*
1119 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1120 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1121 */
1122
1123 static LIST_HEAD(smi_infos);
1124 static DEFINE_MUTEX(smi_infos_lock);
1125 static int smi_num; /* Used to sequence the SMIs */
1126
1127 #define DEFAULT_REGSPACING 1
1128 #define DEFAULT_REGSIZE 1
1129
1130 static int si_trydefaults = 1;
1131 static char *si_type[SI_MAX_PARMS];
1132 #define MAX_SI_TYPE_STR 30
1133 static char si_type_str[MAX_SI_TYPE_STR];
1134 static unsigned long addrs[SI_MAX_PARMS];
1135 static unsigned int num_addrs;
1136 static unsigned int ports[SI_MAX_PARMS];
1137 static unsigned int num_ports;
1138 static int irqs[SI_MAX_PARMS];
1139 static unsigned int num_irqs;
1140 static int regspacings[SI_MAX_PARMS];
1141 static unsigned int num_regspacings;
1142 static int regsizes[SI_MAX_PARMS];
1143 static unsigned int num_regsizes;
1144 static int regshifts[SI_MAX_PARMS];
1145 static unsigned int num_regshifts;
1146 static int slave_addrs[SI_MAX_PARMS];
1147 static unsigned int num_slave_addrs;
1148
1149 #define IPMI_IO_ADDR_SPACE 0
1150 #define IPMI_MEM_ADDR_SPACE 1
1151 static char *addr_space_to_str[] = { "i/o", "mem" };
1152
1153 static int hotmod_handler(const char *val, struct kernel_param *kp);
1154
1155 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1156 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1157 " Documentation/IPMI.txt in the kernel sources for the"
1158 " gory details.");
1159
1160 module_param_named(trydefaults, si_trydefaults, bool, 0);
1161 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1162 " default scan of the KCS and SMIC interface at the standard"
1163 " address");
1164 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1165 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1166 " interface separated by commas. The types are 'kcs',"
1167 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1168 " the first interface to kcs and the second to bt");
1169 module_param_array(addrs, ulong, &num_addrs, 0);
1170 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1171 " addresses separated by commas. Only use if an interface"
1172 " is in memory. Otherwise, set it to zero or leave"
1173 " it blank.");
1174 module_param_array(ports, uint, &num_ports, 0);
1175 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1176 " addresses separated by commas. Only use if an interface"
1177 " is a port. Otherwise, set it to zero or leave"
1178 " it blank.");
1179 module_param_array(irqs, int, &num_irqs, 0);
1180 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1181 " addresses separated by commas. Only use if an interface"
1182 " has an interrupt. Otherwise, set it to zero or leave"
1183 " it blank.");
1184 module_param_array(regspacings, int, &num_regspacings, 0);
1185 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1186 " and each successive register used by the interface. For"
1187 " instance, if the start address is 0xca2 and the spacing"
1188 " is 2, then the second address is at 0xca4. Defaults"
1189 " to 1.");
1190 module_param_array(regsizes, int, &num_regsizes, 0);
1191 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1192 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1194 " the 8-bit IPMI register has to be read from a larger"
1195 " register.");
1196 module_param_array(regshifts, int, &num_regshifts, 0);
1197 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1198 " IPMI register, in bits. For instance, if the data"
1199 " is read from a 32-bit word and the IPMI data is in"
1200 " bit 8-15, then the shift would be 8");
1201 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1202 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1203 " the controller. Normally this is 0x20, but can be"
1204 " overridden by this parm. This is an array indexed"
1205 " by interface number.");
1206 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1207 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1208 " disabled(0). Normally the IPMI driver auto-detects"
1209 " this, but the value may be overridden by this parm.");
1210 module_param(unload_when_empty, int, 0);
1211 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1212 " specified or found, default is 1. Setting to 0"
1213 " is useful for hot add of devices using hotmod.");
1214
1215
1216 static void std_irq_cleanup(struct smi_info *info)
1217 {
1218 if (info->si_type == SI_BT)
1219 /* Disable the interrupt in the BT interface. */
1220 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1221 free_irq(info->irq, info);
1222 }
1223
1224 static int std_irq_setup(struct smi_info *info)
1225 {
1226 int rv;
1227
1228 if (!info->irq)
1229 return 0;
1230
1231 if (info->si_type == SI_BT) {
1232 rv = request_irq(info->irq,
1233 si_bt_irq_handler,
1234 IRQF_SHARED | IRQF_DISABLED,
1235 DEVICE_NAME,
1236 info);
1237 if (!rv)
1238 /* Enable the interrupt in the BT interface. */
1239 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1240 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241 } else
1242 rv = request_irq(info->irq,
1243 si_irq_handler,
1244 IRQF_SHARED | IRQF_DISABLED,
1245 DEVICE_NAME,
1246 info);
1247 if (rv) {
1248 printk(KERN_WARNING
1249 "ipmi_si: %s unable to claim interrupt %d,"
1250 " running polled\n",
1251 DEVICE_NAME, info->irq);
1252 info->irq = 0;
1253 } else {
1254 info->irq_cleanup = std_irq_cleanup;
1255 printk(" Using irq %d\n", info->irq);
1256 }
1257
1258 return rv;
1259 }
1260
1261 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1262 {
1263 unsigned int addr = io->addr_data;
1264
1265 return inb(addr + (offset * io->regspacing));
1266 }
1267
1268 static void port_outb(struct si_sm_io *io, unsigned int offset,
1269 unsigned char b)
1270 {
1271 unsigned int addr = io->addr_data;
1272
1273 outb(b, addr + (offset * io->regspacing));
1274 }
1275
1276 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1277 {
1278 unsigned int addr = io->addr_data;
1279
1280 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1281 }
1282
1283 static void port_outw(struct si_sm_io *io, unsigned int offset,
1284 unsigned char b)
1285 {
1286 unsigned int addr = io->addr_data;
1287
1288 outw(b << io->regshift, addr + (offset * io->regspacing));
1289 }
1290
1291 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1292 {
1293 unsigned int addr = io->addr_data;
1294
1295 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1296 }
1297
1298 static void port_outl(struct si_sm_io *io, unsigned int offset,
1299 unsigned char b)
1300 {
1301 unsigned int addr = io->addr_data;
1302
1303 outl(b << io->regshift, addr+(offset * io->regspacing));
1304 }
1305
1306 static void port_cleanup(struct smi_info *info)
1307 {
1308 unsigned int addr = info->io.addr_data;
1309 int idx;
1310
1311 if (addr) {
1312 for (idx = 0; idx < info->io_size; idx++)
1313 release_region(addr + idx * info->io.regspacing,
1314 info->io.regsize);
1315 }
1316 }
1317
1318 static int port_setup(struct smi_info *info)
1319 {
1320 unsigned int addr = info->io.addr_data;
1321 int idx;
1322
1323 if (!addr)
1324 return -ENODEV;
1325
1326 info->io_cleanup = port_cleanup;
1327
1328 /*
1329 * Figure out the actual inb/inw/inl/etc routine to use based
1330 * upon the register size.
1331 */
1332 switch (info->io.regsize) {
1333 case 1:
1334 info->io.inputb = port_inb;
1335 info->io.outputb = port_outb;
1336 break;
1337 case 2:
1338 info->io.inputb = port_inw;
1339 info->io.outputb = port_outw;
1340 break;
1341 case 4:
1342 info->io.inputb = port_inl;
1343 info->io.outputb = port_outl;
1344 break;
1345 default:
1346 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1347 info->io.regsize);
1348 return -EINVAL;
1349 }
1350
1351 /*
1352 * Some BIOSes reserve disjoint I/O regions in their ACPI
1353 * tables. This causes problems when trying to register the
1354 * entire I/O region. Therefore we must register each I/O
1355 * port separately.
