stallion: Use krefs
[deliverable/linux.git] / drivers / char / istallion.c
1 /*****************************************************************************/
2
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 */
18
19 /*****************************************************************************/
20
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tty.h>
25 #include <linux/tty_flip.h>
26 #include <linux/serial.h>
27 #include <linux/cdk.h>
28 #include <linux/comstats.h>
29 #include <linux/istallion.h>
30 #include <linux/ioport.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/wait.h>
35 #include <linux/eisa.h>
36 #include <linux/ctype.h>
37
38 #include <asm/io.h>
39 #include <asm/uaccess.h>
40
41 #include <linux/pci.h>
42
43 /*****************************************************************************/
44
45 /*
46 * Define different board types. Not all of the following board types
47 * are supported by this driver. But I will use the standard "assigned"
48 * board numbers. Currently supported boards are abbreviated as:
49 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
50 * STAL = Stallion.
51 */
52 #define BRD_UNKNOWN 0
53 #define BRD_STALLION 1
54 #define BRD_BRUMBY4 2
55 #define BRD_ONBOARD2 3
56 #define BRD_ONBOARD 4
57 #define BRD_ONBOARDE 7
58 #define BRD_ECP 23
59 #define BRD_ECPE 24
60 #define BRD_ECPMC 25
61 #define BRD_ECPPCI 29
62
63 #define BRD_BRUMBY BRD_BRUMBY4
64
65 /*
66 * Define a configuration structure to hold the board configuration.
67 * Need to set this up in the code (for now) with the boards that are
68 * to be configured into the system. This is what needs to be modified
69 * when adding/removing/modifying boards. Each line entry in the
70 * stli_brdconf[] array is a board. Each line contains io/irq/memory
71 * ranges for that board (as well as what type of board it is).
72 * Some examples:
73 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
74 * This line will configure an EasyConnection 8/64 at io address 2a0,
75 * and shared memory address of cc000. Multiple EasyConnection 8/64
76 * boards can share the same shared memory address space. No interrupt
77 * is required for this board type.
78 * Another example:
79 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
80 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
81 * shared memory address of 0x80000000 (2 GByte). Multiple
82 * EasyConnection 8/64 EISA boards can share the same shared memory
83 * address space. No interrupt is required for this board type.
84 * Another example:
85 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
86 * This line will configure an ONboard (ISA type) at io address 240,
87 * and shared memory address of d0000. Multiple ONboards can share
88 * the same shared memory address space. No interrupt required.
89 * Another example:
90 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
91 * This line will configure a Brumby board (any number of ports!) at
92 * io address 360 and shared memory address of c8000. All Brumby boards
93 * configured into a system must have their own separate io and memory
94 * addresses. No interrupt is required.
95 * Another example:
96 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
97 * This line will configure an original Stallion board at io address 330
98 * and shared memory address d0000 (this would only be valid for a "V4.0"
99 * or Rev.O Stallion board). All Stallion boards configured into the
100 * system must have their own separate io and memory addresses. No
101 * interrupt is required.
102 */
103
104 struct stlconf {
105 int brdtype;
106 int ioaddr1;
107 int ioaddr2;
108 unsigned long memaddr;
109 int irq;
110 int irqtype;
111 };
112
113 static unsigned int stli_nrbrds;
114
115 /* stli_lock must NOT be taken holding brd_lock */
116 static spinlock_t stli_lock; /* TTY logic lock */
117 static spinlock_t brd_lock; /* Board logic lock */
118
119 /*
120 * There is some experimental EISA board detection code in this driver.
121 * By default it is disabled, but for those that want to try it out,
122 * then set the define below to be 1.
123 */
124 #define STLI_EISAPROBE 0
125
126 /*****************************************************************************/
127
128 /*
129 * Define some important driver characteristics. Device major numbers
130 * allocated as per Linux Device Registry.
131 */
132 #ifndef STL_SIOMEMMAJOR
133 #define STL_SIOMEMMAJOR 28
134 #endif
135 #ifndef STL_SERIALMAJOR
136 #define STL_SERIALMAJOR 24
137 #endif
138 #ifndef STL_CALLOUTMAJOR
139 #define STL_CALLOUTMAJOR 25
140 #endif
141
142 /*****************************************************************************/
143
144 /*
145 * Define our local driver identity first. Set up stuff to deal with
146 * all the local structures required by a serial tty driver.
147 */
148 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
149 static char *stli_drvname = "istallion";
150 static char *stli_drvversion = "5.6.0";
151 static char *stli_serialname = "ttyE";
152
153 static struct tty_driver *stli_serial;
154
155
156 #define STLI_TXBUFSIZE 4096
157
158 /*
159 * Use a fast local buffer for cooked characters. Typically a whole
160 * bunch of cooked characters come in for a port, 1 at a time. So we
161 * save those up into a local buffer, then write out the whole lot
162 * with a large memcpy. Just use 1 buffer for all ports, since its
163 * use it is only need for short periods of time by each port.
164 */
165 static char *stli_txcookbuf;
166 static int stli_txcooksize;
167 static int stli_txcookrealsize;
168 static struct tty_struct *stli_txcooktty;
169
170 /*
171 * Define a local default termios struct. All ports will be created
172 * with this termios initially. Basically all it defines is a raw port
173 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
174 */
175 static struct ktermios stli_deftermios = {
176 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
177 .c_cc = INIT_C_CC,
178 .c_ispeed = 9600,
179 .c_ospeed = 9600,
180 };
181
182 /*
183 * Define global stats structures. Not used often, and can be
184 * re-used for each stats call.
185 */
186 static comstats_t stli_comstats;
187 static combrd_t stli_brdstats;
188 static struct asystats stli_cdkstats;
189
190 /*****************************************************************************/
191
192 static DEFINE_MUTEX(stli_brdslock);
193 static struct stlibrd *stli_brds[STL_MAXBRDS];
194
195 static int stli_shared;
196
197 /*
198 * Per board state flags. Used with the state field of the board struct.
199 * Not really much here... All we need to do is keep track of whether
200 * the board has been detected, and whether it is actually running a slave
201 * or not.
202 */
203 #define BST_FOUND 0x1
204 #define BST_STARTED 0x2
205 #define BST_PROBED 0x4
206
207 /*
208 * Define the set of port state flags. These are marked for internal
209 * state purposes only, usually to do with the state of communications
210 * with the slave. Most of them need to be updated atomically, so always
211 * use the bit setting operations (unless protected by cli/sti).
