device create: char: convert device_create_drvdata to device_create
[deliverable/linux.git] / drivers / char / istallion.c
1 /*****************************************************************************/
2
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 */
18
19 /*****************************************************************************/
20
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tty.h>
25 #include <linux/tty_flip.h>
26 #include <linux/serial.h>
27 #include <linux/cdk.h>
28 #include <linux/comstats.h>
29 #include <linux/istallion.h>
30 #include <linux/ioport.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/wait.h>
35 #include <linux/eisa.h>
36 #include <linux/ctype.h>
37
38 #include <asm/io.h>
39 #include <asm/uaccess.h>
40
41 #include <linux/pci.h>
42
43 /*****************************************************************************/
44
45 /*
46 * Define different board types. Not all of the following board types
47 * are supported by this driver. But I will use the standard "assigned"
48 * board numbers. Currently supported boards are abbreviated as:
49 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
50 * STAL = Stallion.
51 */
52 #define BRD_UNKNOWN 0
53 #define BRD_STALLION 1
54 #define BRD_BRUMBY4 2
55 #define BRD_ONBOARD2 3
56 #define BRD_ONBOARD 4
57 #define BRD_ONBOARDE 7
58 #define BRD_ECP 23
59 #define BRD_ECPE 24
60 #define BRD_ECPMC 25
61 #define BRD_ECPPCI 29
62
63 #define BRD_BRUMBY BRD_BRUMBY4
64
65 /*
66 * Define a configuration structure to hold the board configuration.
67 * Need to set this up in the code (for now) with the boards that are
68 * to be configured into the system. This is what needs to be modified
69 * when adding/removing/modifying boards. Each line entry in the
70 * stli_brdconf[] array is a board. Each line contains io/irq/memory
71 * ranges for that board (as well as what type of board it is).
72 * Some examples:
73 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
74 * This line will configure an EasyConnection 8/64 at io address 2a0,
75 * and shared memory address of cc000. Multiple EasyConnection 8/64
76 * boards can share the same shared memory address space. No interrupt
77 * is required for this board type.
78 * Another example:
79 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
80 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
81 * shared memory address of 0x80000000 (2 GByte). Multiple
82 * EasyConnection 8/64 EISA boards can share the same shared memory
83 * address space. No interrupt is required for this board type.
84 * Another example:
85 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
86 * This line will configure an ONboard (ISA type) at io address 240,
87 * and shared memory address of d0000. Multiple ONboards can share
88 * the same shared memory address space. No interrupt required.
89 * Another example:
90 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
91 * This line will configure a Brumby board (any number of ports!) at
92 * io address 360 and shared memory address of c8000. All Brumby boards
93 * configured into a system must have their own separate io and memory
94 * addresses. No interrupt is required.
95 * Another example:
96 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
97 * This line will configure an original Stallion board at io address 330
98 * and shared memory address d0000 (this would only be valid for a "V4.0"
99 * or Rev.O Stallion board). All Stallion boards configured into the
100 * system must have their own separate io and memory addresses. No
101 * interrupt is required.
102 */
103
104 struct stlconf {
105 int brdtype;
106 int ioaddr1;
107 int ioaddr2;
108 unsigned long memaddr;
109 int irq;
110 int irqtype;
111 };
112
113 static unsigned int stli_nrbrds;
114
115 /* stli_lock must NOT be taken holding brd_lock */
116 static spinlock_t stli_lock; /* TTY logic lock */
117 static spinlock_t brd_lock; /* Board logic lock */
118
119 /*
120 * There is some experimental EISA board detection code in this driver.
121 * By default it is disabled, but for those that want to try it out,
122 * then set the define below to be 1.
123 */
124 #define STLI_EISAPROBE 0
125
126 /*****************************************************************************/
127
128 /*
129 * Define some important driver characteristics. Device major numbers
130 * allocated as per Linux Device Registry.
131 */
132 #ifndef STL_SIOMEMMAJOR
133 #define STL_SIOMEMMAJOR 28
134 #endif
135 #ifndef STL_SERIALMAJOR
136 #define STL_SERIALMAJOR 24
137 #endif
138 #ifndef STL_CALLOUTMAJOR
139 #define STL_CALLOUTMAJOR 25
140 #endif
141
142 /*****************************************************************************/
143
144 /*
145 * Define our local driver identity first. Set up stuff to deal with
146 * all the local structures required by a serial tty driver.
147 */
148 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
149 static char *stli_drvname = "istallion";
150 static char *stli_drvversion = "5.6.0";
151 static char *stli_serialname = "ttyE";
152
153 static struct tty_driver *stli_serial;
154
155
156 #define STLI_TXBUFSIZE 4096
157
158 /*
159 * Use a fast local buffer for cooked characters. Typically a whole
160 * bunch of cooked characters come in for a port, 1 at a time. So we
161 * save those up into a local buffer, then write out the whole lot
162 * with a large memcpy. Just use 1 buffer for all ports, since its
163 * use it is only need for short periods of time by each port.
164 */
165 static char *stli_txcookbuf;
166 static int stli_txcooksize;
167 static int stli_txcookrealsize;
168 static struct tty_struct *stli_txcooktty;
169
170 /*
171 * Define a local default termios struct. All ports will be created
172 * with this termios initially. Basically all it defines is a raw port
173 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
174 */
175 static struct ktermios stli_deftermios = {
176 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
177 .c_cc = INIT_C_CC,
178 .c_ispeed = 9600,
179 .c_ospeed = 9600,
180 };
181
182 /*
183 * Define global stats structures. Not used often, and can be
184 * re-used for each stats call.
185 */
186 static comstats_t stli_comstats;
187 static combrd_t stli_brdstats;
188 static struct asystats stli_cdkstats;
189
190 /*****************************************************************************/
191
192 static DEFINE_MUTEX(stli_brdslock);
193 static struct stlibrd *stli_brds[STL_MAXBRDS];
194
195 static int stli_shared;
196
197 /*
198 * Per board state flags. Used with the state field of the board struct.
199 * Not really much here... All we need to do is keep track of whether
200 * the board has been detected, and whether it is actually running a slave
201 * or not.
202 */
203 #define BST_FOUND 0x1
204 #define BST_STARTED 0x2
205 #define BST_PROBED 0x4
206
207 /*
208 * Define the set of port state flags. These are marked for internal
209 * state purposes only, usually to do with the state of communications
210 * with the slave. Most of them need to be updated atomically, so always
211 * use the bit setting operations (unless protected by cli/sti).
212 */
213 #define ST_INITIALIZING 1
214 #define ST_OPENING 2
215 #define ST_CLOSING 3
216 #define ST_CMDING 4
217 #define ST_TXBUSY 5
218 #define ST_RXING 6
219 #define ST_DOFLUSHRX 7
220 #define ST_DOFLUSHTX 8
221 #define ST_DOSIGS 9
222 #define ST_RXSTOP 10
223 #define ST_GETSIGS 11
224
225 /*
226 * Define an array of board names as printable strings. Handy for
227 * referencing boards when printing trace and stuff.
228 */
229 static char *stli_brdnames[] = {
230 "Unknown",
231 "Stallion",
232 "Brumby",
233 "ONboard-MC",
234 "ONboard",
235 "Brumby",
236 "Brumby",
237 "ONboard-EI",
238 NULL,
239 "ONboard",
240 "ONboard-MC",
241 "ONboard-MC",
242 NULL,
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 "EasyIO",
251 "EC8/32-AT",
252 "EC8/32-MC",
253 "EC8/64-AT",
254 "EC8/64-EI",
255 "EC8/64-MC",
256 "EC8/32-PCI",
257 "EC8/64-PCI",
258 "EasyIO-PCI",
259 "EC/RA-PCI",
260 };
261
262 /*****************************************************************************/
263
264 /*
265 * Define some string labels for arguments passed from the module
266 * load line. These allow for easy board definitions, and easy
267 * modification of the io, memory and irq resoucres.
268 */
269
270 static char *board0[8];
271 static char *board1[8];
272 static char *board2[8];
273 static char *board3[8];
274
275 static char **stli_brdsp[] = {
276 (char **) &board0,
277 (char **) &board1,
278 (char **) &board2,
279 (char **) &board3
280 };
281
282 /*
283 * Define a set of common board names, and types. This is used to
284 * parse any module arguments.
285 */
286
287 static struct stlibrdtype {
288 char *name;
289 int type;
290 } stli_brdstr[] = {
291 { "stallion", BRD_STALLION },
292 { "1", BRD_STALLION },
293 { "brumby", BRD_BRUMBY },
294 { "brumby4", BRD_BRUMBY },
295 { "brumby/4", BRD_BRUMBY },
296 { "brumby-4", BRD_BRUMBY },
297 { "brumby8", BRD_BRUMBY },
298 { "brumby/8", BRD_BRUMBY },
299 { "brumby-8", BRD_BRUMBY },
300 { "brumby16", BRD_BRUMBY },
301 { "brumby/16", BRD_BRUMBY },
302 { "brumby-16", BRD_BRUMBY },
303 { "2", BRD_BRUMBY },
304 { "onboard2", BRD_ONBOARD2 },
305 { "onboard-2", BRD_ONBOARD2 },
306 { "onboard/2", BRD_ONBOARD2 },
307 { "onboard-mc", BRD_ONBOARD2 },
308 { "onboard/mc", BRD_ONBOARD2 },
309 { "onboard-mca", BRD_ONBOARD2 },
310 { "onboard/mca", BRD_ONBOARD2 },
311 { "3", BRD_ONBOARD2 },
312 { "onboard", BRD_ONBOARD },
313 { "onboardat", BRD_ONBOARD },
314 { "4", BRD_ONBOARD },
315 { "onboarde", BRD_ONBOARDE },
316 { "onboard-e", BRD_ONBOARDE },
317 { "onboard/e", BRD_ONBOARDE },
318 { "onboard-ei", BRD_ONBOARDE },
319 { "onboard/ei", BRD_ONBOARDE },
320 { "7", BRD_ONBOARDE },
321 { "ecp", BRD_ECP },
322 { "ecpat", BRD_ECP },
323 { "ec8/64", BRD_ECP },
324 { "ec8/64-at", BRD_ECP },
325 { "ec8/64-isa", BRD_ECP },
326 { "23", BRD_ECP },
327 { "ecpe", BRD_ECPE },
328 { "ecpei", BRD_ECPE },
329 { "ec8/64-e", BRD_ECPE },
330 { "ec8/64-ei", BRD_ECPE },
331 { "24", BRD_ECPE },
332 { "ecpmc", BRD_ECPMC },
333 { "ec8/64-mc", BRD_ECPMC },
334 { "ec8/64-mca", BRD_ECPMC },
335 { "25", BRD_ECPMC },
336 { "ecppci", BRD_ECPPCI },
337 { "ec/ra", BRD_ECPPCI },
338 { "ec/ra-pc", BRD_ECPPCI },
339 { "ec/ra-pci", BRD_ECPPCI },
340 { "29", BRD_ECPPCI },
341 };
342
343 /*
344 * Define the module agruments.
345 */
346 MODULE_AUTHOR("Greg Ungerer");
347 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
348 MODULE_LICENSE("GPL");
349
350
351 module_param_array(board0, charp, NULL, 0);
352 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
353 module_param_array(board1, charp, NULL, 0);
354 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board2, charp, NULL, 0);
356 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board3, charp, NULL, 0);
358 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
359
360 #if STLI_EISAPROBE != 0
361 /*
362 * Set up a default memory address table for EISA board probing.
363 * The default addresses are all bellow 1Mbyte, which has to be the
364 * case anyway. They should be safe, since we only read values from
365 * them, and interrupts are disabled while we do it. If the higher
366 * memory support is compiled in then we also try probing around
367 * the 1Gb, 2Gb and 3Gb areas as well...
368 */
369 static unsigned long stli_eisamemprobeaddrs[] = {
370 0xc0000, 0xd0000, 0xe0000, 0xf0000,
371 0x80000000, 0x80010000, 0x80020000, 0x80030000,
372 0x40000000, 0x40010000, 0x40020000, 0x40030000,
373 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
374 0xff000000, 0xff010000, 0xff020000, 0xff030000,
375 };
376
377 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
378 #endif
379
380 /*
381 * Define the Stallion PCI vendor and device IDs.
382 */
383 #ifndef PCI_DEVICE_ID_ECRA
384 #define PCI_DEVICE_ID_ECRA 0x0004
385 #endif
386
387 static struct pci_device_id istallion_pci_tbl[] = {
388 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
389 { 0 }
390 };
391 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
392
393 static struct pci_driver stli_pcidriver;
394
395 /*****************************************************************************/
396
397 /*
398 * Hardware configuration info for ECP boards. These defines apply
399 * to the directly accessible io ports of the ECP. There is a set of
400 * defines for each ECP board type, ISA, EISA, MCA and PCI.
401 */
402 #define ECP_IOSIZE 4
403
404 #define ECP_MEMSIZE (128 * 1024)
405 #define ECP_PCIMEMSIZE (256 * 1024)
406
407 #define ECP_ATPAGESIZE (4 * 1024)
408 #define ECP_MCPAGESIZE (4 * 1024)
409 #define ECP_EIPAGESIZE (64 * 1024)
410 #define ECP_PCIPAGESIZE (64 * 1024)
411
412 #define STL_EISAID 0x8c4e
413
414 /*
415 * Important defines for the ISA class of ECP board.
416 */
417 #define ECP_ATIREG 0
418 #define ECP_ATCONFR 1
419 #define ECP_ATMEMAR 2
420 #define ECP_ATMEMPR 3
421 #define ECP_ATSTOP 0x1
422 #define ECP_ATINTENAB 0x10
423 #define ECP_ATENABLE 0x20
424 #define ECP_ATDISABLE 0x00
425 #define ECP_ATADDRMASK 0x3f000
426 #define ECP_ATADDRSHFT 12
427
428 /*
429 * Important defines for the EISA class of ECP board.
430 */
431 #define ECP_EIIREG 0
432 #define ECP_EIMEMARL 1
433 #define ECP_EICONFR 2
434 #define ECP_EIMEMARH 3
435 #define ECP_EIENABLE 0x1
436 #define ECP_EIDISABLE 0x0
437 #define ECP_EISTOP 0x4
438 #define ECP_EIEDGE 0x00
439 #define ECP_EILEVEL 0x80
440 #define ECP_EIADDRMASKL 0x00ff0000
441 #define ECP_EIADDRSHFTL 16
442 #define ECP_EIADDRMASKH 0xff000000
443 #define ECP_EIADDRSHFTH 24
444 #define ECP_EIBRDENAB 0xc84
445
446 #define ECP_EISAID 0x4
447
448 /*
449 * Important defines for the Micro-channel class of ECP board.
450 * (It has a lot in common with the ISA boards.)
451 */
452 #define ECP_MCIREG 0
453 #define ECP_MCCONFR 1
454 #define ECP_MCSTOP 0x20
455 #define ECP_MCENABLE 0x80
456 #define ECP_MCDISABLE 0x00
457
458 /*
459 * Important defines for the PCI class of ECP board.
460 * (It has a lot in common with the other ECP boards.)
461 */
462 #define ECP_PCIIREG 0
463 #define ECP_PCICONFR 1
464 #define ECP_PCISTOP 0x01
465
466 /*
467 * Hardware configuration info for ONboard and Brumby boards. These
468 * defines apply to the directly accessible io ports of these boards.
469 */
470 #define ONB_IOSIZE 16
471 #define ONB_MEMSIZE (64 * 1024)
472 #define ONB_ATPAGESIZE (64 * 1024)
473 #define ONB_MCPAGESIZE (64 * 1024)
474 #define ONB_EIMEMSIZE (128 * 1024)
475 #define ONB_EIPAGESIZE (64 * 1024)
476
477 /*
478 * Important defines for the ISA class of ONboard board.
479 */
480 #define ONB_ATIREG 0
481 #define ONB_ATMEMAR 1
482 #define ONB_ATCONFR 2
483 #define ONB_ATSTOP 0x4
484 #define ONB_ATENABLE 0x01
485 #define ONB_ATDISABLE 0x00
486 #define ONB_ATADDRMASK 0xff0000
487 #define ONB_ATADDRSHFT 16
488
489 #define ONB_MEMENABLO 0
490 #define ONB_MEMENABHI 0x02
491
492 /*
493 * Important defines for the EISA class of ONboard board.
494 */
495 #define ONB_EIIREG 0
496 #define ONB_EIMEMARL 1
497 #define ONB_EICONFR 2
498 #define ONB_EIMEMARH 3
499 #define ONB_EIENABLE 0x1
500 #define ONB_EIDISABLE 0x0
501 #define ONB_EISTOP 0x4
502 #define ONB_EIEDGE 0x00
503 #define ONB_EILEVEL 0x80
504 #define ONB_EIADDRMASKL 0x00ff0000
505 #define ONB_EIADDRSHFTL 16
506 #define ONB_EIADDRMASKH 0xff000000
507 #define ONB_EIADDRSHFTH 24
508 #define ONB_EIBRDENAB 0xc84
509
510 #define ONB_EISAID 0x1
511
512 /*
513 * Important defines for the Brumby boards. They are pretty simple,
514 * there is not much that is programmably configurable.
515 */
516 #define BBY_IOSIZE 16
517 #define BBY_MEMSIZE (64 * 1024)
518 #define BBY_PAGESIZE (16 * 1024)
519
520 #define BBY_ATIREG 0
521 #define BBY_ATCONFR 1
522 #define BBY_ATSTOP 0x4
523
524 /*
525 * Important defines for the Stallion boards. They are pretty simple,
526 * there is not much that is programmably configurable.
527 */
528 #define STAL_IOSIZE 16
529 #define STAL_MEMSIZE (64 * 1024)
530 #define STAL_PAGESIZE (64 * 1024)
531
532 /*
533 * Define the set of status register values for EasyConnection panels.