1356 */
1357 for (idx = 0; idx < info->io_size; idx++) {
1358 if (request_region(addr + idx * info->io.regspacing,
1359 info->io.regsize, DEVICE_NAME) == NULL) {
1360 /* Undo allocations */
1361 while (idx--) {
1362 release_region(addr + idx * info->io.regspacing,
1363 info->io.regsize);
1364 }
1365 return -EIO;
1366 }
1367 }
1368 return 0;
1369 }
1370
1371 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1372 {
1373 return readb((io->addr)+(offset * io->regspacing));
1374 }
1375
1376 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1377 unsigned char b)
1378 {
1379 writeb(b, (io->addr)+(offset * io->regspacing));
1380 }
1381
1382 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1383 {
1384 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1385 & 0xff;
1386 }
1387
1388 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1389 unsigned char b)
1390 {
1391 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1392 }
1393
1394 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1395 {
1396 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1397 & 0xff;
1398 }
1399
1400 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1401 unsigned char b)
1402 {
1403 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1404 }
1405
1406 #ifdef readq
1407 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1408 {
1409 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1410 & 0xff;
1411 }
1412
1413 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1414 unsigned char b)
1415 {
1416 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1417 }
1418 #endif
1419
1420 static void mem_cleanup(struct smi_info *info)
1421 {
1422 unsigned long addr = info->io.addr_data;
1423 int mapsize;
1424
1425 if (info->io.addr) {
1426 iounmap(info->io.addr);
1427
1428 mapsize = ((info->io_size * info->io.regspacing)
1429 - (info->io.regspacing - info->io.regsize));
1430
1431 release_mem_region(addr, mapsize);
1432 }
1433 }
1434
1435 static int mem_setup(struct smi_info *info)
1436 {
1437 unsigned long addr = info->io.addr_data;
1438 int mapsize;
1439
1440 if (!addr)
1441 return -ENODEV;
1442
1443 info->io_cleanup = mem_cleanup;
1444
1445 /*
1446 * Figure out the actual readb/readw/readl/etc routine to use based
1447 * upon the register size.
1448 */
1449 switch (info->io.regsize) {
1450 case 1:
1451 info->io.inputb = intf_mem_inb;
1452 info->io.outputb = intf_mem_outb;
1453 break;
1454 case 2:
1455 info->io.inputb = intf_mem_inw;
1456 info->io.outputb = intf_mem_outw;
1457 break;
1458 case 4:
1459 info->io.inputb = intf_mem_inl;
1460 info->io.outputb = intf_mem_outl;
1461 break;
1462 #ifdef readq
1463 case 8:
1464 info->io.inputb = mem_inq;
1465 info->io.outputb = mem_outq;
1466 break;
1467 #endif
1468 default:
1469 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1470 info->io.regsize);
1471 return -EINVAL;
1472 }
1473
1474 /*
1475 * Calculate the total amount of memory to claim. This is an
1476 * unusual looking calculation, but it avoids claiming any
1477 * more memory than it has to. It will claim everything
1478 * between the first address to the end of the last full
1479 * register.
1480 */
1481 mapsize = ((info->io_size * info->io.regspacing)
1482 - (info->io.regspacing - info->io.regsize));
1483
1484 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1485 return -EIO;
1486
1487 info->io.addr = ioremap(addr, mapsize);
1488 if (info->io.addr == NULL) {
1489 release_mem_region(addr, mapsize);
1490 return -EIO;
1491 }
1492 return 0;
1493 }
1494
1495 /*
1496 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1497 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1498 * Options are:
1499 * rsp=<regspacing>
1500 * rsi=<regsize>
1501 * rsh=<regshift>
1502 * irq=<irq>
1503 * ipmb=<ipmb addr>
1504 */
1505 enum hotmod_op { HM_ADD, HM_REMOVE };
1506 struct hotmod_vals {
1507 char *name;
1508 int val;
1509 };
1510 static struct hotmod_vals hotmod_ops[] = {
1511 { "add", HM_ADD },
1512 { "remove", HM_REMOVE },
1513 { NULL }
1514 };
1515 static struct hotmod_vals hotmod_si[] = {
1516 { "kcs", SI_KCS },
1517 { "smic", SI_SMIC },
1518 { "bt", SI_BT },
1519 { NULL }
1520 };
1521 static struct hotmod_vals hotmod_as[] = {
1522 { "mem", IPMI_MEM_ADDR_SPACE },
1523 { "i/o", IPMI_IO_ADDR_SPACE },
1524 { NULL }
1525 };
1526
1527 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1528 {
1529 char *s;
1530 int i;
1531
1532 s = strchr(*curr, ',');
1533 if (!s) {
1534 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1535 return -EINVAL;
1536 }
1537 *s = '\0';
1538 s++;
1539 for (i = 0; hotmod_ops[i].name; i++) {
1540 if (strcmp(*curr, v[i].name) == 0) {
1541 *val = v[i].val;
1542 *curr = s;
1543 return 0;
1544 }
1545 }
1546
1547 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1548 return -EINVAL;
1549 }
1550
1551 static int check_hotmod_int_op(const char *curr, const char *option,
1552 const char *name, int *val)
1553 {
1554 char *n;
1555
1556 if (strcmp(curr, name) == 0) {
1557 if (!option) {
1558 printk(KERN_WARNING PFX
1559 "No option given for '%s'\n",
1560 curr);
1561 return -EINVAL;
1562 }
1563 *val = simple_strtoul(option, &n, 0);
1564 if ((*n != '\0') || (*option == '\0')) {
1565 printk(KERN_WARNING PFX
1566 "Bad option given for '%s'\n",
1567 curr);
1568 return -EINVAL;
1569 }
1570 return 1;
1571 }
1572 return 0;
1573 }
1574
1575 static int hotmod_handler(const char *val, struct kernel_param *kp)
1576 {
1577 char *str = kstrdup(val, GFP_KERNEL);
1578 int rv;
1579 char *next, *curr, *s, *n, *o;
1580 enum hotmod_op op;
1581 enum si_type si_type;
1582 int addr_space;
1583 unsigned long addr;
1584 int regspacing;
1585 int regsize;
1586 int regshift;
1587 int irq;
1588 int ipmb;
1589 int ival;
1590 int len;
1591 struct smi_info *info;
1592
1593 if (!str)
1594 return -ENOMEM;
1595
1596 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1597 len = strlen(str);
1598 ival = len - 1;
1599 while ((ival >= 0) && isspace(str[ival])) {
1600 str[ival] = '\0';
1601 ival--;
1602 }
1603
1604 for (curr = str; curr; curr = next) {
1605 regspacing = 1;
1606 regsize = 1;
1607 regshift = 0;
1608 irq = 0;
1609 ipmb = 0x20;
1610
1611 next = strchr(curr, ':');
1612 if (next) {
1613 *next = '\0';
1614 next++;
1615 }
1616
1617 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1618 if (rv)
1619 break;
1620 op = ival;
1621
1622 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1623 if (rv)
1624 break;
1625 si_type = ival;
1626
1627 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1628 if (rv)
1629 break;
1630
1631 s = strchr(curr, ',');