212 */
213 #define ST_INITIALIZING 1
214 #define ST_OPENING 2
215 #define ST_CLOSING 3
216 #define ST_CMDING 4
217 #define ST_TXBUSY 5
218 #define ST_RXING 6
219 #define ST_DOFLUSHRX 7
220 #define ST_DOFLUSHTX 8
221 #define ST_DOSIGS 9
222 #define ST_RXSTOP 10
223 #define ST_GETSIGS 11
224
225 /*
226 * Define an array of board names as printable strings. Handy for
227 * referencing boards when printing trace and stuff.
228 */
229 static char *stli_brdnames[] = {
230 "Unknown",
231 "Stallion",
232 "Brumby",
233 "ONboard-MC",
234 "ONboard",
235 "Brumby",
236 "Brumby",
237 "ONboard-EI",
238 NULL,
239 "ONboard",
240 "ONboard-MC",
241 "ONboard-MC",
242 NULL,
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 "EasyIO",
251 "EC8/32-AT",
252 "EC8/32-MC",
253 "EC8/64-AT",
254 "EC8/64-EI",
255 "EC8/64-MC",
256 "EC8/32-PCI",
257 "EC8/64-PCI",
258 "EasyIO-PCI",
259 "EC/RA-PCI",
260 };
261
262 /*****************************************************************************/
263
264 /*
265 * Define some string labels for arguments passed from the module
266 * load line. These allow for easy board definitions, and easy
267 * modification of the io, memory and irq resoucres.
268 */
269
270 static char *board0[8];
271 static char *board1[8];
272 static char *board2[8];
273 static char *board3[8];
274
275 static char **stli_brdsp[] = {
276 (char **) &board0,
277 (char **) &board1,
278 (char **) &board2,
279 (char **) &board3
280 };
281
282 /*
283 * Define a set of common board names, and types. This is used to
284 * parse any module arguments.
285 */
286
287 static struct stlibrdtype {
288 char *name;
289 int type;
290 } stli_brdstr[] = {
291 { "stallion", BRD_STALLION },
292 { "1", BRD_STALLION },
293 { "brumby", BRD_BRUMBY },
294 { "brumby4", BRD_BRUMBY },
295 { "brumby/4", BRD_BRUMBY },
296 { "brumby-4", BRD_BRUMBY },
297 { "brumby8", BRD_BRUMBY },
298 { "brumby/8", BRD_BRUMBY },
299 { "brumby-8", BRD_BRUMBY },
300 { "brumby16", BRD_BRUMBY },
301 { "brumby/16", BRD_BRUMBY },
302 { "brumby-16", BRD_BRUMBY },
303 { "2", BRD_BRUMBY },
304 { "onboard2", BRD_ONBOARD2 },
305 { "onboard-2", BRD_ONBOARD2 },
306 { "onboard/2", BRD_ONBOARD2 },
307 { "onboard-mc", BRD_ONBOARD2 },
308 { "onboard/mc", BRD_ONBOARD2 },
309 { "onboard-mca", BRD_ONBOARD2 },
310 { "onboard/mca", BRD_ONBOARD2 },
311 { "3", BRD_ONBOARD2 },
312 { "onboard", BRD_ONBOARD },
313 { "onboardat", BRD_ONBOARD },
314 { "4", BRD_ONBOARD },
315 { "onboarde", BRD_ONBOARDE },
316 { "onboard-e", BRD_ONBOARDE },
317 { "onboard/e", BRD_ONBOARDE },
318 { "onboard-ei", BRD_ONBOARDE },
319 { "onboard/ei", BRD_ONBOARDE },
320 { "7", BRD_ONBOARDE },
321 { "ecp", BRD_ECP },
322 { "ecpat", BRD_ECP },
323 { "ec8/64", BRD_ECP },
324 { "ec8/64-at", BRD_ECP },
325 { "ec8/64-isa", BRD_ECP },
326 { "23", BRD_ECP },
327 { "ecpe", BRD_ECPE },
328 { "ecpei", BRD_ECPE },
329 { "ec8/64-e", BRD_ECPE },
330 { "ec8/64-ei", BRD_ECPE },
331 { "24", BRD_ECPE },
332 { "ecpmc", BRD_ECPMC },
333 { "ec8/64-mc", BRD_ECPMC },
334 { "ec8/64-mca", BRD_ECPMC },
335 { "25", BRD_ECPMC },
336 { "ecppci", BRD_ECPPCI },
337 { "ec/ra", BRD_ECPPCI },
338 { "ec/ra-pc", BRD_ECPPCI },
339 { "ec/ra-pci", BRD_ECPPCI },
340 { "29", BRD_ECPPCI },
341 };
342
343 /*
344 * Define the module agruments.
345 */
346 MODULE_AUTHOR("Greg Ungerer");
347 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
348 MODULE_LICENSE("GPL");
349
350
351 module_param_array(board0, charp, NULL, 0);
352 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
353 module_param_array(board1, charp, NULL, 0);
354 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board2, charp, NULL, 0);
356 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board3, charp, NULL, 0);
358 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
359
360 #if STLI_EISAPROBE != 0
361 /*
362 * Set up a default memory address table for EISA board probing.
363 * The default addresses are all bellow 1Mbyte, which has to be the
364 * case anyway. They should be safe, since we only read values from
365 * them, and interrupts are disabled while we do it. If the higher
366 * memory support is compiled in then we also try probing around
367 * the 1Gb, 2Gb and 3Gb areas as well...
368 */
369 static unsigned long stli_eisamemprobeaddrs[] = {
370 0xc0000, 0xd0000, 0xe0000, 0xf0000,
371 0x80000000, 0x80010000, 0x80020000, 0x80030000,
372 0x40000000, 0x40010000, 0x40020000, 0x40030000,
373 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
374 0xff000000, 0xff010000, 0xff020000, 0xff030000,
375 };
376
377 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
378 #endif
379
380 /*
381 * Define the Stallion PCI vendor and device IDs.
382 */
383 #ifndef PCI_DEVICE_ID_ECRA
384 #define PCI_DEVICE_ID_ECRA 0x0004
385 #endif
386
387 static struct pci_device_id istallion_pci_tbl[] = {
388 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
389 { 0 }
390 };
391 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
392
393 static struct pci_driver stli_pcidriver;
394
395 /*****************************************************************************/
396
397 /*
398 * Hardware configuration info for ECP boards. These defines apply
399 * to the directly accessible io ports of the ECP. There is a set of
400 * defines for each ECP board type, ISA, EISA, MCA and PCI.