534 * The signature will return with the status value for each panel. From
535 * this we can determine what is attached to the board - before we have
536 * actually down loaded any code to it.
537 */
538 #define ECH_PNLSTATUS 2
539 #define ECH_PNL16PORT 0x20
540 #define ECH_PNLIDMASK 0x07
541 #define ECH_PNLXPID 0x40
542 #define ECH_PNLINTRPEND 0x80
543
544 /*
545 * Define some macros to do things to the board. Even those these boards
546 * are somewhat related there is often significantly different ways of
547 * doing some operation on it (like enable, paging, reset, etc). So each
548 * board class has a set of functions which do the commonly required
549 * operations. The macros below basically just call these functions,
550 * generally checking for a NULL function - which means that the board
551 * needs nothing done to it to achieve this operation!
552 */
553 #define EBRDINIT(brdp) \
554 if (brdp->init != NULL) \
555 (* brdp->init)(brdp)
556
557 #define EBRDENABLE(brdp) \
558 if (brdp->enable != NULL) \
559 (* brdp->enable)(brdp);
560
561 #define EBRDDISABLE(brdp) \
562 if (brdp->disable != NULL) \
563 (* brdp->disable)(brdp);
564
565 #define EBRDINTR(brdp) \
566 if (brdp->intr != NULL) \
567 (* brdp->intr)(brdp);
568
569 #define EBRDRESET(brdp) \
570 if (brdp->reset != NULL) \
571 (* brdp->reset)(brdp);
572
573 #define EBRDGETMEMPTR(brdp,offset) \
574 (* brdp->getmemptr)(brdp, offset, __LINE__)
575
576 /*
577 * Define the maximal baud rate, and the default baud base for ports.
578 */
579 #define STL_MAXBAUD 460800
580 #define STL_BAUDBASE 115200
581 #define STL_CLOSEDELAY (5 * HZ / 10)
582
583 /*****************************************************************************/
584
585 /*
586 * Define macros to extract a brd or port number from a minor number.
587 */
588 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
589 #define MINOR2PORT(min) ((min) & 0x3f)
590
591 /*****************************************************************************/
592
593 /*
594 * Prototype all functions in this driver!
595 */
596
597 static int stli_parsebrd(struct stlconf *confp, char **argp);
598 static int stli_open(struct tty_struct *tty, struct file *filp);
599 static void stli_close(struct tty_struct *tty, struct file *filp);
600 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
601 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
602 static void stli_flushchars(struct tty_struct *tty);
603 static int stli_writeroom(struct tty_struct *tty);
604 static int stli_charsinbuffer(struct tty_struct *tty);
605 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
606 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
607 static void stli_throttle(struct tty_struct *tty);
608 static void stli_unthrottle(struct tty_struct *tty);
609 static void stli_stop(struct tty_struct *tty);
610 static void stli_start(struct tty_struct *tty);
611 static void stli_flushbuffer(struct tty_struct *tty);
612 static int stli_breakctl(struct tty_struct *tty, int state);
613 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
614 static void stli_sendxchar(struct tty_struct *tty, char ch);
615 static void stli_hangup(struct tty_struct *tty);
616 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos);
617
618 static int stli_brdinit(struct stlibrd *brdp);
619 static int stli_startbrd(struct stlibrd *brdp);
620 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
621 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
622 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
623 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
624 static void stli_poll(unsigned long arg);
625 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
626 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
627 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
628 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629 static int stli_waitcarrier(struct tty_struct *tty, struct stlibrd *brdp,
630 struct stliport *portp, struct file *filp);
631 static int stli_setport(struct tty_struct *tty);
632 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
635 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
636 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
637 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
638 static long stli_mktiocm(unsigned long sigvalue);
639 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
640 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
641 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
642 static int stli_getbrdstats(combrd_t __user *bp);
643 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
644 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
645 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
646 static int stli_getportstruct(struct stliport __user *arg);
647 static int stli_getbrdstruct(struct stlibrd __user *arg);
648 static struct stlibrd *stli_allocbrd(void);
649
650 static void stli_ecpinit(struct stlibrd *brdp);
651 static void stli_ecpenable(struct stlibrd *brdp);
652 static void stli_ecpdisable(struct stlibrd *brdp);
653 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
654 static void stli_ecpreset(struct stlibrd *brdp);
655 static void stli_ecpintr(struct stlibrd *brdp);
656 static void stli_ecpeiinit(struct stlibrd *brdp);
657 static void stli_ecpeienable(struct stlibrd *brdp);
658 static void stli_ecpeidisable(struct stlibrd *brdp);
659 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
660 static void stli_ecpeireset(struct stlibrd *brdp);
661 static void stli_ecpmcenable(struct stlibrd *brdp);
662 static void stli_ecpmcdisable(struct stlibrd *brdp);
663 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
664 static void stli_ecpmcreset(struct stlibrd *brdp);
665 static void stli_ecppciinit(struct stlibrd *brdp);
666 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
667 static void stli_ecppcireset(struct stlibrd *brdp);
668
669 static void stli_onbinit(struct stlibrd *brdp);
670 static void stli_onbenable(struct stlibrd *brdp);
671 static void stli_onbdisable(struct stlibrd *brdp);
672 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
673 static void stli_onbreset(struct stlibrd *brdp);
674 static void stli_onbeinit(struct stlibrd *brdp);
675 static void stli_onbeenable(struct stlibrd *brdp);
676 static void stli_onbedisable(struct stlibrd *brdp);
677 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
678 static void stli_onbereset(struct stlibrd *brdp);
679 static void stli_bbyinit(struct stlibrd *brdp);
680 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
681 static void stli_bbyreset(struct stlibrd *brdp);
682 static void stli_stalinit(struct stlibrd *brdp);
683 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
684 static void stli_stalreset(struct stlibrd *brdp);
685
686 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
687
688 static int stli_initecp(struct stlibrd *brdp);
689 static int stli_initonb(struct stlibrd *brdp);
690 #if STLI_EISAPROBE != 0
691 static int stli_eisamemprobe(struct stlibrd *brdp);
692 #endif
693 static int stli_initports(struct stlibrd *brdp);
694
695 /*****************************************************************************/
696
697 /*
698 * Define the driver info for a user level shared memory device. This
699 * device will work sort of like the /dev/kmem device - except that it
700 * will give access to the shared memory on the Stallion intelligent
701 * board. This is also a very useful debugging tool.
702 */
703 static const struct file_operations stli_fsiomem = {
704 .owner = THIS_MODULE,
705 .read = stli_memread,
706 .write = stli_memwrite,
707 .ioctl = stli_memioctl,
708 };
709
710 /*****************************************************************************/
711
712 /*
713 * Define a timer_list entry for our poll routine. The slave board
714 * is polled every so often to see if anything needs doing. This is
715 * much cheaper on host cpu than using interrupts. It turns out to
716 * not increase character latency by much either...
717 */
718 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
719
720 static int stli_timeron;
721
722 /*
723 * Define the calculation for the timeout routine.
724 */
725 #define STLI_TIMEOUT (jiffies + 1)
726
727 /*****************************************************************************/
728
729 static struct class *istallion_class;
730
731 static void stli_cleanup_ports(struct stlibrd *brdp)
732 {
733 struct stliport *portp;
734 unsigned int j;
735 struct tty_struct *tty;
736
737 for (j = 0; j < STL_MAXPORTS; j++) {
738 portp = brdp->ports[j];
739 if (portp != NULL) {
740 tty = tty_port_tty_get(&portp->port);
741 if (tty != NULL) {
742 tty_hangup(tty);
743 tty_kref_put(tty);
744 }
745 kfree(portp);
746 }
747 }
748 }
749
750 /*****************************************************************************/
751
752 /*
753 * Parse the supplied argument string, into the board conf struct.
754 */
755
756 static int stli_parsebrd(struct stlconf *confp, char **argp)
757 {
758 unsigned int i;
759 char *sp;
760
761 if (argp[0] == NULL || *argp[0] == 0)
762 return 0;
763
764 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
765 *sp = tolower(*sp);
766
767 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
768 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
769 break;
770 }
771 if (i == ARRAY_SIZE(stli_brdstr)) {
772 printk("STALLION: unknown board name, %s?\n", argp[0]);
773 return 0;
774 }
775
776 confp->brdtype = stli_brdstr[i].type;
777 if (argp[1] != NULL && *argp[1] != 0)
778 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
779 if (argp[2] != NULL && *argp[2] != 0)
780 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
781 return(1);
782 }
783
784 /*****************************************************************************/
785
786 static int stli_open(struct tty_struct *tty, struct file *filp)
787 {
788 struct stlibrd *brdp;
789 struct stliport *portp;
790 unsigned int minordev, brdnr, portnr;
791 int rc;
792
793 minordev = tty->index;
794 brdnr = MINOR2BRD(minordev);
795 if (brdnr >= stli_nrbrds)
796 return -ENODEV;
797 brdp = stli_brds[brdnr];
798 if (brdp == NULL)
799 return -ENODEV;
800 if ((brdp->state & BST_STARTED) == 0)
801 return -ENODEV;
802 portnr = MINOR2PORT(minordev);
803 if (portnr > brdp->nrports)
804 return -ENODEV;
805
806 portp = brdp->ports[portnr];
807 if (portp == NULL)
808 return -ENODEV;
809 if (portp->devnr < 1)
810 return -ENODEV;
811
812
813 /*
814 * Check if this port is in the middle of closing. If so then wait
815 * until it is closed then return error status based on flag settings.
816 * The sleep here does not need interrupt protection since the wakeup
817 * for it is done with the same context.
818 */
819 if (portp->port.flags & ASYNC_CLOSING) {
820 interruptible_sleep_on(&portp->port.close_wait);
821 if (portp->port.flags & ASYNC_HUP_NOTIFY)
822 return -EAGAIN;
823 return -ERESTARTSYS;
824 }
825
826 /*
827 * On the first open of the device setup the port hardware, and
828 * initialize the per port data structure. Since initializing the port
829 * requires several commands to the board we will need to wait for any
830 * other open that is already initializing the port.
831 */
832 tty_port_tty_set(&portp->port, tty);
833 tty->driver_data = portp;
834 portp->port.count++;
835
836 wait_event_interruptible(portp->raw_wait,
837 !test_bit(ST_INITIALIZING, &portp->state));
838 if (signal_pending(current))
839 return -ERESTARTSYS;
840
841 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
842 set_bit(ST_INITIALIZING, &portp->state);
843 if ((rc = stli_initopen(tty, brdp, portp)) >= 0) {
844 portp->port.flags |= ASYNC_INITIALIZED;
845 clear_bit(TTY_IO_ERROR, &tty->flags);
846 }
847 clear_bit(ST_INITIALIZING, &portp->state);
848 wake_up_interruptible(&portp->raw_wait);
849 if (rc < 0)
850 return rc;
851 }
852
853 /*
854 * Check if this port is in the middle of closing. If so then wait
855 * until it is closed then return error status, based on flag settings.
856 * The sleep here does not need interrupt protection since the wakeup
857 * for it is done with the same context.
858 */
859 if (portp->port.flags & ASYNC_CLOSING) {
860 interruptible_sleep_on(&portp->port.close_wait);
861 if (portp->port.flags & ASYNC_HUP_NOTIFY)
862 return -EAGAIN;
863 return -ERESTARTSYS;
864 }
865
866 /*
867 * Based on type of open being done check if it can overlap with any
868 * previous opens still in effect. If we are a normal serial device
869 * then also we might have to wait for carrier.
870 */
871 if (!(filp->f_flags & O_NONBLOCK)) {
872 if ((rc = stli_waitcarrier(tty, brdp, portp, filp)) != 0)
873 return rc;
874 }
875 portp->port.flags |= ASYNC_NORMAL_ACTIVE;
876 return 0;
877 }
878
879 /*****************************************************************************/
880
881 static void stli_close(struct tty_struct *tty, struct file *filp)
882 {
883 struct stlibrd *brdp;
884 struct stliport *portp;
885 unsigned long flags;
886
887 portp = tty->driver_data;
888 if (portp == NULL)
889 return;
890
891 spin_lock_irqsave(&stli_lock, flags);
892 if (tty_hung_up_p(filp)) {
893 spin_unlock_irqrestore(&stli_lock, flags);
894 return;
895 }
896 if ((tty->count == 1) && (portp->port.count != 1))
897 portp->port.count = 1;
898 if (portp->port.count-- > 1) {
899 spin_unlock_irqrestore(&stli_lock, flags);
900 return;
901 }
902
903 portp->port.flags |= ASYNC_CLOSING;
904
905 /*
906 * May want to wait for data to drain before closing. The BUSY flag
907 * keeps track of whether we are still transmitting or not. It is
908 * updated by messages from the slave - indicating when all chars
909 * really have drained.
910 */
911 if (tty == stli_txcooktty)
912 stli_flushchars(tty);
913 tty->closing = 1;
914 spin_unlock_irqrestore(&stli_lock, flags);
915
916 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
917 tty_wait_until_sent(tty, portp->closing_wait);
918
919 portp->port.flags &= ~ASYNC_INITIALIZED;
920 brdp = stli_brds[portp->brdnr];
921 stli_rawclose(brdp, portp, 0, 0);
922 if (tty->termios->c_cflag & HUPCL) {
923 stli_mkasysigs(&portp->asig, 0, 0);
924 if (test_bit(ST_CMDING, &portp->state))
925 set_bit(ST_DOSIGS, &portp->state);
926 else
927 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
928 sizeof(asysigs_t), 0);
929 }
930 clear_bit(ST_TXBUSY, &portp->state);
931 clear_bit(ST_RXSTOP, &portp->state);
932 set_bit(TTY_IO_ERROR, &tty->flags);
933 tty_ldisc_flush(tty);
934 set_bit(ST_DOFLUSHRX, &portp->state);
935 stli_flushbuffer(tty);
936
937 tty->closing = 0;
938 tty_port_tty_set(&portp->port, NULL);
939
940 if (portp->openwaitcnt) {
941 if (portp->close_delay)
942 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
943 wake_up_interruptible(&portp->port.open_wait);
944 }
945
946 portp->port.flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
947 wake_up_interruptible(&portp->port.close_wait);
948 }
949
950 /*****************************************************************************/
951
952 /*
953 * Carry out first open operations on a port. This involves a number of
954 * commands to be sent to the slave. We need to open the port, set the
955 * notification events, set the initial port settings, get and set the
956 * initial signal values. We sleep and wait in between each one. But
957 * this still all happens pretty quickly.
958 */
959
960 static int stli_initopen(struct tty_struct *tty,
961 struct stlibrd *brdp, struct stliport *portp)
962 {
963 asynotify_t nt;
964 asyport_t aport;
965 int rc;
966
967 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
968 return rc;
969
970 memset(&nt, 0, sizeof(asynotify_t));
971 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
972 nt.signal = SG_DCD;
973 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
974 sizeof(asynotify_t), 0)) < 0)
975 return rc;
976
977 stli_mkasyport(tty, portp, &aport, tty->termios);
978 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
979 sizeof(asyport_t), 0)) < 0)
980 return rc;
981
982 set_bit(ST_GETSIGS, &portp->state);
983 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
984 sizeof(asysigs_t), 1)) < 0)
985 return rc;
986 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
987 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
988 stli_mkasysigs(&portp->asig, 1, 1);
989 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
990 sizeof(asysigs_t), 0)) < 0)
991 return rc;
992
993 return 0;
994 }
995
996 /*****************************************************************************/
997
998 /*
999 * Send an open message to the slave. This will sleep waiting for the
1000 * acknowledgement, so must have user context. We need to co-ordinate
1001 * with close events here, since we don't want open and close events
1002 * to overlap.
1003 */
1004
1005 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1006 {
1007 cdkhdr_t __iomem *hdrp;
1008 cdkctrl_t __iomem *cp;
1009 unsigned char __iomem *bits;
1010 unsigned long flags;
1011 int rc;
1012
1013 /*
1014 * Send a message to the slave to open this port.
1015 */
1016
1017 /*
1018 * Slave is already closing this port. This can happen if a hangup
1019 * occurs on this port. So we must wait until it is complete. The
1020 * order of opens and closes may not be preserved across shared
1021 * memory, so we must wait until it is complete.
1022 */
1023 wait_event_interruptible(portp->raw_wait,
1024 !test_bit(ST_CLOSING, &portp->state));
1025 if (signal_pending(current)) {
1026 return -ERESTARTSYS;
1027 }
1028
1029 /*
1030 * Everything is ready now, so write the open message into shared
1031 * memory. Once the message is in set the service bits to say that
1032 * this port wants service.
1033 */
1034 spin_lock_irqsave(&brd_lock, flags);
1035 EBRDENABLE(brdp);
1036 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1037 writel(arg, &cp->openarg);
1038 writeb(1, &cp->open);
1039 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1040 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1041 portp->portidx;
1042 writeb(readb(bits) | portp->portbit, bits);
1043 EBRDDISABLE(brdp);
1044
1045 if (wait == 0) {
1046 spin_unlock_irqrestore(&brd_lock, flags);
1047 return 0;
1048 }
1049
1050 /*
1051 * Slave is in action, so now we must wait for the open acknowledgment
1052 * to come back.
1053 */
1054 rc = 0;
1055 set_bit(ST_OPENING, &portp->state);
1056 spin_unlock_irqrestore(&brd_lock, flags);
1057
1058 wait_event_interruptible(portp->raw_wait,
1059 !test_bit(ST_OPENING, &portp->state));
1060 if (signal_pending(current))
1061 rc = -ERESTARTSYS;
1062
1063 if ((rc == 0) && (portp->rc != 0))
1064 rc = -EIO;
1065 return rc;
1066 }
1067
1068 /*****************************************************************************/
1069
1070 /*
1071 * Send a close message to the slave. Normally this will sleep waiting
1072 * for the acknowledgement, but if wait parameter is 0 it will not. If
1073 * wait is true then must have user context (to sleep).
