stallion: prune lock_kernel calls
[deliverable/linux.git] / drivers / char / istallion.c
1 /*****************************************************************************/
2
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * FIXME: brdp->state needs proper locking.
18 */
19
20 /*****************************************************************************/
21
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/smp_lock.h>
26 #include <linux/interrupt.h>
27 #include <linux/tty.h>
28 #include <linux/tty_flip.h>
29 #include <linux/serial.h>
30 #include <linux/seq_file.h>
31 #include <linux/cdk.h>
32 #include <linux/comstats.h>
33 #include <linux/istallion.h>
34 #include <linux/ioport.h>
35 #include <linux/delay.h>
36 #include <linux/init.h>
37 #include <linux/device.h>
38 #include <linux/wait.h>
39 #include <linux/eisa.h>
40 #include <linux/ctype.h>
41
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44
45 #include <linux/pci.h>
46
47 /*****************************************************************************/
48
49 /*
50 * Define different board types. Not all of the following board types
51 * are supported by this driver. But I will use the standard "assigned"
52 * board numbers. Currently supported boards are abbreviated as:
53 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
54 * STAL = Stallion.
55 */
56 #define BRD_UNKNOWN 0
57 #define BRD_STALLION 1
58 #define BRD_BRUMBY4 2
59 #define BRD_ONBOARD2 3
60 #define BRD_ONBOARD 4
61 #define BRD_ONBOARDE 7
62 #define BRD_ECP 23
63 #define BRD_ECPE 24
64 #define BRD_ECPMC 25
65 #define BRD_ECPPCI 29
66
67 #define BRD_BRUMBY BRD_BRUMBY4
68
69 /*
70 * Define a configuration structure to hold the board configuration.
71 * Need to set this up in the code (for now) with the boards that are
72 * to be configured into the system. This is what needs to be modified
73 * when adding/removing/modifying boards. Each line entry in the
74 * stli_brdconf[] array is a board. Each line contains io/irq/memory
75 * ranges for that board (as well as what type of board it is).
76 * Some examples:
77 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
78 * This line will configure an EasyConnection 8/64 at io address 2a0,
79 * and shared memory address of cc000. Multiple EasyConnection 8/64
80 * boards can share the same shared memory address space. No interrupt
81 * is required for this board type.
82 * Another example:
83 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
84 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
85 * shared memory address of 0x80000000 (2 GByte). Multiple
86 * EasyConnection 8/64 EISA boards can share the same shared memory
87 * address space. No interrupt is required for this board type.
88 * Another example:
89 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
90 * This line will configure an ONboard (ISA type) at io address 240,
91 * and shared memory address of d0000. Multiple ONboards can share
92 * the same shared memory address space. No interrupt required.
93 * Another example:
94 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
95 * This line will configure a Brumby board (any number of ports!) at
96 * io address 360 and shared memory address of c8000. All Brumby boards
97 * configured into a system must have their own separate io and memory
98 * addresses. No interrupt is required.
99 * Another example:
100 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
101 * This line will configure an original Stallion board at io address 330
102 * and shared memory address d0000 (this would only be valid for a "V4.0"
103 * or Rev.O Stallion board). All Stallion boards configured into the
104 * system must have their own separate io and memory addresses. No
105 * interrupt is required.
106 */
107
108 struct stlconf {
109 int brdtype;
110 int ioaddr1;
111 int ioaddr2;
112 unsigned long memaddr;
113 int irq;
114 int irqtype;
115 };
116
117 static unsigned int stli_nrbrds;
118
119 /* stli_lock must NOT be taken holding brd_lock */
120 static spinlock_t stli_lock; /* TTY logic lock */
121 static spinlock_t brd_lock; /* Board logic lock */
122
123 /*
124 * There is some experimental EISA board detection code in this driver.
125 * By default it is disabled, but for those that want to try it out,
126 * then set the define below to be 1.
127 */
128 #define STLI_EISAPROBE 0
129
130 /*****************************************************************************/
131
132 /*
133 * Define some important driver characteristics. Device major numbers
134 * allocated as per Linux Device Registry.
135 */
136 #ifndef STL_SIOMEMMAJOR
137 #define STL_SIOMEMMAJOR 28
138 #endif
139 #ifndef STL_SERIALMAJOR
140 #define STL_SERIALMAJOR 24
141 #endif
142 #ifndef STL_CALLOUTMAJOR
143 #define STL_CALLOUTMAJOR 25
144 #endif
145
146 /*****************************************************************************/
147
148 /*
149 * Define our local driver identity first. Set up stuff to deal with
150 * all the local structures required by a serial tty driver.
151 */
152 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
153 static char *stli_drvname = "istallion";
154 static char *stli_drvversion = "5.6.0";
155 static char *stli_serialname = "ttyE";
156
157 static struct tty_driver *stli_serial;
158 static const struct tty_port_operations stli_port_ops;
159
160 #define STLI_TXBUFSIZE 4096
161
162 /*
163 * Use a fast local buffer for cooked characters. Typically a whole
164 * bunch of cooked characters come in for a port, 1 at a time. So we
165 * save those up into a local buffer, then write out the whole lot
166 * with a large memcpy. Just use 1 buffer for all ports, since its
167 * use it is only need for short periods of time by each port.
168 */
169 static char *stli_txcookbuf;
170 static int stli_txcooksize;
171 static int stli_txcookrealsize;
172 static struct tty_struct *stli_txcooktty;
173
174 /*
175 * Define a local default termios struct. All ports will be created
176 * with this termios initially. Basically all it defines is a raw port
177 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
178 */
179 static struct ktermios stli_deftermios = {
180 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
181 .c_cc = INIT_C_CC,
182 .c_ispeed = 9600,
183 .c_ospeed = 9600,
184 };
185
186 /*
187 * Define global stats structures. Not used often, and can be
188 * re-used for each stats call.
189 */
190 static comstats_t stli_comstats;
191 static combrd_t stli_brdstats;
192 static struct asystats stli_cdkstats;
193
194 /*****************************************************************************/
195
196 static DEFINE_MUTEX(stli_brdslock);
197 static struct stlibrd *stli_brds[STL_MAXBRDS];
198
199 static int stli_shared;
200
201 /*
202 * Per board state flags. Used with the state field of the board struct.
203 * Not really much here... All we need to do is keep track of whether
204 * the board has been detected, and whether it is actually running a slave
205 * or not.
206 */
207 #define BST_FOUND 0x1
208 #define BST_STARTED 0x2
209 #define BST_PROBED 0x4
210
211 /*
212 * Define the set of port state flags. These are marked for internal
213 * state purposes only, usually to do with the state of communications
214 * with the slave. Most of them need to be updated atomically, so always
215 * use the bit setting operations (unless protected by cli/sti).
216 */
217 #define ST_OPENING 2
218 #define ST_CLOSING 3
219 #define ST_CMDING 4
220 #define ST_TXBUSY 5
221 #define ST_RXING 6
222 #define ST_DOFLUSHRX 7
223 #define ST_DOFLUSHTX 8
224 #define ST_DOSIGS 9
225 #define ST_RXSTOP 10
226 #define ST_GETSIGS 11
227
228 /*
229 * Define an array of board names as printable strings. Handy for
230 * referencing boards when printing trace and stuff.
231 */
232 static char *stli_brdnames[] = {
233 "Unknown",
234 "Stallion",
235 "Brumby",
236 "ONboard-MC",
237 "ONboard",
238 "Brumby",
239 "Brumby",
240 "ONboard-EI",
241 NULL,
242 "ONboard",
243 "ONboard-MC",
244 "ONboard-MC",
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 NULL,
252 NULL,
253 "EasyIO",
254 "EC8/32-AT",
255 "EC8/32-MC",
256 "EC8/64-AT",
257 "EC8/64-EI",
258 "EC8/64-MC",
259 "EC8/32-PCI",
260 "EC8/64-PCI",
261 "EasyIO-PCI",
262 "EC/RA-PCI",
263 };
264
265 /*****************************************************************************/
266
267 /*
268 * Define some string labels for arguments passed from the module
269 * load line. These allow for easy board definitions, and easy
270 * modification of the io, memory and irq resoucres.
271 */
272
273 static char *board0[8];
274 static char *board1[8];
275 static char *board2[8];
276 static char *board3[8];
277
278 static char **stli_brdsp[] = {
279 (char **) &board0,
280 (char **) &board1,
281 (char **) &board2,
282 (char **) &board3
283 };
284
285 /*
286 * Define a set of common board names, and types. This is used to
287 * parse any module arguments.
288 */
289
290 static struct stlibrdtype {
291 char *name;
292 int type;
293 } stli_brdstr[] = {
294 { "stallion", BRD_STALLION },
295 { "1", BRD_STALLION },
296 { "brumby", BRD_BRUMBY },
297 { "brumby4", BRD_BRUMBY },
298 { "brumby/4", BRD_BRUMBY },
299 { "brumby-4", BRD_BRUMBY },
300 { "brumby8", BRD_BRUMBY },
301 { "brumby/8", BRD_BRUMBY },
302 { "brumby-8", BRD_BRUMBY },
303 { "brumby16", BRD_BRUMBY },
304 { "brumby/16", BRD_BRUMBY },
305 { "brumby-16", BRD_BRUMBY },
306 { "2", BRD_BRUMBY },
307 { "onboard2", BRD_ONBOARD2 },
308 { "onboard-2", BRD_ONBOARD2 },
309 { "onboard/2", BRD_ONBOARD2 },
310 { "onboard-mc", BRD_ONBOARD2 },
311 { "onboard/mc", BRD_ONBOARD2 },
312 { "onboard-mca", BRD_ONBOARD2 },
313 { "onboard/mca", BRD_ONBOARD2 },
314 { "3", BRD_ONBOARD2 },
315 { "onboard", BRD_ONBOARD },
316 { "onboardat", BRD_ONBOARD },
317 { "4", BRD_ONBOARD },
318 { "onboarde", BRD_ONBOARDE },
319 { "onboard-e", BRD_ONBOARDE },
320 { "onboard/e", BRD_ONBOARDE },
321 { "onboard-ei", BRD_ONBOARDE },
322 { "onboard/ei", BRD_ONBOARDE },
323 { "7", BRD_ONBOARDE },
324 { "ecp", BRD_ECP },
325 { "ecpat", BRD_ECP },
326 { "ec8/64", BRD_ECP },
327 { "ec8/64-at", BRD_ECP },
328 { "ec8/64-isa", BRD_ECP },
329 { "23", BRD_ECP },
330 { "ecpe", BRD_ECPE },
331 { "ecpei", BRD_ECPE },
332 { "ec8/64-e", BRD_ECPE },
333 { "ec8/64-ei", BRD_ECPE },
334 { "24", BRD_ECPE },
335 { "ecpmc", BRD_ECPMC },
336 { "ec8/64-mc", BRD_ECPMC },
337 { "ec8/64-mca", BRD_ECPMC },
338 { "25", BRD_ECPMC },
339 { "ecppci", BRD_ECPPCI },
340 { "ec/ra", BRD_ECPPCI },
341 { "ec/ra-pc", BRD_ECPPCI },
342 { "ec/ra-pci", BRD_ECPPCI },
343 { "29", BRD_ECPPCI },
344 };
345
346 /*
347 * Define the module agruments.
348 */
349 MODULE_AUTHOR("Greg Ungerer");
350 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
351 MODULE_LICENSE("GPL");
352
353
354 module_param_array(board0, charp, NULL, 0);
355 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
356 module_param_array(board1, charp, NULL, 0);
357 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
358 module_param_array(board2, charp, NULL, 0);
359 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
360 module_param_array(board3, charp, NULL, 0);
361 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
362
363 #if STLI_EISAPROBE != 0
364 /*
365 * Set up a default memory address table for EISA board probing.
366 * The default addresses are all bellow 1Mbyte, which has to be the
367 * case anyway. They should be safe, since we only read values from
368 * them, and interrupts are disabled while we do it. If the higher
369 * memory support is compiled in then we also try probing around
370 * the 1Gb, 2Gb and 3Gb areas as well...
371 */
372 static unsigned long stli_eisamemprobeaddrs[] = {
373 0xc0000, 0xd0000, 0xe0000, 0xf0000,
374 0x80000000, 0x80010000, 0x80020000, 0x80030000,
375 0x40000000, 0x40010000, 0x40020000, 0x40030000,
376 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
377 0xff000000, 0xff010000, 0xff020000, 0xff030000,
378 };
379
380 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
381 #endif
382
383 /*
384 * Define the Stallion PCI vendor and device IDs.
385 */
386 #ifndef PCI_DEVICE_ID_ECRA
387 #define PCI_DEVICE_ID_ECRA 0x0004
388 #endif
389
390 static struct pci_device_id istallion_pci_tbl[] = {
391 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
392 { 0 }
393 };
394 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
395
396 static struct pci_driver stli_pcidriver;
397
398 /*****************************************************************************/
399
400 /*
401 * Hardware configuration info for ECP boards. These defines apply
402 * to the directly accessible io ports of the ECP. There is a set of
403 * defines for each ECP board type, ISA, EISA, MCA and PCI.
404 */
405 #define ECP_IOSIZE 4
406
407 #define ECP_MEMSIZE (128 * 1024)
408 #define ECP_PCIMEMSIZE (256 * 1024)
409
410 #define ECP_ATPAGESIZE (4 * 1024)
411 #define ECP_MCPAGESIZE (4 * 1024)
412 #define ECP_EIPAGESIZE (64 * 1024)
413 #define ECP_PCIPAGESIZE (64 * 1024)
414
415 #define STL_EISAID 0x8c4e
416
417 /*
418 * Important defines for the ISA class of ECP board.
419 */
420 #define ECP_ATIREG 0
421 #define ECP_ATCONFR 1
422 #define ECP_ATMEMAR 2
423 #define ECP_ATMEMPR 3
424 #define ECP_ATSTOP 0x1
425 #define ECP_ATINTENAB 0x10
426 #define ECP_ATENABLE 0x20
427 #define ECP_ATDISABLE 0x00
428 #define ECP_ATADDRMASK 0x3f000
429 #define ECP_ATADDRSHFT 12
430
431 /*
432 * Important defines for the EISA class of ECP board.
433 */
434 #define ECP_EIIREG 0
435 #define ECP_EIMEMARL 1
436 #define ECP_EICONFR 2
437 #define ECP_EIMEMARH 3
438 #define ECP_EIENABLE 0x1
439 #define ECP_EIDISABLE 0x0
440 #define ECP_EISTOP 0x4
441 #define ECP_EIEDGE 0x00
442 #define ECP_EILEVEL 0x80
443 #define ECP_EIADDRMASKL 0x00ff0000
444 #define ECP_EIADDRSHFTL 16
445 #define ECP_EIADDRMASKH 0xff000000
446 #define ECP_EIADDRSHFTH 24
447 #define ECP_EIBRDENAB 0xc84
448
449 #define ECP_EISAID 0x4
450
451 /*
452 * Important defines for the Micro-channel class of ECP board.
453 * (It has a lot in common with the ISA boards.)
454 */
455 #define ECP_MCIREG 0
456 #define ECP_MCCONFR 1
457 #define ECP_MCSTOP 0x20
458 #define ECP_MCENABLE 0x80
459 #define ECP_MCDISABLE 0x00
460
461 /*
462 * Important defines for the PCI class of ECP board.
463 * (It has a lot in common with the other ECP boards.)
464 */
465 #define ECP_PCIIREG 0
466 #define ECP_PCICONFR 1
467 #define ECP_PCISTOP 0x01
468
469 /*
470 * Hardware configuration info for ONboard and Brumby boards. These
471 * defines apply to the directly accessible io ports of these boards.
472 */
473 #define ONB_IOSIZE 16
474 #define ONB_MEMSIZE (64 * 1024)
475 #define ONB_ATPAGESIZE (64 * 1024)
476 #define ONB_MCPAGESIZE (64 * 1024)
477 #define ONB_EIMEMSIZE (128 * 1024)
478 #define ONB_EIPAGESIZE (64 * 1024)
479
480 /*
481 * Important defines for the ISA class of ONboard board.
482 */
483 #define ONB_ATIREG 0
484 #define ONB_ATMEMAR 1
485 #define ONB_ATCONFR 2
486 #define ONB_ATSTOP 0x4
487 #define ONB_ATENABLE 0x01
488 #define ONB_ATDISABLE 0x00
489 #define ONB_ATADDRMASK 0xff0000
490 #define ONB_ATADDRSHFT 16
491
492 #define ONB_MEMENABLO 0
493 #define ONB_MEMENABHI 0x02
494
495 /*
496 * Important defines for the EISA class of ONboard board.
497 */
498 #define ONB_EIIREG 0
499 #define ONB_EIMEMARL 1
500 #define ONB_EICONFR 2
501 #define ONB_EIMEMARH 3
502 #define ONB_EIENABLE 0x1
503 #define ONB_EIDISABLE 0x0
504 #define ONB_EISTOP 0x4
505 #define ONB_EIEDGE 0x00
506 #define ONB_EILEVEL 0x80
507 #define ONB_EIADDRMASKL 0x00ff0000
508 #define ONB_EIADDRSHFTL 16
509 #define ONB_EIADDRMASKH 0xff000000
510 #define ONB_EIADDRSHFTH 24
511 #define ONB_EIBRDENAB 0xc84
512
513 #define ONB_EISAID 0x1
514
515 /*
516 * Important defines for the Brumby boards. They are pretty simple,
517 * there is not much that is programmably configurable.