401 */
402 #define ECP_IOSIZE 4
403
404 #define ECP_MEMSIZE (128 * 1024)
405 #define ECP_PCIMEMSIZE (256 * 1024)
406
407 #define ECP_ATPAGESIZE (4 * 1024)
408 #define ECP_MCPAGESIZE (4 * 1024)
409 #define ECP_EIPAGESIZE (64 * 1024)
410 #define ECP_PCIPAGESIZE (64 * 1024)
411
412 #define STL_EISAID 0x8c4e
413
414 /*
415 * Important defines for the ISA class of ECP board.
416 */
417 #define ECP_ATIREG 0
418 #define ECP_ATCONFR 1
419 #define ECP_ATMEMAR 2
420 #define ECP_ATMEMPR 3
421 #define ECP_ATSTOP 0x1
422 #define ECP_ATINTENAB 0x10
423 #define ECP_ATENABLE 0x20
424 #define ECP_ATDISABLE 0x00
425 #define ECP_ATADDRMASK 0x3f000
426 #define ECP_ATADDRSHFT 12
427
428 /*
429 * Important defines for the EISA class of ECP board.
430 */
431 #define ECP_EIIREG 0
432 #define ECP_EIMEMARL 1
433 #define ECP_EICONFR 2
434 #define ECP_EIMEMARH 3
435 #define ECP_EIENABLE 0x1
436 #define ECP_EIDISABLE 0x0
437 #define ECP_EISTOP 0x4
438 #define ECP_EIEDGE 0x00
439 #define ECP_EILEVEL 0x80
440 #define ECP_EIADDRMASKL 0x00ff0000
441 #define ECP_EIADDRSHFTL 16
442 #define ECP_EIADDRMASKH 0xff000000
443 #define ECP_EIADDRSHFTH 24
444 #define ECP_EIBRDENAB 0xc84
445
446 #define ECP_EISAID 0x4
447
448 /*
449 * Important defines for the Micro-channel class of ECP board.
450 * (It has a lot in common with the ISA boards.)
451 */
452 #define ECP_MCIREG 0
453 #define ECP_MCCONFR 1
454 #define ECP_MCSTOP 0x20
455 #define ECP_MCENABLE 0x80
456 #define ECP_MCDISABLE 0x00
457
458 /*
459 * Important defines for the PCI class of ECP board.
460 * (It has a lot in common with the other ECP boards.)
461 */
462 #define ECP_PCIIREG 0
463 #define ECP_PCICONFR 1
464 #define ECP_PCISTOP 0x01
465
466 /*
467 * Hardware configuration info for ONboard and Brumby boards. These
468 * defines apply to the directly accessible io ports of these boards.
469 */
470 #define ONB_IOSIZE 16
471 #define ONB_MEMSIZE (64 * 1024)
472 #define ONB_ATPAGESIZE (64 * 1024)
473 #define ONB_MCPAGESIZE (64 * 1024)
474 #define ONB_EIMEMSIZE (128 * 1024)
475 #define ONB_EIPAGESIZE (64 * 1024)
476
477 /*
478 * Important defines for the ISA class of ONboard board.
479 */
480 #define ONB_ATIREG 0
481 #define ONB_ATMEMAR 1
482 #define ONB_ATCONFR 2
483 #define ONB_ATSTOP 0x4
484 #define ONB_ATENABLE 0x01
485 #define ONB_ATDISABLE 0x00
486 #define ONB_ATADDRMASK 0xff0000
487 #define ONB_ATADDRSHFT 16
488
489 #define ONB_MEMENABLO 0
490 #define ONB_MEMENABHI 0x02
491
492 /*
493 * Important defines for the EISA class of ONboard board.
494 */
495 #define ONB_EIIREG 0
496 #define ONB_EIMEMARL 1
497 #define ONB_EICONFR 2
498 #define ONB_EIMEMARH 3
499 #define ONB_EIENABLE 0x1
500 #define ONB_EIDISABLE 0x0
501 #define ONB_EISTOP 0x4
502 #define ONB_EIEDGE 0x00
503 #define ONB_EILEVEL 0x80
504 #define ONB_EIADDRMASKL 0x00ff0000
505 #define ONB_EIADDRSHFTL 16
506 #define ONB_EIADDRMASKH 0xff000000
507 #define ONB_EIADDRSHFTH 24
508 #define ONB_EIBRDENAB 0xc84
509
510 #define ONB_EISAID 0x1
511
512 /*
513 * Important defines for the Brumby boards. They are pretty simple,
514 * there is not much that is programmably configurable.
515 */
516 #define BBY_IOSIZE 16
517 #define BBY_MEMSIZE (64 * 1024)
518 #define BBY_PAGESIZE (16 * 1024)
519
520 #define BBY_ATIREG 0
521 #define BBY_ATCONFR 1
522 #define BBY_ATSTOP 0x4
523
524 /*
525 * Important defines for the Stallion boards. They are pretty simple,
526 * there is not much that is programmably configurable.
527 */
528 #define STAL_IOSIZE 16
529 #define STAL_MEMSIZE (64 * 1024)
530 #define STAL_PAGESIZE (64 * 1024)
531
532 /*
533 * Define the set of status register values for EasyConnection panels.
534 * The signature will return with the status value for each panel. From
535 * this we can determine what is attached to the board - before we have
536 * actually down loaded any code to it.
537 */
538 #define ECH_PNLSTATUS 2
539 #define ECH_PNL16PORT 0x20
540 #define ECH_PNLIDMASK 0x07
541 #define ECH_PNLXPID 0x40
542 #define ECH_PNLINTRPEND 0x80
543
544 /*
545 * Define some macros to do things to the board. Even those these boards
546 * are somewhat related there is often significantly different ways of
547 * doing some operation on it (like enable, paging, reset, etc). So each
548 * board class has a set of functions which do the commonly required
549 * operations. The macros below basically just call these functions,
550 * generally checking for a NULL function - which means that the board
551 * needs nothing done to it to achieve this operation!
552 */
553 #define EBRDINIT(brdp) \
554 if (brdp->init != NULL) \
555 (* brdp->init)(brdp)
556
557 #define EBRDENABLE(brdp) \
558 if (brdp->enable != NULL) \
559 (* brdp->enable)(brdp);
560
561 #define EBRDDISABLE(brdp) \
562 if (brdp->disable != NULL) \
563 (* brdp->disable)(brdp);
564
565 #define EBRDINTR(brdp) \
566 if (brdp->intr != NULL) \
567 (* brdp->intr)(brdp);
568
569 #define EBRDRESET(brdp) \
570 if (brdp->reset != NULL) \
571 (* brdp->reset)(brdp);
572
573 #define EBRDGETMEMPTR(brdp,offset) \
574 (* brdp->getmemptr)(brdp, offset, __LINE__)
575
576 /*
577 * Define the maximal baud rate, and the default baud base for ports.