1074 */
1075
1076 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1077 {
1078 cdkhdr_t __iomem *hdrp;
1079 cdkctrl_t __iomem *cp;
1080 unsigned char __iomem *bits;
1081 unsigned long flags;
1082 int rc;
1083
1084 /*
1085 * Slave is already closing this port. This can happen if a hangup
1086 * occurs on this port.
1087 */
1088 if (wait) {
1089 wait_event_interruptible(portp->raw_wait,
1090 !test_bit(ST_CLOSING, &portp->state));
1091 if (signal_pending(current)) {
1092 return -ERESTARTSYS;
1093 }
1094 }
1095
1096 /*
1097 * Write the close command into shared memory.
1098 */
1099 spin_lock_irqsave(&brd_lock, flags);
1100 EBRDENABLE(brdp);
1101 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1102 writel(arg, &cp->closearg);
1103 writeb(1, &cp->close);
1104 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1105 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1106 portp->portidx;
1107 writeb(readb(bits) |portp->portbit, bits);
1108 EBRDDISABLE(brdp);
1109
1110 set_bit(ST_CLOSING, &portp->state);
1111 spin_unlock_irqrestore(&brd_lock, flags);
1112
1113 if (wait == 0)
1114 return 0;
1115
1116 /*
1117 * Slave is in action, so now we must wait for the open acknowledgment
1118 * to come back.
1119 */
1120 rc = 0;
1121 wait_event_interruptible(portp->raw_wait,
1122 !test_bit(ST_CLOSING, &portp->state));
1123 if (signal_pending(current))
1124 rc = -ERESTARTSYS;
1125
1126 if ((rc == 0) && (portp->rc != 0))
1127 rc = -EIO;
1128 return rc;
1129 }
1130
1131 /*****************************************************************************/
1132
1133 /*
1134 * Send a command to the slave and wait for the response. This must
1135 * have user context (it sleeps). This routine is generic in that it
1136 * can send any type of command. Its purpose is to wait for that command
1137 * to complete (as opposed to initiating the command then returning).
1138 */
1139
1140 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1141 {
1142 wait_event_interruptible(portp->raw_wait,
1143 !test_bit(ST_CMDING, &portp->state));
1144 if (signal_pending(current))
1145 return -ERESTARTSYS;
1146
1147 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1148
1149 wait_event_interruptible(portp->raw_wait,
1150 !test_bit(ST_CMDING, &portp->state));
1151 if (signal_pending(current))
1152 return -ERESTARTSYS;
1153
1154 if (portp->rc != 0)
1155 return -EIO;
1156 return 0;
1157 }
1158
1159 /*****************************************************************************/
1160
1161 /*
1162 * Send the termios settings for this port to the slave. This sleeps
1163 * waiting for the command to complete - so must have user context.
1164 */
1165
1166 static int stli_setport(struct tty_struct *tty)
1167 {
1168 struct stliport *portp = tty->driver_data;
1169 struct stlibrd *brdp;
1170 asyport_t aport;
1171
1172 if (portp == NULL)
1173 return -ENODEV;
1174 if (portp->brdnr >= stli_nrbrds)
1175 return -ENODEV;
1176 brdp = stli_brds[portp->brdnr];
1177 if (brdp == NULL)
1178 return -ENODEV;
1179
1180 stli_mkasyport(tty, portp, &aport, tty->termios);
1181 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1182 }
1183
1184 /*****************************************************************************/
1185
1186 /*
1187 * Possibly need to wait for carrier (DCD signal) to come high. Say
1188 * maybe because if we are clocal then we don't need to wait...
1189 */
1190
1191 static int stli_waitcarrier(struct tty_struct *tty, struct stlibrd *brdp,
1192 struct stliport *portp, struct file *filp)
1193 {
1194 unsigned long flags;
1195 int rc, doclocal;
1196
1197 rc = 0;
1198 doclocal = 0;
1199
1200 if (tty->termios->c_cflag & CLOCAL)
1201 doclocal++;
1202
1203 spin_lock_irqsave(&stli_lock, flags);
1204 portp->openwaitcnt++;
1205 if (! tty_hung_up_p(filp))
1206 portp->port.count--;
1207 spin_unlock_irqrestore(&stli_lock, flags);
1208
1209 for (;;) {
1210 stli_mkasysigs(&portp->asig, 1, 1);
1211 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1212 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1213 break;
1214 if (tty_hung_up_p(filp) ||
1215 ((portp->port.flags & ASYNC_INITIALIZED) == 0)) {
1216 if (portp->port.flags & ASYNC_HUP_NOTIFY)
1217 rc = -EBUSY;
1218 else
1219 rc = -ERESTARTSYS;
1220 break;
1221 }
1222 if (((portp->port.flags & ASYNC_CLOSING) == 0) &&
1223 (doclocal || (portp->sigs & TIOCM_CD))) {
1224 break;
1225 }
1226 if (signal_pending(current)) {
1227 rc = -ERESTARTSYS;
1228 break;
1229 }
1230 interruptible_sleep_on(&portp->port.open_wait);
1231 }
1232
1233 spin_lock_irqsave(&stli_lock, flags);
1234 if (! tty_hung_up_p(filp))
1235 portp->port.count++;
1236 portp->openwaitcnt--;
1237 spin_unlock_irqrestore(&stli_lock, flags);
1238
1239 return rc;
1240 }
1241
1242 /*****************************************************************************/
1243
1244 /*
1245 * Write routine. Take the data and put it in the shared memory ring
1246 * queue. If port is not already sending chars then need to mark the
1247 * service bits for this port.
1248 */
1249
1250 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1251 {
1252 cdkasy_t __iomem *ap;
1253 cdkhdr_t __iomem *hdrp;
1254 unsigned char __iomem *bits;
1255 unsigned char __iomem *shbuf;
1256 unsigned char *chbuf;
1257 struct stliport *portp;
1258 struct stlibrd *brdp;
1259 unsigned int len, stlen, head, tail, size;
1260 unsigned long flags;
1261
1262 if (tty == stli_txcooktty)
1263 stli_flushchars(tty);
1264 portp = tty->driver_data;
1265 if (portp == NULL)
1266 return 0;
1267 if (portp->brdnr >= stli_nrbrds)
1268 return 0;
1269 brdp = stli_brds[portp->brdnr];
1270 if (brdp == NULL)
1271 return 0;
1272 chbuf = (unsigned char *) buf;
1273
1274 /*
1275 * All data is now local, shove as much as possible into shared memory.
1276 */
1277 spin_lock_irqsave(&brd_lock, flags);
1278 EBRDENABLE(brdp);
1279 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1280 head = (unsigned int) readw(&ap->txq.head);
1281 tail = (unsigned int) readw(&ap->txq.tail);
1282 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1283 tail = (unsigned int) readw(&ap->txq.tail);
1284 size = portp->txsize;
1285 if (head >= tail) {
1286 len = size - (head - tail) - 1;
1287 stlen = size - head;
1288 } else {
1289 len = tail - head - 1;
1290 stlen = len;
1291 }
1292
1293 len = min(len, (unsigned int)count);
1294 count = 0;
1295 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1296
1297 while (len > 0) {
1298 stlen = min(len, stlen);
1299 memcpy_toio(shbuf + head, chbuf, stlen);
1300 chbuf += stlen;
1301 len -= stlen;
1302 count += stlen;
1303 head += stlen;
1304 if (head >= size) {
1305 head = 0;
1306 stlen = tail;
1307 }
1308 }
1309
1310 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1311 writew(head, &ap->txq.head);
1312 if (test_bit(ST_TXBUSY, &portp->state)) {
1313 if (readl(&ap->changed.data) & DT_TXEMPTY)
1314 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1315 }
1316 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1317 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1318 portp->portidx;
1319 writeb(readb(bits) | portp->portbit, bits);
1320 set_bit(ST_TXBUSY, &portp->state);
1321 EBRDDISABLE(brdp);
1322 spin_unlock_irqrestore(&brd_lock, flags);
1323
1324 return(count);
1325 }
1326
1327 /*****************************************************************************/
1328
1329 /*
1330 * Output a single character. We put it into a temporary local buffer
1331 * (for speed) then write out that buffer when the flushchars routine
1332 * is called. There is a safety catch here so that if some other port
1333 * writes chars before the current buffer has been, then we write them
1334 * first them do the new ports.
1335 */
1336
1337 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1338 {
1339 if (tty != stli_txcooktty) {
1340 if (stli_txcooktty != NULL)
1341 stli_flushchars(stli_txcooktty);
1342 stli_txcooktty = tty;
1343 }
1344
1345 stli_txcookbuf[stli_txcooksize++] = ch;
1346 return 0;
1347 }
1348
1349 /*****************************************************************************/
1350
1351 /*
1352 * Transfer characters from the local TX cooking buffer to the board.
1353 * We sort of ignore the tty that gets passed in here. We rely on the
1354 * info stored with the TX cook buffer to tell us which port to flush
1355 * the data on. In any case we clean out the TX cook buffer, for re-use
1356 * by someone else.
1357 */
1358
1359 static void stli_flushchars(struct tty_struct *tty)
1360 {
1361 cdkhdr_t __iomem *hdrp;
1362 unsigned char __iomem *bits;
1363 cdkasy_t __iomem *ap;
1364 struct tty_struct *cooktty;
1365 struct stliport *portp;
1366 struct stlibrd *brdp;
1367 unsigned int len, stlen, head, tail, size, count, cooksize;
1368 unsigned char *buf;
1369 unsigned char __iomem *shbuf;
1370 unsigned long flags;
1371
1372 cooksize = stli_txcooksize;
1373 cooktty = stli_txcooktty;
1374 stli_txcooksize = 0;
1375 stli_txcookrealsize = 0;
1376 stli_txcooktty = NULL;
1377
1378 if (cooktty == NULL)
1379 return;
1380 if (tty != cooktty)
1381 tty = cooktty;
1382 if (cooksize == 0)
1383 return;
1384
1385 portp = tty->driver_data;
1386 if (portp == NULL)
1387 return;
1388 if (portp->brdnr >= stli_nrbrds)
1389 return;
1390 brdp = stli_brds[portp->brdnr];
1391 if (brdp == NULL)
1392 return;
1393
1394 spin_lock_irqsave(&brd_lock, flags);
1395 EBRDENABLE(brdp);
1396
1397 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1398 head = (unsigned int) readw(&ap->txq.head);
1399 tail = (unsigned int) readw(&ap->txq.tail);
1400 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1401 tail = (unsigned int) readw(&ap->txq.tail);
1402 size = portp->txsize;
1403 if (head >= tail) {
1404 len = size - (head - tail) - 1;
1405 stlen = size - head;
1406 } else {
1407 len = tail - head - 1;
1408 stlen = len;
1409 }
1410
1411 len = min(len, cooksize);
1412 count = 0;
1413 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1414 buf = stli_txcookbuf;
1415
1416 while (len > 0) {
1417 stlen = min(len, stlen);
1418 memcpy_toio(shbuf + head, buf, stlen);
1419 buf += stlen;
1420 len -= stlen;
1421 count += stlen;
1422 head += stlen;
1423 if (head >= size) {
1424 head = 0;
1425 stlen = tail;
1426 }
1427 }
1428
1429 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1430 writew(head, &ap->txq.head);
1431
1432 if (test_bit(ST_TXBUSY, &portp->state)) {
1433 if (readl(&ap->changed.data) & DT_TXEMPTY)
1434 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1435 }
1436 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1437 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1438 portp->portidx;
1439 writeb(readb(bits) | portp->portbit, bits);
1440 set_bit(ST_TXBUSY, &portp->state);
1441
1442 EBRDDISABLE(brdp);
1443 spin_unlock_irqrestore(&brd_lock, flags);
1444 }
1445
1446 /*****************************************************************************/
1447
1448 static int stli_writeroom(struct tty_struct *tty)
1449 {
1450 cdkasyrq_t __iomem *rp;
1451 struct stliport *portp;
1452 struct stlibrd *brdp;
1453 unsigned int head, tail, len;
1454 unsigned long flags;
1455
1456 if (tty == stli_txcooktty) {
1457 if (stli_txcookrealsize != 0) {
1458 len = stli_txcookrealsize - stli_txcooksize;
1459 return len;
1460 }
1461 }
1462
1463 portp = tty->driver_data;
1464 if (portp == NULL)
1465 return 0;
1466 if (portp->brdnr >= stli_nrbrds)
1467 return 0;
1468 brdp = stli_brds[portp->brdnr];
1469 if (brdp == NULL)
1470 return 0;
1471
1472 spin_lock_irqsave(&brd_lock, flags);
1473 EBRDENABLE(brdp);
1474 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1475 head = (unsigned int) readw(&rp->head);
1476 tail = (unsigned int) readw(&rp->tail);
1477 if (tail != ((unsigned int) readw(&rp->tail)))
1478 tail = (unsigned int) readw(&rp->tail);
1479 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1480 len--;
1481 EBRDDISABLE(brdp);
1482 spin_unlock_irqrestore(&brd_lock, flags);
1483
1484 if (tty == stli_txcooktty) {
1485 stli_txcookrealsize = len;
1486 len -= stli_txcooksize;
1487 }
1488 return len;
1489 }
1490
1491 /*****************************************************************************/
1492
1493 /*
1494 * Return the number of characters in the transmit buffer. Normally we
1495 * will return the number of chars in the shared memory ring queue.
1496 * We need to kludge around the case where the shared memory buffer is
1497 * empty but not all characters have drained yet, for this case just
1498 * return that there is 1 character in the buffer!
1499 */
1500
1501 static int stli_charsinbuffer(struct tty_struct *tty)
1502 {
1503 cdkasyrq_t __iomem *rp;
1504 struct stliport *portp;
1505 struct stlibrd *brdp;
1506 unsigned int head, tail, len;
1507 unsigned long flags;
1508
1509 if (tty == stli_txcooktty)
1510 stli_flushchars(tty);
1511 portp = tty->driver_data;
1512 if (portp == NULL)
1513 return 0;
1514 if (portp->brdnr >= stli_nrbrds)
1515 return 0;
1516 brdp = stli_brds[portp->brdnr];
1517 if (brdp == NULL)
1518 return 0;
1519
1520 spin_lock_irqsave(&brd_lock, flags);
1521 EBRDENABLE(brdp);
1522 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1523 head = (unsigned int) readw(&rp->head);
1524 tail = (unsigned int) readw(&rp->tail);
1525 if (tail != ((unsigned int) readw(&rp->tail)))
1526 tail = (unsigned int) readw(&rp->tail);
1527 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1528 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1529 len = 1;
1530 EBRDDISABLE(brdp);
1531 spin_unlock_irqrestore(&brd_lock, flags);
1532
1533 return len;
1534 }
1535
1536 /*****************************************************************************/
1537
1538 /*
1539 * Generate the serial struct info.
1540 */
1541
1542 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1543 {
1544 struct serial_struct sio;
1545 struct stlibrd *brdp;
1546
1547 memset(&sio, 0, sizeof(struct serial_struct));
1548 sio.type = PORT_UNKNOWN;
1549 sio.line = portp->portnr;
1550 sio.irq = 0;
1551 sio.flags = portp->port.flags;
1552 sio.baud_base = portp->baud_base;
1553 sio.close_delay = portp->close_delay;
1554 sio.closing_wait = portp->closing_wait;
1555 sio.custom_divisor = portp->custom_divisor;
1556 sio.xmit_fifo_size = 0;
1557 sio.hub6 = 0;
1558
1559 brdp = stli_brds[portp->brdnr];
1560 if (brdp != NULL)
1561 sio.port = brdp->iobase;
1562
1563 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1564 -EFAULT : 0;
1565 }
1566
1567 /*****************************************************************************/
1568
1569 /*
1570 * Set port according to the serial struct info.
1571 * At this point we do not do any auto-configure stuff, so we will
1572 * just quietly ignore any requests to change irq, etc.