1632 if (s) {
1633 *s = '\0';
1634 s++;
1635 }
1636 addr = simple_strtoul(curr, &n, 0);
1637 if ((*n != '\0') || (*curr == '\0')) {
1638 printk(KERN_WARNING PFX "Invalid hotmod address"
1639 " '%s'\n", curr);
1640 break;
1641 }
1642
1643 while (s) {
1644 curr = s;
1645 s = strchr(curr, ',');
1646 if (s) {
1647 *s = '\0';
1648 s++;
1649 }
1650 o = strchr(curr, '=');
1651 if (o) {
1652 *o = '\0';
1653 o++;
1654 }
1655 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1656 if (rv < 0)
1657 goto out;
1658 else if (rv)
1659 continue;
1660 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1661 if (rv < 0)
1662 goto out;
1663 else if (rv)
1664 continue;
1665 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1666 if (rv < 0)
1667 goto out;
1668 else if (rv)
1669 continue;
1670 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1671 if (rv < 0)
1672 goto out;
1673 else if (rv)
1674 continue;
1675 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1676 if (rv < 0)
1677 goto out;
1678 else if (rv)
1679 continue;
1680
1681 rv = -EINVAL;
1682 printk(KERN_WARNING PFX
1683 "Invalid hotmod option '%s'\n",
1684 curr);
1685 goto out;
1686 }
1687
1688 if (op == HM_ADD) {
1689 info = kzalloc(sizeof(*info), GFP_KERNEL);
1690 if (!info) {
1691 rv = -ENOMEM;
1692 goto out;
1693 }
1694
1695 info->addr_source = "hotmod";
1696 info->si_type = si_type;
1697 info->io.addr_data = addr;
1698 info->io.addr_type = addr_space;
1699 if (addr_space == IPMI_MEM_ADDR_SPACE)
1700 info->io_setup = mem_setup;
1701 else
1702 info->io_setup = port_setup;
1703
1704 info->io.addr = NULL;
1705 info->io.regspacing = regspacing;
1706 if (!info->io.regspacing)
1707 info->io.regspacing = DEFAULT_REGSPACING;
1708 info->io.regsize = regsize;
1709 if (!info->io.regsize)
1710 info->io.regsize = DEFAULT_REGSPACING;
1711 info->io.regshift = regshift;
1712 info->irq = irq;
1713 if (info->irq)
1714 info->irq_setup = std_irq_setup;
1715 info->slave_addr = ipmb;
1716
1717 try_smi_init(info);
1718 } else {
1719 /* remove */
1720 struct smi_info *e, *tmp_e;
1721
1722 mutex_lock(&smi_infos_lock);
1723 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1724 if (e->io.addr_type != addr_space)
1725 continue;
1726 if (e->si_type != si_type)
1727 continue;
1728 if (e->io.addr_data == addr)
1729 cleanup_one_si(e);
1730 }
1731 mutex_unlock(&smi_infos_lock);
1732 }
1733 }
1734 rv = len;
1735 out:
1736 kfree(str);
1737 return rv;
1738 }
1739
1740 static __devinit void hardcode_find_bmc(void)
1741 {
1742 int i;
1743 struct smi_info *info;
1744
1745 for (i = 0; i < SI_MAX_PARMS; i++) {
1746 if (!ports[i] && !addrs[i])
1747 continue;
1748
1749 info = kzalloc(sizeof(*info), GFP_KERNEL);
1750 if (!info)
1751 return;
1752
1753 info->addr_source = "hardcoded";
1754
1755 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1756 info->si_type = SI_KCS;
1757 } else if (strcmp(si_type[i], "smic") == 0) {
1758 info->si_type = SI_SMIC;
1759 } else if (strcmp(si_type[i], "bt") == 0) {
1760 info->si_type = SI_BT;
1761 } else {
1762 printk(KERN_WARNING
1763 "ipmi_si: Interface type specified "
1764 "for interface %d, was invalid: %s\n",
1765 i, si_type[i]);
1766 kfree(info);
1767 continue;
1768 }
1769
1770 if (ports[i]) {
1771 /* An I/O port */
1772 info->io_setup = port_setup;
1773 info->io.addr_data = ports[i];
1774 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1775 } else if (addrs[i]) {
1776 /* A memory port */
1777 info->io_setup = mem_setup;
1778 info->io.addr_data = addrs[i];
1779 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1780 } else {
1781 printk(KERN_WARNING
1782 "ipmi_si: Interface type specified "
1783 "for interface %d, "
1784 "but port and address were not set or "
1785 "set to zero.\n", i);
1786 kfree(info);
1787 continue;
1788 }
1789
1790 info->io.addr = NULL;
1791 info->io.regspacing = regspacings[i];
1792 if (!info->io.regspacing)
1793 info->io.regspacing = DEFAULT_REGSPACING;
1794 info->io.regsize = regsizes[i];
1795 if (!info->io.regsize)
1796 info->io.regsize = DEFAULT_REGSPACING;
1797 info->io.regshift = regshifts[i];
1798 info->irq = irqs[i];
1799 if (info->irq)
1800 info->irq_setup = std_irq_setup;
1801
1802 try_smi_init(info);
1803 }
1804 }
1805
1806 #ifdef CONFIG_ACPI
1807
1808 #include <linux/acpi.h>
1809
1810 /*
1811 * Once we get an ACPI failure, we don't try any more, because we go
1812 * through the tables sequentially. Once we don't find a table, there
1813 * are no more.
1814 */
1815 static int acpi_failure;
1816
1817 /* For GPE-type interrupts. */
1818 static u32 ipmi_acpi_gpe(void *context)
1819 {
1820 struct smi_info *smi_info = context;
1821 unsigned long flags;
1822 #ifdef DEBUG_TIMING
1823 struct timeval t;
1824 #endif
1825
1826 spin_lock_irqsave(&(smi_info->si_lock), flags);
1827
1828 smi_inc_stat(smi_info, interrupts);
1829
1830 #ifdef DEBUG_TIMING
1831 do_gettimeofday(&t);
1832 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1833 #endif
1834 smi_event_handler(smi_info, 0);
1835 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1836
1837 return ACPI_INTERRUPT_HANDLED;
1838 }
1839
1840 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1841 {
1842 if (!info->irq)
1843 return;
1844
1845 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1846 }
1847
1848 static int acpi_gpe_irq_setup(struct smi_info *info)
1849 {
1850 acpi_status status;
1851
1852 if (!info->irq)
1853 return 0;
1854
1855 /* FIXME - is level triggered right? */
1856 status = acpi_install_gpe_handler(NULL,
1857 info->irq,
1858 ACPI_GPE_LEVEL_TRIGGERED,
1859 &ipmi_acpi_gpe,
1860 info);
1861 if (status != AE_OK) {
1862 printk(KERN_WARNING
1863 "ipmi_si: %s unable to claim ACPI GPE %d,"
1864 " running polled\n",
1865 DEVICE_NAME, info->irq);
1866 info->irq = 0;
1867 return -EINVAL;
1868 } else {
1869 info->irq_cleanup = acpi_gpe_irq_cleanup;
1870 printk(" Using ACPI GPE %d\n", info->irq);
1871 return 0;
1872 }
1873 }
1874
1875 /*
1876 * Defined at
1877 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1878 * Docs/TechPapers/IA64/hpspmi.pdf
1879 */
1880 struct SPMITable {
1881 s8 Signature[4];
1882 u32 Length;
1883 u8 Revision;
1884 u8 Checksum;
1885 s8 OEMID[6];
1886 s8 OEMTableID[8];
1887 s8 OEMRevision[4];
1888 s8 CreatorID[4];
1889 s8 CreatorRevision[4];
1890 u8 InterfaceType;
1891 u8 IPMIlegacy;
1892 s16 SpecificationRevision;
1893
1894 /*
1895 * Bit 0 - SCI interrupt supported
1896 * Bit 1 - I/O APIC/SAPIC
1897 */
1898 u8 InterruptType;
1899
1900 /*
1901 * If bit 0 of InterruptType is set, then this is the SCI
1902 * interrupt in the GPEx_STS register.