578 */
579 #define STL_MAXBAUD 460800
580 #define STL_BAUDBASE 115200
581 #define STL_CLOSEDELAY (5 * HZ / 10)
582
583 /*****************************************************************************/
584
585 /*
586 * Define macros to extract a brd or port number from a minor number.
587 */
588 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
589 #define MINOR2PORT(min) ((min) & 0x3f)
590
591 /*****************************************************************************/
592
593 /*
594 * Prototype all functions in this driver!
595 */
596
597 static int stli_parsebrd(struct stlconf *confp, char **argp);
598 static int stli_open(struct tty_struct *tty, struct file *filp);
599 static void stli_close(struct tty_struct *tty, struct file *filp);
600 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
601 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
602 static void stli_flushchars(struct tty_struct *tty);
603 static int stli_writeroom(struct tty_struct *tty);
604 static int stli_charsinbuffer(struct tty_struct *tty);
605 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
606 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
607 static void stli_throttle(struct tty_struct *tty);
608 static void stli_unthrottle(struct tty_struct *tty);
609 static void stli_stop(struct tty_struct *tty);
610 static void stli_start(struct tty_struct *tty);
611 static void stli_flushbuffer(struct tty_struct *tty);
612 static int stli_breakctl(struct tty_struct *tty, int state);
613 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
614 static void stli_sendxchar(struct tty_struct *tty, char ch);
615 static void stli_hangup(struct tty_struct *tty);
616 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos);
617
618 static int stli_brdinit(struct stlibrd *brdp);
619 static int stli_startbrd(struct stlibrd *brdp);
620 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
621 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
622 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
623 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
624 static void stli_poll(unsigned long arg);
625 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
626 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
627 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
628 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629 static int stli_waitcarrier(struct tty_struct *tty, struct stlibrd *brdp,
630 struct stliport *portp, struct file *filp);
631 static int stli_setport(struct tty_struct *tty);
632 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
635 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
636 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
637 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
638 static long stli_mktiocm(unsigned long sigvalue);
639 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
640 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
641 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
642 static int stli_getbrdstats(combrd_t __user *bp);
643 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
644 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
645 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
646 static int stli_getportstruct(struct stliport __user *arg);
647 static int stli_getbrdstruct(struct stlibrd __user *arg);
648 static struct stlibrd *stli_allocbrd(void);
649
650 static void stli_ecpinit(struct stlibrd *brdp);
651 static void stli_ecpenable(struct stlibrd *brdp);
652 static void stli_ecpdisable(struct stlibrd *brdp);
653 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
654 static void stli_ecpreset(struct stlibrd *brdp);
655 static void stli_ecpintr(struct stlibrd *brdp);
656 static void stli_ecpeiinit(struct stlibrd *brdp);
657 static void stli_ecpeienable(struct stlibrd *brdp);
658 static void stli_ecpeidisable(struct stlibrd *brdp);
659 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
660 static void stli_ecpeireset(struct stlibrd *brdp);
661 static void stli_ecpmcenable(struct stlibrd *brdp);
662 static void stli_ecpmcdisable(struct stlibrd *brdp);
663 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
664 static void stli_ecpmcreset(struct stlibrd *brdp);
665 static void stli_ecppciinit(struct stlibrd *brdp);
666 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
667 static void stli_ecppcireset(struct stlibrd *brdp);
668
669 static void stli_onbinit(struct stlibrd *brdp);
670 static void stli_onbenable(struct stlibrd *brdp);
671 static void stli_onbdisable(struct stlibrd *brdp);
672 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
673 static void stli_onbreset(struct stlibrd *brdp);
674 static void stli_onbeinit(struct stlibrd *brdp);
675 static void stli_onbeenable(struct stlibrd *brdp);
676 static void stli_onbedisable(struct stlibrd *brdp);
677 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
678 static void stli_onbereset(struct stlibrd *brdp);
679 static void stli_bbyinit(struct stlibrd *brdp);
680 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
681 static void stli_bbyreset(struct stlibrd *brdp);
682 static void stli_stalinit(struct stlibrd *brdp);
683 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
684 static void stli_stalreset(struct stlibrd *brdp);
685
686 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
687
688 static int stli_initecp(struct stlibrd *brdp);
689 static int stli_initonb(struct stlibrd *brdp);
690 #if STLI_EISAPROBE != 0
691 static int stli_eisamemprobe(struct stlibrd *brdp);
692 #endif
693 static int stli_initports(struct stlibrd *brdp);
694
695 /*****************************************************************************/
696
697 /*
698 * Define the driver info for a user level shared memory device. This
699 * device will work sort of like the /dev/kmem device - except that it
700 * will give access to the shared memory on the Stallion intelligent
701 * board. This is also a very useful debugging tool.
702 */
703 static const struct file_operations stli_fsiomem = {
704 .owner = THIS_MODULE,
705 .read = stli_memread,
706 .write = stli_memwrite,
707 .ioctl = stli_memioctl,
708 };
709
710 /*****************************************************************************/
711
712 /*
713 * Define a timer_list entry for our poll routine. The slave board
714 * is polled every so often to see if anything needs doing. This is
715 * much cheaper on host cpu than using interrupts. It turns out to
716 * not increase character latency by much either...
717 */
718 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
719
720 static int stli_timeron;
721
722 /*
723 * Define the calculation for the timeout routine.
724 */
725 #define STLI_TIMEOUT (jiffies + 1)
726
727 /*****************************************************************************/
728
729 static struct class *istallion_class;
730
731 static void stli_cleanup_ports(struct stlibrd *brdp)
732 {
733 struct stliport *portp;
734 unsigned int j;
735 struct tty_struct *tty;
736
737 for (j = 0; j < STL_MAXPORTS; j++) {
738 portp = brdp->ports[j];
739 if (portp != NULL) {
740 tty = tty_port_tty_get(&portp->port);
741 if (tty != NULL) {
742 tty_hangup(tty);
743 tty_kref_put(tty);
744 }
745 kfree(portp);
746 }
747 }
748 }
749
750 /*****************************************************************************/
751
752 /*
753 * Parse the supplied argument string, into the board conf struct.