518 */
519 #define BBY_IOSIZE 16
520 #define BBY_MEMSIZE (64 * 1024)
521 #define BBY_PAGESIZE (16 * 1024)
522
523 #define BBY_ATIREG 0
524 #define BBY_ATCONFR 1
525 #define BBY_ATSTOP 0x4
526
527 /*
528 * Important defines for the Stallion boards. They are pretty simple,
529 * there is not much that is programmably configurable.
530 */
531 #define STAL_IOSIZE 16
532 #define STAL_MEMSIZE (64 * 1024)
533 #define STAL_PAGESIZE (64 * 1024)
534
535 /*
536 * Define the set of status register values for EasyConnection panels.
537 * The signature will return with the status value for each panel. From
538 * this we can determine what is attached to the board - before we have
539 * actually down loaded any code to it.
540 */
541 #define ECH_PNLSTATUS 2
542 #define ECH_PNL16PORT 0x20
543 #define ECH_PNLIDMASK 0x07
544 #define ECH_PNLXPID 0x40
545 #define ECH_PNLINTRPEND 0x80
546
547 /*
548 * Define some macros to do things to the board. Even those these boards
549 * are somewhat related there is often significantly different ways of
550 * doing some operation on it (like enable, paging, reset, etc). So each
551 * board class has a set of functions which do the commonly required
552 * operations. The macros below basically just call these functions,
553 * generally checking for a NULL function - which means that the board
554 * needs nothing done to it to achieve this operation!
555 */
556 #define EBRDINIT(brdp) \
557 if (brdp->init != NULL) \
558 (* brdp->init)(brdp)
559
560 #define EBRDENABLE(brdp) \
561 if (brdp->enable != NULL) \
562 (* brdp->enable)(brdp);
563
564 #define EBRDDISABLE(brdp) \
565 if (brdp->disable != NULL) \
566 (* brdp->disable)(brdp);
567
568 #define EBRDINTR(brdp) \
569 if (brdp->intr != NULL) \
570 (* brdp->intr)(brdp);
571
572 #define EBRDRESET(brdp) \
573 if (brdp->reset != NULL) \
574 (* brdp->reset)(brdp);
575
576 #define EBRDGETMEMPTR(brdp,offset) \
577 (* brdp->getmemptr)(brdp, offset, __LINE__)
578
579 /*
580 * Define the maximal baud rate, and the default baud base for ports.
581 */
582 #define STL_MAXBAUD 460800
583 #define STL_BAUDBASE 115200
584 #define STL_CLOSEDELAY (5 * HZ / 10)
585
586 /*****************************************************************************/
587
588 /*
589 * Define macros to extract a brd or port number from a minor number.
590 */
591 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
592 #define MINOR2PORT(min) ((min) & 0x3f)
593
594 /*****************************************************************************/
595
596 /*
597 * Prototype all functions in this driver!
598 */
599
600 static int stli_parsebrd(struct stlconf *confp, char **argp);
601 static int stli_open(struct tty_struct *tty, struct file *filp);
602 static void stli_close(struct tty_struct *tty, struct file *filp);
603 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
604 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
605 static void stli_flushchars(struct tty_struct *tty);
606 static int stli_writeroom(struct tty_struct *tty);
607 static int stli_charsinbuffer(struct tty_struct *tty);
608 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
609 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
610 static void stli_throttle(struct tty_struct *tty);
611 static void stli_unthrottle(struct tty_struct *tty);
612 static void stli_stop(struct tty_struct *tty);
613 static void stli_start(struct tty_struct *tty);
614 static void stli_flushbuffer(struct tty_struct *tty);
615 static int stli_breakctl(struct tty_struct *tty, int state);
616 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
617 static void stli_sendxchar(struct tty_struct *tty, char ch);
618 static void stli_hangup(struct tty_struct *tty);
619
620 static int stli_brdinit(struct stlibrd *brdp);
621 static int stli_startbrd(struct stlibrd *brdp);
622 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
623 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
624 static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg);
625 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
626 static void stli_poll(unsigned long arg);
627 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
628 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
629 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
630 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
631 static int stli_setport(struct tty_struct *tty);
632 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
635 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
636 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
637 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
638 static long stli_mktiocm(unsigned long sigvalue);
639 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
640 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
641 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
642 static int stli_getbrdstats(combrd_t __user *bp);
643 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
644 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
645 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
646 static int stli_getportstruct(struct stliport __user *arg);
647 static int stli_getbrdstruct(struct stlibrd __user *arg);
648 static struct stlibrd *stli_allocbrd(void);
649
650 static void stli_ecpinit(struct stlibrd *brdp);
651 static void stli_ecpenable(struct stlibrd *brdp);
652 static void stli_ecpdisable(struct stlibrd *brdp);
653 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
654 static void stli_ecpreset(struct stlibrd *brdp);
655 static void stli_ecpintr(struct stlibrd *brdp);
656 static void stli_ecpeiinit(struct stlibrd *brdp);
657 static void stli_ecpeienable(struct stlibrd *brdp);
658 static void stli_ecpeidisable(struct stlibrd *brdp);
659 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
660 static void stli_ecpeireset(struct stlibrd *brdp);
661 static void stli_ecpmcenable(struct stlibrd *brdp);
662 static void stli_ecpmcdisable(struct stlibrd *brdp);
663 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
664 static void stli_ecpmcreset(struct stlibrd *brdp);
665 static void stli_ecppciinit(struct stlibrd *brdp);
666 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
667 static void stli_ecppcireset(struct stlibrd *brdp);
668
669 static void stli_onbinit(struct stlibrd *brdp);
670 static void stli_onbenable(struct stlibrd *brdp);
671 static void stli_onbdisable(struct stlibrd *brdp);
672 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
673 static void stli_onbreset(struct stlibrd *brdp);
674 static void stli_onbeinit(struct stlibrd *brdp);
675 static void stli_onbeenable(struct stlibrd *brdp);
676 static void stli_onbedisable(struct stlibrd *brdp);
677 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
678 static void stli_onbereset(struct stlibrd *brdp);
679 static void stli_bbyinit(struct stlibrd *brdp);
680 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
681 static void stli_bbyreset(struct stlibrd *brdp);
682 static void stli_stalinit(struct stlibrd *brdp);
683 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
684 static void stli_stalreset(struct stlibrd *brdp);
685
686 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
687
688 static int stli_initecp(struct stlibrd *brdp);
689 static int stli_initonb(struct stlibrd *brdp);
690 #if STLI_EISAPROBE != 0
691 static int stli_eisamemprobe(struct stlibrd *brdp);
692 #endif
693 static int stli_initports(struct stlibrd *brdp);
694
695 /*****************************************************************************/
696
697 /*
698 * Define the driver info for a user level shared memory device. This
699 * device will work sort of like the /dev/kmem device - except that it
700 * will give access to the shared memory on the Stallion intelligent
701 * board. This is also a very useful debugging tool.
702 */
703 static const struct file_operations stli_fsiomem = {
704 .owner = THIS_MODULE,
705 .read = stli_memread,
706 .write = stli_memwrite,
707 .unlocked_ioctl = stli_memioctl,
708 };
709
710 /*****************************************************************************/
711
712 /*
713 * Define a timer_list entry for our poll routine. The slave board
714 * is polled every so often to see if anything needs doing. This is
715 * much cheaper on host cpu than using interrupts. It turns out to
716 * not increase character latency by much either...
717 */
718 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
719
720 static int stli_timeron;
721
722 /*
723 * Define the calculation for the timeout routine.
724 */
725 #define STLI_TIMEOUT (jiffies + 1)
726
727 /*****************************************************************************/
728
729 static struct class *istallion_class;
730
731 static void stli_cleanup_ports(struct stlibrd *brdp)
732 {
733 struct stliport *portp;
734 unsigned int j;
735 struct tty_struct *tty;
736
737 for (j = 0; j < STL_MAXPORTS; j++) {
738 portp = brdp->ports[j];
739 if (portp != NULL) {
740 tty = tty_port_tty_get(&portp->port);
741 if (tty != NULL) {
742 tty_hangup(tty);
743 tty_kref_put(tty);
744 }
745 kfree(portp);
746 }
747 }
748 }
749
750 /*****************************************************************************/
751
752 /*
753 * Parse the supplied argument string, into the board conf struct.
754 */
755
756 static int stli_parsebrd(struct stlconf *confp, char **argp)
757 {
758 unsigned int i;
759 char *sp;
760
761 if (argp[0] == NULL || *argp[0] == 0)
762 return 0;
763
764 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
765 *sp = tolower(*sp);
766
767 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
768 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
769 break;
770 }
771 if (i == ARRAY_SIZE(stli_brdstr)) {
772 printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
773 return 0;
774 }
775
776 confp->brdtype = stli_brdstr[i].type;
777 if (argp[1] != NULL && *argp[1] != 0)
778 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
779 if (argp[2] != NULL && *argp[2] != 0)
780 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
781 return(1);
782 }
783
784 /*****************************************************************************/
785
786 /*
787 * On the first open of the device setup the port hardware, and
788 * initialize the per port data structure. Since initializing the port
789 * requires several commands to the board we will need to wait for any
790 * other open that is already initializing the port.
791 *
792 * Locking: protected by the port mutex.
793 */
794
795 static int stli_activate(struct tty_port *port, struct tty_struct *tty)
796 {
797 struct stliport *portp = container_of(port, struct stliport, port);
798 struct stlibrd *brdp = stli_brds[portp->brdnr];
799 int rc;
800
801 if ((rc = stli_initopen(tty, brdp, portp)) >= 0)
802 clear_bit(TTY_IO_ERROR, &tty->flags);
803 wake_up_interruptible(&portp->raw_wait);
804 return rc;
805 }
806
807 static int stli_open(struct tty_struct *tty, struct file *filp)
808 {
809 struct stlibrd *brdp;
810 struct stliport *portp;
811 unsigned int minordev, brdnr, portnr;
812
813 minordev = tty->index;
814 brdnr = MINOR2BRD(minordev);
815 if (brdnr >= stli_nrbrds)
816 return -ENODEV;
817 brdp = stli_brds[brdnr];
818 if (brdp == NULL)
819 return -ENODEV;
820 if ((brdp->state & BST_STARTED) == 0)
821 return -ENODEV;
822 portnr = MINOR2PORT(minordev);
823 if (portnr > brdp->nrports)
824 return -ENODEV;
825
826 portp = brdp->ports[portnr];
827 if (portp == NULL)
828 return -ENODEV;
829 if (portp->devnr < 1)
830 return -ENODEV;
831
832 tty->driver_data = portp;
833 return tty_port_open(&portp->port, tty, filp);
834 }
835
836
837 /*****************************************************************************/
838
839 static void stli_shutdown(struct tty_port *port)
840 {
841 struct stlibrd *brdp;
842 unsigned long ftype;
843 unsigned long flags;
844 struct stliport *portp = container_of(port, struct stliport, port);
845
846 if (portp->brdnr >= stli_nrbrds)
847 return;
848 brdp = stli_brds[portp->brdnr];
849 if (brdp == NULL)
850 return;
851
852 /*
853 * May want to wait for data to drain before closing. The BUSY
854 * flag keeps track of whether we are still transmitting or not.
855 * It is updated by messages from the slave - indicating when all
856 * chars really have drained.
857 */
858
859 if (!test_bit(ST_CLOSING, &portp->state))
860 stli_rawclose(brdp, portp, 0, 0);
861
862 spin_lock_irqsave(&stli_lock, flags);
863 clear_bit(ST_TXBUSY, &portp->state);
864 clear_bit(ST_RXSTOP, &portp->state);
865 spin_unlock_irqrestore(&stli_lock, flags);
866
867 ftype = FLUSHTX | FLUSHRX;
868 stli_cmdwait(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
869 }
870
871 static void stli_close(struct tty_struct *tty, struct file *filp)
872 {
873 struct stliport *portp = tty->driver_data;
874 unsigned long flags;
875 if (portp == NULL)
876 return;
877 spin_lock_irqsave(&stli_lock, flags);
878 /* Flush any internal buffering out first */
879 if (tty == stli_txcooktty)
880 stli_flushchars(tty);
881 spin_unlock_irqrestore(&stli_lock, flags);
882 tty_port_close(&portp->port, tty, filp);
883 }
884
885 /*****************************************************************************/
886
887 /*
888 * Carry out first open operations on a port. This involves a number of
889 * commands to be sent to the slave. We need to open the port, set the
890 * notification events, set the initial port settings, get and set the
891 * initial signal values. We sleep and wait in between each one. But
892 * this still all happens pretty quickly.
893 */
894
895 static int stli_initopen(struct tty_struct *tty,
896 struct stlibrd *brdp, struct stliport *portp)
897 {
898 asynotify_t nt;
899 asyport_t aport;
900 int rc;
901
902 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
903 return rc;
904
905 memset(&nt, 0, sizeof(asynotify_t));
906 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
907 nt.signal = SG_DCD;
908 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
909 sizeof(asynotify_t), 0)) < 0)
910 return rc;
911
912 stli_mkasyport(tty, portp, &aport, tty->termios);
913 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
914 sizeof(asyport_t), 0)) < 0)
915 return rc;
916
917 set_bit(ST_GETSIGS, &portp->state);
918 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
919 sizeof(asysigs_t), 1)) < 0)
920 return rc;
921 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
922 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
923 stli_mkasysigs(&portp->asig, 1, 1);
924 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
925 sizeof(asysigs_t), 0)) < 0)
926 return rc;
927
928 return 0;
929 }
930
931 /*****************************************************************************/
932
933 /*
934 * Send an open message to the slave. This will sleep waiting for the
935 * acknowledgement, so must have user context. We need to co-ordinate
936 * with close events here, since we don't want open and close events
937 * to overlap.
938 */
939
940 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
941 {
942 cdkhdr_t __iomem *hdrp;
943 cdkctrl_t __iomem *cp;
944 unsigned char __iomem *bits;
945 unsigned long flags;
946 int rc;
947
948 /*
949 * Send a message to the slave to open this port.
950 */
951
952 /*
953 * Slave is already closing this port. This can happen if a hangup
954 * occurs on this port. So we must wait until it is complete. The
955 * order of opens and closes may not be preserved across shared
956 * memory, so we must wait until it is complete.
957 */
958 wait_event_interruptible(portp->raw_wait,
959 !test_bit(ST_CLOSING, &portp->state));
960 if (signal_pending(current)) {
961 return -ERESTARTSYS;
962 }
963
964 /*
965 * Everything is ready now, so write the open message into shared
966 * memory. Once the message is in set the service bits to say that
967 * this port wants service.
968 */
969 spin_lock_irqsave(&brd_lock, flags);
970 EBRDENABLE(brdp);
971 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
972 writel(arg, &cp->openarg);
973 writeb(1, &cp->open);
974 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
975 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
976 portp->portidx;
977 writeb(readb(bits) | portp->portbit, bits);
978 EBRDDISABLE(brdp);
979
980 if (wait == 0) {
981 spin_unlock_irqrestore(&brd_lock, flags);
982 return 0;
983 }
984
985 /*
986 * Slave is in action, so now we must wait for the open acknowledgment
987 * to come back.
988 */
989 rc = 0;
990 set_bit(ST_OPENING, &portp->state);
991 spin_unlock_irqrestore(&brd_lock, flags);
992
993 wait_event_interruptible(portp->raw_wait,
994 !test_bit(ST_OPENING, &portp->state));
995 if (signal_pending(current))
996 rc = -ERESTARTSYS;
997
998 if ((rc == 0) && (portp->rc != 0))
999 rc = -EIO;
1000 return rc;
1001 }
1002
1003 /*****************************************************************************/
1004
1005 /*
1006 * Send a close message to the slave. Normally this will sleep waiting
1007 * for the acknowledgement, but if wait parameter is 0 it will not. If
1008 * wait is true then must have user context (to sleep).
1009 */
1010
1011 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1012 {
1013 cdkhdr_t __iomem *hdrp;
1014 cdkctrl_t __iomem *cp;
1015 unsigned char __iomem *bits;
1016 unsigned long flags;
1017 int rc;
1018
1019 /*
1020 * Slave is already closing this port. This can happen if a hangup
1021 * occurs on this port.
1022 */
1023 if (wait) {
1024 wait_event_interruptible(portp->raw_wait,
1025 !test_bit(ST_CLOSING, &portp->state));
1026 if (signal_pending(current)) {
1027 return -ERESTARTSYS;
1028 }
1029 }
1030
1031 /*
1032 * Write the close command into shared memory.
1033 */
1034 spin_lock_irqsave(&brd_lock, flags);
1035 EBRDENABLE(brdp);
1036 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1037 writel(arg, &cp->closearg);
1038 writeb(1, &cp->close);
1039 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1040 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1041 portp->portidx;
1042 writeb(readb(bits) |portp->portbit, bits);
1043 EBRDDISABLE(brdp);
1044
1045 set_bit(ST_CLOSING, &portp->state);
1046 spin_unlock_irqrestore(&brd_lock, flags);
1047
1048 if (wait == 0)
1049 return 0;
1050
1051 /*
1052 * Slave is in action, so now we must wait for the open acknowledgment
1053 * to come back.