1573 */
1574
1575 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1576 {
1577 struct serial_struct sio;
1578 int rc;
1579 struct stliport *portp = tty->driver_data;
1580
1581 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1582 return -EFAULT;
1583 if (!capable(CAP_SYS_ADMIN)) {
1584 if ((sio.baud_base != portp->baud_base) ||
1585 (sio.close_delay != portp->close_delay) ||
1586 ((sio.flags & ~ASYNC_USR_MASK) !=
1587 (portp->port.flags & ~ASYNC_USR_MASK)))
1588 return -EPERM;
1589 }
1590
1591 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1592 (sio.flags & ASYNC_USR_MASK);
1593 portp->baud_base = sio.baud_base;
1594 portp->close_delay = sio.close_delay;
1595 portp->closing_wait = sio.closing_wait;
1596 portp->custom_divisor = sio.custom_divisor;
1597
1598 if ((rc = stli_setport(tty)) < 0)
1599 return rc;
1600 return 0;
1601 }
1602
1603 /*****************************************************************************/
1604
1605 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1606 {
1607 struct stliport *portp = tty->driver_data;
1608 struct stlibrd *brdp;
1609 int rc;
1610
1611 if (portp == NULL)
1612 return -ENODEV;
1613 if (portp->brdnr >= stli_nrbrds)
1614 return 0;
1615 brdp = stli_brds[portp->brdnr];
1616 if (brdp == NULL)
1617 return 0;
1618 if (tty->flags & (1 << TTY_IO_ERROR))
1619 return -EIO;
1620
1621 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1622 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1623 return rc;
1624
1625 return stli_mktiocm(portp->asig.sigvalue);
1626 }
1627
1628 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1629 unsigned int set, unsigned int clear)
1630 {
1631 struct stliport *portp = tty->driver_data;
1632 struct stlibrd *brdp;
1633 int rts = -1, dtr = -1;
1634
1635 if (portp == NULL)
1636 return -ENODEV;
1637 if (portp->brdnr >= stli_nrbrds)
1638 return 0;
1639 brdp = stli_brds[portp->brdnr];
1640 if (brdp == NULL)
1641 return 0;
1642 if (tty->flags & (1 << TTY_IO_ERROR))
1643 return -EIO;
1644
1645 if (set & TIOCM_RTS)
1646 rts = 1;
1647 if (set & TIOCM_DTR)
1648 dtr = 1;
1649 if (clear & TIOCM_RTS)
1650 rts = 0;
1651 if (clear & TIOCM_DTR)
1652 dtr = 0;
1653
1654 stli_mkasysigs(&portp->asig, dtr, rts);
1655
1656 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1657 sizeof(asysigs_t), 0);
1658 }
1659
1660 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1661 {
1662 struct stliport *portp;
1663 struct stlibrd *brdp;
1664 int rc;
1665 void __user *argp = (void __user *)arg;
1666
1667 portp = tty->driver_data;
1668 if (portp == NULL)
1669 return -ENODEV;
1670 if (portp->brdnr >= stli_nrbrds)
1671 return 0;
1672 brdp = stli_brds[portp->brdnr];
1673 if (brdp == NULL)
1674 return 0;
1675
1676 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1677 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1678 if (tty->flags & (1 << TTY_IO_ERROR))
1679 return -EIO;
1680 }
1681
1682 rc = 0;
1683
1684 switch (cmd) {
1685 case TIOCGSERIAL:
1686 rc = stli_getserial(portp, argp);
1687 break;
1688 case TIOCSSERIAL:
1689 rc = stli_setserial(tty, argp);
1690 break;
1691 case STL_GETPFLAG:
1692 rc = put_user(portp->pflag, (unsigned __user *)argp);
1693 break;
1694 case STL_SETPFLAG:
1695 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1696 stli_setport(tty);
1697 break;
1698 case COM_GETPORTSTATS:
1699 rc = stli_getportstats(tty, portp, argp);
1700 break;
1701 case COM_CLRPORTSTATS:
1702 rc = stli_clrportstats(portp, argp);
1703 break;
1704 case TIOCSERCONFIG:
1705 case TIOCSERGWILD:
1706 case TIOCSERSWILD:
1707 case TIOCSERGETLSR:
1708 case TIOCSERGSTRUCT:
1709 case TIOCSERGETMULTI:
1710 case TIOCSERSETMULTI:
1711 default:
1712 rc = -ENOIOCTLCMD;
1713 break;
1714 }
1715
1716 return rc;
1717 }
1718
1719 /*****************************************************************************/
1720
1721 /*
1722 * This routine assumes that we have user context and can sleep.
1723 * Looks like it is true for the current ttys implementation..!!
1724 */
1725
1726 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1727 {
1728 struct stliport *portp;
1729 struct stlibrd *brdp;
1730 struct ktermios *tiosp;
1731 asyport_t aport;
1732
1733 portp = tty->driver_data;
1734 if (portp == NULL)
1735 return;
1736 if (portp->brdnr >= stli_nrbrds)
1737 return;
1738 brdp = stli_brds[portp->brdnr];
1739 if (brdp == NULL)
1740 return;
1741
1742 tiosp = tty->termios;
1743
1744 stli_mkasyport(tty, portp, &aport, tiosp);
1745 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1746 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1747 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1748 sizeof(asysigs_t), 0);
1749 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1750 tty->hw_stopped = 0;
1751 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1752 wake_up_interruptible(&portp->port.open_wait);
1753 }
1754
1755 /*****************************************************************************/
1756
1757 /*
1758 * Attempt to flow control who ever is sending us data. We won't really
1759 * do any flow control action here. We can't directly, and even if we
1760 * wanted to we would have to send a command to the slave. The slave
1761 * knows how to flow control, and will do so when its buffers reach its
1762 * internal high water marks. So what we will do is set a local state
1763 * bit that will stop us sending any RX data up from the poll routine
1764 * (which is the place where RX data from the slave is handled).
1765 */
1766
1767 static void stli_throttle(struct tty_struct *tty)
1768 {
1769 struct stliport *portp = tty->driver_data;
1770 if (portp == NULL)
1771 return;
1772 set_bit(ST_RXSTOP, &portp->state);
1773 }
1774
1775 /*****************************************************************************/
1776
1777 /*
1778 * Unflow control the device sending us data... That means that all
1779 * we have to do is clear the RXSTOP state bit. The next poll call
1780 * will then be able to pass the RX data back up.
1781 */
1782
1783 static void stli_unthrottle(struct tty_struct *tty)
1784 {
1785 struct stliport *portp = tty->driver_data;
1786 if (portp == NULL)
1787 return;
1788 clear_bit(ST_RXSTOP, &portp->state);
1789 }
1790
1791 /*****************************************************************************/
1792
1793 /*
1794 * Stop the transmitter.
1795 */
1796
1797 static void stli_stop(struct tty_struct *tty)
1798 {
1799 }
1800
1801 /*****************************************************************************/
1802
1803 /*
1804 * Start the transmitter again.
1805 */
1806
1807 static void stli_start(struct tty_struct *tty)
1808 {
1809 }
1810
1811 /*****************************************************************************/
1812
1813 /*
1814 * Hangup this port. This is pretty much like closing the port, only
1815 * a little more brutal. No waiting for data to drain. Shutdown the
1816 * port and maybe drop signals. This is rather tricky really. We want
1817 * to close the port as well.
1818 */
1819
1820 static void stli_hangup(struct tty_struct *tty)
1821 {
1822 struct stliport *portp;
1823 struct stlibrd *brdp;
1824 unsigned long flags;
1825
1826 portp = tty->driver_data;
1827 if (portp == NULL)
1828 return;
1829 if (portp->brdnr >= stli_nrbrds)
1830 return;
1831 brdp = stli_brds[portp->brdnr];
1832 if (brdp == NULL)
1833 return;
1834
1835 portp->port.flags &= ~ASYNC_INITIALIZED;
1836
1837 if (!test_bit(ST_CLOSING, &portp->state))
1838 stli_rawclose(brdp, portp, 0, 0);
1839
1840 spin_lock_irqsave(&stli_lock, flags);
1841 if (tty->termios->c_cflag & HUPCL) {
1842 stli_mkasysigs(&portp->asig, 0, 0);
1843 if (test_bit(ST_CMDING, &portp->state)) {
1844 set_bit(ST_DOSIGS, &portp->state);
1845 set_bit(ST_DOFLUSHTX, &portp->state);
1846 set_bit(ST_DOFLUSHRX, &portp->state);
1847 } else {
1848 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1849 &portp->asig, sizeof(asysigs_t), 0);
1850 }
1851 }
1852
1853 clear_bit(ST_TXBUSY, &portp->state);
1854 clear_bit(ST_RXSTOP, &portp->state);
1855 set_bit(TTY_IO_ERROR, &tty->flags);
1856 tty_port_tty_set(&portp->port, NULL);
1857 portp->port.flags &= ~ASYNC_NORMAL_ACTIVE;
1858 portp->port.count = 0;
1859 spin_unlock_irqrestore(&stli_lock, flags);
1860
1861 wake_up_interruptible(&portp->port.open_wait);
1862 }
1863
1864 /*****************************************************************************/
1865
1866 /*
1867 * Flush characters from the lower buffer. We may not have user context
1868 * so we cannot sleep waiting for it to complete. Also we need to check
1869 * if there is chars for this port in the TX cook buffer, and flush them
1870 * as well.
1871 */
1872
1873 static void stli_flushbuffer(struct tty_struct *tty)
1874 {
1875 struct stliport *portp;
1876 struct stlibrd *brdp;
1877 unsigned long ftype, flags;
1878
1879 portp = tty->driver_data;
1880 if (portp == NULL)
1881 return;
1882 if (portp->brdnr >= stli_nrbrds)
1883 return;
1884 brdp = stli_brds[portp->brdnr];
1885 if (brdp == NULL)
1886 return;
1887
1888 spin_lock_irqsave(&brd_lock, flags);
1889 if (tty == stli_txcooktty) {
1890 stli_txcooktty = NULL;
1891 stli_txcooksize = 0;
1892 stli_txcookrealsize = 0;
1893 }
1894 if (test_bit(ST_CMDING, &portp->state)) {
1895 set_bit(ST_DOFLUSHTX, &portp->state);
1896 } else {
1897 ftype = FLUSHTX;
1898 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1899 ftype |= FLUSHRX;
1900 clear_bit(ST_DOFLUSHRX, &portp->state);
1901 }
1902 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1903 }
1904 spin_unlock_irqrestore(&brd_lock, flags);
1905 tty_wakeup(tty);
1906 }
1907
1908 /*****************************************************************************/
1909
1910 static int stli_breakctl(struct tty_struct *tty, int state)
1911 {
1912 struct stlibrd *brdp;
1913 struct stliport *portp;
1914 long arg;
1915
1916 portp = tty->driver_data;
1917 if (portp == NULL)
1918 return -EINVAL;
1919 if (portp->brdnr >= stli_nrbrds)
1920 return -EINVAL;
1921 brdp = stli_brds[portp->brdnr];
1922 if (brdp == NULL)
1923 return -EINVAL;
1924
1925 arg = (state == -1) ? BREAKON : BREAKOFF;
1926 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1927 return 0;
1928 }
1929
1930 /*****************************************************************************/
1931
1932 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1933 {
1934 struct stliport *portp;
1935 unsigned long tend;
1936
1937 portp = tty->driver_data;
1938 if (portp == NULL)
1939 return;
1940
1941 if (timeout == 0)
1942 timeout = HZ;
1943 tend = jiffies + timeout;
1944
1945 while (test_bit(ST_TXBUSY, &portp->state)) {
1946 if (signal_pending(current))
1947 break;
1948 msleep_interruptible(20);
1949 if (time_after_eq(jiffies, tend))
1950 break;
1951 }
1952 }
1953
1954 /*****************************************************************************/
1955
1956 static void stli_sendxchar(struct tty_struct *tty, char ch)
1957 {
1958 struct stlibrd *brdp;
1959 struct stliport *portp;
1960 asyctrl_t actrl;
1961
1962 portp = tty->driver_data;
1963 if (portp == NULL)
1964 return;
1965 if (portp->brdnr >= stli_nrbrds)
1966 return;
1967 brdp = stli_brds[portp->brdnr];
1968 if (brdp == NULL)
1969 return;
1970
1971 memset(&actrl, 0, sizeof(asyctrl_t));
1972 if (ch == STOP_CHAR(tty)) {
1973 actrl.rxctrl = CT_STOPFLOW;
1974 } else if (ch == START_CHAR(tty)) {
1975 actrl.rxctrl = CT_STARTFLOW;
1976 } else {
1977 actrl.txctrl = CT_SENDCHR;
1978 actrl.tximdch = ch;
1979 }
1980 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1981 }
1982
1983 /*****************************************************************************/
1984
1985 #define MAXLINE 80
1986
1987 /*
1988 * Format info for a specified port. The line is deliberately limited
1989 * to 80 characters. (If it is too long it will be truncated, if too
1990 * short then padded with spaces).
1991 */
1992
1993 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos)
1994 {
1995 char *sp, *uart;
1996 int rc, cnt;
1997
1998 rc = stli_portcmdstats(NULL, portp);
1999
2000 uart = "UNKNOWN";
2001 if (brdp->state & BST_STARTED) {
2002 switch (stli_comstats.hwid) {
2003 case 0: uart = "2681"; break;
2004 case 1: uart = "SC26198"; break;
2005 default:uart = "CD1400"; break;
2006 }
2007 }
2008
2009 sp = pos;
2010 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2011
2012 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2013 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2014 (int) stli_comstats.rxtotal);
2015
2016 if (stli_comstats.rxframing)
2017 sp += sprintf(sp, " fe:%d",
2018 (int) stli_comstats.rxframing);
2019 if (stli_comstats.rxparity)
2020 sp += sprintf(sp, " pe:%d",
2021 (int) stli_comstats.rxparity);
2022 if (stli_comstats.rxbreaks)
2023 sp += sprintf(sp, " brk:%d",
2024 (int) stli_comstats.rxbreaks);
2025 if (stli_comstats.rxoverrun)
2026 sp += sprintf(sp, " oe:%d",
2027 (int) stli_comstats.rxoverrun);
2028
2029 cnt = sprintf(sp, "%s%s%s%s%s ",
2030 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2031 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2032 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2033 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2034 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2035 *sp = ' ';
2036 sp += cnt;
2037 }
2038
2039 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2040 *sp++ = ' ';
2041 if (cnt >= MAXLINE)
2042 pos[(MAXLINE - 2)] = '+';
2043 pos[(MAXLINE - 1)] = '\n';
2044
2045 return(MAXLINE);
2046 }
2047
2048 /*****************************************************************************/
2049
2050 /*
2051 * Port info, read from the /proc file system.
2052 */
2053
2054 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2055 {
2056 struct stlibrd *brdp;
2057 struct stliport *portp;
2058 unsigned int brdnr, portnr, totalport;
2059 int curoff, maxoff;
2060 char *pos;
2061
2062 pos = page;
2063 totalport = 0;
2064 curoff = 0;
2065
2066 if (off == 0) {
2067 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2068 stli_drvversion);
2069 while (pos < (page + MAXLINE - 1))
2070 *pos++ = ' ';
2071 *pos++ = '\n';
2072 }
2073 curoff = MAXLINE;
2074
2075 /*
2076 * We scan through for each board, panel and port. The offset is
2077 * calculated on the fly, and irrelevant ports are skipped.
2078 */
2079 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2080 brdp = stli_brds[brdnr];
2081 if (brdp == NULL)
2082 continue;
2083 if (brdp->state == 0)
2084 continue;
2085
2086 maxoff = curoff + (brdp->nrports * MAXLINE);
2087 if (off >= maxoff) {
2088 curoff = maxoff;
2089 continue;
2090 }
2091
2092 totalport = brdnr * STL_MAXPORTS;
2093 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2094 totalport++) {
2095 portp = brdp->ports[portnr];
2096 if (portp == NULL)
2097 continue;
2098 if (off >= (curoff += MAXLINE))
2099 continue;
2100 if ((pos - page + MAXLINE) > count)
2101 goto stli_readdone;
2102 pos += stli_portinfo(brdp, portp, totalport, pos);
2103 }
2104 }
2105
2106 *eof = 1;
2107
2108 stli_readdone:
2109 *start = page;
2110 return(pos - page);
2111 }
2112
2113 /*****************************************************************************/
2114
2115 /*
2116 * Generic send command routine. This will send a message to the slave,
2117 * of the specified type with the specified argument. Must be very
2118 * careful of data that will be copied out from shared memory -
2119 * containing command results. The command completion is all done from
2120 * a poll routine that does not have user context. Therefore you cannot
2121 * copy back directly into user space, or to the kernel stack of a
2122 * process. This routine does not sleep, so can be called from anywhere.
2123 *
2124 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2125 * entry point)
2126 */
2127
2128 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2129 {
2130 cdkhdr_t __iomem *hdrp;
2131 cdkctrl_t __iomem *cp;
2132 unsigned char __iomem *bits;
2133
2134 if (test_bit(ST_CMDING, &portp->state)) {
2135 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2136 (int) cmd);
2137 return;
2138 }
2139
2140 EBRDENABLE(brdp);
2141 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2142 if (size > 0) {
2143 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2144 if (copyback) {
2145 portp->argp = arg;
2146 portp->argsize = size;
2147 }
2148 }
2149 writel(0, &cp->status);
2150 writel(cmd, &cp->cmd);
2151 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2152 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2153 portp->portidx;
2154 writeb(readb(bits) | portp->portbit, bits);
2155 set_bit(ST_CMDING, &portp->state);
2156 EBRDDISABLE(brdp);
2157 }
2158
2159 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2160 {
2161 unsigned long flags;
2162
2163 spin_lock_irqsave(&brd_lock, flags);
2164 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2165 spin_unlock_irqrestore(&brd_lock, flags);
2166 }
2167
2168 /*****************************************************************************/
2169
2170 /*
2171 * Read data from shared memory. This assumes that the shared memory
2172 * is enabled and that interrupts are off. Basically we just empty out
2173 * the shared memory buffer into the tty buffer. Must be careful to
2174 * handle the case where we fill up the tty buffer, but still have
2175 * more chars to unload.
2176 */
2177
2178 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2179 {
2180 cdkasyrq_t __iomem *rp;
2181 char __iomem *shbuf;
2182 struct tty_struct *tty;
2183 unsigned int head, tail, size;
2184 unsigned int len, stlen;
2185
2186 if (test_bit(ST_RXSTOP, &portp->state))
2187 return;
2188 tty = tty_port_tty_get(&portp->port);
2189 if (tty == NULL)
2190 return;
2191
2192 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2193 head = (unsigned int) readw(&rp->head);
2194 if (head != ((unsigned int) readw(&rp->head)))
2195 head = (unsigned int) readw(&rp->head);
2196 tail = (unsigned int) readw(&rp->tail);
2197 size = portp->rxsize;
2198 if (head >= tail) {
2199 len = head - tail;
2200 stlen = len;
2201 } else {
2202 len = size - (tail - head);
2203 stlen = size - tail;
2204 }
2205
2206 len = tty_buffer_request_room(tty, len);
2207
2208 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2209
2210 while (len > 0) {
2211 unsigned char *cptr;
2212
2213 stlen = min(len, stlen);
2214 tty_prepare_flip_string(tty, &cptr, stlen);
2215 memcpy_fromio(cptr, shbuf + tail, stlen);
2216 len -= stlen;
2217 tail += stlen;
2218 if (tail >= size) {
2219 tail = 0;
2220 stlen = head;
2221 }
2222 }
2223 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2224 writew(tail, &rp->tail);
2225
2226 if (head != tail)
2227 set_bit(ST_RXING, &portp->state);
2228
2229 tty_schedule_flip(tty);
2230 tty_kref_put(tty);
2231 }
2232
2233 /*****************************************************************************/
2234
2235 /*
2236 * Set up and carry out any delayed commands. There is only a small set
2237 * of slave commands that can be done "off-level". So it is not too
2238 * difficult to deal with them here.