754 */
755
756 static int stli_parsebrd(struct stlconf *confp, char **argp)
757 {
758 unsigned int i;
759 char *sp;
760
761 if (argp[0] == NULL || *argp[0] == 0)
762 return 0;
763
764 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
765 *sp = tolower(*sp);
766
767 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
768 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
769 break;
770 }
771 if (i == ARRAY_SIZE(stli_brdstr)) {
772 printk("STALLION: unknown board name, %s?\n", argp[0]);
773 return 0;
774 }
775
776 confp->brdtype = stli_brdstr[i].type;
777 if (argp[1] != NULL && *argp[1] != 0)
778 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
779 if (argp[2] != NULL && *argp[2] != 0)
780 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
781 return(1);
782 }
783
784 /*****************************************************************************/
785
786 static int stli_open(struct tty_struct *tty, struct file *filp)
787 {
788 struct stlibrd *brdp;
789 struct stliport *portp;
790 unsigned int minordev, brdnr, portnr;
791 int rc;
792
793 minordev = tty->index;
794 brdnr = MINOR2BRD(minordev);
795 if (brdnr >= stli_nrbrds)
796 return -ENODEV;
797 brdp = stli_brds[brdnr];
798 if (brdp == NULL)
799 return -ENODEV;
800 if ((brdp->state & BST_STARTED) == 0)
801 return -ENODEV;
802 portnr = MINOR2PORT(minordev);
803 if (portnr > brdp->nrports)
804 return -ENODEV;
805
806 portp = brdp->ports[portnr];
807 if (portp == NULL)
808 return -ENODEV;
809 if (portp->devnr < 1)
810 return -ENODEV;
811
812
813 /*
814 * Check if this port is in the middle of closing. If so then wait
815 * until it is closed then return error status based on flag settings.
816 * The sleep here does not need interrupt protection since the wakeup
817 * for it is done with the same context.
818 */
819 if (portp->port.flags & ASYNC_CLOSING) {
820 interruptible_sleep_on(&portp->port.close_wait);
821 if (portp->port.flags & ASYNC_HUP_NOTIFY)
822 return -EAGAIN;
823 return -ERESTARTSYS;
824 }
825
826 /*
827 * On the first open of the device setup the port hardware, and
828 * initialize the per port data structure. Since initializing the port
829 * requires several commands to the board we will need to wait for any
830 * other open that is already initializing the port.
831 */
832 tty_port_tty_set(&portp->port, tty);
833 tty->driver_data = portp;
834 portp->port.count++;
835
836 wait_event_interruptible(portp->raw_wait,
837 !test_bit(ST_INITIALIZING, &portp->state));
838 if (signal_pending(current))
839 return -ERESTARTSYS;
840
841 if ((portp->port.flags & ASYNC_INITIALIZED) == 0) {
842 set_bit(ST_INITIALIZING, &portp->state);
843 if ((rc = stli_initopen(tty, brdp, portp)) >= 0) {
844 portp->port.flags |= ASYNC_INITIALIZED;
845 clear_bit(TTY_IO_ERROR, &tty->flags);
846 }
847 clear_bit(ST_INITIALIZING, &portp->state);
848 wake_up_interruptible(&portp->raw_wait);
849 if (rc < 0)
850 return rc;
851 }
852
853 /*
854 * Check if this port is in the middle of closing. If so then wait
855 * until it is closed then return error status, based on flag settings.
856 * The sleep here does not need interrupt protection since the wakeup
857 * for it is done with the same context.
858 */
859 if (portp->port.flags & ASYNC_CLOSING) {
860 interruptible_sleep_on(&portp->port.close_wait);
861 if (portp->port.flags & ASYNC_HUP_NOTIFY)
862 return -EAGAIN;
863 return -ERESTARTSYS;
864 }
865
866 /*
867 * Based on type of open being done check if it can overlap with any
868 * previous opens still in effect. If we are a normal serial device
869 * then also we might have to wait for carrier.
870 */
871 if (!(filp->f_flags & O_NONBLOCK)) {
872 if ((rc = stli_waitcarrier(tty, brdp, portp, filp)) != 0)
873 return rc;
874 }
875 portp->port.flags |= ASYNC_NORMAL_ACTIVE;
876 return 0;
877 }
878
879 /*****************************************************************************/
880
881 static void stli_close(struct tty_struct *tty, struct file *filp)
882 {
883 struct stlibrd *brdp;
884 struct stliport *portp;
885 unsigned long flags;
886
887 portp = tty->driver_data;
888 if (portp == NULL)
889 return;
890
891 spin_lock_irqsave(&stli_lock, flags);
892 if (tty_hung_up_p(filp)) {
893 spin_unlock_irqrestore(&stli_lock, flags);
894 return;
895 }
896 if ((tty->count == 1) && (portp->port.count != 1))
897 portp->port.count = 1;
898 if (portp->port.count-- > 1) {
899 spin_unlock_irqrestore(&stli_lock, flags);
900 return;
901 }
902
903 portp->port.flags |= ASYNC_CLOSING;
904
905 /*
906 * May want to wait for data to drain before closing. The BUSY flag
907 * keeps track of whether we are still transmitting or not. It is
908 * updated by messages from the slave - indicating when all chars
909 * really have drained.
910 */
911 if (tty == stli_txcooktty)
912 stli_flushchars(tty);
913 tty->closing = 1;
914 spin_unlock_irqrestore(&stli_lock, flags);
915
916 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
917 tty_wait_until_sent(tty, portp->closing_wait);
918
919 portp->port.flags &= ~ASYNC_INITIALIZED;
920 brdp = stli_brds[portp->brdnr];
921 stli_rawclose(brdp, portp, 0, 0);
922 if (tty->termios->c_cflag & HUPCL) {
923 stli_mkasysigs(&portp->asig, 0, 0);
924 if (test_bit(ST_CMDING, &portp->state))
925 set_bit(ST_DOSIGS, &portp->state);
926 else
927 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
928 sizeof(asysigs_t), 0);
929 }
930 clear_bit(ST_TXBUSY, &portp->state);
931 clear_bit(ST_RXSTOP, &portp->state);
932 set_bit(TTY_IO_ERROR, &tty->flags);
933 tty_ldisc_flush(tty);
934 set_bit(ST_DOFLUSHRX, &portp->state);
935 stli_flushbuffer(tty);
936
937 tty->closing = 0;
938 tty_port_tty_set(&portp->port, NULL);
939
940 if (portp->openwaitcnt) {
941 if (portp->close_delay)
942 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
943 wake_up_interruptible(&portp->port.open_wait);
944 }
945
946 portp->port.flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
947 wake_up_interruptible(&portp->port.close_wait);
948 }
949
950 /*****************************************************************************/
951
952 /*
953 * Carry out first open operations on a port. This involves a number of
954 * commands to be sent to the slave. We need to open the port, set the
955 * notification events, set the initial port settings, get and set the
956 * initial signal values. We sleep and wait in between each one. But
957 * this still all happens pretty quickly.