1054 */
1055 rc = 0;
1056 wait_event_interruptible(portp->raw_wait,
1057 !test_bit(ST_CLOSING, &portp->state));
1058 if (signal_pending(current))
1059 rc = -ERESTARTSYS;
1060
1061 if ((rc == 0) && (portp->rc != 0))
1062 rc = -EIO;
1063 return rc;
1064 }
1065
1066 /*****************************************************************************/
1067
1068 /*
1069 * Send a command to the slave and wait for the response. This must
1070 * have user context (it sleeps). This routine is generic in that it
1071 * can send any type of command. Its purpose is to wait for that command
1072 * to complete (as opposed to initiating the command then returning).
1073 */
1074
1075 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1076 {
1077 wait_event_interruptible(portp->raw_wait,
1078 !test_bit(ST_CMDING, &portp->state));
1079 if (signal_pending(current))
1080 return -ERESTARTSYS;
1081
1082 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1083
1084 wait_event_interruptible(portp->raw_wait,
1085 !test_bit(ST_CMDING, &portp->state));
1086 if (signal_pending(current))
1087 return -ERESTARTSYS;
1088
1089 if (portp->rc != 0)
1090 return -EIO;
1091 return 0;
1092 }
1093
1094 /*****************************************************************************/
1095
1096 /*
1097 * Send the termios settings for this port to the slave. This sleeps
1098 * waiting for the command to complete - so must have user context.
1099 */
1100
1101 static int stli_setport(struct tty_struct *tty)
1102 {
1103 struct stliport *portp = tty->driver_data;
1104 struct stlibrd *brdp;
1105 asyport_t aport;
1106
1107 if (portp == NULL)
1108 return -ENODEV;
1109 if (portp->brdnr >= stli_nrbrds)
1110 return -ENODEV;
1111 brdp = stli_brds[portp->brdnr];
1112 if (brdp == NULL)
1113 return -ENODEV;
1114
1115 stli_mkasyport(tty, portp, &aport, tty->termios);
1116 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1117 }
1118
1119 /*****************************************************************************/
1120
1121 static int stli_carrier_raised(struct tty_port *port)
1122 {
1123 struct stliport *portp = container_of(port, struct stliport, port);
1124 return (portp->sigs & TIOCM_CD) ? 1 : 0;
1125 }
1126
1127 static void stli_dtr_rts(struct tty_port *port, int on)
1128 {
1129 struct stliport *portp = container_of(port, struct stliport, port);
1130 struct stlibrd *brdp = stli_brds[portp->brdnr];
1131 stli_mkasysigs(&portp->asig, on, on);
1132 if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1133 sizeof(asysigs_t), 0) < 0)
1134 printk(KERN_WARNING "istallion: dtr set failed.\n");
1135 }
1136
1137
1138 /*****************************************************************************/
1139
1140 /*
1141 * Write routine. Take the data and put it in the shared memory ring
1142 * queue. If port is not already sending chars then need to mark the
1143 * service bits for this port.
1144 */
1145
1146 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1147 {
1148 cdkasy_t __iomem *ap;
1149 cdkhdr_t __iomem *hdrp;
1150 unsigned char __iomem *bits;
1151 unsigned char __iomem *shbuf;
1152 unsigned char *chbuf;
1153 struct stliport *portp;
1154 struct stlibrd *brdp;
1155 unsigned int len, stlen, head, tail, size;
1156 unsigned long flags;
1157
1158 if (tty == stli_txcooktty)
1159 stli_flushchars(tty);
1160 portp = tty->driver_data;
1161 if (portp == NULL)
1162 return 0;
1163 if (portp->brdnr >= stli_nrbrds)
1164 return 0;
1165 brdp = stli_brds[portp->brdnr];
1166 if (brdp == NULL)
1167 return 0;
1168 chbuf = (unsigned char *) buf;
1169
1170 /*
1171 * All data is now local, shove as much as possible into shared memory.
1172 */
1173 spin_lock_irqsave(&brd_lock, flags);
1174 EBRDENABLE(brdp);
1175 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1176 head = (unsigned int) readw(&ap->txq.head);
1177 tail = (unsigned int) readw(&ap->txq.tail);
1178 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1179 tail = (unsigned int) readw(&ap->txq.tail);
1180 size = portp->txsize;
1181 if (head >= tail) {
1182 len = size - (head - tail) - 1;
1183 stlen = size - head;
1184 } else {
1185 len = tail - head - 1;
1186 stlen = len;
1187 }
1188
1189 len = min(len, (unsigned int)count);
1190 count = 0;
1191 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1192
1193 while (len > 0) {
1194 stlen = min(len, stlen);
1195 memcpy_toio(shbuf + head, chbuf, stlen);
1196 chbuf += stlen;
1197 len -= stlen;
1198 count += stlen;
1199 head += stlen;
1200 if (head >= size) {
1201 head = 0;
1202 stlen = tail;
1203 }
1204 }
1205
1206 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1207 writew(head, &ap->txq.head);
1208 if (test_bit(ST_TXBUSY, &portp->state)) {
1209 if (readl(&ap->changed.data) & DT_TXEMPTY)
1210 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1211 }
1212 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1213 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1214 portp->portidx;
1215 writeb(readb(bits) | portp->portbit, bits);
1216 set_bit(ST_TXBUSY, &portp->state);
1217 EBRDDISABLE(brdp);
1218 spin_unlock_irqrestore(&brd_lock, flags);
1219
1220 return(count);
1221 }
1222
1223 /*****************************************************************************/
1224
1225 /*
1226 * Output a single character. We put it into a temporary local buffer
1227 * (for speed) then write out that buffer when the flushchars routine
1228 * is called. There is a safety catch here so that if some other port
1229 * writes chars before the current buffer has been, then we write them
1230 * first them do the new ports.
1231 */
1232
1233 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1234 {
1235 if (tty != stli_txcooktty) {
1236 if (stli_txcooktty != NULL)
1237 stli_flushchars(stli_txcooktty);
1238 stli_txcooktty = tty;
1239 }
1240
1241 stli_txcookbuf[stli_txcooksize++] = ch;
1242 return 0;
1243 }
1244
1245 /*****************************************************************************/
1246
1247 /*
1248 * Transfer characters from the local TX cooking buffer to the board.
1249 * We sort of ignore the tty that gets passed in here. We rely on the
1250 * info stored with the TX cook buffer to tell us which port to flush
1251 * the data on. In any case we clean out the TX cook buffer, for re-use
1252 * by someone else.
1253 */
1254
1255 static void stli_flushchars(struct tty_struct *tty)
1256 {
1257 cdkhdr_t __iomem *hdrp;
1258 unsigned char __iomem *bits;
1259 cdkasy_t __iomem *ap;
1260 struct tty_struct *cooktty;
1261 struct stliport *portp;
1262 struct stlibrd *brdp;
1263 unsigned int len, stlen, head, tail, size, count, cooksize;
1264 unsigned char *buf;
1265 unsigned char __iomem *shbuf;
1266 unsigned long flags;
1267
1268 cooksize = stli_txcooksize;
1269 cooktty = stli_txcooktty;
1270 stli_txcooksize = 0;
1271 stli_txcookrealsize = 0;
1272 stli_txcooktty = NULL;
1273
1274 if (cooktty == NULL)
1275 return;
1276 if (tty != cooktty)
1277 tty = cooktty;
1278 if (cooksize == 0)
1279 return;
1280
1281 portp = tty->driver_data;
1282 if (portp == NULL)
1283 return;
1284 if (portp->brdnr >= stli_nrbrds)
1285 return;
1286 brdp = stli_brds[portp->brdnr];
1287 if (brdp == NULL)
1288 return;
1289
1290 spin_lock_irqsave(&brd_lock, flags);
1291 EBRDENABLE(brdp);
1292
1293 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1294 head = (unsigned int) readw(&ap->txq.head);
1295 tail = (unsigned int) readw(&ap->txq.tail);
1296 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1297 tail = (unsigned int) readw(&ap->txq.tail);
1298 size = portp->txsize;
1299 if (head >= tail) {
1300 len = size - (head - tail) - 1;
1301 stlen = size - head;
1302 } else {
1303 len = tail - head - 1;
1304 stlen = len;
1305 }
1306
1307 len = min(len, cooksize);
1308 count = 0;
1309 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1310 buf = stli_txcookbuf;
1311
1312 while (len > 0) {
1313 stlen = min(len, stlen);
1314 memcpy_toio(shbuf + head, buf, stlen);
1315 buf += stlen;
1316 len -= stlen;
1317 count += stlen;
1318 head += stlen;
1319 if (head >= size) {
1320 head = 0;
1321 stlen = tail;
1322 }
1323 }
1324
1325 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1326 writew(head, &ap->txq.head);
1327
1328 if (test_bit(ST_TXBUSY, &portp->state)) {
1329 if (readl(&ap->changed.data) & DT_TXEMPTY)
1330 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1331 }
1332 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1333 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1334 portp->portidx;
1335 writeb(readb(bits) | portp->portbit, bits);
1336 set_bit(ST_TXBUSY, &portp->state);
1337
1338 EBRDDISABLE(brdp);
1339 spin_unlock_irqrestore(&brd_lock, flags);
1340 }
1341
1342 /*****************************************************************************/
1343
1344 static int stli_writeroom(struct tty_struct *tty)
1345 {
1346 cdkasyrq_t __iomem *rp;
1347 struct stliport *portp;
1348 struct stlibrd *brdp;
1349 unsigned int head, tail, len;
1350 unsigned long flags;
1351
1352 if (tty == stli_txcooktty) {
1353 if (stli_txcookrealsize != 0) {
1354 len = stli_txcookrealsize - stli_txcooksize;
1355 return len;
1356 }
1357 }
1358
1359 portp = tty->driver_data;
1360 if (portp == NULL)
1361 return 0;
1362 if (portp->brdnr >= stli_nrbrds)
1363 return 0;
1364 brdp = stli_brds[portp->brdnr];
1365 if (brdp == NULL)
1366 return 0;
1367
1368 spin_lock_irqsave(&brd_lock, flags);
1369 EBRDENABLE(brdp);
1370 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1371 head = (unsigned int) readw(&rp->head);
1372 tail = (unsigned int) readw(&rp->tail);
1373 if (tail != ((unsigned int) readw(&rp->tail)))
1374 tail = (unsigned int) readw(&rp->tail);
1375 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1376 len--;
1377 EBRDDISABLE(brdp);
1378 spin_unlock_irqrestore(&brd_lock, flags);
1379
1380 if (tty == stli_txcooktty) {
1381 stli_txcookrealsize = len;
1382 len -= stli_txcooksize;
1383 }
1384 return len;
1385 }
1386
1387 /*****************************************************************************/
1388
1389 /*
1390 * Return the number of characters in the transmit buffer. Normally we
1391 * will return the number of chars in the shared memory ring queue.
1392 * We need to kludge around the case where the shared memory buffer is
1393 * empty but not all characters have drained yet, for this case just
1394 * return that there is 1 character in the buffer!
1395 */
1396
1397 static int stli_charsinbuffer(struct tty_struct *tty)
1398 {
1399 cdkasyrq_t __iomem *rp;
1400 struct stliport *portp;
1401 struct stlibrd *brdp;
1402 unsigned int head, tail, len;
1403 unsigned long flags;
1404
1405 if (tty == stli_txcooktty)
1406 stli_flushchars(tty);
1407 portp = tty->driver_data;
1408 if (portp == NULL)
1409 return 0;
1410 if (portp->brdnr >= stli_nrbrds)
1411 return 0;
1412 brdp = stli_brds[portp->brdnr];
1413 if (brdp == NULL)
1414 return 0;
1415
1416 spin_lock_irqsave(&brd_lock, flags);
1417 EBRDENABLE(brdp);
1418 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1419 head = (unsigned int) readw(&rp->head);
1420 tail = (unsigned int) readw(&rp->tail);
1421 if (tail != ((unsigned int) readw(&rp->tail)))
1422 tail = (unsigned int) readw(&rp->tail);
1423 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1424 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1425 len = 1;
1426 EBRDDISABLE(brdp);
1427 spin_unlock_irqrestore(&brd_lock, flags);
1428
1429 return len;
1430 }
1431
1432 /*****************************************************************************/
1433
1434 /*
1435 * Generate the serial struct info.
1436 */
1437
1438 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1439 {
1440 struct serial_struct sio;
1441 struct stlibrd *brdp;
1442
1443 memset(&sio, 0, sizeof(struct serial_struct));
1444 sio.type = PORT_UNKNOWN;
1445 sio.line = portp->portnr;
1446 sio.irq = 0;
1447 sio.flags = portp->port.flags;
1448 sio.baud_base = portp->baud_base;
1449 sio.close_delay = portp->port.close_delay;
1450 sio.closing_wait = portp->closing_wait;
1451 sio.custom_divisor = portp->custom_divisor;
1452 sio.xmit_fifo_size = 0;
1453 sio.hub6 = 0;
1454
1455 brdp = stli_brds[portp->brdnr];
1456 if (brdp != NULL)
1457 sio.port = brdp->iobase;
1458
1459 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1460 -EFAULT : 0;
1461 }
1462
1463 /*****************************************************************************/
1464
1465 /*
1466 * Set port according to the serial struct info.
1467 * At this point we do not do any auto-configure stuff, so we will
1468 * just quietly ignore any requests to change irq, etc.
1469 */
1470
1471 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1472 {
1473 struct serial_struct sio;
1474 int rc;
1475 struct stliport *portp = tty->driver_data;
1476
1477 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1478 return -EFAULT;
1479 if (!capable(CAP_SYS_ADMIN)) {
1480 if ((sio.baud_base != portp->baud_base) ||
1481 (sio.close_delay != portp->port.close_delay) ||
1482 ((sio.flags & ~ASYNC_USR_MASK) !=
1483 (portp->port.flags & ~ASYNC_USR_MASK)))
1484 return -EPERM;
1485 }
1486
1487 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1488 (sio.flags & ASYNC_USR_MASK);
1489 portp->baud_base = sio.baud_base;
1490 portp->port.close_delay = sio.close_delay;
1491 portp->closing_wait = sio.closing_wait;
1492 portp->custom_divisor = sio.custom_divisor;
1493
1494 if ((rc = stli_setport(tty)) < 0)
1495 return rc;
1496 return 0;
1497 }
1498
1499 /*****************************************************************************/
1500
1501 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1502 {
1503 struct stliport *portp = tty->driver_data;
1504 struct stlibrd *brdp;
1505 int rc;
1506
1507 if (portp == NULL)
1508 return -ENODEV;
1509 if (portp->brdnr >= stli_nrbrds)
1510 return 0;
1511 brdp = stli_brds[portp->brdnr];
1512 if (brdp == NULL)
1513 return 0;
1514 if (tty->flags & (1 << TTY_IO_ERROR))
1515 return -EIO;
1516
1517 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1518 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1519 return rc;
1520
1521 return stli_mktiocm(portp->asig.sigvalue);
1522 }
1523
1524 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1525 unsigned int set, unsigned int clear)
1526 {
1527 struct stliport *portp = tty->driver_data;
1528 struct stlibrd *brdp;
1529 int rts = -1, dtr = -1;
1530
1531 if (portp == NULL)
1532 return -ENODEV;
1533 if (portp->brdnr >= stli_nrbrds)
1534 return 0;
1535 brdp = stli_brds[portp->brdnr];
1536 if (brdp == NULL)
1537 return 0;
1538 if (tty->flags & (1 << TTY_IO_ERROR))
1539 return -EIO;
1540
1541 if (set & TIOCM_RTS)
1542 rts = 1;
1543 if (set & TIOCM_DTR)
1544 dtr = 1;
1545 if (clear & TIOCM_RTS)
1546 rts = 0;
1547 if (clear & TIOCM_DTR)
1548 dtr = 0;
1549
1550 stli_mkasysigs(&portp->asig, dtr, rts);
1551
1552 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1553 sizeof(asysigs_t), 0);
1554 }
1555
1556 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1557 {
1558 struct stliport *portp;
1559 struct stlibrd *brdp;
1560 int rc;
1561 void __user *argp = (void __user *)arg;
1562
1563 portp = tty->driver_data;
1564 if (portp == NULL)
1565 return -ENODEV;
1566 if (portp->brdnr >= stli_nrbrds)
1567 return 0;
1568 brdp = stli_brds[portp->brdnr];
1569 if (brdp == NULL)
1570 return 0;
1571
1572 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1573 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1574 if (tty->flags & (1 << TTY_IO_ERROR))
1575 return -EIO;
1576 }
1577
1578 rc = 0;
1579
1580 switch (cmd) {
1581 case TIOCGSERIAL:
1582 rc = stli_getserial(portp, argp);
1583 break;
1584 case TIOCSSERIAL:
1585 rc = stli_setserial(tty, argp);
1586 break;
1587 case STL_GETPFLAG:
1588 rc = put_user(portp->pflag, (unsigned __user *)argp);
1589 break;
1590 case STL_SETPFLAG:
1591 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1592 stli_setport(tty);
1593 break;
1594 case COM_GETPORTSTATS:
1595 rc = stli_getportstats(tty, portp, argp);
1596 break;
1597 case COM_CLRPORTSTATS:
1598 rc = stli_clrportstats(portp, argp);
1599 break;
1600 case TIOCSERCONFIG:
1601 case TIOCSERGWILD:
1602 case TIOCSERSWILD:
1603 case TIOCSERGETLSR:
1604 case TIOCSERGSTRUCT:
1605 case TIOCSERGETMULTI:
1606 case TIOCSERSETMULTI:
1607 default:
1608 rc = -ENOIOCTLCMD;
1609 break;
1610 }
1611
1612 return rc;
1613 }
1614
1615 /*****************************************************************************/
1616
1617 /*
1618 * This routine assumes that we have user context and can sleep.