2239 */
2240
2241 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2242 {
2243 int cmd;
2244
2245 if (test_bit(ST_DOSIGS, &portp->state)) {
2246 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2247 test_bit(ST_DOFLUSHRX, &portp->state))
2248 cmd = A_SETSIGNALSF;
2249 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2250 cmd = A_SETSIGNALSFTX;
2251 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2252 cmd = A_SETSIGNALSFRX;
2253 else
2254 cmd = A_SETSIGNALS;
2255 clear_bit(ST_DOFLUSHTX, &portp->state);
2256 clear_bit(ST_DOFLUSHRX, &portp->state);
2257 clear_bit(ST_DOSIGS, &portp->state);
2258 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2259 sizeof(asysigs_t));
2260 writel(0, &cp->status);
2261 writel(cmd, &cp->cmd);
2262 set_bit(ST_CMDING, &portp->state);
2263 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2264 test_bit(ST_DOFLUSHRX, &portp->state)) {
2265 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2266 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2267 clear_bit(ST_DOFLUSHTX, &portp->state);
2268 clear_bit(ST_DOFLUSHRX, &portp->state);
2269 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2270 writel(0, &cp->status);
2271 writel(A_FLUSH, &cp->cmd);
2272 set_bit(ST_CMDING, &portp->state);
2273 }
2274 }
2275
2276 /*****************************************************************************/
2277
2278 /*
2279 * Host command service checking. This handles commands or messages
2280 * coming from the slave to the host. Must have board shared memory
2281 * enabled and interrupts off when called. Notice that by servicing the
2282 * read data last we don't need to change the shared memory pointer
2283 * during processing (which is a slow IO operation).
2284 * Return value indicates if this port is still awaiting actions from
2285 * the slave (like open, command, or even TX data being sent). If 0
2286 * then port is still busy, otherwise no longer busy.
2287 */
2288
2289 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2290 {
2291 cdkasy_t __iomem *ap;
2292 cdkctrl_t __iomem *cp;
2293 struct tty_struct *tty;
2294 asynotify_t nt;
2295 unsigned long oldsigs;
2296 int rc, donerx;
2297
2298 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2299 cp = &ap->ctrl;
2300
2301 /*
2302 * Check if we are waiting for an open completion message.
2303 */
2304 if (test_bit(ST_OPENING, &portp->state)) {
2305 rc = readl(&cp->openarg);
2306 if (readb(&cp->open) == 0 && rc != 0) {
2307 if (rc > 0)
2308 rc--;
2309 writel(0, &cp->openarg);
2310 portp->rc = rc;
2311 clear_bit(ST_OPENING, &portp->state);
2312 wake_up_interruptible(&portp->raw_wait);
2313 }
2314 }
2315
2316 /*
2317 * Check if we are waiting for a close completion message.
2318 */
2319 if (test_bit(ST_CLOSING, &portp->state)) {
2320 rc = (int) readl(&cp->closearg);
2321 if (readb(&cp->close) == 0 && rc != 0) {
2322 if (rc > 0)
2323 rc--;
2324 writel(0, &cp->closearg);
2325 portp->rc = rc;
2326 clear_bit(ST_CLOSING, &portp->state);
2327 wake_up_interruptible(&portp->raw_wait);
2328 }
2329 }
2330
2331 /*
2332 * Check if we are waiting for a command completion message. We may
2333 * need to copy out the command results associated with this command.
2334 */
2335 if (test_bit(ST_CMDING, &portp->state)) {
2336 rc = readl(&cp->status);
2337 if (readl(&cp->cmd) == 0 && rc != 0) {
2338 if (rc > 0)
2339 rc--;
2340 if (portp->argp != NULL) {
2341 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2342 portp->argsize);
2343 portp->argp = NULL;
2344 }
2345 writel(0, &cp->status);
2346 portp->rc = rc;
2347 clear_bit(ST_CMDING, &portp->state);
2348 stli_dodelaycmd(portp, cp);
2349 wake_up_interruptible(&portp->raw_wait);
2350 }
2351 }
2352
2353 /*
2354 * Check for any notification messages ready. This includes lots of
2355 * different types of events - RX chars ready, RX break received,
2356 * TX data low or empty in the slave, modem signals changed state.
2357 */
2358 donerx = 0;
2359
2360 if (ap->notify) {
2361 nt = ap->changed;
2362 ap->notify = 0;
2363 tty = tty_port_tty_get(&portp->port);
2364
2365 if (nt.signal & SG_DCD) {
2366 oldsigs = portp->sigs;
2367 portp->sigs = stli_mktiocm(nt.sigvalue);
2368 clear_bit(ST_GETSIGS, &portp->state);
2369 if ((portp->sigs & TIOCM_CD) &&
2370 ((oldsigs & TIOCM_CD) == 0))
2371 wake_up_interruptible(&portp->port.open_wait);
2372 if ((oldsigs & TIOCM_CD) &&
2373 ((portp->sigs & TIOCM_CD) == 0)) {
2374 if (portp->port.flags & ASYNC_CHECK_CD) {
2375 if (tty)
2376 tty_hangup(tty);
2377 }
2378 }
2379 }
2380
2381 if (nt.data & DT_TXEMPTY)
2382 clear_bit(ST_TXBUSY, &portp->state);
2383 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2384 if (tty != NULL) {
2385 tty_wakeup(tty);
2386 EBRDENABLE(brdp);
2387 }
2388 }
2389
2390 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2391 if (tty != NULL) {
2392 tty_insert_flip_char(tty, 0, TTY_BREAK);
2393 if (portp->port.flags & ASYNC_SAK) {
2394 do_SAK(tty);
2395 EBRDENABLE(brdp);
2396 }
2397 tty_schedule_flip(tty);
2398 }
2399 }
2400 tty_kref_put(tty);
2401
2402 if (nt.data & DT_RXBUSY) {
2403 donerx++;
2404 stli_read(brdp, portp);
2405 }
2406 }
2407
2408 /*
2409 * It might seem odd that we are checking for more RX chars here.
2410 * But, we need to handle the case where the tty buffer was previously
2411 * filled, but we had more characters to pass up. The slave will not
2412 * send any more RX notify messages until the RX buffer has been emptied.
2413 * But it will leave the service bits on (since the buffer is not empty).
2414 * So from here we can try to process more RX chars.
2415 */
2416 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2417 clear_bit(ST_RXING, &portp->state);
2418 stli_read(brdp, portp);
2419 }
2420
2421 return((test_bit(ST_OPENING, &portp->state) ||
2422 test_bit(ST_CLOSING, &portp->state) ||
2423 test_bit(ST_CMDING, &portp->state) ||
2424 test_bit(ST_TXBUSY, &portp->state) ||
2425 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2426 }
2427
2428 /*****************************************************************************/
2429
2430 /*
2431 * Service all ports on a particular board. Assumes that the boards
2432 * shared memory is enabled, and that the page pointer is pointed
2433 * at the cdk header structure.
2434 */
2435
2436 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2437 {
2438 struct stliport *portp;
2439 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2440 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2441 unsigned char __iomem *slavep;
2442 int bitpos, bitat, bitsize;
2443 int channr, nrdevs, slavebitchange;
2444
2445 bitsize = brdp->bitsize;
2446 nrdevs = brdp->nrdevs;
2447
2448 /*
2449 * Check if slave wants any service. Basically we try to do as
2450 * little work as possible here. There are 2 levels of service
2451 * bits. So if there is nothing to do we bail early. We check
2452 * 8 service bits at a time in the inner loop, so we can bypass
2453 * the lot if none of them want service.
2454 */
2455 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2456 bitsize);
2457
2458 memset(&slavebits[0], 0, bitsize);
2459 slavebitchange = 0;
2460
2461 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2462 if (hostbits[bitpos] == 0)
2463 continue;
2464 channr = bitpos * 8;
2465 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2466 if (hostbits[bitpos] & bitat) {
2467 portp = brdp->ports[(channr - 1)];
2468 if (stli_hostcmd(brdp, portp)) {
2469 slavebitchange++;
2470 slavebits[bitpos] |= bitat;
2471 }
2472 }
2473 }
2474 }
2475
2476 /*
2477 * If any of the ports are no longer busy then update them in the
2478 * slave request bits. We need to do this after, since a host port
2479 * service may initiate more slave requests.
2480 */
2481 if (slavebitchange) {
2482 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2483 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2484 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2485 if (readb(slavebits + bitpos))
2486 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2487 }
2488 }
2489 }
2490
2491 /*****************************************************************************/
2492
2493 /*
2494 * Driver poll routine. This routine polls the boards in use and passes
2495 * messages back up to host when necessary. This is actually very
2496 * CPU efficient, since we will always have the kernel poll clock, it
2497 * adds only a few cycles when idle (since board service can be
2498 * determined very easily), but when loaded generates no interrupts
2499 * (with their expensive associated context change).
2500 */
2501
2502 static void stli_poll(unsigned long arg)
2503 {
2504 cdkhdr_t __iomem *hdrp;
2505 struct stlibrd *brdp;
2506 unsigned int brdnr;
2507
2508 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2509
2510 /*
2511 * Check each board and do any servicing required.
2512 */
2513 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2514 brdp = stli_brds[brdnr];
2515 if (brdp == NULL)
2516 continue;
2517 if ((brdp->state & BST_STARTED) == 0)
2518 continue;
2519
2520 spin_lock(&brd_lock);
2521 EBRDENABLE(brdp);
2522 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2523 if (readb(&hdrp->hostreq))
2524 stli_brdpoll(brdp, hdrp);
2525 EBRDDISABLE(brdp);
2526 spin_unlock(&brd_lock);
2527 }
2528 }
2529
2530 /*****************************************************************************/
2531
2532 /*
2533 * Translate the termios settings into the port setting structure of
2534 * the slave.
2535 */
2536
2537 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2538 asyport_t *pp, struct ktermios *tiosp)
2539 {
2540 memset(pp, 0, sizeof(asyport_t));
2541
2542 /*
2543 * Start of by setting the baud, char size, parity and stop bit info.
2544 */
2545 pp->baudout = tty_get_baud_rate(tty);
2546 if ((tiosp->c_cflag & CBAUD) == B38400) {
2547 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2548 pp->baudout = 57600;
2549 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2550 pp->baudout = 115200;
2551 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2552 pp->baudout = 230400;
2553 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2554 pp->baudout = 460800;
2555 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2556 pp->baudout = (portp->baud_base / portp->custom_divisor);
2557 }
2558 if (pp->baudout > STL_MAXBAUD)
2559 pp->baudout = STL_MAXBAUD;
2560 pp->baudin = pp->baudout;
2561
2562 switch (tiosp->c_cflag & CSIZE) {
2563 case CS5:
2564 pp->csize = 5;
2565 break;
2566 case CS6:
2567 pp->csize = 6;
2568 break;
2569 case CS7:
2570 pp->csize = 7;
2571 break;
2572 default:
2573 pp->csize = 8;
2574 break;
2575 }
2576
2577 if (tiosp->c_cflag & CSTOPB)
2578 pp->stopbs = PT_STOP2;
2579 else
2580 pp->stopbs = PT_STOP1;
2581
2582 if (tiosp->c_cflag & PARENB) {
2583 if (tiosp->c_cflag & PARODD)
2584 pp->parity = PT_ODDPARITY;
2585 else
2586 pp->parity = PT_EVENPARITY;
2587 } else {
2588 pp->parity = PT_NOPARITY;
2589 }
2590
2591 /*
2592 * Set up any flow control options enabled.
2593 */
2594 if (tiosp->c_iflag & IXON) {
2595 pp->flow |= F_IXON;
2596 if (tiosp->c_iflag & IXANY)
2597 pp->flow |= F_IXANY;
2598 }
2599 if (tiosp->c_cflag & CRTSCTS)
2600 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2601
2602 pp->startin = tiosp->c_cc[VSTART];
2603 pp->stopin = tiosp->c_cc[VSTOP];
2604 pp->startout = tiosp->c_cc[VSTART];
2605 pp->stopout = tiosp->c_cc[VSTOP];
2606
2607 /*
2608 * Set up the RX char marking mask with those RX error types we must
2609 * catch. We can get the slave to help us out a little here, it will
2610 * ignore parity errors and breaks for us, and mark parity errors in
2611 * the data stream.
2612 */
2613 if (tiosp->c_iflag & IGNPAR)
2614 pp->iflag |= FI_IGNRXERRS;
2615 if (tiosp->c_iflag & IGNBRK)
2616 pp->iflag |= FI_IGNBREAK;
2617
2618 portp->rxmarkmsk = 0;
2619 if (tiosp->c_iflag & (INPCK | PARMRK))
2620 pp->iflag |= FI_1MARKRXERRS;
2621 if (tiosp->c_iflag & BRKINT)
2622 portp->rxmarkmsk |= BRKINT;
2623
2624 /*
2625 * Set up clocal processing as required.
2626 */
2627 if (tiosp->c_cflag & CLOCAL)
2628 portp->port.flags &= ~ASYNC_CHECK_CD;
2629 else
2630 portp->port.flags |= ASYNC_CHECK_CD;
2631
2632 /*
2633 * Transfer any persistent flags into the asyport structure.
2634 */
2635 pp->pflag = (portp->pflag & 0xffff);
2636 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2637 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2638 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2639 }
2640
2641 /*****************************************************************************/
2642
2643 /*
2644 * Construct a slave signals structure for setting the DTR and RTS
2645 * signals as specified.
2646 */
2647
2648 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2649 {
2650 memset(sp, 0, sizeof(asysigs_t));
2651 if (dtr >= 0) {
2652 sp->signal |= SG_DTR;
2653 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2654 }
2655 if (rts >= 0) {
2656 sp->signal |= SG_RTS;
2657 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2658 }
2659 }
2660
2661 /*****************************************************************************/
2662
2663 /*
2664 * Convert the signals returned from the slave into a local TIOCM type
2665 * signals value. We keep them locally in TIOCM format.
2666 */
2667
2668 static long stli_mktiocm(unsigned long sigvalue)
2669 {
2670 long tiocm = 0;
2671 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2672 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2673 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2674 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2675 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2676 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2677 return(tiocm);
2678 }
2679
2680 /*****************************************************************************/
2681
2682 /*
2683 * All panels and ports actually attached have been worked out. All
2684 * we need to do here is set up the appropriate per port data structures.
2685 */
2686
2687 static int stli_initports(struct stlibrd *brdp)
2688 {
2689 struct stliport *portp;
2690 unsigned int i, panelnr, panelport;
2691
2692 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2693 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2694 if (!portp) {
2695 printk("STALLION: failed to allocate port structure\n");
2696 continue;
2697 }
2698 tty_port_init(&portp->port);
2699 portp->magic = STLI_PORTMAGIC;
2700 portp->portnr = i;
2701 portp->brdnr = brdp->brdnr;
2702 portp->panelnr = panelnr;
2703 portp->baud_base = STL_BAUDBASE;
2704 portp->close_delay = STL_CLOSEDELAY;
2705 portp->closing_wait = 30 * HZ;
2706 init_waitqueue_head(&portp->port.open_wait);
2707 init_waitqueue_head(&portp->port.close_wait);
2708 init_waitqueue_head(&portp->raw_wait);
2709 panelport++;
2710 if (panelport >= brdp->panels[panelnr]) {
2711 panelport = 0;
2712 panelnr++;
2713 }
2714 brdp->ports[i] = portp;
2715 }
2716
2717 return 0;
2718 }
2719
2720 /*****************************************************************************/
2721
2722 /*
2723 * All the following routines are board specific hardware operations.
2724 */
2725
2726 static void stli_ecpinit(struct stlibrd *brdp)
2727 {
2728 unsigned long memconf;
2729
2730 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2731 udelay(10);
2732 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2733 udelay(100);
2734
2735 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2736 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2737 }
2738
2739 /*****************************************************************************/
2740
2741 static void stli_ecpenable(struct stlibrd *brdp)
2742 {
2743 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2744 }
2745
2746 /*****************************************************************************/
2747
2748 static void stli_ecpdisable(struct stlibrd *brdp)
2749 {
2750 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2751 }
2752
2753 /*****************************************************************************/
2754
2755 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2756 {
2757 void __iomem *ptr;
2758 unsigned char val;
2759
2760 if (offset > brdp->memsize) {
2761 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2762 "range at line=%d(%d), brd=%d\n",
2763 (int) offset, line, __LINE__, brdp->brdnr);
2764 ptr = NULL;
2765 val = 0;
2766 } else {
2767 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2768 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2769 }
2770 outb(val, (brdp->iobase + ECP_ATMEMPR));
2771 return(ptr);
2772 }
2773
2774 /*****************************************************************************/
2775
2776 static void stli_ecpreset(struct stlibrd *brdp)
2777 {
2778 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2779 udelay(10);
2780 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2781 udelay(500);
2782 }
2783
2784 /*****************************************************************************/
2785
2786 static void stli_ecpintr(struct stlibrd *brdp)
2787 {
2788 outb(0x1, brdp->iobase);
2789 }
2790
2791 /*****************************************************************************/
2792
2793 /*
2794 * The following set of functions act on ECP EISA boards.