958 */
959
960 static int stli_initopen(struct tty_struct *tty,
961 struct stlibrd *brdp, struct stliport *portp)
962 {
963 asynotify_t nt;
964 asyport_t aport;
965 int rc;
966
967 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
968 return rc;
969
970 memset(&nt, 0, sizeof(asynotify_t));
971 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
972 nt.signal = SG_DCD;
973 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
974 sizeof(asynotify_t), 0)) < 0)
975 return rc;
976
977 stli_mkasyport(tty, portp, &aport, tty->termios);
978 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
979 sizeof(asyport_t), 0)) < 0)
980 return rc;
981
982 set_bit(ST_GETSIGS, &portp->state);
983 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
984 sizeof(asysigs_t), 1)) < 0)
985 return rc;
986 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
987 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
988 stli_mkasysigs(&portp->asig, 1, 1);
989 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
990 sizeof(asysigs_t), 0)) < 0)
991 return rc;
992
993 return 0;
994 }
995
996 /*****************************************************************************/
997
998 /*
999 * Send an open message to the slave. This will sleep waiting for the
1000 * acknowledgement, so must have user context. We need to co-ordinate
1001 * with close events here, since we don't want open and close events
1002 * to overlap.
1003 */
1004
1005 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1006 {
1007 cdkhdr_t __iomem *hdrp;
1008 cdkctrl_t __iomem *cp;
1009 unsigned char __iomem *bits;
1010 unsigned long flags;
1011 int rc;
1012
1013 /*
1014 * Send a message to the slave to open this port.
1015 */
1016
1017 /*
1018 * Slave is already closing this port. This can happen if a hangup
1019 * occurs on this port. So we must wait until it is complete. The
1020 * order of opens and closes may not be preserved across shared
1021 * memory, so we must wait until it is complete.
1022 */
1023 wait_event_interruptible(portp->raw_wait,
1024 !test_bit(ST_CLOSING, &portp->state));
1025 if (signal_pending(current)) {
1026 return -ERESTARTSYS;
1027 }
1028
1029 /*
1030 * Everything is ready now, so write the open message into shared
1031 * memory. Once the message is in set the service bits to say that
1032 * this port wants service.
1033 */
1034 spin_lock_irqsave(&brd_lock, flags);
1035 EBRDENABLE(brdp);
1036 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1037 writel(arg, &cp->openarg);
1038 writeb(1, &cp->open);
1039 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1040 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1041 portp->portidx;
1042 writeb(readb(bits) | portp->portbit, bits);
1043 EBRDDISABLE(brdp);
1044
1045 if (wait == 0) {
1046 spin_unlock_irqrestore(&brd_lock, flags);
1047 return 0;
1048 }
1049
1050 /*
1051 * Slave is in action, so now we must wait for the open acknowledgment
1052 * to come back.
1053 */
1054 rc = 0;
1055 set_bit(ST_OPENING, &portp->state);
1056 spin_unlock_irqrestore(&brd_lock, flags);
1057
1058 wait_event_interruptible(portp->raw_wait,
1059 !test_bit(ST_OPENING, &portp->state));
1060 if (signal_pending(current))
1061 rc = -ERESTARTSYS;
1062
1063 if ((rc == 0) && (portp->rc != 0))
1064 rc = -EIO;
1065 return rc;
1066 }
1067
1068 /*****************************************************************************/
1069
1070 /*
1071 * Send a close message to the slave. Normally this will sleep waiting
1072 * for the acknowledgement, but if wait parameter is 0 it will not. If
1073 * wait is true then must have user context (to sleep).
1074 */
1075
1076 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1077 {
1078 cdkhdr_t __iomem *hdrp;
1079 cdkctrl_t __iomem *cp;
1080 unsigned char __iomem *bits;
1081 unsigned long flags;
1082 int rc;
1083
1084 /*
1085 * Slave is already closing this port. This can happen if a hangup
1086 * occurs on this port.
1087 */
1088 if (wait) {
1089 wait_event_interruptible(portp->raw_wait,
1090 !test_bit(ST_CLOSING, &portp->state));
1091 if (signal_pending(current)) {
1092 return -ERESTARTSYS;
1093 }
1094 }
1095
1096 /*
1097 * Write the close command into shared memory.
1098 */
1099 spin_lock_irqsave(&brd_lock, flags);
1100 EBRDENABLE(brdp);
1101 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1102 writel(arg, &cp->closearg);
1103 writeb(1, &cp->close);
1104 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1105 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1106 portp->portidx;
1107 writeb(readb(bits) |portp->portbit, bits);
1108 EBRDDISABLE(brdp);
1109
1110 set_bit(ST_CLOSING, &portp->state);
1111 spin_unlock_irqrestore(&brd_lock, flags);
1112
1113 if (wait == 0)
1114 return 0;
1115
1116 /*
1117 * Slave is in action, so now we must wait for the open acknowledgment
1118 * to come back.
1119 */
1120 rc = 0;
1121 wait_event_interruptible(portp->raw_wait,
1122 !test_bit(ST_CLOSING, &portp->state));
1123 if (signal_pending(current))
1124 rc = -ERESTARTSYS;
1125
1126 if ((rc == 0) && (portp->rc != 0))
1127 rc = -EIO;
1128 return rc;
1129 }
1130
1131 /*****************************************************************************/
1132
1133 /*
1134 * Send a command to the slave and wait for the response. This must
1135 * have user context (it sleeps). This routine is generic in that it
1136 * can send any type of command. Its purpose is to wait for that command
1137 * to complete (as opposed to initiating the command then returning).
1138 */
1139
1140 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1141 {
1142 wait_event_interruptible(portp->raw_wait,
1143 !test_bit(ST_CMDING, &portp->state));
1144 if (signal_pending(current))
1145 return -ERESTARTSYS;
1146
1147 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1148
1149 wait_event_interruptible(portp->raw_wait,
1150 !test_bit(ST_CMDING, &portp->state));
1151 if (signal_pending(current))
1152 return -ERESTARTSYS;
1153
1154 if (portp->rc != 0)
1155 return -EIO;
1156 return 0;
1157 }
1158
1159 /*****************************************************************************/
1160
1161 /*
1162 * Send the termios settings for this port to the slave. This sleeps
1163 * waiting for the command to complete - so must have user context.