1619 * Looks like it is true for the current ttys implementation..!!
1620 */
1621
1622 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1623 {
1624 struct stliport *portp;
1625 struct stlibrd *brdp;
1626 struct ktermios *tiosp;
1627 asyport_t aport;
1628
1629 portp = tty->driver_data;
1630 if (portp == NULL)
1631 return;
1632 if (portp->brdnr >= stli_nrbrds)
1633 return;
1634 brdp = stli_brds[portp->brdnr];
1635 if (brdp == NULL)
1636 return;
1637
1638 tiosp = tty->termios;
1639
1640 stli_mkasyport(tty, portp, &aport, tiosp);
1641 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1642 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1643 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1644 sizeof(asysigs_t), 0);
1645 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1646 tty->hw_stopped = 0;
1647 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1648 wake_up_interruptible(&portp->port.open_wait);
1649 }
1650
1651 /*****************************************************************************/
1652
1653 /*
1654 * Attempt to flow control who ever is sending us data. We won't really
1655 * do any flow control action here. We can't directly, and even if we
1656 * wanted to we would have to send a command to the slave. The slave
1657 * knows how to flow control, and will do so when its buffers reach its
1658 * internal high water marks. So what we will do is set a local state
1659 * bit that will stop us sending any RX data up from the poll routine
1660 * (which is the place where RX data from the slave is handled).
1661 */
1662
1663 static void stli_throttle(struct tty_struct *tty)
1664 {
1665 struct stliport *portp = tty->driver_data;
1666 if (portp == NULL)
1667 return;
1668 set_bit(ST_RXSTOP, &portp->state);
1669 }
1670
1671 /*****************************************************************************/
1672
1673 /*
1674 * Unflow control the device sending us data... That means that all
1675 * we have to do is clear the RXSTOP state bit. The next poll call
1676 * will then be able to pass the RX data back up.
1677 */
1678
1679 static void stli_unthrottle(struct tty_struct *tty)
1680 {
1681 struct stliport *portp = tty->driver_data;
1682 if (portp == NULL)
1683 return;
1684 clear_bit(ST_RXSTOP, &portp->state);
1685 }
1686
1687 /*****************************************************************************/
1688
1689 /*
1690 * Stop the transmitter.
1691 */
1692
1693 static void stli_stop(struct tty_struct *tty)
1694 {
1695 }
1696
1697 /*****************************************************************************/
1698
1699 /*
1700 * Start the transmitter again.
1701 */
1702
1703 static void stli_start(struct tty_struct *tty)
1704 {
1705 }
1706
1707 /*****************************************************************************/
1708
1709
1710 /*
1711 * Hangup this port. This is pretty much like closing the port, only
1712 * a little more brutal. No waiting for data to drain. Shutdown the
1713 * port and maybe drop signals. This is rather tricky really. We want
1714 * to close the port as well.
1715 */
1716
1717 static void stli_hangup(struct tty_struct *tty)
1718 {
1719 struct stliport *portp = tty->driver_data;
1720 tty_port_hangup(&portp->port);
1721 }
1722
1723 /*****************************************************************************/
1724
1725 /*
1726 * Flush characters from the lower buffer. We may not have user context
1727 * so we cannot sleep waiting for it to complete. Also we need to check
1728 * if there is chars for this port in the TX cook buffer, and flush them
1729 * as well.
1730 */
1731
1732 static void stli_flushbuffer(struct tty_struct *tty)
1733 {
1734 struct stliport *portp;
1735 struct stlibrd *brdp;
1736 unsigned long ftype, flags;
1737
1738 portp = tty->driver_data;
1739 if (portp == NULL)
1740 return;
1741 if (portp->brdnr >= stli_nrbrds)
1742 return;
1743 brdp = stli_brds[portp->brdnr];
1744 if (brdp == NULL)
1745 return;
1746
1747 spin_lock_irqsave(&brd_lock, flags);
1748 if (tty == stli_txcooktty) {
1749 stli_txcooktty = NULL;
1750 stli_txcooksize = 0;
1751 stli_txcookrealsize = 0;
1752 }
1753 if (test_bit(ST_CMDING, &portp->state)) {
1754 set_bit(ST_DOFLUSHTX, &portp->state);
1755 } else {
1756 ftype = FLUSHTX;
1757 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1758 ftype |= FLUSHRX;
1759 clear_bit(ST_DOFLUSHRX, &portp->state);
1760 }
1761 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1762 }
1763 spin_unlock_irqrestore(&brd_lock, flags);
1764 tty_wakeup(tty);
1765 }
1766
1767 /*****************************************************************************/
1768
1769 static int stli_breakctl(struct tty_struct *tty, int state)
1770 {
1771 struct stlibrd *brdp;
1772 struct stliport *portp;
1773 long arg;
1774
1775 portp = tty->driver_data;
1776 if (portp == NULL)
1777 return -EINVAL;
1778 if (portp->brdnr >= stli_nrbrds)
1779 return -EINVAL;
1780 brdp = stli_brds[portp->brdnr];
1781 if (brdp == NULL)
1782 return -EINVAL;
1783
1784 arg = (state == -1) ? BREAKON : BREAKOFF;
1785 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1786 return 0;
1787 }
1788
1789 /*****************************************************************************/
1790
1791 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1792 {
1793 struct stliport *portp;
1794 unsigned long tend;
1795
1796 portp = tty->driver_data;
1797 if (portp == NULL)
1798 return;
1799
1800 if (timeout == 0)
1801 timeout = HZ;
1802 tend = jiffies + timeout;
1803
1804 while (test_bit(ST_TXBUSY, &portp->state)) {
1805 if (signal_pending(current))
1806 break;
1807 msleep_interruptible(20);
1808 if (time_after_eq(jiffies, tend))
1809 break;
1810 }
1811 }
1812
1813 /*****************************************************************************/
1814
1815 static void stli_sendxchar(struct tty_struct *tty, char ch)
1816 {
1817 struct stlibrd *brdp;
1818 struct stliport *portp;
1819 asyctrl_t actrl;
1820
1821 portp = tty->driver_data;
1822 if (portp == NULL)
1823 return;
1824 if (portp->brdnr >= stli_nrbrds)
1825 return;
1826 brdp = stli_brds[portp->brdnr];
1827 if (brdp == NULL)
1828 return;
1829
1830 memset(&actrl, 0, sizeof(asyctrl_t));
1831 if (ch == STOP_CHAR(tty)) {
1832 actrl.rxctrl = CT_STOPFLOW;
1833 } else if (ch == START_CHAR(tty)) {
1834 actrl.rxctrl = CT_STARTFLOW;
1835 } else {
1836 actrl.txctrl = CT_SENDCHR;
1837 actrl.tximdch = ch;
1838 }
1839 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1840 }
1841
1842 static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1843 {
1844 char *uart;
1845 int rc;
1846
1847 rc = stli_portcmdstats(NULL, portp);
1848
1849 uart = "UNKNOWN";
1850 if (brdp->state & BST_STARTED) {
1851 switch (stli_comstats.hwid) {
1852 case 0: uart = "2681"; break;
1853 case 1: uart = "SC26198"; break;
1854 default:uart = "CD1400"; break;
1855 }
1856 }
1857 seq_printf(m, "%d: uart:%s ", portnr, uart);
1858
1859 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
1860 char sep;
1861
1862 seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1863 (int) stli_comstats.rxtotal);
1864
1865 if (stli_comstats.rxframing)
1866 seq_printf(m, " fe:%d",
1867 (int) stli_comstats.rxframing);
1868 if (stli_comstats.rxparity)
1869 seq_printf(m, " pe:%d",
1870 (int) stli_comstats.rxparity);
1871 if (stli_comstats.rxbreaks)
1872 seq_printf(m, " brk:%d",
1873 (int) stli_comstats.rxbreaks);
1874 if (stli_comstats.rxoverrun)
1875 seq_printf(m, " oe:%d",
1876 (int) stli_comstats.rxoverrun);
1877
1878 sep = ' ';
1879 if (stli_comstats.signals & TIOCM_RTS) {
1880 seq_printf(m, "%c%s", sep, "RTS");
1881 sep = '|';
1882 }
1883 if (stli_comstats.signals & TIOCM_CTS) {
1884 seq_printf(m, "%c%s", sep, "CTS");
1885 sep = '|';
1886 }
1887 if (stli_comstats.signals & TIOCM_DTR) {
1888 seq_printf(m, "%c%s", sep, "DTR");
1889 sep = '|';
1890 }
1891 if (stli_comstats.signals & TIOCM_CD) {
1892 seq_printf(m, "%c%s", sep, "DCD");
1893 sep = '|';
1894 }
1895 if (stli_comstats.signals & TIOCM_DSR) {
1896 seq_printf(m, "%c%s", sep, "DSR");
1897 sep = '|';
1898 }
1899 }
1900 seq_putc(m, '\n');
1901 }
1902
1903 /*****************************************************************************/
1904
1905 /*
1906 * Port info, read from the /proc file system.
1907 */
1908
1909 static int stli_proc_show(struct seq_file *m, void *v)
1910 {
1911 struct stlibrd *brdp;
1912 struct stliport *portp;
1913 unsigned int brdnr, portnr, totalport;
1914
1915 totalport = 0;
1916
1917 seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1918
1919 /*
1920 * We scan through for each board, panel and port. The offset is
1921 * calculated on the fly, and irrelevant ports are skipped.
1922 */
1923 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1924 brdp = stli_brds[brdnr];
1925 if (brdp == NULL)
1926 continue;
1927 if (brdp->state == 0)
1928 continue;
1929
1930 totalport = brdnr * STL_MAXPORTS;
1931 for (portnr = 0; (portnr < brdp->nrports); portnr++,
1932 totalport++) {
1933 portp = brdp->ports[portnr];
1934 if (portp == NULL)
1935 continue;
1936 stli_portinfo(m, brdp, portp, totalport);
1937 }
1938 }
1939 return 0;
1940 }
1941
1942 static int stli_proc_open(struct inode *inode, struct file *file)
1943 {
1944 return single_open(file, stli_proc_show, NULL);
1945 }
1946
1947 static const struct file_operations stli_proc_fops = {
1948 .owner = THIS_MODULE,
1949 .open = stli_proc_open,
1950 .read = seq_read,
1951 .llseek = seq_lseek,
1952 .release = single_release,
1953 };
1954
1955 /*****************************************************************************/
1956
1957 /*
1958 * Generic send command routine. This will send a message to the slave,
1959 * of the specified type with the specified argument. Must be very
1960 * careful of data that will be copied out from shared memory -
1961 * containing command results. The command completion is all done from
1962 * a poll routine that does not have user context. Therefore you cannot
1963 * copy back directly into user space, or to the kernel stack of a
1964 * process. This routine does not sleep, so can be called from anywhere.
1965 *
1966 * The caller must hold the brd_lock (see also stli_sendcmd the usual
1967 * entry point)
1968 */
1969
1970 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1971 {
1972 cdkhdr_t __iomem *hdrp;
1973 cdkctrl_t __iomem *cp;
1974 unsigned char __iomem *bits;
1975
1976 if (test_bit(ST_CMDING, &portp->state)) {
1977 printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
1978 (int) cmd);
1979 return;
1980 }
1981
1982 EBRDENABLE(brdp);
1983 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1984 if (size > 0) {
1985 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
1986 if (copyback) {
1987 portp->argp = arg;
1988 portp->argsize = size;
1989 }
1990 }
1991 writel(0, &cp->status);
1992 writel(cmd, &cp->cmd);
1993 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1994 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1995 portp->portidx;
1996 writeb(readb(bits) | portp->portbit, bits);
1997 set_bit(ST_CMDING, &portp->state);
1998 EBRDDISABLE(brdp);
1999 }
2000
2001 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2002 {
2003 unsigned long flags;
2004
2005 spin_lock_irqsave(&brd_lock, flags);
2006 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2007 spin_unlock_irqrestore(&brd_lock, flags);
2008 }
2009
2010 /*****************************************************************************/
2011
2012 /*
2013 * Read data from shared memory. This assumes that the shared memory
2014 * is enabled and that interrupts are off. Basically we just empty out
2015 * the shared memory buffer into the tty buffer. Must be careful to
2016 * handle the case where we fill up the tty buffer, but still have
2017 * more chars to unload.
2018 */
2019
2020 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2021 {
2022 cdkasyrq_t __iomem *rp;
2023 char __iomem *shbuf;
2024 struct tty_struct *tty;
2025 unsigned int head, tail, size;
2026 unsigned int len, stlen;
2027
2028 if (test_bit(ST_RXSTOP, &portp->state))
2029 return;
2030 tty = tty_port_tty_get(&portp->port);
2031 if (tty == NULL)
2032 return;
2033
2034 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2035 head = (unsigned int) readw(&rp->head);
2036 if (head != ((unsigned int) readw(&rp->head)))
2037 head = (unsigned int) readw(&rp->head);
2038 tail = (unsigned int) readw(&rp->tail);
2039 size = portp->rxsize;
2040 if (head >= tail) {
2041 len = head - tail;
2042 stlen = len;
2043 } else {
2044 len = size - (tail - head);
2045 stlen = size - tail;
2046 }
2047
2048 len = tty_buffer_request_room(tty, len);
2049
2050 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2051
2052 while (len > 0) {
2053 unsigned char *cptr;
2054
2055 stlen = min(len, stlen);
2056 tty_prepare_flip_string(tty, &cptr, stlen);
2057 memcpy_fromio(cptr, shbuf + tail, stlen);
2058 len -= stlen;
2059 tail += stlen;
2060 if (tail >= size) {
2061 tail = 0;
2062 stlen = head;
2063 }
2064 }
2065 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2066 writew(tail, &rp->tail);
2067
2068 if (head != tail)
2069 set_bit(ST_RXING, &portp->state);
2070
2071 tty_schedule_flip(tty);
2072 tty_kref_put(tty);
2073 }
2074
2075 /*****************************************************************************/
2076
2077 /*
2078 * Set up and carry out any delayed commands. There is only a small set
2079 * of slave commands that can be done "off-level". So it is not too
2080 * difficult to deal with them here.
2081 */
2082
2083 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2084 {
2085 int cmd;
2086
2087 if (test_bit(ST_DOSIGS, &portp->state)) {
2088 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2089 test_bit(ST_DOFLUSHRX, &portp->state))
2090 cmd = A_SETSIGNALSF;
2091 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2092 cmd = A_SETSIGNALSFTX;
2093 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2094 cmd = A_SETSIGNALSFRX;
2095 else
2096 cmd = A_SETSIGNALS;
2097 clear_bit(ST_DOFLUSHTX, &portp->state);
2098 clear_bit(ST_DOFLUSHRX, &portp->state);
2099 clear_bit(ST_DOSIGS, &portp->state);
2100 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2101 sizeof(asysigs_t));
2102 writel(0, &cp->status);
2103 writel(cmd, &cp->cmd);
2104 set_bit(ST_CMDING, &portp->state);
2105 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2106 test_bit(ST_DOFLUSHRX, &portp->state)) {
2107 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2108 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2109 clear_bit(ST_DOFLUSHTX, &portp->state);
2110 clear_bit(ST_DOFLUSHRX, &portp->state);
2111 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2112 writel(0, &cp->status);
2113 writel(A_FLUSH, &cp->cmd);
2114 set_bit(ST_CMDING, &portp->state);
2115 }
2116 }
2117
2118 /*****************************************************************************/
2119
2120 /*
2121 * Host command service checking. This handles commands or messages
2122 * coming from the slave to the host. Must have board shared memory
2123 * enabled and interrupts off when called. Notice that by servicing the
2124 * read data last we don't need to change the shared memory pointer
2125 * during processing (which is a slow IO operation).
2126 * Return value indicates if this port is still awaiting actions from
2127 * the slave (like open, command, or even TX data being sent). If 0
2128 * then port is still busy, otherwise no longer busy.
2129 */
2130
2131 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2132 {
2133 cdkasy_t __iomem *ap;
2134 cdkctrl_t __iomem *cp;
2135 struct tty_struct *tty;
2136 asynotify_t nt;
2137 unsigned long oldsigs;
2138 int rc, donerx;
2139
2140 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2141 cp = &ap->ctrl;
2142
2143 /*
2144 * Check if we are waiting for an open completion message.
2145 */
2146 if (test_bit(ST_OPENING, &portp->state)) {
2147 rc = readl(&cp->openarg);
2148 if (readb(&cp->open) == 0 && rc != 0) {
2149 if (rc > 0)
2150 rc--;
2151 writel(0, &cp->openarg);
2152 portp->rc = rc;
2153 clear_bit(ST_OPENING, &portp->state);
2154 wake_up_interruptible(&portp->raw_wait);
2155 }
2156 }
2157
2158 /*
2159 * Check if we are waiting for a close completion message.