1903 */
1904 u8 GPE;
1905
1906 s16 Reserved;
1907
1908 /*
1909 * If bit 1 of InterruptType is set, then this is the I/O
1910 * APIC/SAPIC interrupt.
1911 */
1912 u32 GlobalSystemInterrupt;
1913
1914 /* The actual register address. */
1915 struct acpi_generic_address addr;
1916
1917 u8 UID[4];
1918
1919 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1920 };
1921
1922 static __devinit int try_init_acpi(struct SPMITable *spmi)
1923 {
1924 struct smi_info *info;
1925 u8 addr_space;
1926
1927 if (spmi->IPMIlegacy != 1) {
1928 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1929 return -ENODEV;
1930 }
1931
1932 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1933 addr_space = IPMI_MEM_ADDR_SPACE;
1934 else
1935 addr_space = IPMI_IO_ADDR_SPACE;
1936
1937 info = kzalloc(sizeof(*info), GFP_KERNEL);
1938 if (!info) {
1939 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1940 return -ENOMEM;
1941 }
1942
1943 info->addr_source = "ACPI";
1944
1945 /* Figure out the interface type. */
1946 switch (spmi->InterfaceType) {
1947 case 1: /* KCS */
1948 info->si_type = SI_KCS;
1949 break;
1950 case 2: /* SMIC */
1951 info->si_type = SI_SMIC;
1952 break;
1953 case 3: /* BT */
1954 info->si_type = SI_BT;
1955 break;
1956 default:
1957 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958 spmi->InterfaceType);
1959 kfree(info);
1960 return -EIO;
1961 }
1962
1963 if (spmi->InterruptType & 1) {
1964 /* We've got a GPE interrupt. */
1965 info->irq = spmi->GPE;
1966 info->irq_setup = acpi_gpe_irq_setup;
1967 } else if (spmi->InterruptType & 2) {
1968 /* We've got an APIC/SAPIC interrupt. */
1969 info->irq = spmi->GlobalSystemInterrupt;
1970 info->irq_setup = std_irq_setup;
1971 } else {
1972 /* Use the default interrupt setting. */
1973 info->irq = 0;
1974 info->irq_setup = NULL;
1975 }
1976
1977 if (spmi->addr.bit_width) {
1978 /* A (hopefully) properly formed register bit width. */
1979 info->io.regspacing = spmi->addr.bit_width / 8;
1980 } else {
1981 info->io.regspacing = DEFAULT_REGSPACING;
1982 }
1983 info->io.regsize = info->io.regspacing;
1984 info->io.regshift = spmi->addr.bit_offset;
1985
1986 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1987 info->io_setup = mem_setup;
1988 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1989 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1990 info->io_setup = port_setup;
1991 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1992 } else {
1993 kfree(info);
1994 printk(KERN_WARNING
1995 "ipmi_si: Unknown ACPI I/O Address type\n");
1996 return -EIO;
1997 }
1998 info->io.addr_data = spmi->addr.address;
1999
2000 try_smi_init(info);
2001
2002 return 0;
2003 }
2004
2005 static __devinit void acpi_find_bmc(void)
2006 {
2007 acpi_status status;
2008 struct SPMITable *spmi;
2009 int i;
2010
2011 if (acpi_disabled)
2012 return;
2013
2014 if (acpi_failure)
2015 return;
2016
2017 for (i = 0; ; i++) {
2018 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2019 (struct acpi_table_header **)&spmi);
2020 if (status != AE_OK)
2021 return;
2022
2023 try_init_acpi(spmi);
2024 }
2025 }
2026 #endif
2027
2028 #ifdef CONFIG_DMI
2029 struct dmi_ipmi_data {
2030 u8 type;
2031 u8 addr_space;
2032 unsigned long base_addr;
2033 u8 irq;
2034 u8 offset;
2035 u8 slave_addr;
2036 };
2037
2038 static int __devinit decode_dmi(const struct dmi_header *dm,
2039 struct dmi_ipmi_data *dmi)
2040 {
2041 const u8 *data = (const u8 *)dm;
2042 unsigned long base_addr;
2043 u8 reg_spacing;
2044 u8 len = dm->length;
2045
2046 dmi->type = data[4];
2047
2048 memcpy(&base_addr, data+8, sizeof(unsigned long));
2049 if (len >= 0x11) {
2050 if (base_addr & 1) {
2051 /* I/O */
2052 base_addr &= 0xFFFE;
2053 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2054 } else
2055 /* Memory */
2056 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2057
2058 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2059 is odd. */
2060 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2061
2062 dmi->irq = data[0x11];
2063
2064 /* The top two bits of byte 0x10 hold the register spacing. */
2065 reg_spacing = (data[0x10] & 0xC0) >> 6;
2066 switch (reg_spacing) {
2067 case 0x00: /* Byte boundaries */
2068 dmi->offset = 1;
2069 break;
2070 case 0x01: /* 32-bit boundaries */
2071 dmi->offset = 4;
2072 break;
2073 case 0x02: /* 16-byte boundaries */
2074 dmi->offset = 16;
2075 break;
2076 default:
2077 /* Some other interface, just ignore it. */
2078 return -EIO;
2079 }
2080 } else {
2081 /* Old DMI spec. */
2082 /*
2083 * Note that technically, the lower bit of the base
2084 * address should be 1 if the address is I/O and 0 if
2085 * the address is in memory. So many systems get that
2086 * wrong (and all that I have seen are I/O) so we just
2087 * ignore that bit and assume I/O. Systems that use
2088 * memory should use the newer spec, anyway.