1164 */
1165
1166 static int stli_setport(struct tty_struct *tty)
1167 {
1168 struct stliport *portp = tty->driver_data;
1169 struct stlibrd *brdp;
1170 asyport_t aport;
1171
1172 if (portp == NULL)
1173 return -ENODEV;
1174 if (portp->brdnr >= stli_nrbrds)
1175 return -ENODEV;
1176 brdp = stli_brds[portp->brdnr];
1177 if (brdp == NULL)
1178 return -ENODEV;
1179
1180 stli_mkasyport(tty, portp, &aport, tty->termios);
1181 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1182 }
1183
1184 /*****************************************************************************/
1185
1186 /*
1187 * Possibly need to wait for carrier (DCD signal) to come high. Say
1188 * maybe because if we are clocal then we don't need to wait...
1189 */
1190
1191 static int stli_waitcarrier(struct tty_struct *tty, struct stlibrd *brdp,
1192 struct stliport *portp, struct file *filp)
1193 {
1194 unsigned long flags;
1195 int rc, doclocal;
1196
1197 rc = 0;
1198 doclocal = 0;
1199
1200 if (tty->termios->c_cflag & CLOCAL)
1201 doclocal++;
1202
1203 spin_lock_irqsave(&stli_lock, flags);
1204 portp->openwaitcnt++;
1205 if (! tty_hung_up_p(filp))
1206 portp->port.count--;
1207 spin_unlock_irqrestore(&stli_lock, flags);
1208
1209 for (;;) {
1210 stli_mkasysigs(&portp->asig, 1, 1);
1211 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1212 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1213 break;
1214 if (tty_hung_up_p(filp) ||
1215 ((portp->port.flags & ASYNC_INITIALIZED) == 0)) {
1216 if (portp->port.flags & ASYNC_HUP_NOTIFY)
1217 rc = -EBUSY;
1218 else
1219 rc = -ERESTARTSYS;
1220 break;
1221 }
1222 if (((portp->port.flags & ASYNC_CLOSING) == 0) &&
1223 (doclocal || (portp->sigs & TIOCM_CD))) {
1224 break;
1225 }
1226 if (signal_pending(current)) {
1227 rc = -ERESTARTSYS;
1228 break;
1229 }
1230 interruptible_sleep_on(&portp->port.open_wait);
1231 }
1232
1233 spin_lock_irqsave(&stli_lock, flags);
1234 if (! tty_hung_up_p(filp))
1235 portp->port.count++;
1236 portp->openwaitcnt--;
1237 spin_unlock_irqrestore(&stli_lock, flags);
1238
1239 return rc;
1240 }
1241
1242 /*****************************************************************************/
1243
1244 /*
1245 * Write routine. Take the data and put it in the shared memory ring
1246 * queue. If port is not already sending chars then need to mark the
1247 * service bits for this port.
1248 */
1249
1250 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1251 {
1252 cdkasy_t __iomem *ap;
1253 cdkhdr_t __iomem *hdrp;
1254 unsigned char __iomem *bits;
1255 unsigned char __iomem *shbuf;
1256 unsigned char *chbuf;
1257 struct stliport *portp;
1258 struct stlibrd *brdp;
1259 unsigned int len, stlen, head, tail, size;
1260 unsigned long flags;
1261
1262 if (tty == stli_txcooktty)
1263 stli_flushchars(tty);
1264 portp = tty->driver_data;
1265 if (portp == NULL)
1266 return 0;
1267 if (portp->brdnr >= stli_nrbrds)
1268 return 0;
1269 brdp = stli_brds[portp->brdnr];
1270 if (brdp == NULL)
1271 return 0;
1272 chbuf = (unsigned char *) buf;
1273
1274 /*
1275 * All data is now local, shove as much as possible into shared memory.
1276 */
1277 spin_lock_irqsave(&brd_lock, flags);
1278 EBRDENABLE(brdp);
1279 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1280 head = (unsigned int) readw(&ap->txq.head);
1281 tail = (unsigned int) readw(&ap->txq.tail);
1282 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1283 tail = (unsigned int) readw(&ap->txq.tail);
1284 size = portp->txsize;
1285 if (head >= tail) {
1286 len = size - (head - tail) - 1;
1287 stlen = size - head;
1288 } else {
1289 len = tail - head - 1;
1290 stlen = len;
1291 }
1292
1293 len = min(len, (unsigned int)count);
1294 count = 0;
1295 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1296
1297 while (len > 0) {
1298 stlen = min(len, stlen);
1299 memcpy_toio(shbuf + head, chbuf, stlen);
1300 chbuf += stlen;
1301 len -= stlen;
1302 count += stlen;
1303 head += stlen;
1304 if (head >= size) {
1305 head = 0;
1306 stlen = tail;
1307 }
1308 }
1309
1310 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1311 writew(head, &ap->txq.head);
1312 if (test_bit(ST_TXBUSY, &portp->state)) {
1313 if (readl(&ap->changed.data) & DT_TXEMPTY)
1314 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1315 }
1316 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1317 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1318 portp->portidx;
1319 writeb(readb(bits) | portp->portbit, bits);
1320 set_bit(ST_TXBUSY, &portp->state);
1321 EBRDDISABLE(brdp);
1322 spin_unlock_irqrestore(&brd_lock, flags);
1323
1324 return(count);
1325 }
1326
1327 /*****************************************************************************/
1328
1329 /*
1330 * Output a single character. We put it into a temporary local buffer
1331 * (for speed) then write out that buffer when the flushchars routine
1332 * is called. There is a safety catch here so that if some other port
1333 * writes chars before the current buffer has been, then we write them
1334 * first them do the new ports.
1335 */
1336
1337 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1338 {
1339 if (tty != stli_txcooktty) {
1340 if (stli_txcooktty != NULL)
1341 stli_flushchars(stli_txcooktty);
1342 stli_txcooktty = tty;
1343 }
1344
1345 stli_txcookbuf[stli_txcooksize++] = ch;
1346 return 0;
1347 }
1348
1349 /*****************************************************************************/
1350
1351 /*
1352 * Transfer characters from the local TX cooking buffer to the board.
1353 * We sort of ignore the tty that gets passed in here. We rely on the
1354 * info stored with the TX cook buffer to tell us which port to flush
1355 * the data on. In any case we clean out the TX cook buffer, for re-use
1356 * by someone else.