2160 */
2161 if (test_bit(ST_CLOSING, &portp->state)) {
2162 rc = (int) readl(&cp->closearg);
2163 if (readb(&cp->close) == 0 && rc != 0) {
2164 if (rc > 0)
2165 rc--;
2166 writel(0, &cp->closearg);
2167 portp->rc = rc;
2168 clear_bit(ST_CLOSING, &portp->state);
2169 wake_up_interruptible(&portp->raw_wait);
2170 }
2171 }
2172
2173 /*
2174 * Check if we are waiting for a command completion message. We may
2175 * need to copy out the command results associated with this command.
2176 */
2177 if (test_bit(ST_CMDING, &portp->state)) {
2178 rc = readl(&cp->status);
2179 if (readl(&cp->cmd) == 0 && rc != 0) {
2180 if (rc > 0)
2181 rc--;
2182 if (portp->argp != NULL) {
2183 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2184 portp->argsize);
2185 portp->argp = NULL;
2186 }
2187 writel(0, &cp->status);
2188 portp->rc = rc;
2189 clear_bit(ST_CMDING, &portp->state);
2190 stli_dodelaycmd(portp, cp);
2191 wake_up_interruptible(&portp->raw_wait);
2192 }
2193 }
2194
2195 /*
2196 * Check for any notification messages ready. This includes lots of
2197 * different types of events - RX chars ready, RX break received,
2198 * TX data low or empty in the slave, modem signals changed state.
2199 */
2200 donerx = 0;
2201
2202 if (ap->notify) {
2203 nt = ap->changed;
2204 ap->notify = 0;
2205 tty = tty_port_tty_get(&portp->port);
2206
2207 if (nt.signal & SG_DCD) {
2208 oldsigs = portp->sigs;
2209 portp->sigs = stli_mktiocm(nt.sigvalue);
2210 clear_bit(ST_GETSIGS, &portp->state);
2211 if ((portp->sigs & TIOCM_CD) &&
2212 ((oldsigs & TIOCM_CD) == 0))
2213 wake_up_interruptible(&portp->port.open_wait);
2214 if ((oldsigs & TIOCM_CD) &&
2215 ((portp->sigs & TIOCM_CD) == 0)) {
2216 if (portp->port.flags & ASYNC_CHECK_CD) {
2217 if (tty)
2218 tty_hangup(tty);
2219 }
2220 }
2221 }
2222
2223 if (nt.data & DT_TXEMPTY)
2224 clear_bit(ST_TXBUSY, &portp->state);
2225 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2226 if (tty != NULL) {
2227 tty_wakeup(tty);
2228 EBRDENABLE(brdp);
2229 }
2230 }
2231
2232 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2233 if (tty != NULL) {
2234 tty_insert_flip_char(tty, 0, TTY_BREAK);
2235 if (portp->port.flags & ASYNC_SAK) {
2236 do_SAK(tty);
2237 EBRDENABLE(brdp);
2238 }
2239 tty_schedule_flip(tty);
2240 }
2241 }
2242 tty_kref_put(tty);
2243
2244 if (nt.data & DT_RXBUSY) {
2245 donerx++;
2246 stli_read(brdp, portp);
2247 }
2248 }
2249
2250 /*
2251 * It might seem odd that we are checking for more RX chars here.
2252 * But, we need to handle the case where the tty buffer was previously
2253 * filled, but we had more characters to pass up. The slave will not
2254 * send any more RX notify messages until the RX buffer has been emptied.
2255 * But it will leave the service bits on (since the buffer is not empty).
2256 * So from here we can try to process more RX chars.
2257 */
2258 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2259 clear_bit(ST_RXING, &portp->state);
2260 stli_read(brdp, portp);
2261 }
2262
2263 return((test_bit(ST_OPENING, &portp->state) ||
2264 test_bit(ST_CLOSING, &portp->state) ||
2265 test_bit(ST_CMDING, &portp->state) ||
2266 test_bit(ST_TXBUSY, &portp->state) ||
2267 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2268 }
2269
2270 /*****************************************************************************/
2271
2272 /*
2273 * Service all ports on a particular board. Assumes that the boards
2274 * shared memory is enabled, and that the page pointer is pointed
2275 * at the cdk header structure.
2276 */
2277
2278 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2279 {
2280 struct stliport *portp;
2281 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2282 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2283 unsigned char __iomem *slavep;
2284 int bitpos, bitat, bitsize;
2285 int channr, nrdevs, slavebitchange;
2286
2287 bitsize = brdp->bitsize;
2288 nrdevs = brdp->nrdevs;
2289
2290 /*
2291 * Check if slave wants any service. Basically we try to do as
2292 * little work as possible here. There are 2 levels of service
2293 * bits. So if there is nothing to do we bail early. We check
2294 * 8 service bits at a time in the inner loop, so we can bypass
2295 * the lot if none of them want service.
2296 */
2297 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2298 bitsize);
2299
2300 memset(&slavebits[0], 0, bitsize);
2301 slavebitchange = 0;
2302
2303 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2304 if (hostbits[bitpos] == 0)
2305 continue;
2306 channr = bitpos * 8;
2307 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2308 if (hostbits[bitpos] & bitat) {
2309 portp = brdp->ports[(channr - 1)];
2310 if (stli_hostcmd(brdp, portp)) {
2311 slavebitchange++;
2312 slavebits[bitpos] |= bitat;
2313 }
2314 }
2315 }
2316 }
2317
2318 /*
2319 * If any of the ports are no longer busy then update them in the
2320 * slave request bits. We need to do this after, since a host port
2321 * service may initiate more slave requests.
2322 */
2323 if (slavebitchange) {
2324 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2325 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2326 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2327 if (readb(slavebits + bitpos))
2328 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2329 }
2330 }
2331 }
2332
2333 /*****************************************************************************/
2334
2335 /*
2336 * Driver poll routine. This routine polls the boards in use and passes
2337 * messages back up to host when necessary. This is actually very
2338 * CPU efficient, since we will always have the kernel poll clock, it
2339 * adds only a few cycles when idle (since board service can be
2340 * determined very easily), but when loaded generates no interrupts
2341 * (with their expensive associated context change).
2342 */
2343
2344 static void stli_poll(unsigned long arg)
2345 {
2346 cdkhdr_t __iomem *hdrp;
2347 struct stlibrd *brdp;
2348 unsigned int brdnr;
2349
2350 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2351
2352 /*
2353 * Check each board and do any servicing required.
2354 */
2355 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2356 brdp = stli_brds[brdnr];
2357 if (brdp == NULL)
2358 continue;
2359 if ((brdp->state & BST_STARTED) == 0)
2360 continue;
2361
2362 spin_lock(&brd_lock);
2363 EBRDENABLE(brdp);
2364 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2365 if (readb(&hdrp->hostreq))
2366 stli_brdpoll(brdp, hdrp);
2367 EBRDDISABLE(brdp);
2368 spin_unlock(&brd_lock);
2369 }
2370 }
2371
2372 /*****************************************************************************/
2373
2374 /*
2375 * Translate the termios settings into the port setting structure of
2376 * the slave.
2377 */
2378
2379 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2380 asyport_t *pp, struct ktermios *tiosp)
2381 {
2382 memset(pp, 0, sizeof(asyport_t));
2383
2384 /*
2385 * Start of by setting the baud, char size, parity and stop bit info.
2386 */
2387 pp->baudout = tty_get_baud_rate(tty);
2388 if ((tiosp->c_cflag & CBAUD) == B38400) {
2389 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2390 pp->baudout = 57600;
2391 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2392 pp->baudout = 115200;
2393 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2394 pp->baudout = 230400;
2395 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2396 pp->baudout = 460800;
2397 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2398 pp->baudout = (portp->baud_base / portp->custom_divisor);
2399 }
2400 if (pp->baudout > STL_MAXBAUD)
2401 pp->baudout = STL_MAXBAUD;
2402 pp->baudin = pp->baudout;
2403
2404 switch (tiosp->c_cflag & CSIZE) {
2405 case CS5:
2406 pp->csize = 5;
2407 break;
2408 case CS6:
2409 pp->csize = 6;
2410 break;
2411 case CS7:
2412 pp->csize = 7;
2413 break;
2414 default:
2415 pp->csize = 8;
2416 break;
2417 }
2418
2419 if (tiosp->c_cflag & CSTOPB)
2420 pp->stopbs = PT_STOP2;
2421 else
2422 pp->stopbs = PT_STOP1;
2423
2424 if (tiosp->c_cflag & PARENB) {
2425 if (tiosp->c_cflag & PARODD)
2426 pp->parity = PT_ODDPARITY;
2427 else
2428 pp->parity = PT_EVENPARITY;
2429 } else {
2430 pp->parity = PT_NOPARITY;
2431 }
2432
2433 /*
2434 * Set up any flow control options enabled.
2435 */
2436 if (tiosp->c_iflag & IXON) {
2437 pp->flow |= F_IXON;
2438 if (tiosp->c_iflag & IXANY)
2439 pp->flow |= F_IXANY;
2440 }
2441 if (tiosp->c_cflag & CRTSCTS)
2442 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2443
2444 pp->startin = tiosp->c_cc[VSTART];
2445 pp->stopin = tiosp->c_cc[VSTOP];
2446 pp->startout = tiosp->c_cc[VSTART];
2447 pp->stopout = tiosp->c_cc[VSTOP];
2448
2449 /*
2450 * Set up the RX char marking mask with those RX error types we must
2451 * catch. We can get the slave to help us out a little here, it will
2452 * ignore parity errors and breaks for us, and mark parity errors in
2453 * the data stream.
2454 */
2455 if (tiosp->c_iflag & IGNPAR)
2456 pp->iflag |= FI_IGNRXERRS;
2457 if (tiosp->c_iflag & IGNBRK)
2458 pp->iflag |= FI_IGNBREAK;
2459
2460 portp->rxmarkmsk = 0;
2461 if (tiosp->c_iflag & (INPCK | PARMRK))
2462 pp->iflag |= FI_1MARKRXERRS;
2463 if (tiosp->c_iflag & BRKINT)
2464 portp->rxmarkmsk |= BRKINT;
2465
2466 /*
2467 * Set up clocal processing as required.
2468 */
2469 if (tiosp->c_cflag & CLOCAL)
2470 portp->port.flags &= ~ASYNC_CHECK_CD;
2471 else
2472 portp->port.flags |= ASYNC_CHECK_CD;
2473
2474 /*
2475 * Transfer any persistent flags into the asyport structure.
2476 */
2477 pp->pflag = (portp->pflag & 0xffff);
2478 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2479 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2480 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2481 }
2482
2483 /*****************************************************************************/
2484
2485 /*
2486 * Construct a slave signals structure for setting the DTR and RTS
2487 * signals as specified.
2488 */
2489
2490 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2491 {
2492 memset(sp, 0, sizeof(asysigs_t));
2493 if (dtr >= 0) {
2494 sp->signal |= SG_DTR;
2495 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2496 }
2497 if (rts >= 0) {
2498 sp->signal |= SG_RTS;
2499 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2500 }
2501 }
2502
2503 /*****************************************************************************/
2504
2505 /*
2506 * Convert the signals returned from the slave into a local TIOCM type
2507 * signals value. We keep them locally in TIOCM format.
2508 */
2509
2510 static long stli_mktiocm(unsigned long sigvalue)
2511 {
2512 long tiocm = 0;
2513 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2514 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2515 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2516 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2517 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2518 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2519 return(tiocm);
2520 }
2521
2522 /*****************************************************************************/
2523
2524 /*
2525 * All panels and ports actually attached have been worked out. All
2526 * we need to do here is set up the appropriate per port data structures.
2527 */
2528
2529 static int stli_initports(struct stlibrd *brdp)
2530 {
2531 struct stliport *portp;
2532 unsigned int i, panelnr, panelport;
2533
2534 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2535 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2536 if (!portp) {
2537 printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2538 continue;
2539 }
2540 tty_port_init(&portp->port);
2541 portp->port.ops = &stli_port_ops;
2542 portp->magic = STLI_PORTMAGIC;
2543 portp->portnr = i;
2544 portp->brdnr = brdp->brdnr;
2545 portp->panelnr = panelnr;
2546 portp->baud_base = STL_BAUDBASE;
2547 portp->port.close_delay = STL_CLOSEDELAY;
2548 portp->closing_wait = 30 * HZ;
2549 init_waitqueue_head(&portp->port.open_wait);
2550 init_waitqueue_head(&portp->port.close_wait);
2551 init_waitqueue_head(&portp->raw_wait);
2552 panelport++;
2553 if (panelport >= brdp->panels[panelnr]) {
2554 panelport = 0;
2555 panelnr++;
2556 }
2557 brdp->ports[i] = portp;
2558 }
2559
2560 return 0;
2561 }
2562
2563 /*****************************************************************************/
2564
2565 /*
2566 * All the following routines are board specific hardware operations.
2567 */
2568
2569 static void stli_ecpinit(struct stlibrd *brdp)
2570 {
2571 unsigned long memconf;
2572
2573 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2574 udelay(10);
2575 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2576 udelay(100);
2577
2578 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2579 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2580 }
2581
2582 /*****************************************************************************/
2583
2584 static void stli_ecpenable(struct stlibrd *brdp)
2585 {
2586 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2587 }
2588
2589 /*****************************************************************************/
2590
2591 static void stli_ecpdisable(struct stlibrd *brdp)
2592 {
2593 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2594 }
2595
2596 /*****************************************************************************/
2597
2598 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2599 {
2600 void __iomem *ptr;
2601 unsigned char val;
2602
2603 if (offset > brdp->memsize) {
2604 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2605 "range at line=%d(%d), brd=%d\n",
2606 (int) offset, line, __LINE__, brdp->brdnr);
2607 ptr = NULL;
2608 val = 0;
2609 } else {
2610 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2611 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2612 }
2613 outb(val, (brdp->iobase + ECP_ATMEMPR));
2614 return(ptr);
2615 }
2616
2617 /*****************************************************************************/
2618
2619 static void stli_ecpreset(struct stlibrd *brdp)
2620 {
2621 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2622 udelay(10);
2623 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2624 udelay(500);
2625 }
2626
2627 /*****************************************************************************/
2628
2629 static void stli_ecpintr(struct stlibrd *brdp)
2630 {
2631 outb(0x1, brdp->iobase);
2632 }
2633
2634 /*****************************************************************************/
2635
2636 /*
2637 * The following set of functions act on ECP EISA boards.
2638 */
2639
2640 static void stli_ecpeiinit(struct stlibrd *brdp)
2641 {
2642 unsigned long memconf;
2643
2644 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2645 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2646 udelay(10);
2647 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2648 udelay(500);
2649
2650 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2651 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2652 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2653 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2654 }
2655
2656 /*****************************************************************************/
2657
2658 static void stli_ecpeienable(struct stlibrd *brdp)
2659 {
2660 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2661 }
2662
2663 /*****************************************************************************/
2664
2665 static void stli_ecpeidisable(struct stlibrd *brdp)
2666 {
2667 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2668 }
2669
2670 /*****************************************************************************/
2671
2672 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2673 {
2674 void __iomem *ptr;
2675 unsigned char val;
2676
2677 if (offset > brdp->memsize) {
2678 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2679 "range at line=%d(%d), brd=%d\n",
2680 (int) offset, line, __LINE__, brdp->brdnr);
2681 ptr = NULL;
2682 val = 0;
2683 } else {
2684 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2685 if (offset < ECP_EIPAGESIZE)
2686 val = ECP_EIENABLE;
2687 else
2688 val = ECP_EIENABLE | 0x40;
2689 }
2690 outb(val, (brdp->iobase + ECP_EICONFR));
2691 return(ptr);
2692 }
2693
2694 /*****************************************************************************/
2695
2696 static void stli_ecpeireset(struct stlibrd *brdp)
2697 {
2698 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2699 udelay(10);
2700 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2701 udelay(500);
2702 }
2703
2704 /*****************************************************************************/
2705
2706 /*
2707 * The following set of functions act on ECP MCA boards.
2708 */
2709
2710 static void stli_ecpmcenable(struct stlibrd *brdp)
2711 {
2712 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2713 }
2714
2715 /*****************************************************************************/
2716
2717 static void stli_ecpmcdisable(struct stlibrd *brdp)
2718 {
2719 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2720 }
2721
2722 /*****************************************************************************/
2723
2724 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2725 {
2726 void __iomem *ptr;
2727 unsigned char val;
2728
2729 if (offset > brdp->memsize) {
2730 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2731 "range at line=%d(%d), brd=%d\n",
2732 (int) offset, line, __LINE__, brdp->brdnr);
2733 ptr = NULL;
2734 val = 0;
2735 } else {
2736 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2737 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2738 }
2739 outb(val, (brdp->iobase + ECP_MCCONFR));
2740 return(ptr);
2741 }
2742
2743 /*****************************************************************************/
2744
2745 static void stli_ecpmcreset(struct stlibrd *brdp)
2746 {
2747 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2748 udelay(10);
2749 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2750 udelay(500);
2751 }
2752
2753 /*****************************************************************************/
2754
2755 /*
2756 * The following set of functions act on ECP PCI boards.