2089 */
2090 dmi->base_addr = base_addr & 0xfffe;
2091 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2092 dmi->offset = 1;
2093 }
2094
2095 dmi->slave_addr = data[6];
2096
2097 return 0;
2098 }
2099
2100 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2101 {
2102 struct smi_info *info;
2103
2104 info = kzalloc(sizeof(*info), GFP_KERNEL);
2105 if (!info) {
2106 printk(KERN_ERR
2107 "ipmi_si: Could not allocate SI data\n");
2108 return;
2109 }
2110
2111 info->addr_source = "SMBIOS";
2112
2113 switch (ipmi_data->type) {
2114 case 0x01: /* KCS */
2115 info->si_type = SI_KCS;
2116 break;
2117 case 0x02: /* SMIC */
2118 info->si_type = SI_SMIC;
2119 break;
2120 case 0x03: /* BT */
2121 info->si_type = SI_BT;
2122 break;
2123 default:
2124 kfree(info);
2125 return;
2126 }
2127
2128 switch (ipmi_data->addr_space) {
2129 case IPMI_MEM_ADDR_SPACE:
2130 info->io_setup = mem_setup;
2131 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2132 break;
2133
2134 case IPMI_IO_ADDR_SPACE:
2135 info->io_setup = port_setup;
2136 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137 break;
2138
2139 default:
2140 kfree(info);
2141 printk(KERN_WARNING
2142 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143 ipmi_data->addr_space);
2144 return;
2145 }
2146 info->io.addr_data = ipmi_data->base_addr;
2147
2148 info->io.regspacing = ipmi_data->offset;
2149 if (!info->io.regspacing)
2150 info->io.regspacing = DEFAULT_REGSPACING;
2151 info->io.regsize = DEFAULT_REGSPACING;
2152 info->io.regshift = 0;
2153
2154 info->slave_addr = ipmi_data->slave_addr;
2155
2156 info->irq = ipmi_data->irq;
2157 if (info->irq)
2158 info->irq_setup = std_irq_setup;
2159
2160 try_smi_init(info);
2161 }
2162
2163 static void __devinit dmi_find_bmc(void)
2164 {
2165 const struct dmi_device *dev = NULL;
2166 struct dmi_ipmi_data data;
2167 int rv;
2168
2169 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2170 memset(&data, 0, sizeof(data));
2171 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2172 &data);
2173 if (!rv)
2174 try_init_dmi(&data);
2175 }
2176 }
2177 #endif /* CONFIG_DMI */
2178
2179 #ifdef CONFIG_PCI
2180
2181 #define PCI_ERMC_CLASSCODE 0x0C0700
2182 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2183 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2184 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2185 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2186 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2187
2188 #define PCI_HP_VENDOR_ID 0x103C
2189 #define PCI_MMC_DEVICE_ID 0x121A
2190 #define PCI_MMC_ADDR_CW 0x10
2191
2192 static void ipmi_pci_cleanup(struct smi_info *info)
2193 {
2194 struct pci_dev *pdev = info->addr_source_data;
2195
2196 pci_disable_device(pdev);
2197 }
2198
2199 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2200 const struct pci_device_id *ent)
2201 {
2202 int rv;
2203 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2204 struct smi_info *info;
2205 int first_reg_offset = 0;
2206
2207 info = kzalloc(sizeof(*info), GFP_KERNEL);
2208 if (!info)
2209 return -ENOMEM;
2210
2211 info->addr_source = "PCI";
2212
2213 switch (class_type) {
2214 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2215 info->si_type = SI_SMIC;
2216 break;
2217
2218 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2219 info->si_type = SI_KCS;
2220 break;
2221
2222 case PCI_ERMC_CLASSCODE_TYPE_BT:
2223 info->si_type = SI_BT;
2224 break;
2225
2226 default:
2227 kfree(info);
2228 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2229 pci_name(pdev), class_type);
2230 return -ENOMEM;
2231 }
2232
2233 rv = pci_enable_device(pdev);
2234 if (rv) {
2235 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2236 pci_name(pdev));
2237 kfree(info);
2238 return rv;
2239 }
2240
2241 info->addr_source_cleanup = ipmi_pci_cleanup;
2242 info->addr_source_data = pdev;
2243
2244 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2245 first_reg_offset = 1;
2246
2247 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2248 info->io_setup = port_setup;
2249 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2250 } else {
2251 info->io_setup = mem_setup;
2252 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2253 }
2254 info->io.addr_data = pci_resource_start(pdev, 0);
2255
2256 info->io.regspacing = DEFAULT_REGSPACING;
2257 info->io.regsize = DEFAULT_REGSPACING;
2258 info->io.regshift = 0;
2259
2260 info->irq = pdev->irq;
2261 if (info->irq)
2262 info->irq_setup = std_irq_setup;
2263
2264 info->dev = &pdev->dev;
2265 pci_set_drvdata(pdev, info);
2266
2267 return try_smi_init(info);
2268 }
2269
2270 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2271 {
2272 struct smi_info *info = pci_get_drvdata(pdev);
2273 cleanup_one_si(info);
2274 }
2275
2276 #ifdef CONFIG_PM
2277 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2278 {
2279 return 0;
2280 }
2281
2282 static int ipmi_pci_resume(struct pci_dev *pdev)
2283 {
2284 return 0;
2285 }
2286 #endif
2287
2288 static struct pci_device_id ipmi_pci_devices[] = {
2289 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2290 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2291 { 0, }
2292 };
2293 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2294
2295 static struct pci_driver ipmi_pci_driver = {
2296 .name = DEVICE_NAME,
2297 .id_table = ipmi_pci_devices,
2298 .probe = ipmi_pci_probe,
2299 .remove = __devexit_p(ipmi_pci_remove),
2300 #ifdef CONFIG_PM
2301 .suspend = ipmi_pci_suspend,
2302 .resume = ipmi_pci_resume,
2303 #endif
2304 };
2305 #endif /* CONFIG_PCI */
2306
2307
2308 #ifdef CONFIG_PPC_OF
2309 static int __devinit ipmi_of_probe(struct of_device *dev,
2310 const struct of_device_id *match)
2311 {
2312 struct smi_info *info;
2313 struct resource resource;
2314 const int *regsize, *regspacing, *regshift;
2315 struct device_node *np = dev->node;
2316 int ret;
2317 int proplen;
2318
2319 dev_info(&dev->dev, PFX "probing via device tree\n");
2320
2321 ret = of_address_to_resource(np, 0, &resource);
2322 if (ret) {
2323 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2324 return ret;
2325 }
2326
2327 regsize = of_get_property(np, "reg-size", &proplen);
2328 if (regsize && proplen != 4) {
2329 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2330 return -EINVAL;
2331 }
2332
2333 regspacing = of_get_property(np, "reg-spacing", &proplen);
2334 if (regspacing && proplen != 4) {
2335 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2336 return -EINVAL;
2337 }
2338
2339 regshift = of_get_property(np, "reg-shift", &proplen);
2340 if (regshift && proplen != 4) {
2341 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2342 return -EINVAL;
2343 }
2344
2345 info = kzalloc(sizeof(*info), GFP_KERNEL);
2346
2347 if (!info) {
2348 dev_err(&dev->dev,
2349 PFX "could not allocate memory for OF probe\n");
2350 return -ENOMEM;
2351 }
2352
2353 info->si_type = (enum si_type) match->data;
2354 info->addr_source = "device-tree";
2355 info->irq_setup = std_irq_setup;
2356
2357 if (resource.flags & IORESOURCE_IO) {
2358 info->io_setup = port_setup;
2359 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2360 } else {
2361 info->io_setup = mem_setup;
2362 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2363 }
2364
2365 info->io.addr_data = resource.start;
2366
2367 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2368 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2369 info->io.regshift = regshift ? *regshift : 0;
2370
2371 info->irq = irq_of_parse_and_map(dev->node, 0);
2372 info->dev = &dev->dev;
2373
2374 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2375 info->io.addr_data, info->io.regsize, info->io.regspacing,
2376 info->irq);
2377
2378 dev->dev.driver_data = (void *) info;
2379
2380 return try_smi_init(info);
2381 }
2382
2383 static int __devexit ipmi_of_remove(struct of_device *dev)
2384 {
2385 cleanup_one_si(dev->dev.driver_data);
2386 return 0;
2387 }
2388
2389 static struct of_device_id ipmi_match[] =
2390 {
2391 { .type = "ipmi", .compatible = "ipmi-kcs",
2392 .data = (void *)(unsigned long) SI_KCS },
2393 { .type = "ipmi", .compatible = "ipmi-smic",
2394 .data = (void *)(unsigned long) SI_SMIC },
2395 { .type = "ipmi", .compatible = "ipmi-bt",
2396 .data = (void *)(unsigned long) SI_BT },
2397 {},
2398 };
2399
2400 static struct of_platform_driver ipmi_of_platform_driver = {
2401 .name = "ipmi",
2402 .match_table = ipmi_match,
2403 .probe = ipmi_of_probe,
2404 .remove = __devexit_p(ipmi_of_remove),
2405 };
2406 #endif /* CONFIG_PPC_OF */
2407
2408
2409 static int try_get_dev_id(struct smi_info *smi_info)
2410 {
2411 unsigned char msg[2];
2412 unsigned char *resp;
2413 unsigned long resp_len;
2414 enum si_sm_result smi_result;
2415 int rv = 0;
2416
2417 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2418 if (!resp)
2419 return -ENOMEM;
2420
2421 /*
2422 * Do a Get Device ID command, since it comes back with some
2423 * useful info.
2424 */
2425 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2426 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2427 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2428
2429 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2430 for (;;) {
2431 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2432 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2433 schedule_timeout_uninterruptible(1);
2434 smi_result = smi_info->handlers->event(
2435 smi_info->si_sm, 100);
2436 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2437 smi_result = smi_info->handlers->event(
2438 smi_info->si_sm, 0);
2439 } else
2440 break;
2441 }
2442 if (smi_result == SI_SM_HOSED) {
2443 /*
2444 * We couldn't get the state machine to run, so whatever's at
2445 * the port is probably not an IPMI SMI interface.