2795 */
2796
2797 static void stli_ecpeiinit(struct stlibrd *brdp)
2798 {
2799 unsigned long memconf;
2800
2801 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2802 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2803 udelay(10);
2804 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2805 udelay(500);
2806
2807 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2808 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2809 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2810 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2811 }
2812
2813 /*****************************************************************************/
2814
2815 static void stli_ecpeienable(struct stlibrd *brdp)
2816 {
2817 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2818 }
2819
2820 /*****************************************************************************/
2821
2822 static void stli_ecpeidisable(struct stlibrd *brdp)
2823 {
2824 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2825 }
2826
2827 /*****************************************************************************/
2828
2829 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2830 {
2831 void __iomem *ptr;
2832 unsigned char val;
2833
2834 if (offset > brdp->memsize) {
2835 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2836 "range at line=%d(%d), brd=%d\n",
2837 (int) offset, line, __LINE__, brdp->brdnr);
2838 ptr = NULL;
2839 val = 0;
2840 } else {
2841 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2842 if (offset < ECP_EIPAGESIZE)
2843 val = ECP_EIENABLE;
2844 else
2845 val = ECP_EIENABLE | 0x40;
2846 }
2847 outb(val, (brdp->iobase + ECP_EICONFR));
2848 return(ptr);
2849 }
2850
2851 /*****************************************************************************/
2852
2853 static void stli_ecpeireset(struct stlibrd *brdp)
2854 {
2855 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2856 udelay(10);
2857 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2858 udelay(500);
2859 }
2860
2861 /*****************************************************************************/
2862
2863 /*
2864 * The following set of functions act on ECP MCA boards.
2865 */
2866
2867 static void stli_ecpmcenable(struct stlibrd *brdp)
2868 {
2869 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2870 }
2871
2872 /*****************************************************************************/
2873
2874 static void stli_ecpmcdisable(struct stlibrd *brdp)
2875 {
2876 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2877 }
2878
2879 /*****************************************************************************/
2880
2881 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2882 {
2883 void __iomem *ptr;
2884 unsigned char val;
2885
2886 if (offset > brdp->memsize) {
2887 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2888 "range at line=%d(%d), brd=%d\n",
2889 (int) offset, line, __LINE__, brdp->brdnr);
2890 ptr = NULL;
2891 val = 0;
2892 } else {
2893 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2894 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2895 }
2896 outb(val, (brdp->iobase + ECP_MCCONFR));
2897 return(ptr);
2898 }
2899
2900 /*****************************************************************************/
2901
2902 static void stli_ecpmcreset(struct stlibrd *brdp)
2903 {
2904 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2905 udelay(10);
2906 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2907 udelay(500);
2908 }
2909
2910 /*****************************************************************************/
2911
2912 /*
2913 * The following set of functions act on ECP PCI boards.
2914 */
2915
2916 static void stli_ecppciinit(struct stlibrd *brdp)
2917 {
2918 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2919 udelay(10);
2920 outb(0, (brdp->iobase + ECP_PCICONFR));
2921 udelay(500);
2922 }
2923
2924 /*****************************************************************************/
2925
2926 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2927 {
2928 void __iomem *ptr;
2929 unsigned char val;
2930
2931 if (offset > brdp->memsize) {
2932 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2933 "range at line=%d(%d), board=%d\n",
2934 (int) offset, line, __LINE__, brdp->brdnr);
2935 ptr = NULL;
2936 val = 0;
2937 } else {
2938 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2939 val = (offset / ECP_PCIPAGESIZE) << 1;
2940 }
2941 outb(val, (brdp->iobase + ECP_PCICONFR));
2942 return(ptr);
2943 }
2944
2945 /*****************************************************************************/
2946
2947 static void stli_ecppcireset(struct stlibrd *brdp)
2948 {
2949 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2950 udelay(10);
2951 outb(0, (brdp->iobase + ECP_PCICONFR));
2952 udelay(500);
2953 }
2954
2955 /*****************************************************************************/
2956
2957 /*
2958 * The following routines act on ONboards.
2959 */
2960
2961 static void stli_onbinit(struct stlibrd *brdp)
2962 {
2963 unsigned long memconf;
2964
2965 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2966 udelay(10);
2967 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2968 mdelay(1000);
2969
2970 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2971 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2972 outb(0x1, brdp->iobase);
2973 mdelay(1);
2974 }
2975
2976 /*****************************************************************************/
2977
2978 static void stli_onbenable(struct stlibrd *brdp)
2979 {
2980 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2981 }
2982
2983 /*****************************************************************************/
2984
2985 static void stli_onbdisable(struct stlibrd *brdp)
2986 {
2987 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2988 }
2989
2990 /*****************************************************************************/
2991
2992 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2993 {
2994 void __iomem *ptr;
2995
2996 if (offset > brdp->memsize) {
2997 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2998 "range at line=%d(%d), brd=%d\n",
2999 (int) offset, line, __LINE__, brdp->brdnr);
3000 ptr = NULL;
3001 } else {
3002 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3003 }
3004 return(ptr);
3005 }
3006
3007 /*****************************************************************************/
3008
3009 static void stli_onbreset(struct stlibrd *brdp)
3010 {
3011 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3012 udelay(10);
3013 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3014 mdelay(1000);
3015 }
3016
3017 /*****************************************************************************/
3018
3019 /*
3020 * The following routines act on ONboard EISA.
3021 */
3022
3023 static void stli_onbeinit(struct stlibrd *brdp)
3024 {
3025 unsigned long memconf;
3026
3027 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3028 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3029 udelay(10);
3030 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3031 mdelay(1000);
3032
3033 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3034 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3035 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3036 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3037 outb(0x1, brdp->iobase);
3038 mdelay(1);
3039 }
3040
3041 /*****************************************************************************/
3042
3043 static void stli_onbeenable(struct stlibrd *brdp)
3044 {
3045 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3046 }
3047
3048 /*****************************************************************************/
3049
3050 static void stli_onbedisable(struct stlibrd *brdp)
3051 {
3052 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3053 }
3054
3055 /*****************************************************************************/
3056
3057 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3058 {
3059 void __iomem *ptr;
3060 unsigned char val;
3061
3062 if (offset > brdp->memsize) {
3063 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3064 "range at line=%d(%d), brd=%d\n",
3065 (int) offset, line, __LINE__, brdp->brdnr);
3066 ptr = NULL;
3067 val = 0;
3068 } else {
3069 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3070 if (offset < ONB_EIPAGESIZE)
3071 val = ONB_EIENABLE;
3072 else
3073 val = ONB_EIENABLE | 0x40;
3074 }
3075 outb(val, (brdp->iobase + ONB_EICONFR));
3076 return(ptr);
3077 }
3078
3079 /*****************************************************************************/
3080
3081 static void stli_onbereset(struct stlibrd *brdp)
3082 {
3083 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3084 udelay(10);
3085 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3086 mdelay(1000);
3087 }
3088
3089 /*****************************************************************************/
3090
3091 /*
3092 * The following routines act on Brumby boards.
3093 */
3094
3095 static void stli_bbyinit(struct stlibrd *brdp)
3096 {
3097 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3098 udelay(10);
3099 outb(0, (brdp->iobase + BBY_ATCONFR));
3100 mdelay(1000);
3101 outb(0x1, brdp->iobase);
3102 mdelay(1);
3103 }
3104
3105 /*****************************************************************************/
3106
3107 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3108 {
3109 void __iomem *ptr;
3110 unsigned char val;
3111
3112 BUG_ON(offset > brdp->memsize);
3113
3114 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3115 val = (unsigned char) (offset / BBY_PAGESIZE);
3116 outb(val, (brdp->iobase + BBY_ATCONFR));
3117 return(ptr);
3118 }
3119
3120 /*****************************************************************************/
3121
3122 static void stli_bbyreset(struct stlibrd *brdp)
3123 {
3124 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3125 udelay(10);
3126 outb(0, (brdp->iobase + BBY_ATCONFR));
3127 mdelay(1000);
3128 }
3129
3130 /*****************************************************************************/
3131
3132 /*
3133 * The following routines act on original old Stallion boards.
3134 */
3135
3136 static void stli_stalinit(struct stlibrd *brdp)
3137 {
3138 outb(0x1, brdp->iobase);
3139 mdelay(1000);
3140 }
3141
3142 /*****************************************************************************/
3143
3144 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3145 {
3146 BUG_ON(offset > brdp->memsize);
3147 return brdp->membase + (offset % STAL_PAGESIZE);
3148 }
3149
3150 /*****************************************************************************/
3151
3152 static void stli_stalreset(struct stlibrd *brdp)
3153 {
3154 u32 __iomem *vecp;
3155
3156 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3157 writel(0xffff0000, vecp);
3158 outb(0, brdp->iobase);
3159 mdelay(1000);
3160 }
3161
3162 /*****************************************************************************/
3163
3164 /*
3165 * Try to find an ECP board and initialize it. This handles only ECP
3166 * board types.
3167 */
3168
3169 static int stli_initecp(struct stlibrd *brdp)
3170 {
3171 cdkecpsig_t sig;
3172 cdkecpsig_t __iomem *sigsp;
3173 unsigned int status, nxtid;
3174 char *name;
3175 int retval, panelnr, nrports;
3176
3177 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3178 retval = -ENODEV;
3179 goto err;
3180 }
3181
3182 brdp->iosize = ECP_IOSIZE;
3183
3184 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3185 retval = -EIO;
3186 goto err;
3187 }
3188
3189 /*
3190 * Based on the specific board type setup the common vars to access
3191 * and enable shared memory. Set all board specific information now
3192 * as well.
3193 */
3194 switch (brdp->brdtype) {
3195 case BRD_ECP:
3196 brdp->memsize = ECP_MEMSIZE;
3197 brdp->pagesize = ECP_ATPAGESIZE;
3198 brdp->init = stli_ecpinit;
3199 brdp->enable = stli_ecpenable;
3200 brdp->reenable = stli_ecpenable;
3201 brdp->disable = stli_ecpdisable;
3202 brdp->getmemptr = stli_ecpgetmemptr;
3203 brdp->intr = stli_ecpintr;
3204 brdp->reset = stli_ecpreset;
3205 name = "serial(EC8/64)";
3206 break;
3207
3208 case BRD_ECPE:
3209 brdp->memsize = ECP_MEMSIZE;
3210 brdp->pagesize = ECP_EIPAGESIZE;
3211 brdp->init = stli_ecpeiinit;
3212 brdp->enable = stli_ecpeienable;
3213 brdp->reenable = stli_ecpeienable;
3214 brdp->disable = stli_ecpeidisable;
3215 brdp->getmemptr = stli_ecpeigetmemptr;
3216 brdp->intr = stli_ecpintr;
3217 brdp->reset = stli_ecpeireset;
3218 name = "serial(EC8/64-EI)";
3219 break;
3220
3221 case BRD_ECPMC:
3222 brdp->memsize = ECP_MEMSIZE;
3223 brdp->pagesize = ECP_MCPAGESIZE;
3224 brdp->init = NULL;
3225 brdp->enable = stli_ecpmcenable;
3226 brdp->reenable = stli_ecpmcenable;
3227 brdp->disable = stli_ecpmcdisable;
3228 brdp->getmemptr = stli_ecpmcgetmemptr;
3229 brdp->intr = stli_ecpintr;
3230 brdp->reset = stli_ecpmcreset;
3231 name = "serial(EC8/64-MCA)";
3232 break;
3233
3234 case BRD_ECPPCI:
3235 brdp->memsize = ECP_PCIMEMSIZE;
3236 brdp->pagesize = ECP_PCIPAGESIZE;
3237 brdp->init = stli_ecppciinit;
3238 brdp->enable = NULL;
3239 brdp->reenable = NULL;
3240 brdp->disable = NULL;
3241 brdp->getmemptr = stli_ecppcigetmemptr;
3242 brdp->intr = stli_ecpintr;
3243 brdp->reset = stli_ecppcireset;
3244 name = "serial(EC/RA-PCI)";
3245 break;
3246
3247 default:
3248 retval = -EINVAL;
3249 goto err_reg;
3250 }
3251
3252 /*
3253 * The per-board operations structure is all set up, so now let's go
3254 * and get the board operational. Firstly initialize board configuration
3255 * registers. Set the memory mapping info so we can get at the boards
3256 * shared memory.
3257 */
3258 EBRDINIT(brdp);
3259
3260 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3261 if (brdp->membase == NULL) {
3262 retval = -ENOMEM;
3263 goto err_reg;
3264 }
3265
3266 /*
3267 * Now that all specific code is set up, enable the shared memory and
3268 * look for the a signature area that will tell us exactly what board
3269 * this is, and what it is connected to it.
3270 */
3271 EBRDENABLE(brdp);
3272 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3273 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3274 EBRDDISABLE(brdp);
3275
3276 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3277 retval = -ENODEV;
3278 goto err_unmap;
3279 }
3280
3281 /*
3282 * Scan through the signature looking at the panels connected to the
3283 * board. Calculate the total number of ports as we go.
3284 */
3285 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3286 status = sig.panelid[nxtid];
3287 if ((status & ECH_PNLIDMASK) != nxtid)
3288 break;
3289
3290 brdp->panelids[panelnr] = status;
3291 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3292 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3293 nxtid++;
3294 brdp->panels[panelnr] = nrports;
3295 brdp->nrports += nrports;
3296 nxtid++;
3297 brdp->nrpanels++;
3298 }
3299
3300
3301 brdp->state |= BST_FOUND;
3302 return 0;
3303 err_unmap:
3304 iounmap(brdp->membase);
3305 brdp->membase = NULL;
3306 err_reg:
3307 release_region(brdp->iobase, brdp->iosize);
3308 err:
3309 return retval;
3310 }
3311
3312 /*****************************************************************************/
3313
3314 /*
3315 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3316 * This handles only these board types.
3317 */
3318
3319 static int stli_initonb(struct stlibrd *brdp)
3320 {
3321 cdkonbsig_t sig;
3322 cdkonbsig_t __iomem *sigsp;
3323 char *name;
3324 int i, retval;
3325
3326 /*
3327 * Do a basic sanity check on the IO and memory addresses.
3328 */
3329 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3330 retval = -ENODEV;
3331 goto err;
3332 }
3333
3334 brdp->iosize = ONB_IOSIZE;
3335
3336 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3337 retval = -EIO;
3338 goto err;
3339 }
3340
3341 /*
3342 * Based on the specific board type setup the common vars to access
3343 * and enable shared memory. Set all board specific information now
3344 * as well.
3345 */
3346 switch (brdp->brdtype) {
3347 case BRD_ONBOARD:
3348 case BRD_ONBOARD2:
3349 brdp->memsize = ONB_MEMSIZE;
3350 brdp->pagesize = ONB_ATPAGESIZE;
3351 brdp->init = stli_onbinit;
3352 brdp->enable = stli_onbenable;
3353 brdp->reenable = stli_onbenable;
3354 brdp->disable = stli_onbdisable;
3355 brdp->getmemptr = stli_onbgetmemptr;
3356 brdp->intr = stli_ecpintr;
3357 brdp->reset = stli_onbreset;
3358 if (brdp->memaddr > 0x100000)
3359 brdp->enabval = ONB_MEMENABHI;
3360 else
3361 brdp->enabval = ONB_MEMENABLO;
3362 name = "serial(ONBoard)";
3363 break;
3364
3365 case BRD_ONBOARDE:
3366 brdp->memsize = ONB_EIMEMSIZE;
3367 brdp->pagesize = ONB_EIPAGESIZE;
3368 brdp->init = stli_onbeinit;
3369 brdp->enable = stli_onbeenable;
3370 brdp->reenable = stli_onbeenable;
3371 brdp->disable = stli_onbedisable;
3372 brdp->getmemptr = stli_onbegetmemptr;
3373 brdp->intr = stli_ecpintr;
3374 brdp->reset = stli_onbereset;
3375 name = "serial(ONBoard/E)";
3376 break;
3377
3378 case BRD_BRUMBY4:
3379 brdp->memsize = BBY_MEMSIZE;
3380 brdp->pagesize = BBY_PAGESIZE;
3381 brdp->init = stli_bbyinit;
3382 brdp->enable = NULL;
3383 brdp->reenable = NULL;
3384 brdp->disable = NULL;
3385 brdp->getmemptr = stli_bbygetmemptr;
3386 brdp->intr = stli_ecpintr;
3387 brdp->reset = stli_bbyreset;
3388 name = "serial(Brumby)";
3389 break;
3390
3391 case BRD_STALLION:
3392 brdp->memsize = STAL_MEMSIZE;
3393 brdp->pagesize = STAL_PAGESIZE;
3394 brdp->init = stli_stalinit;
3395 brdp->enable = NULL;
3396 brdp->reenable = NULL;
3397 brdp->disable = NULL;
3398 brdp->getmemptr = stli_stalgetmemptr;
3399 brdp->intr = stli_ecpintr;
3400 brdp->reset = stli_stalreset;
3401 name = "serial(Stallion)";
3402 break;
3403
3404 default:
3405 retval = -EINVAL;
3406 goto err_reg;
3407 }
3408
3409 /*
3410 * The per-board operations structure is all set up, so now let's go
3411 * and get the board operational. Firstly initialize board configuration
3412 * registers. Set the memory mapping info so we can get at the boards
3413 * shared memory.
3414 */
3415 EBRDINIT(brdp);
3416
3417 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3418 if (brdp->membase == NULL) {
3419 retval = -ENOMEM;
3420 goto err_reg;
3421 }
3422
3423 /*
3424 * Now that all specific code is set up, enable the shared memory and
3425 * look for the a signature area that will tell us exactly what board
3426 * this is, and how many ports.
3427 */
3428 EBRDENABLE(brdp);
3429 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3430 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3431 EBRDDISABLE(brdp);
3432
3433 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3434 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3435 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3436 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3437 retval = -ENODEV;
3438 goto err_unmap;
3439 }
3440
3441 /*
3442 * Scan through the signature alive mask and calculate how many ports
3443 * there are on this board.
3444 */
3445 brdp->nrpanels = 1;
3446 if (sig.amask1) {
3447 brdp->nrports = 32;
3448 } else {
3449 for (i = 0; (i < 16); i++) {
3450 if (((sig.amask0 << i) & 0x8000) == 0)
3451 break;
3452 }
3453 brdp->nrports = i;
3454 }
3455 brdp->panels[0] = brdp->nrports;
3456
3457
3458 brdp->state |= BST_FOUND;
3459 return 0;
3460 err_unmap:
3461 iounmap(brdp->membase);
3462 brdp->membase = NULL;
3463 err_reg:
3464 release_region(brdp->iobase, brdp->iosize);
3465 err:
3466 return retval;
3467 }
3468
3469 /*****************************************************************************/
3470
3471 /*
3472 * Start up a running board. This routine is only called after the
3473 * code has been down loaded to the board and is operational. It will
3474 * read in the memory map, and get the show on the road...