2757 */
2758
2759 static void stli_ecppciinit(struct stlibrd *brdp)
2760 {
2761 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2762 udelay(10);
2763 outb(0, (brdp->iobase + ECP_PCICONFR));
2764 udelay(500);
2765 }
2766
2767 /*****************************************************************************/
2768
2769 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2770 {
2771 void __iomem *ptr;
2772 unsigned char val;
2773
2774 if (offset > brdp->memsize) {
2775 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2776 "range at line=%d(%d), board=%d\n",
2777 (int) offset, line, __LINE__, brdp->brdnr);
2778 ptr = NULL;
2779 val = 0;
2780 } else {
2781 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2782 val = (offset / ECP_PCIPAGESIZE) << 1;
2783 }
2784 outb(val, (brdp->iobase + ECP_PCICONFR));
2785 return(ptr);
2786 }
2787
2788 /*****************************************************************************/
2789
2790 static void stli_ecppcireset(struct stlibrd *brdp)
2791 {
2792 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2793 udelay(10);
2794 outb(0, (brdp->iobase + ECP_PCICONFR));
2795 udelay(500);
2796 }
2797
2798 /*****************************************************************************/
2799
2800 /*
2801 * The following routines act on ONboards.
2802 */
2803
2804 static void stli_onbinit(struct stlibrd *brdp)
2805 {
2806 unsigned long memconf;
2807
2808 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2809 udelay(10);
2810 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2811 mdelay(1000);
2812
2813 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2814 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2815 outb(0x1, brdp->iobase);
2816 mdelay(1);
2817 }
2818
2819 /*****************************************************************************/
2820
2821 static void stli_onbenable(struct stlibrd *brdp)
2822 {
2823 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2824 }
2825
2826 /*****************************************************************************/
2827
2828 static void stli_onbdisable(struct stlibrd *brdp)
2829 {
2830 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2831 }
2832
2833 /*****************************************************************************/
2834
2835 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2836 {
2837 void __iomem *ptr;
2838
2839 if (offset > brdp->memsize) {
2840 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2841 "range at line=%d(%d), brd=%d\n",
2842 (int) offset, line, __LINE__, brdp->brdnr);
2843 ptr = NULL;
2844 } else {
2845 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2846 }
2847 return(ptr);
2848 }
2849
2850 /*****************************************************************************/
2851
2852 static void stli_onbreset(struct stlibrd *brdp)
2853 {
2854 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2855 udelay(10);
2856 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2857 mdelay(1000);
2858 }
2859
2860 /*****************************************************************************/
2861
2862 /*
2863 * The following routines act on ONboard EISA.
2864 */
2865
2866 static void stli_onbeinit(struct stlibrd *brdp)
2867 {
2868 unsigned long memconf;
2869
2870 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2871 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2872 udelay(10);
2873 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2874 mdelay(1000);
2875
2876 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2877 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2878 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2879 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2880 outb(0x1, brdp->iobase);
2881 mdelay(1);
2882 }
2883
2884 /*****************************************************************************/
2885
2886 static void stli_onbeenable(struct stlibrd *brdp)
2887 {
2888 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2889 }
2890
2891 /*****************************************************************************/
2892
2893 static void stli_onbedisable(struct stlibrd *brdp)
2894 {
2895 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2896 }
2897
2898 /*****************************************************************************/
2899
2900 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2901 {
2902 void __iomem *ptr;
2903 unsigned char val;
2904
2905 if (offset > brdp->memsize) {
2906 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2907 "range at line=%d(%d), brd=%d\n",
2908 (int) offset, line, __LINE__, brdp->brdnr);
2909 ptr = NULL;
2910 val = 0;
2911 } else {
2912 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2913 if (offset < ONB_EIPAGESIZE)
2914 val = ONB_EIENABLE;
2915 else
2916 val = ONB_EIENABLE | 0x40;
2917 }
2918 outb(val, (brdp->iobase + ONB_EICONFR));
2919 return(ptr);
2920 }
2921
2922 /*****************************************************************************/
2923
2924 static void stli_onbereset(struct stlibrd *brdp)
2925 {
2926 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2927 udelay(10);
2928 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2929 mdelay(1000);
2930 }
2931
2932 /*****************************************************************************/
2933
2934 /*
2935 * The following routines act on Brumby boards.
2936 */
2937
2938 static void stli_bbyinit(struct stlibrd *brdp)
2939 {
2940 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2941 udelay(10);
2942 outb(0, (brdp->iobase + BBY_ATCONFR));
2943 mdelay(1000);
2944 outb(0x1, brdp->iobase);
2945 mdelay(1);
2946 }
2947
2948 /*****************************************************************************/
2949
2950 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2951 {
2952 void __iomem *ptr;
2953 unsigned char val;
2954
2955 BUG_ON(offset > brdp->memsize);
2956
2957 ptr = brdp->membase + (offset % BBY_PAGESIZE);
2958 val = (unsigned char) (offset / BBY_PAGESIZE);
2959 outb(val, (brdp->iobase + BBY_ATCONFR));
2960 return(ptr);
2961 }
2962
2963 /*****************************************************************************/
2964
2965 static void stli_bbyreset(struct stlibrd *brdp)
2966 {
2967 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2968 udelay(10);
2969 outb(0, (brdp->iobase + BBY_ATCONFR));
2970 mdelay(1000);
2971 }
2972
2973 /*****************************************************************************/
2974
2975 /*
2976 * The following routines act on original old Stallion boards.
2977 */
2978
2979 static void stli_stalinit(struct stlibrd *brdp)
2980 {
2981 outb(0x1, brdp->iobase);
2982 mdelay(1000);
2983 }
2984
2985 /*****************************************************************************/
2986
2987 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2988 {
2989 BUG_ON(offset > brdp->memsize);
2990 return brdp->membase + (offset % STAL_PAGESIZE);
2991 }
2992
2993 /*****************************************************************************/
2994
2995 static void stli_stalreset(struct stlibrd *brdp)
2996 {
2997 u32 __iomem *vecp;
2998
2999 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3000 writel(0xffff0000, vecp);
3001 outb(0, brdp->iobase);
3002 mdelay(1000);
3003 }
3004
3005 /*****************************************************************************/
3006
3007 /*
3008 * Try to find an ECP board and initialize it. This handles only ECP
3009 * board types.
3010 */
3011
3012 static int stli_initecp(struct stlibrd *brdp)
3013 {
3014 cdkecpsig_t sig;
3015 cdkecpsig_t __iomem *sigsp;
3016 unsigned int status, nxtid;
3017 char *name;
3018 int retval, panelnr, nrports;
3019
3020 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3021 retval = -ENODEV;
3022 goto err;
3023 }
3024
3025 brdp->iosize = ECP_IOSIZE;
3026
3027 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3028 retval = -EIO;
3029 goto err;
3030 }
3031
3032 /*
3033 * Based on the specific board type setup the common vars to access
3034 * and enable shared memory. Set all board specific information now
3035 * as well.
3036 */
3037 switch (brdp->brdtype) {
3038 case BRD_ECP:
3039 brdp->memsize = ECP_MEMSIZE;
3040 brdp->pagesize = ECP_ATPAGESIZE;
3041 brdp->init = stli_ecpinit;
3042 brdp->enable = stli_ecpenable;
3043 brdp->reenable = stli_ecpenable;
3044 brdp->disable = stli_ecpdisable;
3045 brdp->getmemptr = stli_ecpgetmemptr;
3046 brdp->intr = stli_ecpintr;
3047 brdp->reset = stli_ecpreset;
3048 name = "serial(EC8/64)";
3049 break;
3050
3051 case BRD_ECPE:
3052 brdp->memsize = ECP_MEMSIZE;
3053 brdp->pagesize = ECP_EIPAGESIZE;
3054 brdp->init = stli_ecpeiinit;
3055 brdp->enable = stli_ecpeienable;
3056 brdp->reenable = stli_ecpeienable;
3057 brdp->disable = stli_ecpeidisable;
3058 brdp->getmemptr = stli_ecpeigetmemptr;
3059 brdp->intr = stli_ecpintr;
3060 brdp->reset = stli_ecpeireset;
3061 name = "serial(EC8/64-EI)";
3062 break;
3063
3064 case BRD_ECPMC:
3065 brdp->memsize = ECP_MEMSIZE;
3066 brdp->pagesize = ECP_MCPAGESIZE;
3067 brdp->init = NULL;
3068 brdp->enable = stli_ecpmcenable;
3069 brdp->reenable = stli_ecpmcenable;
3070 brdp->disable = stli_ecpmcdisable;
3071 brdp->getmemptr = stli_ecpmcgetmemptr;
3072 brdp->intr = stli_ecpintr;
3073 brdp->reset = stli_ecpmcreset;
3074 name = "serial(EC8/64-MCA)";
3075 break;
3076
3077 case BRD_ECPPCI:
3078 brdp->memsize = ECP_PCIMEMSIZE;
3079 brdp->pagesize = ECP_PCIPAGESIZE;
3080 brdp->init = stli_ecppciinit;
3081 brdp->enable = NULL;
3082 brdp->reenable = NULL;
3083 brdp->disable = NULL;
3084 brdp->getmemptr = stli_ecppcigetmemptr;
3085 brdp->intr = stli_ecpintr;
3086 brdp->reset = stli_ecppcireset;
3087 name = "serial(EC/RA-PCI)";
3088 break;
3089
3090 default:
3091 retval = -EINVAL;
3092 goto err_reg;
3093 }
3094
3095 /*
3096 * The per-board operations structure is all set up, so now let's go
3097 * and get the board operational. Firstly initialize board configuration
3098 * registers. Set the memory mapping info so we can get at the boards
3099 * shared memory.
3100 */
3101 EBRDINIT(brdp);
3102
3103 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3104 if (brdp->membase == NULL) {
3105 retval = -ENOMEM;
3106 goto err_reg;
3107 }
3108
3109 /*
3110 * Now that all specific code is set up, enable the shared memory and
3111 * look for the a signature area that will tell us exactly what board
3112 * this is, and what it is connected to it.
3113 */
3114 EBRDENABLE(brdp);
3115 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3116 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3117 EBRDDISABLE(brdp);
3118
3119 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3120 retval = -ENODEV;
3121 goto err_unmap;
3122 }
3123
3124 /*
3125 * Scan through the signature looking at the panels connected to the
3126 * board. Calculate the total number of ports as we go.
3127 */
3128 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3129 status = sig.panelid[nxtid];
3130 if ((status & ECH_PNLIDMASK) != nxtid)
3131 break;
3132
3133 brdp->panelids[panelnr] = status;
3134 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3135 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3136 nxtid++;
3137 brdp->panels[panelnr] = nrports;
3138 brdp->nrports += nrports;
3139 nxtid++;
3140 brdp->nrpanels++;
3141 }
3142
3143
3144 brdp->state |= BST_FOUND;
3145 return 0;
3146 err_unmap:
3147 iounmap(brdp->membase);
3148 brdp->membase = NULL;
3149 err_reg:
3150 release_region(brdp->iobase, brdp->iosize);
3151 err:
3152 return retval;
3153 }
3154
3155 /*****************************************************************************/
3156
3157 /*
3158 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3159 * This handles only these board types.
3160 */
3161
3162 static int stli_initonb(struct stlibrd *brdp)
3163 {
3164 cdkonbsig_t sig;
3165 cdkonbsig_t __iomem *sigsp;
3166 char *name;
3167 int i, retval;
3168
3169 /*
3170 * Do a basic sanity check on the IO and memory addresses.
3171 */
3172 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3173 retval = -ENODEV;
3174 goto err;
3175 }
3176
3177 brdp->iosize = ONB_IOSIZE;
3178
3179 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3180 retval = -EIO;
3181 goto err;
3182 }
3183
3184 /*
3185 * Based on the specific board type setup the common vars to access
3186 * and enable shared memory. Set all board specific information now
3187 * as well.
3188 */
3189 switch (brdp->brdtype) {
3190 case BRD_ONBOARD:
3191 case BRD_ONBOARD2:
3192 brdp->memsize = ONB_MEMSIZE;
3193 brdp->pagesize = ONB_ATPAGESIZE;
3194 brdp->init = stli_onbinit;
3195 brdp->enable = stli_onbenable;
3196 brdp->reenable = stli_onbenable;
3197 brdp->disable = stli_onbdisable;
3198 brdp->getmemptr = stli_onbgetmemptr;
3199 brdp->intr = stli_ecpintr;
3200 brdp->reset = stli_onbreset;
3201 if (brdp->memaddr > 0x100000)
3202 brdp->enabval = ONB_MEMENABHI;
3203 else
3204 brdp->enabval = ONB_MEMENABLO;
3205 name = "serial(ONBoard)";
3206 break;
3207
3208 case BRD_ONBOARDE:
3209 brdp->memsize = ONB_EIMEMSIZE;
3210 brdp->pagesize = ONB_EIPAGESIZE;
3211 brdp->init = stli_onbeinit;
3212 brdp->enable = stli_onbeenable;
3213 brdp->reenable = stli_onbeenable;
3214 brdp->disable = stli_onbedisable;
3215 brdp->getmemptr = stli_onbegetmemptr;
3216 brdp->intr = stli_ecpintr;
3217 brdp->reset = stli_onbereset;
3218 name = "serial(ONBoard/E)";
3219 break;
3220
3221 case BRD_BRUMBY4:
3222 brdp->memsize = BBY_MEMSIZE;
3223 brdp->pagesize = BBY_PAGESIZE;
3224 brdp->init = stli_bbyinit;
3225 brdp->enable = NULL;
3226 brdp->reenable = NULL;
3227 brdp->disable = NULL;
3228 brdp->getmemptr = stli_bbygetmemptr;
3229 brdp->intr = stli_ecpintr;
3230 brdp->reset = stli_bbyreset;
3231 name = "serial(Brumby)";
3232 break;
3233
3234 case BRD_STALLION:
3235 brdp->memsize = STAL_MEMSIZE;
3236 brdp->pagesize = STAL_PAGESIZE;
3237 brdp->init = stli_stalinit;
3238 brdp->enable = NULL;
3239 brdp->reenable = NULL;
3240 brdp->disable = NULL;
3241 brdp->getmemptr = stli_stalgetmemptr;
3242 brdp->intr = stli_ecpintr;
3243 brdp->reset = stli_stalreset;
3244 name = "serial(Stallion)";
3245 break;
3246
3247 default:
3248 retval = -EINVAL;
3249 goto err_reg;
3250 }
3251
3252 /*
3253 * The per-board operations structure is all set up, so now let's go
3254 * and get the board operational. Firstly initialize board configuration
3255 * registers. Set the memory mapping info so we can get at the boards
3256 * shared memory.
3257 */
3258 EBRDINIT(brdp);
3259
3260 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3261 if (brdp->membase == NULL) {
3262 retval = -ENOMEM;
3263 goto err_reg;
3264 }
3265
3266 /*
3267 * Now that all specific code is set up, enable the shared memory and
3268 * look for the a signature area that will tell us exactly what board
3269 * this is, and how many ports.
3270 */
3271 EBRDENABLE(brdp);
3272 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3273 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3274 EBRDDISABLE(brdp);
3275
3276 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3277 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3278 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3279 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3280 retval = -ENODEV;
3281 goto err_unmap;
3282 }
3283
3284 /*
3285 * Scan through the signature alive mask and calculate how many ports
3286 * there are on this board.
3287 */
3288 brdp->nrpanels = 1;
3289 if (sig.amask1) {
3290 brdp->nrports = 32;
3291 } else {
3292 for (i = 0; (i < 16); i++) {
3293 if (((sig.amask0 << i) & 0x8000) == 0)
3294 break;
3295 }
3296 brdp->nrports = i;
3297 }
3298 brdp->panels[0] = brdp->nrports;
3299
3300
3301 brdp->state |= BST_FOUND;
3302 return 0;
3303 err_unmap:
3304 iounmap(brdp->membase);
3305 brdp->membase = NULL;
3306 err_reg:
3307 release_region(brdp->iobase, brdp->iosize);
3308 err:
3309 return retval;
3310 }
3311
3312 /*****************************************************************************/
3313
3314 /*
3315 * Start up a running board. This routine is only called after the
3316 * code has been down loaded to the board and is operational. It will
3317 * read in the memory map, and get the show on the road...
3318 */
3319
3320 static int stli_startbrd(struct stlibrd *brdp)
3321 {
3322 cdkhdr_t __iomem *hdrp;
3323 cdkmem_t __iomem *memp;
3324 cdkasy_t __iomem *ap;
3325 unsigned long flags;
3326 unsigned int portnr, nrdevs, i;
3327 struct stliport *portp;
3328 int rc = 0;
3329 u32 memoff;
3330
3331 spin_lock_irqsave(&brd_lock, flags);
3332 EBRDENABLE(brdp);
3333 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3334 nrdevs = hdrp->nrdevs;
3335
3336 #if 0
3337 printk("%s(%d): CDK version %d.%d.%d --> "
3338 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3339 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3340 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3341 readl(&hdrp->slavep));
3342 #endif
3343
3344 if (nrdevs < (brdp->nrports + 1)) {
3345 printk(KERN_ERR "istallion: slave failed to allocate memory for "
3346 "all devices, devices=%d\n", nrdevs);
3347 brdp->nrports = nrdevs - 1;
3348 }
3349 brdp->nrdevs = nrdevs;
3350 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3351 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3352 brdp->bitsize = (nrdevs + 7) / 8;
3353 memoff = readl(&hdrp->memp);
3354 if (memoff > brdp->memsize) {
3355 printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3356 rc = -EIO;
3357 goto stli_donestartup;
3358 }
3359 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3360 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3361 printk(KERN_ERR "istallion: no slave control device found\n");
3362 goto stli_donestartup;
3363 }
3364 memp++;
3365
3366 /*
3367 * Cycle through memory allocation of each port. We are guaranteed to
3368 * have all ports inside the first page of slave window, so no need to
3369 * change pages while reading memory map.