2446 */
2447 rv = -ENODEV;
2448 goto out;
2449 }
2450
2451 /* Otherwise, we got some data. */
2452 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2453 resp, IPMI_MAX_MSG_LENGTH);
2454
2455 /* Check and record info from the get device id, in case we need it. */
2456 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2457
2458 out:
2459 kfree(resp);
2460 return rv;
2461 }
2462
2463 static int type_file_read_proc(char *page, char **start, off_t off,
2464 int count, int *eof, void *data)
2465 {
2466 struct smi_info *smi = data;
2467
2468 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2469 }
2470
2471 static int stat_file_read_proc(char *page, char **start, off_t off,
2472 int count, int *eof, void *data)
2473 {
2474 char *out = (char *) page;
2475 struct smi_info *smi = data;
2476
2477 out += sprintf(out, "interrupts_enabled: %d\n",
2478 smi->irq && !smi->interrupt_disabled);
2479 out += sprintf(out, "short_timeouts: %u\n",
2480 smi_get_stat(smi, short_timeouts));
2481 out += sprintf(out, "long_timeouts: %u\n",
2482 smi_get_stat(smi, long_timeouts));
2483 out += sprintf(out, "idles: %u\n",
2484 smi_get_stat(smi, idles));
2485 out += sprintf(out, "interrupts: %u\n",
2486 smi_get_stat(smi, interrupts));
2487 out += sprintf(out, "attentions: %u\n",
2488 smi_get_stat(smi, attentions));
2489 out += sprintf(out, "flag_fetches: %u\n",
2490 smi_get_stat(smi, flag_fetches));
2491 out += sprintf(out, "hosed_count: %u\n",
2492 smi_get_stat(smi, hosed_count));
2493 out += sprintf(out, "complete_transactions: %u\n",
2494 smi_get_stat(smi, complete_transactions));
2495 out += sprintf(out, "events: %u\n",
2496 smi_get_stat(smi, events));
2497 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2498 smi_get_stat(smi, watchdog_pretimeouts));
2499 out += sprintf(out, "incoming_messages: %u\n",
2500 smi_get_stat(smi, incoming_messages));
2501
2502 return out - page;
2503 }
2504
2505 static int param_read_proc(char *page, char **start, off_t off,
2506 int count, int *eof, void *data)
2507 {
2508 struct smi_info *smi = data;
2509
2510 return sprintf(page,
2511 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2512 si_to_str[smi->si_type],
2513 addr_space_to_str[smi->io.addr_type],
2514 smi->io.addr_data,
2515 smi->io.regspacing,
2516 smi->io.regsize,
2517 smi->io.regshift,
2518 smi->irq,
2519 smi->slave_addr);
2520 }
2521
2522 /*
2523 * oem_data_avail_to_receive_msg_avail
2524 * @info - smi_info structure with msg_flags set
2525 *
2526 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2527 * Returns 1 indicating need to re-run handle_flags().
2528 */
2529 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2530 {
2531 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2532 RECEIVE_MSG_AVAIL);
2533 return 1;
2534 }
2535
2536 /*
2537 * setup_dell_poweredge_oem_data_handler
2538 * @info - smi_info.device_id must be populated
2539 *
2540 * Systems that match, but have firmware version < 1.40 may assert
2541 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2542 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2543 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2544 * as RECEIVE_MSG_AVAIL instead.
2545 *
2546 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2547 * assert the OEM[012] bits, and if it did, the driver would have to
2548 * change to handle that properly, we don't actually check for the
2549 * firmware version.
2550 * Device ID = 0x20 BMC on PowerEdge 8G servers
2551 * Device Revision = 0x80
2552 * Firmware Revision1 = 0x01 BMC version 1.40
2553 * Firmware Revision2 = 0x40 BCD encoded
2554 * IPMI Version = 0x51 IPMI 1.5
2555 * Manufacturer ID = A2 02 00 Dell IANA
2556 *
2557 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2558 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2559 *
2560 */
2561 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2562 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2563 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2564 #define DELL_IANA_MFR_ID 0x0002a2
2565 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2566 {
2567 struct ipmi_device_id *id = &smi_info->device_id;
2568 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2569 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2570 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2571 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2572 smi_info->oem_data_avail_handler =
2573 oem_data_avail_to_receive_msg_avail;
2574 } else if (ipmi_version_major(id) < 1 ||
2575 (ipmi_version_major(id) == 1 &&
2576 ipmi_version_minor(id) < 5)) {
2577 smi_info->oem_data_avail_handler =
2578 oem_data_avail_to_receive_msg_avail;
2579 }
2580 }
2581 }
2582
2583 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2584 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2585 {
2586 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2587
2588 /* Make it a reponse */
2589 msg->rsp[0] = msg->data[0] | 4;
2590 msg->rsp[1] = msg->data[1];
2591 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2592 msg->rsp_size = 3;
2593 smi_info->curr_msg = NULL;
2594 deliver_recv_msg(smi_info, msg);
2595 }
2596
2597 /*
2598 * dell_poweredge_bt_xaction_handler
2599 * @info - smi_info.device_id must be populated
2600 *
2601 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2602 * not respond to a Get SDR command if the length of the data
2603 * requested is exactly 0x3A, which leads to command timeouts and no
2604 * data returned. This intercepts such commands, and causes userspace
2605 * callers to try again with a different-sized buffer, which succeeds.
2606 */
2607
2608 #define STORAGE_NETFN 0x0A
2609 #define STORAGE_CMD_GET_SDR 0x23
2610 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2611 unsigned long unused,
2612 void *in)
2613 {
2614 struct smi_info *smi_info = in;
2615 unsigned char *data = smi_info->curr_msg->data;
2616 unsigned int size = smi_info->curr_msg->data_size;
2617 if (size >= 8 &&
2618 (data[0]>>2) == STORAGE_NETFN &&
2619 data[1] == STORAGE_CMD_GET_SDR &&
2620 data[7] == 0x3A) {
2621 return_hosed_msg_badsize(smi_info);
2622 return NOTIFY_STOP;
2623 }
2624 return NOTIFY_DONE;
2625 }
2626
2627 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2628 .notifier_call = dell_poweredge_bt_xaction_handler,
2629 };
2630
2631 /*
2632 * setup_dell_poweredge_bt_xaction_handler
2633 * @info - smi_info.device_id must be filled in already
2634 *
2635 * Fills in smi_info.device_id.start_transaction_pre_hook
2636 * when we know what function to use there.
2637 */
2638 static void
2639 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2640 {
2641 struct ipmi_device_id *id = &smi_info->device_id;
2642 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2643 smi_info->si_type == SI_BT)
2644 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2645 }
2646
2647 /*
2648 * setup_oem_data_handler
2649 * @info - smi_info.device_id must be filled in already
2650 *
2651 * Fills in smi_info.device_id.oem_data_available_handler
2652 * when we know what function to use there.
2653 */
2654
2655 static void setup_oem_data_handler(struct smi_info *smi_info)
2656 {
2657 setup_dell_poweredge_oem_data_handler(smi_info);
2658 }
2659
2660 static void setup_xaction_handlers(struct smi_info *smi_info)
2661 {
2662 setup_dell_poweredge_bt_xaction_handler(smi_info);
2663 }
2664
2665 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2666 {
2667 if (smi_info->intf) {
2668 /*
2669 * The timer and thread are only running if the
2670 * interface has been started up and registered.