3475 */
3476
3477 static int stli_startbrd(struct stlibrd *brdp)
3478 {
3479 cdkhdr_t __iomem *hdrp;
3480 cdkmem_t __iomem *memp;
3481 cdkasy_t __iomem *ap;
3482 unsigned long flags;
3483 unsigned int portnr, nrdevs, i;
3484 struct stliport *portp;
3485 int rc = 0;
3486 u32 memoff;
3487
3488 spin_lock_irqsave(&brd_lock, flags);
3489 EBRDENABLE(brdp);
3490 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3491 nrdevs = hdrp->nrdevs;
3492
3493 #if 0
3494 printk("%s(%d): CDK version %d.%d.%d --> "
3495 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3496 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3497 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3498 readl(&hdrp->slavep));
3499 #endif
3500
3501 if (nrdevs < (brdp->nrports + 1)) {
3502 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
3503 "all devices, devices=%d\n", nrdevs);
3504 brdp->nrports = nrdevs - 1;
3505 }
3506 brdp->nrdevs = nrdevs;
3507 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3508 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3509 brdp->bitsize = (nrdevs + 7) / 8;
3510 memoff = readl(&hdrp->memp);
3511 if (memoff > brdp->memsize) {
3512 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
3513 rc = -EIO;
3514 goto stli_donestartup;
3515 }
3516 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3517 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3518 printk(KERN_ERR "STALLION: no slave control device found\n");
3519 goto stli_donestartup;
3520 }
3521 memp++;
3522
3523 /*
3524 * Cycle through memory allocation of each port. We are guaranteed to
3525 * have all ports inside the first page of slave window, so no need to
3526 * change pages while reading memory map.
3527 */
3528 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3529 if (readw(&memp->dtype) != TYP_ASYNC)
3530 break;
3531 portp = brdp->ports[portnr];
3532 if (portp == NULL)
3533 break;
3534 portp->devnr = i;
3535 portp->addr = readl(&memp->offset);
3536 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3537 portp->portidx = (unsigned char) (i / 8);
3538 portp->portbit = (unsigned char) (0x1 << (i % 8));
3539 }
3540
3541 writeb(0xff, &hdrp->slavereq);
3542
3543 /*
3544 * For each port setup a local copy of the RX and TX buffer offsets
3545 * and sizes. We do this separate from the above, because we need to
3546 * move the shared memory page...
3547 */
3548 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3549 portp = brdp->ports[portnr];
3550 if (portp == NULL)
3551 break;
3552 if (portp->addr == 0)
3553 break;
3554 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3555 if (ap != NULL) {
3556 portp->rxsize = readw(&ap->rxq.size);
3557 portp->txsize = readw(&ap->txq.size);
3558 portp->rxoffset = readl(&ap->rxq.offset);
3559 portp->txoffset = readl(&ap->txq.offset);
3560 }
3561 }
3562
3563 stli_donestartup:
3564 EBRDDISABLE(brdp);
3565 spin_unlock_irqrestore(&brd_lock, flags);
3566
3567 if (rc == 0)
3568 brdp->state |= BST_STARTED;
3569
3570 if (! stli_timeron) {
3571 stli_timeron++;
3572 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3573 }
3574
3575 return rc;
3576 }
3577
3578 /*****************************************************************************/
3579
3580 /*
3581 * Probe and initialize the specified board.
3582 */
3583
3584 static int __devinit stli_brdinit(struct stlibrd *brdp)
3585 {
3586 int retval;
3587
3588 switch (brdp->brdtype) {
3589 case BRD_ECP:
3590 case BRD_ECPE:
3591 case BRD_ECPMC:
3592 case BRD_ECPPCI:
3593 retval = stli_initecp(brdp);
3594 break;
3595 case BRD_ONBOARD:
3596 case BRD_ONBOARDE:
3597 case BRD_ONBOARD2:
3598 case BRD_BRUMBY4:
3599 case BRD_STALLION:
3600 retval = stli_initonb(brdp);
3601 break;
3602 default:
3603 printk(KERN_ERR "STALLION: board=%d is unknown board "
3604 "type=%d\n", brdp->brdnr, brdp->brdtype);
3605 retval = -ENODEV;
3606 }
3607
3608 if (retval)
3609 return retval;
3610
3611 stli_initports(brdp);
3612 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
3613 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3614 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3615 brdp->nrpanels, brdp->nrports);
3616 return 0;
3617 }
3618
3619 #if STLI_EISAPROBE != 0
3620 /*****************************************************************************/
3621
3622 /*
3623 * Probe around trying to find where the EISA boards shared memory
3624 * might be. This is a bit if hack, but it is the best we can do.
3625 */
3626
3627 static int stli_eisamemprobe(struct stlibrd *brdp)
3628 {
3629 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3630 cdkonbsig_t onbsig, __iomem *onbsigp;
3631 int i, foundit;
3632
3633 /*
3634 * First up we reset the board, to get it into a known state. There
3635 * is only 2 board types here we need to worry about. Don;t use the
3636 * standard board init routine here, it programs up the shared
3637 * memory address, and we don't know it yet...
3638 */
3639 if (brdp->brdtype == BRD_ECPE) {
3640 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3641 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3642 udelay(10);
3643 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3644 udelay(500);
3645 stli_ecpeienable(brdp);
3646 } else if (brdp->brdtype == BRD_ONBOARDE) {
3647 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3648 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3649 udelay(10);
3650 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3651 mdelay(100);
3652 outb(0x1, brdp->iobase);
3653 mdelay(1);
3654 stli_onbeenable(brdp);
3655 } else {
3656 return -ENODEV;
3657 }
3658
3659 foundit = 0;
3660 brdp->memsize = ECP_MEMSIZE;
3661
3662 /*
3663 * Board shared memory is enabled, so now we have a poke around and
3664 * see if we can find it.
3665 */
3666 for (i = 0; (i < stli_eisamempsize); i++) {
3667 brdp->memaddr = stli_eisamemprobeaddrs[i];
3668 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3669 if (brdp->membase == NULL)
3670 continue;
3671
3672 if (brdp->brdtype == BRD_ECPE) {
3673 ecpsigp = stli_ecpeigetmemptr(brdp,
3674 CDK_SIGADDR, __LINE__);
3675 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3676 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3677 foundit = 1;
3678 } else {
3679 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3680 CDK_SIGADDR, __LINE__);
3681 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3682 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3683 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3684 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3685 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3686 foundit = 1;
3687 }
3688
3689 iounmap(brdp->membase);
3690 if (foundit)
3691 break;
3692 }
3693
3694 /*
3695 * Regardless of whether we found the shared memory or not we must
3696 * disable the region. After that return success or failure.
3697 */
3698 if (brdp->brdtype == BRD_ECPE)
3699 stli_ecpeidisable(brdp);
3700 else
3701 stli_onbedisable(brdp);
3702
3703 if (! foundit) {
3704 brdp->memaddr = 0;
3705 brdp->membase = NULL;
3706 printk(KERN_ERR "STALLION: failed to probe shared memory "
3707 "region for %s in EISA slot=%d\n",
3708 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3709 return -ENODEV;
3710 }
3711 return 0;
3712 }
3713 #endif
3714
3715 static int stli_getbrdnr(void)
3716 {
3717 unsigned int i;
3718
3719 for (i = 0; i < STL_MAXBRDS; i++) {
3720 if (!stli_brds[i]) {
3721 if (i >= stli_nrbrds)
3722 stli_nrbrds = i + 1;
3723 return i;
3724 }
3725 }
3726 return -1;
3727 }
3728
3729 #if STLI_EISAPROBE != 0
3730 /*****************************************************************************/
3731
3732 /*
3733 * Probe around and try to find any EISA boards in system. The biggest
3734 * problem here is finding out what memory address is associated with
3735 * an EISA board after it is found. The registers of the ECPE and
3736 * ONboardE are not readable - so we can't read them from there. We
3737 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3738 * actually have any way to find out the real value. The best we can
3739 * do is go probing around in the usual places hoping we can find it.
3740 */
3741
3742 static int stli_findeisabrds(void)
3743 {
3744 struct stlibrd *brdp;
3745 unsigned int iobase, eid, i;
3746 int brdnr, found = 0;
3747
3748 /*
3749 * Firstly check if this is an EISA system. If this is not an EISA system then
3750 * don't bother going any further!
3751 */
3752 if (EISA_bus)
3753 return 0;
3754
3755 /*
3756 * Looks like an EISA system, so go searching for EISA boards.
3757 */
3758 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3759 outb(0xff, (iobase + 0xc80));
3760 eid = inb(iobase + 0xc80);
3761 eid |= inb(iobase + 0xc81) << 8;
3762 if (eid != STL_EISAID)
3763 continue;
3764
3765 /*
3766 * We have found a board. Need to check if this board was
3767 * statically configured already (just in case!).
3768 */
3769 for (i = 0; (i < STL_MAXBRDS); i++) {
3770 brdp = stli_brds[i];
3771 if (brdp == NULL)
3772 continue;
3773 if (brdp->iobase == iobase)
3774 break;
3775 }
3776 if (i < STL_MAXBRDS)
3777 continue;
3778
3779 /*
3780 * We have found a Stallion board and it is not configured already.
3781 * Allocate a board structure and initialize it.
3782 */
3783 if ((brdp = stli_allocbrd()) == NULL)
3784 return found ? : -ENOMEM;
3785 brdnr = stli_getbrdnr();
3786 if (brdnr < 0)
3787 return found ? : -ENOMEM;
3788 brdp->brdnr = (unsigned int)brdnr;
3789 eid = inb(iobase + 0xc82);
3790 if (eid == ECP_EISAID)
3791 brdp->brdtype = BRD_ECPE;
3792 else if (eid == ONB_EISAID)
3793 brdp->brdtype = BRD_ONBOARDE;
3794 else
3795 brdp->brdtype = BRD_UNKNOWN;
3796 brdp->iobase = iobase;
3797 outb(0x1, (iobase + 0xc84));
3798 if (stli_eisamemprobe(brdp))
3799 outb(0, (iobase + 0xc84));
3800 if (stli_brdinit(brdp) < 0) {
3801 kfree(brdp);
3802 continue;
3803 }
3804
3805 stli_brds[brdp->brdnr] = brdp;
3806 found++;
3807
3808 for (i = 0; i < brdp->nrports; i++)
3809 tty_register_device(stli_serial,
3810 brdp->brdnr * STL_MAXPORTS + i, NULL);
3811 }
3812
3813 return found;
3814 }
3815 #else
3816 static inline int stli_findeisabrds(void) { return 0; }
3817 #endif
3818
3819 /*****************************************************************************/
3820
3821 /*
3822 * Find the next available board number that is free.
3823 */
3824
3825 /*****************************************************************************/
3826
3827 /*
3828 * We have a Stallion board. Allocate a board structure and
3829 * initialize it. Read its IO and MEMORY resources from PCI
3830 * configuration space.
3831 */
3832
3833 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3834 const struct pci_device_id *ent)
3835 {
3836 struct stlibrd *brdp;
3837 unsigned int i;
3838 int brdnr, retval = -EIO;
3839
3840 retval = pci_enable_device(pdev);
3841 if (retval)
3842 goto err;
3843 brdp = stli_allocbrd();
3844 if (brdp == NULL) {
3845 retval = -ENOMEM;
3846 goto err;
3847 }
3848 mutex_lock(&stli_brdslock);
3849 brdnr = stli_getbrdnr();
3850 if (brdnr < 0) {
3851 printk(KERN_INFO "STALLION: too many boards found, "
3852 "maximum supported %d\n", STL_MAXBRDS);
3853 mutex_unlock(&stli_brdslock);
3854 retval = -EIO;
3855 goto err_fr;
3856 }
3857 brdp->brdnr = (unsigned int)brdnr;
3858 stli_brds[brdp->brdnr] = brdp;
3859 mutex_unlock(&stli_brdslock);
3860 brdp->brdtype = BRD_ECPPCI;
3861 /*
3862 * We have all resources from the board, so lets setup the actual
3863 * board structure now.
3864 */
3865 brdp->iobase = pci_resource_start(pdev, 3);
3866 brdp->memaddr = pci_resource_start(pdev, 2);
3867 retval = stli_brdinit(brdp);
3868 if (retval)
3869 goto err_null;
3870
3871 brdp->state |= BST_PROBED;
3872 pci_set_drvdata(pdev, brdp);
3873
3874 EBRDENABLE(brdp);
3875 brdp->enable = NULL;
3876 brdp->disable = NULL;
3877
3878 for (i = 0; i < brdp->nrports; i++)
3879 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3880 &pdev->dev);
3881
3882 return 0;
3883 err_null:
3884 stli_brds[brdp->brdnr] = NULL;
3885 err_fr:
3886 kfree(brdp);
3887 err:
3888 return retval;
3889 }
3890
3891 static void stli_pciremove(struct pci_dev *pdev)
3892 {
3893 struct stlibrd *brdp = pci_get_drvdata(pdev);
3894
3895 stli_cleanup_ports(brdp);
3896
3897 iounmap(brdp->membase);
3898 if (brdp->iosize > 0)
3899 release_region(brdp->iobase, brdp->iosize);
3900
3901 stli_brds[brdp->brdnr] = NULL;
3902 kfree(brdp);
3903 }
3904
3905 static struct pci_driver stli_pcidriver = {
3906 .name = "istallion",
3907 .id_table = istallion_pci_tbl,
3908 .probe = stli_pciprobe,
3909 .remove = __devexit_p(stli_pciremove)
3910 };
3911 /*****************************************************************************/
3912
3913 /*
3914 * Allocate a new board structure. Fill out the basic info in it.
3915 */
3916
3917 static struct stlibrd *stli_allocbrd(void)
3918 {
3919 struct stlibrd *brdp;
3920
3921 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3922 if (!brdp) {
3923 printk(KERN_ERR "STALLION: failed to allocate memory "
3924 "(size=%Zd)\n", sizeof(struct stlibrd));
3925 return NULL;
3926 }
3927 brdp->magic = STLI_BOARDMAGIC;
3928 return brdp;
3929 }
3930
3931 /*****************************************************************************/
3932
3933 /*
3934 * Scan through all the boards in the configuration and see what we
3935 * can find.
3936 */
3937
3938 static int stli_initbrds(void)
3939 {
3940 struct stlibrd *brdp, *nxtbrdp;
3941 struct stlconf conf;
3942 unsigned int i, j, found = 0;
3943 int retval;
3944
3945 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3946 stli_nrbrds++) {
3947 memset(&conf, 0, sizeof(conf));
3948 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3949 continue;
3950 if ((brdp = stli_allocbrd()) == NULL)
3951 continue;
3952 brdp->brdnr = stli_nrbrds;
3953 brdp->brdtype = conf.brdtype;
3954 brdp->iobase = conf.ioaddr1;
3955 brdp->memaddr = conf.memaddr;
3956 if (stli_brdinit(brdp) < 0) {
3957 kfree(brdp);
3958 continue;
3959 }
3960 stli_brds[brdp->brdnr] = brdp;
3961 found++;
3962
3963 for (i = 0; i < brdp->nrports; i++)
3964 tty_register_device(stli_serial,
3965 brdp->brdnr * STL_MAXPORTS + i, NULL);
3966 }
3967
3968 retval = stli_findeisabrds();
3969 if (retval > 0)
3970 found += retval;
3971
3972 /*
3973 * All found boards are initialized. Now for a little optimization, if
3974 * no boards are sharing the "shared memory" regions then we can just
3975 * leave them all enabled. This is in fact the usual case.