3370 */
3371 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3372 if (readw(&memp->dtype) != TYP_ASYNC)
3373 break;
3374 portp = brdp->ports[portnr];
3375 if (portp == NULL)
3376 break;
3377 portp->devnr = i;
3378 portp->addr = readl(&memp->offset);
3379 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3380 portp->portidx = (unsigned char) (i / 8);
3381 portp->portbit = (unsigned char) (0x1 << (i % 8));
3382 }
3383
3384 writeb(0xff, &hdrp->slavereq);
3385
3386 /*
3387 * For each port setup a local copy of the RX and TX buffer offsets
3388 * and sizes. We do this separate from the above, because we need to
3389 * move the shared memory page...
3390 */
3391 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3392 portp = brdp->ports[portnr];
3393 if (portp == NULL)
3394 break;
3395 if (portp->addr == 0)
3396 break;
3397 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3398 if (ap != NULL) {
3399 portp->rxsize = readw(&ap->rxq.size);
3400 portp->txsize = readw(&ap->txq.size);
3401 portp->rxoffset = readl(&ap->rxq.offset);
3402 portp->txoffset = readl(&ap->txq.offset);
3403 }
3404 }
3405
3406 stli_donestartup:
3407 EBRDDISABLE(brdp);
3408 spin_unlock_irqrestore(&brd_lock, flags);
3409
3410 if (rc == 0)
3411 brdp->state |= BST_STARTED;
3412
3413 if (! stli_timeron) {
3414 stli_timeron++;
3415 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3416 }
3417
3418 return rc;
3419 }
3420
3421 /*****************************************************************************/
3422
3423 /*
3424 * Probe and initialize the specified board.
3425 */
3426
3427 static int __devinit stli_brdinit(struct stlibrd *brdp)
3428 {
3429 int retval;
3430
3431 switch (brdp->brdtype) {
3432 case BRD_ECP:
3433 case BRD_ECPE:
3434 case BRD_ECPMC:
3435 case BRD_ECPPCI:
3436 retval = stli_initecp(brdp);
3437 break;
3438 case BRD_ONBOARD:
3439 case BRD_ONBOARDE:
3440 case BRD_ONBOARD2:
3441 case BRD_BRUMBY4:
3442 case BRD_STALLION:
3443 retval = stli_initonb(brdp);
3444 break;
3445 default:
3446 printk(KERN_ERR "istallion: board=%d is unknown board "
3447 "type=%d\n", brdp->brdnr, brdp->brdtype);
3448 retval = -ENODEV;
3449 }
3450
3451 if (retval)
3452 return retval;
3453
3454 stli_initports(brdp);
3455 printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3456 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3457 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3458 brdp->nrpanels, brdp->nrports);
3459 return 0;
3460 }
3461
3462 #if STLI_EISAPROBE != 0
3463 /*****************************************************************************/
3464
3465 /*
3466 * Probe around trying to find where the EISA boards shared memory
3467 * might be. This is a bit if hack, but it is the best we can do.
3468 */
3469
3470 static int stli_eisamemprobe(struct stlibrd *brdp)
3471 {
3472 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3473 cdkonbsig_t onbsig, __iomem *onbsigp;
3474 int i, foundit;
3475
3476 /*
3477 * First up we reset the board, to get it into a known state. There
3478 * is only 2 board types here we need to worry about. Don;t use the
3479 * standard board init routine here, it programs up the shared
3480 * memory address, and we don't know it yet...
3481 */
3482 if (brdp->brdtype == BRD_ECPE) {
3483 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3484 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3485 udelay(10);
3486 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3487 udelay(500);
3488 stli_ecpeienable(brdp);
3489 } else if (brdp->brdtype == BRD_ONBOARDE) {
3490 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3491 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3492 udelay(10);
3493 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3494 mdelay(100);
3495 outb(0x1, brdp->iobase);
3496 mdelay(1);
3497 stli_onbeenable(brdp);
3498 } else {
3499 return -ENODEV;
3500 }
3501
3502 foundit = 0;
3503 brdp->memsize = ECP_MEMSIZE;
3504
3505 /*
3506 * Board shared memory is enabled, so now we have a poke around and
3507 * see if we can find it.
3508 */
3509 for (i = 0; (i < stli_eisamempsize); i++) {
3510 brdp->memaddr = stli_eisamemprobeaddrs[i];
3511 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3512 if (brdp->membase == NULL)
3513 continue;
3514
3515 if (brdp->brdtype == BRD_ECPE) {
3516 ecpsigp = stli_ecpeigetmemptr(brdp,
3517 CDK_SIGADDR, __LINE__);
3518 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3519 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3520 foundit = 1;
3521 } else {
3522 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3523 CDK_SIGADDR, __LINE__);
3524 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3525 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3526 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3527 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3528 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3529 foundit = 1;
3530 }
3531
3532 iounmap(brdp->membase);
3533 if (foundit)
3534 break;
3535 }
3536
3537 /*
3538 * Regardless of whether we found the shared memory or not we must
3539 * disable the region. After that return success or failure.
3540 */
3541 if (brdp->brdtype == BRD_ECPE)
3542 stli_ecpeidisable(brdp);
3543 else
3544 stli_onbedisable(brdp);
3545
3546 if (! foundit) {
3547 brdp->memaddr = 0;
3548 brdp->membase = NULL;
3549 printk(KERN_ERR "istallion: failed to probe shared memory "
3550 "region for %s in EISA slot=%d\n",
3551 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3552 return -ENODEV;
3553 }
3554 return 0;
3555 }
3556 #endif
3557
3558 static int stli_getbrdnr(void)
3559 {
3560 unsigned int i;
3561
3562 for (i = 0; i < STL_MAXBRDS; i++) {
3563 if (!stli_brds[i]) {
3564 if (i >= stli_nrbrds)
3565 stli_nrbrds = i + 1;
3566 return i;
3567 }
3568 }
3569 return -1;
3570 }
3571
3572 #if STLI_EISAPROBE != 0
3573 /*****************************************************************************/
3574
3575 /*
3576 * Probe around and try to find any EISA boards in system. The biggest
3577 * problem here is finding out what memory address is associated with
3578 * an EISA board after it is found. The registers of the ECPE and
3579 * ONboardE are not readable - so we can't read them from there. We
3580 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3581 * actually have any way to find out the real value. The best we can
3582 * do is go probing around in the usual places hoping we can find it.
3583 */
3584
3585 static int __init stli_findeisabrds(void)
3586 {
3587 struct stlibrd *brdp;
3588 unsigned int iobase, eid, i;
3589 int brdnr, found = 0;
3590
3591 /*
3592 * Firstly check if this is an EISA system. If this is not an EISA system then
3593 * don't bother going any further!
3594 */
3595 if (EISA_bus)
3596 return 0;
3597
3598 /*
3599 * Looks like an EISA system, so go searching for EISA boards.
3600 */
3601 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3602 outb(0xff, (iobase + 0xc80));
3603 eid = inb(iobase + 0xc80);
3604 eid |= inb(iobase + 0xc81) << 8;
3605 if (eid != STL_EISAID)
3606 continue;
3607
3608 /*
3609 * We have found a board. Need to check if this board was
3610 * statically configured already (just in case!).
3611 */
3612 for (i = 0; (i < STL_MAXBRDS); i++) {
3613 brdp = stli_brds[i];
3614 if (brdp == NULL)
3615 continue;
3616 if (brdp->iobase == iobase)
3617 break;
3618 }
3619 if (i < STL_MAXBRDS)
3620 continue;
3621
3622 /*
3623 * We have found a Stallion board and it is not configured already.
3624 * Allocate a board structure and initialize it.
3625 */
3626 if ((brdp = stli_allocbrd()) == NULL)
3627 return found ? : -ENOMEM;
3628 brdnr = stli_getbrdnr();
3629 if (brdnr < 0)
3630 return found ? : -ENOMEM;
3631 brdp->brdnr = (unsigned int)brdnr;
3632 eid = inb(iobase + 0xc82);
3633 if (eid == ECP_EISAID)
3634 brdp->brdtype = BRD_ECPE;
3635 else if (eid == ONB_EISAID)
3636 brdp->brdtype = BRD_ONBOARDE;
3637 else
3638 brdp->brdtype = BRD_UNKNOWN;
3639 brdp->iobase = iobase;
3640 outb(0x1, (iobase + 0xc84));
3641 if (stli_eisamemprobe(brdp))
3642 outb(0, (iobase + 0xc84));
3643 if (stli_brdinit(brdp) < 0) {
3644 kfree(brdp);
3645 continue;
3646 }
3647
3648 stli_brds[brdp->brdnr] = brdp;
3649 found++;
3650
3651 for (i = 0; i < brdp->nrports; i++)
3652 tty_register_device(stli_serial,
3653 brdp->brdnr * STL_MAXPORTS + i, NULL);
3654 }
3655
3656 return found;
3657 }
3658 #else
3659 static inline int stli_findeisabrds(void) { return 0; }
3660 #endif
3661
3662 /*****************************************************************************/
3663
3664 /*
3665 * Find the next available board number that is free.
3666 */
3667
3668 /*****************************************************************************/
3669
3670 /*
3671 * We have a Stallion board. Allocate a board structure and
3672 * initialize it. Read its IO and MEMORY resources from PCI
3673 * configuration space.
3674 */
3675
3676 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3677 const struct pci_device_id *ent)
3678 {
3679 struct stlibrd *brdp;
3680 unsigned int i;
3681 int brdnr, retval = -EIO;
3682
3683 retval = pci_enable_device(pdev);
3684 if (retval)
3685 goto err;
3686 brdp = stli_allocbrd();
3687 if (brdp == NULL) {
3688 retval = -ENOMEM;
3689 goto err;
3690 }
3691 mutex_lock(&stli_brdslock);
3692 brdnr = stli_getbrdnr();
3693 if (brdnr < 0) {
3694 printk(KERN_INFO "istallion: too many boards found, "
3695 "maximum supported %d\n", STL_MAXBRDS);
3696 mutex_unlock(&stli_brdslock);
3697 retval = -EIO;
3698 goto err_fr;
3699 }
3700 brdp->brdnr = (unsigned int)brdnr;
3701 stli_brds[brdp->brdnr] = brdp;
3702 mutex_unlock(&stli_brdslock);
3703 brdp->brdtype = BRD_ECPPCI;
3704 /*
3705 * We have all resources from the board, so lets setup the actual
3706 * board structure now.
3707 */
3708 brdp->iobase = pci_resource_start(pdev, 3);
3709 brdp->memaddr = pci_resource_start(pdev, 2);
3710 retval = stli_brdinit(brdp);
3711 if (retval)
3712 goto err_null;
3713
3714 brdp->state |= BST_PROBED;
3715 pci_set_drvdata(pdev, brdp);
3716
3717 EBRDENABLE(brdp);
3718 brdp->enable = NULL;
3719 brdp->disable = NULL;
3720
3721 for (i = 0; i < brdp->nrports; i++)
3722 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3723 &pdev->dev);
3724
3725 return 0;
3726 err_null:
3727 stli_brds[brdp->brdnr] = NULL;
3728 err_fr:
3729 kfree(brdp);
3730 err:
3731 return retval;
3732 }
3733
3734 static void __devexit stli_pciremove(struct pci_dev *pdev)
3735 {
3736 struct stlibrd *brdp = pci_get_drvdata(pdev);
3737
3738 stli_cleanup_ports(brdp);
3739
3740 iounmap(brdp->membase);
3741 if (brdp->iosize > 0)
3742 release_region(brdp->iobase, brdp->iosize);
3743
3744 stli_brds[brdp->brdnr] = NULL;
3745 kfree(brdp);
3746 }
3747
3748 static struct pci_driver stli_pcidriver = {
3749 .name = "istallion",
3750 .id_table = istallion_pci_tbl,
3751 .probe = stli_pciprobe,
3752 .remove = __devexit_p(stli_pciremove)
3753 };
3754 /*****************************************************************************/
3755
3756 /*
3757 * Allocate a new board structure. Fill out the basic info in it.
3758 */
3759
3760 static struct stlibrd *stli_allocbrd(void)
3761 {
3762 struct stlibrd *brdp;
3763
3764 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3765 if (!brdp) {
3766 printk(KERN_ERR "istallion: failed to allocate memory "
3767 "(size=%Zd)\n", sizeof(struct stlibrd));
3768 return NULL;
3769 }
3770 brdp->magic = STLI_BOARDMAGIC;
3771 return brdp;
3772 }
3773
3774 /*****************************************************************************/
3775
3776 /*
3777 * Scan through all the boards in the configuration and see what we
3778 * can find.
3779 */
3780
3781 static int __init stli_initbrds(void)
3782 {
3783 struct stlibrd *brdp, *nxtbrdp;
3784 struct stlconf conf;
3785 unsigned int i, j, found = 0;
3786 int retval;
3787
3788 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3789 stli_nrbrds++) {
3790 memset(&conf, 0, sizeof(conf));
3791 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3792 continue;
3793 if ((brdp = stli_allocbrd()) == NULL)
3794 continue;
3795 brdp->brdnr = stli_nrbrds;
3796 brdp->brdtype = conf.brdtype;
3797 brdp->iobase = conf.ioaddr1;
3798 brdp->memaddr = conf.memaddr;
3799 if (stli_brdinit(brdp) < 0) {
3800 kfree(brdp);
3801 continue;
3802 }
3803 stli_brds[brdp->brdnr] = brdp;
3804 found++;
3805
3806 for (i = 0; i < brdp->nrports; i++)
3807 tty_register_device(stli_serial,
3808 brdp->brdnr * STL_MAXPORTS + i, NULL);
3809 }
3810
3811 retval = stli_findeisabrds();
3812 if (retval > 0)
3813 found += retval;
3814
3815 /*
3816 * All found boards are initialized. Now for a little optimization, if
3817 * no boards are sharing the "shared memory" regions then we can just
3818 * leave them all enabled. This is in fact the usual case.
3819 */
3820 stli_shared = 0;
3821 if (stli_nrbrds > 1) {
3822 for (i = 0; (i < stli_nrbrds); i++) {
3823 brdp = stli_brds[i];
3824 if (brdp == NULL)
3825 continue;
3826 for (j = i + 1; (j < stli_nrbrds); j++) {
3827 nxtbrdp = stli_brds[j];
3828 if (nxtbrdp == NULL)
3829 continue;
3830 if ((brdp->membase >= nxtbrdp->membase) &&
3831 (brdp->membase <= (nxtbrdp->membase +
3832 nxtbrdp->memsize - 1))) {
3833 stli_shared++;
3834 break;
3835 }
3836 }
3837 }
3838 }
3839
3840 if (stli_shared == 0) {
3841 for (i = 0; (i < stli_nrbrds); i++) {
3842 brdp = stli_brds[i];
3843 if (brdp == NULL)
3844 continue;
3845 if (brdp->state & BST_FOUND) {
3846 EBRDENABLE(brdp);
3847 brdp->enable = NULL;
3848 brdp->disable = NULL;
3849 }
3850 }
3851 }
3852
3853 retval = pci_register_driver(&stli_pcidriver);
3854 if (retval && found == 0) {
3855 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3856 "driver can be registered!\n");
3857 goto err;
3858 }
3859
3860 return 0;
3861 err:
3862 return retval;
3863 }
3864
3865 /*****************************************************************************/
3866
3867 /*
3868 * Code to handle an "staliomem" read operation. This device is the
3869 * contents of the board shared memory. It is used for down loading
3870 * the slave image (and debugging :-)
3871 */
3872
3873 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3874 {
3875 unsigned long flags;
3876 void __iomem *memptr;
3877 struct stlibrd *brdp;
3878 unsigned int brdnr;
3879 int size, n;
3880 void *p;
3881 loff_t off = *offp;
3882
3883 brdnr = iminor(fp->f_path.dentry->d_inode);
3884 if (brdnr >= stli_nrbrds)
3885 return -ENODEV;
3886 brdp = stli_brds[brdnr];
3887 if (brdp == NULL)
3888 return -ENODEV;
3889 if (brdp->state == 0)
3890 return -ENODEV;
3891 if (off >= brdp->memsize || off + count < off)
3892 return 0;
3893
3894 size = min(count, (size_t)(brdp->memsize - off));
3895
3896 /*
3897 * Copy the data a page at a time
3898 */
3899
3900 p = (void *)__get_free_page(GFP_KERNEL);
3901 if(p == NULL)
3902 return -ENOMEM;
3903
3904 while (size > 0) {
3905 spin_lock_irqsave(&brd_lock, flags);
3906 EBRDENABLE(brdp);
3907 memptr = EBRDGETMEMPTR(brdp, off);
3908 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3909 n = min(n, (int)PAGE_SIZE);
3910 memcpy_fromio(p, memptr, n);
3911 EBRDDISABLE(brdp);
3912 spin_unlock_irqrestore(&brd_lock, flags);
3913 if (copy_to_user(buf, p, n)) {
3914 count = -EFAULT;
3915 goto out;
3916 }
3917 off += n;
3918 buf += n;
3919 size -= n;
3920 }
3921 out:
3922 *offp = off;
3923 free_page((unsigned long)p);
3924 return count;
3925 }
3926
3927 /*****************************************************************************/
3928
3929 /*
3930 * Code to handle an "staliomem" write operation. This device is the
3931 * contents of the board shared memory. It is used for down loading
3932 * the slave image (and debugging :-)
3933 *
3934 * FIXME: copy under lock
3935 */
3936
3937 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3938 {
3939 unsigned long flags;
3940 void __iomem *memptr;
3941 struct stlibrd *brdp;
3942 char __user *chbuf;
3943 unsigned int brdnr;
3944 int size, n;
3945 void *p;
3946 loff_t off = *offp;
3947
3948 brdnr = iminor(fp->f_path.dentry->d_inode);
3949
3950 if (brdnr >= stli_nrbrds)
3951 return -ENODEV;
3952 brdp = stli_brds[brdnr];
3953 if (brdp == NULL)
3954 return -ENODEV;
3955 if (brdp->state == 0)
3956 return -ENODEV;
3957 if (off >= brdp->memsize || off + count < off)
3958 return 0;
3959
3960 chbuf = (char __user *) buf;
3961 size = min(count, (size_t)(brdp->memsize - off));
3962
3963 /*
3964 * Copy the data a page at a time
3965 */
3966
3967 p = (void *)__get_free_page(GFP_KERNEL);
3968 if(p == NULL)
3969 return -ENOMEM;
3970
3971 while (size > 0) {
3972 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3973 n = min(n, (int)PAGE_SIZE);
3974 if (copy_from_user(p, chbuf, n)) {
3975 if (count == 0)
3976 count = -EFAULT;
3977 goto out;
3978 }
3979 spin_lock_irqsave(&brd_lock, flags);
3980 EBRDENABLE(brdp);
3981 memptr = EBRDGETMEMPTR(brdp, off);
3982 memcpy_toio(memptr, p, n);
3983 EBRDDISABLE(brdp);
3984 spin_unlock_irqrestore(&brd_lock, flags);
3985 off += n;
3986 chbuf += n;
3987 size -= n;
3988 }
3989 out:
3990 free_page((unsigned long) p);
3991 *offp = off;
3992 return count;
3993 }
3994
3995 /*****************************************************************************/
3996
3997 /*
3998 * Return the board stats structure to user app.