2671 */
2672 if (smi_info->thread != NULL)
2673 kthread_stop(smi_info->thread);
2674 del_timer_sync(&smi_info->si_timer);
2675 }
2676 }
2677
2678 static __devinitdata struct ipmi_default_vals
2679 {
2680 int type;
2681 int port;
2682 } ipmi_defaults[] =
2683 {
2684 { .type = SI_KCS, .port = 0xca2 },
2685 { .type = SI_SMIC, .port = 0xca9 },
2686 { .type = SI_BT, .port = 0xe4 },
2687 { .port = 0 }
2688 };
2689
2690 static __devinit void default_find_bmc(void)
2691 {
2692 struct smi_info *info;
2693 int i;
2694
2695 for (i = 0; ; i++) {
2696 if (!ipmi_defaults[i].port)
2697 break;
2698 #ifdef CONFIG_PPC
2699 if (check_legacy_ioport(ipmi_defaults[i].port))
2700 continue;
2701 #endif
2702 info = kzalloc(sizeof(*info), GFP_KERNEL);
2703 if (!info)
2704 return;
2705
2706 info->addr_source = NULL;
2707
2708 info->si_type = ipmi_defaults[i].type;
2709 info->io_setup = port_setup;
2710 info->io.addr_data = ipmi_defaults[i].port;
2711 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2712
2713 info->io.addr = NULL;
2714 info->io.regspacing = DEFAULT_REGSPACING;
2715 info->io.regsize = DEFAULT_REGSPACING;
2716 info->io.regshift = 0;
2717
2718 if (try_smi_init(info) == 0) {
2719 /* Found one... */
2720 printk(KERN_INFO "ipmi_si: Found default %s state"
2721 " machine at %s address 0x%lx\n",
2722 si_to_str[info->si_type],
2723 addr_space_to_str[info->io.addr_type],
2724 info->io.addr_data);
2725 return;
2726 }
2727 }
2728 }
2729
2730 static int is_new_interface(struct smi_info *info)
2731 {
2732 struct smi_info *e;
2733
2734 list_for_each_entry(e, &smi_infos, link) {
2735 if (e->io.addr_type != info->io.addr_type)
2736 continue;
2737 if (e->io.addr_data == info->io.addr_data)
2738 return 0;
2739 }
2740
2741 return 1;
2742 }
2743
2744 static int try_smi_init(struct smi_info *new_smi)
2745 {
2746 int rv;
2747 int i;
2748
2749 if (new_smi->addr_source) {
2750 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2751 " machine at %s address 0x%lx, slave address 0x%x,"
2752 " irq %d\n",
2753 new_smi->addr_source,
2754 si_to_str[new_smi->si_type],
2755 addr_space_to_str[new_smi->io.addr_type],
2756 new_smi->io.addr_data,
2757 new_smi->slave_addr, new_smi->irq);
2758 }
2759
2760 mutex_lock(&smi_infos_lock);
2761 if (!is_new_interface(new_smi)) {
2762 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2763 rv = -EBUSY;
2764 goto out_err;
2765 }
2766
2767 /* So we know not to free it unless we have allocated one. */
2768 new_smi->intf = NULL;
2769 new_smi->si_sm = NULL;
2770 new_smi->handlers = NULL;
2771
2772 switch (new_smi->si_type) {
2773 case SI_KCS:
2774 new_smi->handlers = &kcs_smi_handlers;
2775 break;
2776
2777 case SI_SMIC:
2778 new_smi->handlers = &smic_smi_handlers;
2779 break;
2780
2781 case SI_BT:
2782 new_smi->handlers = &bt_smi_handlers;
2783 break;
2784
2785 default:
2786 /* No support for anything else yet. */
2787 rv = -EIO;
2788 goto out_err;
2789 }
2790
2791 /* Allocate the state machine's data and initialize it. */
2792 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2793 if (!new_smi->si_sm) {
2794 printk(KERN_ERR "Could not allocate state machine memory\n");
2795 rv = -ENOMEM;
2796 goto out_err;
2797 }
2798 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2799 &new_smi->io);
2800
2801 /* Now that we know the I/O size, we can set up the I/O. */
2802 rv = new_smi->io_setup(new_smi);
2803 if (rv) {
2804 printk(KERN_ERR "Could not set up I/O space\n");
2805 goto out_err;
2806 }
2807
2808 spin_lock_init(&(new_smi->si_lock));
2809 spin_lock_init(&(new_smi->msg_lock));
2810
2811 /* Do low-level detection first. */
2812 if (new_smi->handlers->detect(new_smi->si_sm)) {
2813 if (new_smi->addr_source)
2814 printk(KERN_INFO "ipmi_si: Interface detection"
2815 " failed\n");
2816 rv = -ENODEV;
2817 goto out_err;
2818 }
2819
2820 /*
2821 * Attempt a get device id command. If it fails, we probably
2822 * don't have a BMC here.
2823 */
2824 rv = try_get_dev_id(new_smi);
2825 if (rv) {
2826 if (new_smi->addr_source)
2827 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2828 " at this location\n");
2829 goto out_err;
2830 }
2831
2832 setup_oem_data_handler(new_smi);
2833 setup_xaction_handlers(new_smi);
2834
2835 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2836 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2837 new_smi->curr_msg = NULL;
2838 atomic_set(&new_smi->req_events, 0);
2839 new_smi->run_to_completion = 0;
2840 for (i = 0; i < SI_NUM_STATS; i++)
2841 atomic_set(&new_smi->stats[i], 0);
2842
2843 new_smi->interrupt_disabled = 0;
2844 atomic_set(&new_smi->stop_operation, 0);
2845 new_smi->intf_num = smi_num;
2846 smi_num++;
2847
2848 /*
2849 * Start clearing the flags before we enable interrupts or the
2850 * timer to avoid racing with the timer.
2851 */
2852 start_clear_flags(new_smi);
2853 /* IRQ is defined to be set when non-zero. */
2854 if (new_smi->irq)
2855 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2856
2857 if (!new_smi->dev) {
2858 /*
2859 * If we don't already have a device from something
2860 * else (like PCI), then register a new one.
2861 */
2862 new_smi->pdev = platform_device_alloc("ipmi_si",
2863 new_smi->intf_num);
2864 if (rv) {
2865 printk(KERN_ERR
2866 "ipmi_si_intf:"
2867 " Unable to allocate platform device\n");
2868 goto out_err;
2869 }
2870 new_smi->dev = &new_smi->pdev->dev;
2871 new_smi->dev->driver = &ipmi_driver;
2872
2873 rv = platform_device_add(new_smi->pdev);
2874 if (rv) {
2875 printk(KERN_ERR
2876 "ipmi_si_intf:"
2877 " Unable to register system interface device:"
2878 " %d\n",
2879 rv);
2880 goto out_err;
2881 }
2882 new_smi->dev_registered = 1;
2883 }
2884
2885 rv = ipmi_register_smi(&handlers,
2886 new_smi,
2887 &new_smi->device_id,
2888 new_smi->dev,
2889 "bmc",
2890 new_smi->slave_addr);
2891 if (rv) {
2892 printk(KERN_ERR
2893 "ipmi_si: Unable to register device: error %d\n",
2894 rv);
2895 goto out_err_stop_timer;
2896 }
2897
2898 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2899 type_file_read_proc,
2900 new_smi, THIS_MODULE);
2901 if (rv) {
2902 printk(KERN_ERR
2903 "ipmi_si: Unable to create proc entry: %d\n",
2904 rv);
2905 goto out_err_stop_timer;
2906 }
2907
2908 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2909 stat_file_read_proc,
2910 new_smi, THIS_MODULE);
2911 if (rv) {
2912 printk(KERN_ERR
2913 "ipmi_si: Unable to create proc entry: %d\n",
2914 rv);
2915 goto out_err_stop_timer;
2916 }
2917
2918 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2919 param_read_proc,
2920 new_smi, THIS_MODULE);
2921 if (rv) {
2922 printk(KERN_ERR
2923 "ipmi_si: Unable to create proc entry: %d\n",
2924 rv);
2925 goto out_err_stop_timer;
2926 }
2927
2928 list_add_tail(&new_smi->link, &smi_infos);
2929
2930 mutex_unlock(&smi_infos_lock);
2931
2932 printk(KERN_INFO "IPMI %s interface initialized\n",
2933 si_to_str[new_smi->si_type]);
2934
2935 return 0;
2936
2937 out_err_stop_timer:
2938 atomic_inc(&new_smi->stop_operation);
2939 wait_for_timer_and_thread(new_smi);
2940
2941 out_err:
2942 if (new_smi->intf)
2943 ipmi_unregister_smi(new_smi->intf);
2944
2945 if (new_smi->irq_cleanup)
2946 new_smi->irq_cleanup(new_smi);
2947
2948 /*
2949 * Wait until we know that we are out of any interrupt
2950 * handlers might have been running before we freed the
2951 * interrupt.