3976 */
3977 stli_shared = 0;
3978 if (stli_nrbrds > 1) {
3979 for (i = 0; (i < stli_nrbrds); i++) {
3980 brdp = stli_brds[i];
3981 if (brdp == NULL)
3982 continue;
3983 for (j = i + 1; (j < stli_nrbrds); j++) {
3984 nxtbrdp = stli_brds[j];
3985 if (nxtbrdp == NULL)
3986 continue;
3987 if ((brdp->membase >= nxtbrdp->membase) &&
3988 (brdp->membase <= (nxtbrdp->membase +
3989 nxtbrdp->memsize - 1))) {
3990 stli_shared++;
3991 break;
3992 }
3993 }
3994 }
3995 }
3996
3997 if (stli_shared == 0) {
3998 for (i = 0; (i < stli_nrbrds); i++) {
3999 brdp = stli_brds[i];
4000 if (brdp == NULL)
4001 continue;
4002 if (brdp->state & BST_FOUND) {
4003 EBRDENABLE(brdp);
4004 brdp->enable = NULL;
4005 brdp->disable = NULL;
4006 }
4007 }
4008 }
4009
4010 retval = pci_register_driver(&stli_pcidriver);
4011 if (retval && found == 0) {
4012 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
4013 "driver can be registered!\n");
4014 goto err;
4015 }
4016
4017 return 0;
4018 err:
4019 return retval;
4020 }
4021
4022 /*****************************************************************************/
4023
4024 /*
4025 * Code to handle an "staliomem" read operation. This device is the
4026 * contents of the board shared memory. It is used for down loading
4027 * the slave image (and debugging :-)
4028 */
4029
4030 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4031 {
4032 unsigned long flags;
4033 void __iomem *memptr;
4034 struct stlibrd *brdp;
4035 unsigned int brdnr;
4036 int size, n;
4037 void *p;
4038 loff_t off = *offp;
4039
4040 brdnr = iminor(fp->f_path.dentry->d_inode);
4041 if (brdnr >= stli_nrbrds)
4042 return -ENODEV;
4043 brdp = stli_brds[brdnr];
4044 if (brdp == NULL)
4045 return -ENODEV;
4046 if (brdp->state == 0)
4047 return -ENODEV;
4048 if (off >= brdp->memsize || off + count < off)
4049 return 0;
4050
4051 size = min(count, (size_t)(brdp->memsize - off));
4052
4053 /*
4054 * Copy the data a page at a time
4055 */
4056
4057 p = (void *)__get_free_page(GFP_KERNEL);
4058 if(p == NULL)
4059 return -ENOMEM;
4060
4061 while (size > 0) {
4062 spin_lock_irqsave(&brd_lock, flags);
4063 EBRDENABLE(brdp);
4064 memptr = EBRDGETMEMPTR(brdp, off);
4065 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4066 n = min(n, (int)PAGE_SIZE);
4067 memcpy_fromio(p, memptr, n);
4068 EBRDDISABLE(brdp);
4069 spin_unlock_irqrestore(&brd_lock, flags);
4070 if (copy_to_user(buf, p, n)) {
4071 count = -EFAULT;
4072 goto out;
4073 }
4074 off += n;
4075 buf += n;
4076 size -= n;
4077 }
4078 out:
4079 *offp = off;
4080 free_page((unsigned long)p);
4081 return count;
4082 }
4083
4084 /*****************************************************************************/
4085
4086 /*
4087 * Code to handle an "staliomem" write operation. This device is the
4088 * contents of the board shared memory. It is used for down loading
4089 * the slave image (and debugging :-)
4090 *
4091 * FIXME: copy under lock
4092 */
4093
4094 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4095 {
4096 unsigned long flags;
4097 void __iomem *memptr;
4098 struct stlibrd *brdp;
4099 char __user *chbuf;
4100 unsigned int brdnr;
4101 int size, n;
4102 void *p;
4103 loff_t off = *offp;
4104
4105 brdnr = iminor(fp->f_path.dentry->d_inode);
4106
4107 if (brdnr >= stli_nrbrds)
4108 return -ENODEV;
4109 brdp = stli_brds[brdnr];
4110 if (brdp == NULL)
4111 return -ENODEV;
4112 if (brdp->state == 0)
4113 return -ENODEV;
4114 if (off >= brdp->memsize || off + count < off)
4115 return 0;
4116
4117 chbuf = (char __user *) buf;
4118 size = min(count, (size_t)(brdp->memsize - off));
4119
4120 /*
4121 * Copy the data a page at a time
4122 */
4123
4124 p = (void *)__get_free_page(GFP_KERNEL);
4125 if(p == NULL)
4126 return -ENOMEM;
4127
4128 while (size > 0) {
4129 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4130 n = min(n, (int)PAGE_SIZE);
4131 if (copy_from_user(p, chbuf, n)) {
4132 if (count == 0)
4133 count = -EFAULT;
4134 goto out;
4135 }
4136 spin_lock_irqsave(&brd_lock, flags);
4137 EBRDENABLE(brdp);
4138 memptr = EBRDGETMEMPTR(brdp, off);
4139 memcpy_toio(memptr, p, n);
4140 EBRDDISABLE(brdp);
4141 spin_unlock_irqrestore(&brd_lock, flags);
4142 off += n;
4143 chbuf += n;
4144 size -= n;
4145 }
4146 out:
4147 free_page((unsigned long) p);
4148 *offp = off;
4149 return count;
4150 }
4151
4152 /*****************************************************************************/
4153
4154 /*
4155 * Return the board stats structure to user app.
4156 */
4157
4158 static int stli_getbrdstats(combrd_t __user *bp)
4159 {
4160 struct stlibrd *brdp;
4161 unsigned int i;
4162
4163 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4164 return -EFAULT;
4165 if (stli_brdstats.brd >= STL_MAXBRDS)
4166 return -ENODEV;
4167 brdp = stli_brds[stli_brdstats.brd];
4168 if (brdp == NULL)
4169 return -ENODEV;
4170
4171 memset(&stli_brdstats, 0, sizeof(combrd_t));
4172 stli_brdstats.brd = brdp->brdnr;
4173 stli_brdstats.type = brdp->brdtype;
4174 stli_brdstats.hwid = 0;
4175 stli_brdstats.state = brdp->state;
4176 stli_brdstats.ioaddr = brdp->iobase;
4177 stli_brdstats.memaddr = brdp->memaddr;
4178 stli_brdstats.nrpanels = brdp->nrpanels;
4179 stli_brdstats.nrports = brdp->nrports;
4180 for (i = 0; (i < brdp->nrpanels); i++) {
4181 stli_brdstats.panels[i].panel = i;
4182 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4183 stli_brdstats.panels[i].nrports = brdp->panels[i];
4184 }
4185
4186 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4187 return -EFAULT;
4188 return 0;
4189 }
4190
4191 /*****************************************************************************/
4192
4193 /*
4194 * Resolve the referenced port number into a port struct pointer.
4195 */
4196
4197 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4198 unsigned int portnr)
4199 {
4200 struct stlibrd *brdp;
4201 unsigned int i;
4202
4203 if (brdnr >= STL_MAXBRDS)
4204 return NULL;
4205 brdp = stli_brds[brdnr];
4206 if (brdp == NULL)
4207 return NULL;
4208 for (i = 0; (i < panelnr); i++)
4209 portnr += brdp->panels[i];
4210 if (portnr >= brdp->nrports)
4211 return NULL;
4212 return brdp->ports[portnr];
4213 }
4214
4215 /*****************************************************************************/
4216
4217 /*
4218 * Return the port stats structure to user app. A NULL port struct
4219 * pointer passed in means that we need to find out from the app
4220 * what port to get stats for (used through board control device).
4221 */
4222
4223 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4224 {
4225 unsigned long flags;
4226 struct stlibrd *brdp;
4227 int rc;
4228
4229 memset(&stli_comstats, 0, sizeof(comstats_t));
4230
4231 if (portp == NULL)
4232 return -ENODEV;
4233 brdp = stli_brds[portp->brdnr];
4234 if (brdp == NULL)
4235 return -ENODEV;
4236
4237 if (brdp->state & BST_STARTED) {
4238 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4239 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4240 return rc;
4241 } else {
4242 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4243 }
4244
4245 stli_comstats.brd = portp->brdnr;
4246 stli_comstats.panel = portp->panelnr;
4247 stli_comstats.port = portp->portnr;
4248 stli_comstats.state = portp->state;
4249 stli_comstats.flags = portp->port.flags;
4250
4251 spin_lock_irqsave(&brd_lock, flags);
4252 if (tty != NULL) {
4253 if (portp->port.tty == tty) {
4254 stli_comstats.ttystate = tty->flags;
4255 stli_comstats.rxbuffered = -1;
4256 if (tty->termios != NULL) {
4257 stli_comstats.cflags = tty->termios->c_cflag;
4258 stli_comstats.iflags = tty->termios->c_iflag;
4259 stli_comstats.oflags = tty->termios->c_oflag;
4260 stli_comstats.lflags = tty->termios->c_lflag;
4261 }
4262 }
4263 }
4264 spin_unlock_irqrestore(&brd_lock, flags);
4265
4266 stli_comstats.txtotal = stli_cdkstats.txchars;
4267 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4268 stli_comstats.txbuffered = stli_cdkstats.txringq;
4269 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4270 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4271 stli_comstats.rxparity = stli_cdkstats.parity;
4272 stli_comstats.rxframing = stli_cdkstats.framing;
4273 stli_comstats.rxlost = stli_cdkstats.ringover;
4274 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4275 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4276 stli_comstats.txxon = stli_cdkstats.txstart;
4277 stli_comstats.txxoff = stli_cdkstats.txstop;
4278 stli_comstats.rxxon = stli_cdkstats.rxstart;
4279 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4280 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4281 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4282 stli_comstats.modem = stli_cdkstats.dcdcnt;
4283 stli_comstats.hwid = stli_cdkstats.hwid;
4284 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4285
4286 return 0;
4287 }
4288
4289 /*****************************************************************************/
4290
4291 /*
4292 * Return the port stats structure to user app. A NULL port struct
4293 * pointer passed in means that we need to find out from the app
4294 * what port to get stats for (used through board control device).
4295 */
4296
4297 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4298 comstats_t __user *cp)
4299 {
4300 struct stlibrd *brdp;
4301 int rc;
4302
4303 if (!portp) {
4304 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4305 return -EFAULT;
4306 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4307 stli_comstats.port);
4308 if (!portp)
4309 return -ENODEV;
4310 }
4311
4312 brdp = stli_brds[portp->brdnr];
4313 if (!brdp)
4314 return -ENODEV;
4315
4316 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4317 return rc;
4318
4319 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4320 -EFAULT : 0;
4321 }
4322
4323 /*****************************************************************************/
4324
4325 /*
4326 * Clear the port stats structure. We also return it zeroed out...
4327 */
4328
4329 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4330 {
4331 struct stlibrd *brdp;
4332 int rc;
4333
4334 if (!portp) {
4335 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4336 return -EFAULT;
4337 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4338 stli_comstats.port);
4339 if (!portp)
4340 return -ENODEV;
4341 }
4342
4343 brdp = stli_brds[portp->brdnr];
4344 if (!brdp)
4345 return -ENODEV;
4346
4347 if (brdp->state & BST_STARTED) {
4348 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4349 return rc;
4350 }
4351
4352 memset(&stli_comstats, 0, sizeof(comstats_t));
4353 stli_comstats.brd = portp->brdnr;
4354 stli_comstats.panel = portp->panelnr;
4355 stli_comstats.port = portp->portnr;
4356
4357 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4358 return -EFAULT;
4359 return 0;
4360 }
4361
4362 /*****************************************************************************/
4363
4364 /*
4365 * Return the entire driver ports structure to a user app.
4366 */
4367
4368 static int stli_getportstruct(struct stliport __user *arg)
4369 {
4370 struct stliport stli_dummyport;
4371 struct stliport *portp;
4372
4373 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4374 return -EFAULT;
4375 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4376 stli_dummyport.portnr);
4377 if (!portp)
4378 return -ENODEV;
4379 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4380 return -EFAULT;
4381 return 0;
4382 }
4383
4384 /*****************************************************************************/
4385
4386 /*
4387 * Return the entire driver board structure to a user app.
4388 */
4389
4390 static int stli_getbrdstruct(struct stlibrd __user *arg)
4391 {
4392 struct stlibrd stli_dummybrd;
4393 struct stlibrd *brdp;
4394
4395 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4396 return -EFAULT;
4397 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4398 return -ENODEV;
4399 brdp = stli_brds[stli_dummybrd.brdnr];
4400 if (!brdp)
4401 return -ENODEV;
4402 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4403 return -EFAULT;
4404 return 0;
4405 }
4406
4407 /*****************************************************************************/
4408
4409 /*
4410 * The "staliomem" device is also required to do some special operations on
4411 * the board. We need to be able to send an interrupt to the board,
4412 * reset it, and start/stop it.
4413 */
4414
4415 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4416 {
4417 struct stlibrd *brdp;
4418 int brdnr, rc, done;
4419 void __user *argp = (void __user *)arg;
4420
4421 /*
4422 * First up handle the board independent ioctls.
4423 */
4424 done = 0;
4425 rc = 0;
4426
4427 lock_kernel();
4428
4429 switch (cmd) {
4430 case COM_GETPORTSTATS:
4431 rc = stli_getportstats(NULL, NULL, argp);
4432 done++;
4433 break;
4434 case COM_CLRPORTSTATS:
4435 rc = stli_clrportstats(NULL, argp);
4436 done++;
4437 break;
4438 case COM_GETBRDSTATS:
4439 rc = stli_getbrdstats(argp);
4440 done++;
4441 break;
4442 case COM_READPORT:
4443 rc = stli_getportstruct(argp);
4444 done++;
4445 break;
4446 case COM_READBOARD:
4447 rc = stli_getbrdstruct(argp);
4448 done++;
4449 break;
4450 }
4451 unlock_kernel();
4452
4453 if (done)
4454 return rc;
4455
4456 /*
4457 * Now handle the board specific ioctls. These all depend on the
4458 * minor number of the device they were called from.
4459 */
4460 brdnr = iminor(ip);
4461 if (brdnr >= STL_MAXBRDS)
4462 return -ENODEV;
4463 brdp = stli_brds[brdnr];
4464 if (!brdp)
4465 return -ENODEV;
4466 if (brdp->state == 0)
4467 return -ENODEV;
4468
4469 lock_kernel();
4470
4471 switch (cmd) {
4472 case STL_BINTR:
4473 EBRDINTR(brdp);
4474 break;
4475 case STL_BSTART:
4476 rc = stli_startbrd(brdp);
4477 break;
4478 case STL_BSTOP:
4479 brdp->state &= ~BST_STARTED;
4480 break;
4481 case STL_BRESET:
4482 brdp->state &= ~BST_STARTED;
4483 EBRDRESET(brdp);
4484 if (stli_shared == 0) {
4485 if (brdp->reenable != NULL)
4486 (* brdp->reenable)(brdp);
4487 }
4488 break;
4489 default:
4490 rc = -ENOIOCTLCMD;
4491 break;
4492 }
4493 unlock_kernel();
4494 return rc;
4495 }
4496
4497 static const struct tty_operations stli_ops = {
4498 .open = stli_open,
4499 .close = stli_close,
4500 .write = stli_write,
4501 .put_char = stli_putchar,
4502 .flush_chars = stli_flushchars,
4503 .write_room = stli_writeroom,
4504 .chars_in_buffer = stli_charsinbuffer,
4505 .ioctl = stli_ioctl,
4506 .set_termios = stli_settermios,
4507 .throttle = stli_throttle,
4508 .unthrottle = stli_unthrottle,
4509 .stop = stli_stop,
4510 .start = stli_start,
4511 .hangup = stli_hangup,
4512 .flush_buffer = stli_flushbuffer,
4513 .break_ctl = stli_breakctl,
4514 .wait_until_sent = stli_waituntilsent,
4515 .send_xchar = stli_sendxchar,
4516 .read_proc = stli_readproc,
4517 .tiocmget = stli_tiocmget,
4518 .tiocmset = stli_tiocmset,
4519 };
4520
4521 /*****************************************************************************/
4522 /*
4523 * Loadable module initialization stuff.
4524 */
4525
4526 static void istallion_cleanup_isa(void)
4527 {
4528 struct stlibrd *brdp;
4529 unsigned int j;
4530
4531 for (j = 0; (j < stli_nrbrds); j++) {
4532 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4533 continue;
4534
4535 stli_cleanup_ports(brdp);
4536
4537 iounmap(brdp->membase);
4538 if (brdp->iosize > 0)
4539 release_region(brdp->iobase, brdp->iosize);
4540 kfree(brdp);
4541 stli_brds[j] = NULL;
4542 }
4543 }
4544
4545 static int __init istallion_module_init(void)
4546 {
4547 unsigned int i;
4548 int retval;
4549
4550 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4551
4552 spin_lock_init(&stli_lock);
4553 spin_lock_init(&brd_lock);
4554
4555 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4556 if (!stli_txcookbuf) {
4557 printk(KERN_ERR "STALLION: failed to allocate memory "
4558 "(size=%d)\n", STLI_TXBUFSIZE);
4559 retval = -ENOMEM;
4560 goto err;
4561 }
4562
4563 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4564 if (!stli_serial) {
4565 retval = -ENOMEM;
4566 goto err_free;
4567 }
4568
4569 stli_serial->owner = THIS_MODULE;
4570 stli_serial->driver_name = stli_drvname;
4571 stli_serial->name = stli_serialname;
4572 stli_serial->major = STL_SERIALMAJOR;
4573 stli_serial->minor_start = 0;
4574 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4575 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4576 stli_serial->init_termios = stli_deftermios;
4577 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4578 tty_set_operations(stli_serial, &stli_ops);
4579
4580 retval = tty_register_driver(stli_serial);
4581 if (retval) {
4582 printk(KERN_ERR "STALLION: failed to register serial driver\n");
4583 goto err_ttyput;
4584 }
4585
4586 retval = stli_initbrds();
4587 if (retval)
4588 goto err_ttyunr;
4589
4590 /*
4591 * Set up a character driver for the shared memory region. We need this
4592 * to down load the slave code image. Also it is a useful debugging tool.
4593 */
4594 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4595 if (retval) {
4596 printk(KERN_ERR "STALLION: failed to register serial memory "
4597 "device\n");
4598 goto err_deinit;
4599 }
4600
4601 istallion_class = class_create(THIS_MODULE, "staliomem");
4602 for (i = 0; i < 4; i++)
4603 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4604 NULL, "staliomem%d", i);
4605
4606 return 0;
4607 err_deinit:
4608 pci_unregister_driver(&stli_pcidriver);
4609 istallion_cleanup_isa();
4610 err_ttyunr:
4611 tty_unregister_driver(stli_serial);
4612 err_ttyput:
4613 put_tty_driver(stli_serial);
4614 err_free:
4615 kfree(stli_txcookbuf);
4616 err:
4617 return retval;
4618 }
4619
4620 /*****************************************************************************/
4621
4622 static void __exit istallion_module_exit(void)
4623 {
4624 unsigned int j;
4625
4626 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4627 stli_drvversion);
4628
4629 if (stli_timeron) {
4630 stli_timeron = 0;
4631 del_timer_sync(&stli_timerlist);
4632 }
4633
4634 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4635
4636 for (j = 0; j < 4; j++)
4637 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4638 class_destroy(istallion_class);
4639
4640 pci_unregister_driver(&stli_pcidriver);
4641 istallion_cleanup_isa();
4642
4643 tty_unregister_driver(stli_serial);
4644 put_tty_driver(stli_serial);
4645
4646 kfree(stli_txcookbuf);
4647 }
4648
4649 module_init(istallion_module_init);
4650 module_exit(istallion_module_exit);
This page took 0.142146 seconds and 5 git commands to generate.