3999 */
4000
4001 static int stli_getbrdstats(combrd_t __user *bp)
4002 {
4003 struct stlibrd *brdp;
4004 unsigned int i;
4005
4006 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4007 return -EFAULT;
4008 if (stli_brdstats.brd >= STL_MAXBRDS)
4009 return -ENODEV;
4010 brdp = stli_brds[stli_brdstats.brd];
4011 if (brdp == NULL)
4012 return -ENODEV;
4013
4014 memset(&stli_brdstats, 0, sizeof(combrd_t));
4015
4016 stli_brdstats.brd = brdp->brdnr;
4017 stli_brdstats.type = brdp->brdtype;
4018 stli_brdstats.hwid = 0;
4019 stli_brdstats.state = brdp->state;
4020 stli_brdstats.ioaddr = brdp->iobase;
4021 stli_brdstats.memaddr = brdp->memaddr;
4022 stli_brdstats.nrpanels = brdp->nrpanels;
4023 stli_brdstats.nrports = brdp->nrports;
4024 for (i = 0; (i < brdp->nrpanels); i++) {
4025 stli_brdstats.panels[i].panel = i;
4026 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4027 stli_brdstats.panels[i].nrports = brdp->panels[i];
4028 }
4029
4030 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4031 return -EFAULT;
4032 return 0;
4033 }
4034
4035 /*****************************************************************************/
4036
4037 /*
4038 * Resolve the referenced port number into a port struct pointer.
4039 */
4040
4041 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4042 unsigned int portnr)
4043 {
4044 struct stlibrd *brdp;
4045 unsigned int i;
4046
4047 if (brdnr >= STL_MAXBRDS)
4048 return NULL;
4049 brdp = stli_brds[brdnr];
4050 if (brdp == NULL)
4051 return NULL;
4052 for (i = 0; (i < panelnr); i++)
4053 portnr += brdp->panels[i];
4054 if (portnr >= brdp->nrports)
4055 return NULL;
4056 return brdp->ports[portnr];
4057 }
4058
4059 /*****************************************************************************/
4060
4061 /*
4062 * Return the port stats structure to user app. A NULL port struct
4063 * pointer passed in means that we need to find out from the app
4064 * what port to get stats for (used through board control device).
4065 */
4066
4067 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4068 {
4069 unsigned long flags;
4070 struct stlibrd *brdp;
4071 int rc;
4072
4073 memset(&stli_comstats, 0, sizeof(comstats_t));
4074
4075 if (portp == NULL)
4076 return -ENODEV;
4077 brdp = stli_brds[portp->brdnr];
4078 if (brdp == NULL)
4079 return -ENODEV;
4080
4081 mutex_lock(&portp->port.mutex);
4082 if (brdp->state & BST_STARTED) {
4083 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4084 &stli_cdkstats, sizeof(asystats_t), 1)) < 0) {
4085 mutex_unlock(&portp->port.mutex);
4086 return rc;
4087 }
4088 } else {
4089 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4090 }
4091
4092 stli_comstats.brd = portp->brdnr;
4093 stli_comstats.panel = portp->panelnr;
4094 stli_comstats.port = portp->portnr;
4095 stli_comstats.state = portp->state;
4096 stli_comstats.flags = portp->port.flags;
4097
4098 spin_lock_irqsave(&brd_lock, flags);
4099 if (tty != NULL) {
4100 if (portp->port.tty == tty) {
4101 stli_comstats.ttystate = tty->flags;
4102 stli_comstats.rxbuffered = -1;
4103 if (tty->termios != NULL) {
4104 stli_comstats.cflags = tty->termios->c_cflag;
4105 stli_comstats.iflags = tty->termios->c_iflag;
4106 stli_comstats.oflags = tty->termios->c_oflag;
4107 stli_comstats.lflags = tty->termios->c_lflag;
4108 }
4109 }
4110 }
4111 spin_unlock_irqrestore(&brd_lock, flags);
4112
4113 stli_comstats.txtotal = stli_cdkstats.txchars;
4114 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4115 stli_comstats.txbuffered = stli_cdkstats.txringq;
4116 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4117 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4118 stli_comstats.rxparity = stli_cdkstats.parity;
4119 stli_comstats.rxframing = stli_cdkstats.framing;
4120 stli_comstats.rxlost = stli_cdkstats.ringover;
4121 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4122 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4123 stli_comstats.txxon = stli_cdkstats.txstart;
4124 stli_comstats.txxoff = stli_cdkstats.txstop;
4125 stli_comstats.rxxon = stli_cdkstats.rxstart;
4126 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4127 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4128 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4129 stli_comstats.modem = stli_cdkstats.dcdcnt;
4130 stli_comstats.hwid = stli_cdkstats.hwid;
4131 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4132 mutex_unlock(&portp->port.mutex);
4133
4134 return 0;
4135 }
4136
4137 /*****************************************************************************/
4138
4139 /*
4140 * Return the port stats structure to user app. A NULL port struct
4141 * pointer passed in means that we need to find out from the app
4142 * what port to get stats for (used through board control device).
4143 */
4144
4145 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4146 comstats_t __user *cp)
4147 {
4148 struct stlibrd *brdp;
4149 int rc;
4150
4151 if (!portp) {
4152 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4153 return -EFAULT;
4154 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4155 stli_comstats.port);
4156 if (!portp)
4157 return -ENODEV;
4158 }
4159
4160 brdp = stli_brds[portp->brdnr];
4161 if (!brdp)
4162 return -ENODEV;
4163
4164 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4165 return rc;
4166
4167 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4168 -EFAULT : 0;
4169 }
4170
4171 /*****************************************************************************/
4172
4173 /*
4174 * Clear the port stats structure. We also return it zeroed out...
4175 */
4176
4177 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4178 {
4179 struct stlibrd *brdp;
4180 int rc;
4181
4182 if (!portp) {
4183 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4184 return -EFAULT;
4185 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4186 stli_comstats.port);
4187 if (!portp)
4188 return -ENODEV;
4189 }
4190
4191 brdp = stli_brds[portp->brdnr];
4192 if (!brdp)
4193 return -ENODEV;
4194
4195 mutex_lock(&portp->port.mutex);
4196
4197 if (brdp->state & BST_STARTED) {
4198 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0) {
4199 mutex_unlock(&portp->port.mutex);
4200 return rc;
4201 }
4202 }
4203
4204 memset(&stli_comstats, 0, sizeof(comstats_t));
4205 stli_comstats.brd = portp->brdnr;
4206 stli_comstats.panel = portp->panelnr;
4207 stli_comstats.port = portp->portnr;
4208 mutex_unlock(&portp->port.mutex);
4209
4210 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4211 return -EFAULT;
4212 return 0;
4213 }
4214
4215 /*****************************************************************************/
4216
4217 /*
4218 * Return the entire driver ports structure to a user app.
4219 */
4220
4221 static int stli_getportstruct(struct stliport __user *arg)
4222 {
4223 struct stliport stli_dummyport;
4224 struct stliport *portp;
4225
4226 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4227 return -EFAULT;
4228 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4229 stli_dummyport.portnr);
4230 if (!portp)
4231 return -ENODEV;
4232 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4233 return -EFAULT;
4234 return 0;
4235 }
4236
4237 /*****************************************************************************/
4238
4239 /*
4240 * Return the entire driver board structure to a user app.
4241 */
4242
4243 static int stli_getbrdstruct(struct stlibrd __user *arg)
4244 {
4245 struct stlibrd stli_dummybrd;
4246 struct stlibrd *brdp;
4247
4248 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4249 return -EFAULT;
4250 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4251 return -ENODEV;
4252 brdp = stli_brds[stli_dummybrd.brdnr];
4253 if (!brdp)
4254 return -ENODEV;
4255 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4256 return -EFAULT;
4257 return 0;
4258 }
4259
4260 /*****************************************************************************/
4261
4262 /*
4263 * The "staliomem" device is also required to do some special operations on
4264 * the board. We need to be able to send an interrupt to the board,
4265 * reset it, and start/stop it.
4266 */
4267
4268 static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg)
4269 {
4270 struct stlibrd *brdp;
4271 int brdnr, rc, done;
4272 void __user *argp = (void __user *)arg;
4273
4274 /*
4275 * First up handle the board independent ioctls.
4276 */
4277 done = 0;
4278 rc = 0;
4279
4280 switch (cmd) {
4281 case COM_GETPORTSTATS:
4282 rc = stli_getportstats(NULL, NULL, argp);
4283 done++;
4284 break;
4285 case COM_CLRPORTSTATS:
4286 rc = stli_clrportstats(NULL, argp);
4287 done++;
4288 break;
4289 case COM_GETBRDSTATS:
4290 rc = stli_getbrdstats(argp);
4291 done++;
4292 break;
4293 case COM_READPORT:
4294 rc = stli_getportstruct(argp);
4295 done++;
4296 break;
4297 case COM_READBOARD:
4298 rc = stli_getbrdstruct(argp);
4299 done++;
4300 break;
4301 }
4302 if (done)
4303 return rc;
4304
4305 /*
4306 * Now handle the board specific ioctls. These all depend on the
4307 * minor number of the device they were called from.
4308 */
4309 brdnr = iminor(fp->f_dentry->d_inode);
4310 if (brdnr >= STL_MAXBRDS)
4311 return -ENODEV;
4312 brdp = stli_brds[brdnr];
4313 if (!brdp)
4314 return -ENODEV;
4315 if (brdp->state == 0)
4316 return -ENODEV;
4317
4318 switch (cmd) {
4319 case STL_BINTR:
4320 EBRDINTR(brdp);
4321 break;
4322 case STL_BSTART:
4323 rc = stli_startbrd(brdp);
4324 break;
4325 case STL_BSTOP:
4326 brdp->state &= ~BST_STARTED;
4327 break;
4328 case STL_BRESET:
4329 brdp->state &= ~BST_STARTED;
4330 EBRDRESET(brdp);
4331 if (stli_shared == 0) {
4332 if (brdp->reenable != NULL)
4333 (* brdp->reenable)(brdp);
4334 }
4335 break;
4336 default:
4337 rc = -ENOIOCTLCMD;
4338 break;
4339 }
4340 return rc;
4341 }
4342
4343 static const struct tty_operations stli_ops = {
4344 .open = stli_open,
4345 .close = stli_close,
4346 .write = stli_write,
4347 .put_char = stli_putchar,
4348 .flush_chars = stli_flushchars,
4349 .write_room = stli_writeroom,
4350 .chars_in_buffer = stli_charsinbuffer,
4351 .ioctl = stli_ioctl,
4352 .set_termios = stli_settermios,
4353 .throttle = stli_throttle,
4354 .unthrottle = stli_unthrottle,
4355 .stop = stli_stop,
4356 .start = stli_start,
4357 .hangup = stli_hangup,
4358 .flush_buffer = stli_flushbuffer,
4359 .break_ctl = stli_breakctl,
4360 .wait_until_sent = stli_waituntilsent,
4361 .send_xchar = stli_sendxchar,
4362 .tiocmget = stli_tiocmget,
4363 .tiocmset = stli_tiocmset,
4364 .proc_fops = &stli_proc_fops,
4365 };
4366
4367 static const struct tty_port_operations stli_port_ops = {
4368 .carrier_raised = stli_carrier_raised,
4369 .dtr_rts = stli_dtr_rts,
4370 .activate = stli_activate,
4371 .shutdown = stli_shutdown,
4372 };
4373
4374 /*****************************************************************************/
4375 /*
4376 * Loadable module initialization stuff.
4377 */
4378
4379 static void istallion_cleanup_isa(void)
4380 {
4381 struct stlibrd *brdp;
4382 unsigned int j;
4383
4384 for (j = 0; (j < stli_nrbrds); j++) {
4385 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4386 continue;
4387
4388 stli_cleanup_ports(brdp);
4389
4390 iounmap(brdp->membase);
4391 if (brdp->iosize > 0)
4392 release_region(brdp->iobase, brdp->iosize);
4393 kfree(brdp);
4394 stli_brds[j] = NULL;
4395 }
4396 }
4397
4398 static int __init istallion_module_init(void)
4399 {
4400 unsigned int i;
4401 int retval;
4402
4403 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4404
4405 spin_lock_init(&stli_lock);
4406 spin_lock_init(&brd_lock);
4407
4408 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4409 if (!stli_txcookbuf) {
4410 printk(KERN_ERR "istallion: failed to allocate memory "
4411 "(size=%d)\n", STLI_TXBUFSIZE);
4412 retval = -ENOMEM;
4413 goto err;
4414 }
4415
4416 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4417 if (!stli_serial) {
4418 retval = -ENOMEM;
4419 goto err_free;
4420 }
4421
4422 stli_serial->owner = THIS_MODULE;
4423 stli_serial->driver_name = stli_drvname;
4424 stli_serial->name = stli_serialname;
4425 stli_serial->major = STL_SERIALMAJOR;
4426 stli_serial->minor_start = 0;
4427 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4428 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4429 stli_serial->init_termios = stli_deftermios;
4430 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4431 tty_set_operations(stli_serial, &stli_ops);
4432
4433 retval = tty_register_driver(stli_serial);
4434 if (retval) {
4435 printk(KERN_ERR "istallion: failed to register serial driver\n");
4436 goto err_ttyput;
4437 }
4438
4439 retval = stli_initbrds();
4440 if (retval)
4441 goto err_ttyunr;
4442
4443 /*
4444 * Set up a character driver for the shared memory region. We need this
4445 * to down load the slave code image. Also it is a useful debugging tool.
4446 */
4447 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4448 if (retval) {
4449 printk(KERN_ERR "istallion: failed to register serial memory "
4450 "device\n");
4451 goto err_deinit;
4452 }
4453
4454 istallion_class = class_create(THIS_MODULE, "staliomem");
4455 for (i = 0; i < 4; i++)
4456 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4457 NULL, "staliomem%d", i);
4458
4459 return 0;
4460 err_deinit:
4461 pci_unregister_driver(&stli_pcidriver);
4462 istallion_cleanup_isa();
4463 err_ttyunr:
4464 tty_unregister_driver(stli_serial);
4465 err_ttyput:
4466 put_tty_driver(stli_serial);
4467 err_free:
4468 kfree(stli_txcookbuf);
4469 err:
4470 return retval;
4471 }
4472
4473 /*****************************************************************************/
4474
4475 static void __exit istallion_module_exit(void)
4476 {
4477 unsigned int j;
4478
4479 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4480 stli_drvversion);
4481
4482 if (stli_timeron) {
4483 stli_timeron = 0;
4484 del_timer_sync(&stli_timerlist);
4485 }
4486
4487 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4488
4489 for (j = 0; j < 4; j++)
4490 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4491 class_destroy(istallion_class);
4492
4493 pci_unregister_driver(&stli_pcidriver);
4494 istallion_cleanup_isa();
4495
4496 tty_unregister_driver(stli_serial);
4497 put_tty_driver(stli_serial);
4498
4499 kfree(stli_txcookbuf);
4500 }
4501
4502 module_init(istallion_module_init);
4503 module_exit(istallion_module_exit);
This page took 0.193205 seconds and 5 git commands to generate.