2952 */
2953 synchronize_sched();
2954
2955 if (new_smi->si_sm) {
2956 if (new_smi->handlers)
2957 new_smi->handlers->cleanup(new_smi->si_sm);
2958 kfree(new_smi->si_sm);
2959 }
2960 if (new_smi->addr_source_cleanup)
2961 new_smi->addr_source_cleanup(new_smi);
2962 if (new_smi->io_cleanup)
2963 new_smi->io_cleanup(new_smi);
2964
2965 if (new_smi->dev_registered)
2966 platform_device_unregister(new_smi->pdev);
2967
2968 kfree(new_smi);
2969
2970 mutex_unlock(&smi_infos_lock);
2971
2972 return rv;
2973 }
2974
2975 static __devinit int init_ipmi_si(void)
2976 {
2977 int i;
2978 char *str;
2979 int rv;
2980
2981 if (initialized)
2982 return 0;
2983 initialized = 1;
2984
2985 /* Register the device drivers. */
2986 rv = driver_register(&ipmi_driver);
2987 if (rv) {
2988 printk(KERN_ERR
2989 "init_ipmi_si: Unable to register driver: %d\n",
2990 rv);
2991 return rv;
2992 }
2993
2994
2995 /* Parse out the si_type string into its components. */
2996 str = si_type_str;
2997 if (*str != '\0') {
2998 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2999 si_type[i] = str;
3000 str = strchr(str, ',');
3001 if (str) {
3002 *str = '\0';
3003 str++;
3004 } else {
3005 break;
3006 }
3007 }
3008 }
3009
3010 printk(KERN_INFO "IPMI System Interface driver.\n");
3011
3012 hardcode_find_bmc();
3013
3014 #ifdef CONFIG_DMI
3015 dmi_find_bmc();
3016 #endif
3017
3018 #ifdef CONFIG_ACPI
3019 acpi_find_bmc();
3020 #endif
3021
3022 #ifdef CONFIG_PCI
3023 rv = pci_register_driver(&ipmi_pci_driver);
3024 if (rv)
3025 printk(KERN_ERR
3026 "init_ipmi_si: Unable to register PCI driver: %d\n",
3027 rv);
3028 #endif
3029
3030 #ifdef CONFIG_PPC_OF
3031 of_register_platform_driver(&ipmi_of_platform_driver);
3032 #endif
3033
3034 if (si_trydefaults) {
3035 mutex_lock(&smi_infos_lock);
3036 if (list_empty(&smi_infos)) {
3037 /* No BMC was found, try defaults. */
3038 mutex_unlock(&smi_infos_lock);
3039 default_find_bmc();
3040 } else {
3041 mutex_unlock(&smi_infos_lock);
3042 }
3043 }
3044
3045 mutex_lock(&smi_infos_lock);
3046 if (unload_when_empty && list_empty(&smi_infos)) {
3047 mutex_unlock(&smi_infos_lock);
3048 #ifdef CONFIG_PCI
3049 pci_unregister_driver(&ipmi_pci_driver);
3050 #endif
3051
3052 #ifdef CONFIG_PPC_OF
3053 of_unregister_platform_driver(&ipmi_of_platform_driver);
3054 #endif
3055 driver_unregister(&ipmi_driver);
3056 printk(KERN_WARNING
3057 "ipmi_si: Unable to find any System Interface(s)\n");
3058 return -ENODEV;
3059 } else {
3060 mutex_unlock(&smi_infos_lock);
3061 return 0;
3062 }
3063 }
3064 module_init(init_ipmi_si);
3065
3066 static void cleanup_one_si(struct smi_info *to_clean)
3067 {
3068 int rv;
3069 unsigned long flags;
3070
3071 if (!to_clean)
3072 return;
3073
3074 list_del(&to_clean->link);
3075
3076 /* Tell the driver that we are shutting down. */
3077 atomic_inc(&to_clean->stop_operation);
3078
3079 /*
3080 * Make sure the timer and thread are stopped and will not run
3081 * again.
3082 */
3083 wait_for_timer_and_thread(to_clean);
3084
3085 /*
3086 * Timeouts are stopped, now make sure the interrupts are off
3087 * for the device. A little tricky with locks to make sure
3088 * there are no races.
3089 */
3090 spin_lock_irqsave(&to_clean->si_lock, flags);
3091 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3092 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3093 poll(to_clean);
3094 schedule_timeout_uninterruptible(1);
3095 spin_lock_irqsave(&to_clean->si_lock, flags);
3096 }
3097 disable_si_irq(to_clean);
3098 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3099 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3100 poll(to_clean);
3101 schedule_timeout_uninterruptible(1);
3102 }
3103
3104 /* Clean up interrupts and make sure that everything is done. */
3105 if (to_clean->irq_cleanup)
3106 to_clean->irq_cleanup(to_clean);
3107 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3108 poll(to_clean);
3109 schedule_timeout_uninterruptible(1);
3110 }
3111
3112 rv = ipmi_unregister_smi(to_clean->intf);
3113 if (rv) {
3114 printk(KERN_ERR
3115 "ipmi_si: Unable to unregister device: errno=%d\n",
3116 rv);
3117 }
3118
3119 to_clean->handlers->cleanup(to_clean->si_sm);
3120
3121 kfree(to_clean->si_sm);
3122
3123 if (to_clean->addr_source_cleanup)
3124 to_clean->addr_source_cleanup(to_clean);
3125 if (to_clean->io_cleanup)
3126 to_clean->io_cleanup(to_clean);
3127
3128 if (to_clean->dev_registered)
3129 platform_device_unregister(to_clean->pdev);
3130
3131 kfree(to_clean);
3132 }
3133
3134 static __exit void cleanup_ipmi_si(void)
3135 {
3136 struct smi_info *e, *tmp_e;
3137
3138 if (!initialized)
3139 return;
3140
3141 #ifdef CONFIG_PCI
3142 pci_unregister_driver(&ipmi_pci_driver);
3143 #endif
3144
3145 #ifdef CONFIG_PPC_OF
3146 of_unregister_platform_driver(&ipmi_of_platform_driver);
3147 #endif
3148
3149 mutex_lock(&smi_infos_lock);
3150 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3151 cleanup_one_si(e);
3152 mutex_unlock(&smi_infos_lock);
3153
3154 driver_unregister(&ipmi_driver);
3155 }
3156 module_exit(cleanup_ipmi_si);
3157
3158 MODULE_LICENSE("GPL");
3159 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3160 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3161 " system interfaces.");
This page took 0.096983 seconds and 5 git commands to generate.