1357 */
1358
1359 static void stli_flushchars(struct tty_struct *tty)
1360 {
1361 cdkhdr_t __iomem *hdrp;
1362 unsigned char __iomem *bits;
1363 cdkasy_t __iomem *ap;
1364 struct tty_struct *cooktty;
1365 struct stliport *portp;
1366 struct stlibrd *brdp;
1367 unsigned int len, stlen, head, tail, size, count, cooksize;
1368 unsigned char *buf;
1369 unsigned char __iomem *shbuf;
1370 unsigned long flags;
1371
1372 cooksize = stli_txcooksize;
1373 cooktty = stli_txcooktty;
1374 stli_txcooksize = 0;
1375 stli_txcookrealsize = 0;
1376 stli_txcooktty = NULL;
1377
1378 if (tty == NULL)
1379 return;
1380 if (cooktty == NULL)
1381 return;
1382 if (tty != cooktty)
1383 tty = cooktty;
1384 if (cooksize == 0)
1385 return;
1386
1387 portp = tty->driver_data;
1388 if (portp == NULL)
1389 return;
1390 if (portp->brdnr >= stli_nrbrds)
1391 return;
1392 brdp = stli_brds[portp->brdnr];
1393 if (brdp == NULL)
1394 return;
1395
1396 spin_lock_irqsave(&brd_lock, flags);
1397 EBRDENABLE(brdp);
1398
1399 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1400 head = (unsigned int) readw(&ap->txq.head);
1401 tail = (unsigned int) readw(&ap->txq.tail);
1402 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1403 tail = (unsigned int) readw(&ap->txq.tail);
1404 size = portp->txsize;
1405 if (head >= tail) {
1406 len = size - (head - tail) - 1;
1407 stlen = size - head;
1408 } else {
1409 len = tail - head - 1;
1410 stlen = len;
1411 }
1412
1413 len = min(len, cooksize);
1414 count = 0;
1415 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1416 buf = stli_txcookbuf;
1417
1418 while (len > 0) {
1419 stlen = min(len, stlen);
1420 memcpy_toio(shbuf + head, buf, stlen);
1421 buf += stlen;
1422 len -= stlen;
1423 count += stlen;
1424 head += stlen;
1425 if (head >= size) {
1426 head = 0;
1427 stlen = tail;
1428 }
1429 }
1430
1431 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1432 writew(head, &ap->txq.head);
1433
1434 if (test_bit(ST_TXBUSY, &portp->state)) {
1435 if (readl(&ap->changed.data) & DT_TXEMPTY)
1436 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1437 }
1438 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1439 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1440 portp->portidx;
1441 writeb(readb(bits) | portp->portbit, bits);
1442 set_bit(ST_TXBUSY, &portp->state);
1443
1444 EBRDDISABLE(brdp);
1445 spin_unlock_irqrestore(&brd_lock, flags);
1446 }
1447
1448 /*****************************************************************************/
1449
1450 static int stli_writeroom(struct tty_struct *tty)
1451 {
1452 cdkasyrq_t __iomem *rp;
1453 struct stliport *portp;
1454 struct stlibrd *brdp;
1455 unsigned int head, tail, len;
1456 unsigned long flags;
1457
1458 if (tty == stli_txcooktty) {
1459 if (stli_txcookrealsize != 0) {
1460 len = stli_txcookrealsize - stli_txcooksize;
1461 return len;
1462 }
1463 }
1464
1465 portp = tty->driver_data;
1466 if (portp == NULL)
1467 return 0;
1468 if (portp->brdnr >= stli_nrbrds)
1469 return 0;
1470 brdp = stli_brds[portp->brdnr];
1471 if (brdp == NULL)
1472 return 0;
1473
1474 spin_lock_irqsave(&brd_lock, flags);
1475 EBRDENABLE(brdp);
1476 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1477 head = (unsigned int) readw(&rp->head);
1478 tail = (unsigned int) readw(&rp->tail);
1479 if (tail != ((unsigned int) readw(&rp->tail)))
1480 tail = (unsigned int) readw(&rp->tail);
1481 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1482 len--;
1483 EBRDDISABLE(brdp);
1484 spin_unlock_irqrestore(&brd_lock, flags);
1485
1486 if (tty == stli_txcooktty) {
1487 stli_txcookrealsize = len;
1488 len -= stli_txcooksize;
1489 }
1490 return len;
1491 }
1492
1493 /*****************************************************************************/
1494
1495 /*
1496 * Return the number of characters in the transmit buffer. Normally we
1497 * will return the number of chars in the shared memory ring queue.
1498 * We need to kludge around the case where the shared memory buffer is
1499 * empty but not all characters have drained yet, for this case just
1500 * return that there is 1 character in the buffer!
1501 */
1502
1503 static int stli_charsinbuffer(struct tty_struct *tty)
1504 {
1505 cdkasyrq_t __iomem *rp;
1506 struct stliport *portp;
1507 struct stlibrd *brdp;
1508 unsigned int head, tail, len;
1509 unsigned long flags;
1510
1511 if (tty == stli_txcooktty)
1512 stli_flushchars(tty);
1513 portp = tty->driver_data;
1514 if (portp == NULL)
1515 return 0;
1516 if (portp->brdnr >= stli_nrbrds)
1517 return 0;
1518 brdp = stli_brds[portp->brdnr];
1519 if (brdp == NULL)
1520 return 0;
1521
1522 spin_lock_irqsave(&brd_lock, flags);
1523 EBRDENABLE(brdp);
1524 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1525 head = (unsigned int) readw(&rp->head);
1526 tail = (unsigned int) readw(&rp->tail);
1527 if (tail != ((unsigned int) readw(&rp->tail)))
1528 tail = (unsigned int) readw(&rp->tail);
1529 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1530 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1531 len = 1;
1532 EBRDDISABLE(brdp);
1533 spin_unlock_irqrestore(&brd_lock, flags);
1534
1535 return len;
1536 }
1537
1538 /*****************************************************************************/
1539
1540 /*
1541 * Generate the serial struct info.
1542 */
1543
1544 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1545 {
1546 struct serial_struct sio;
1547 struct stlibrd *brdp;
1548
1549 memset(&sio, 0, sizeof(struct serial_struct));
1550 sio.type = PORT_UNKNOWN;
1551 sio.line = portp->portnr;
1552 sio.irq = 0;
1553 sio.flags = portp->port.flags;
1554 sio.baud_base = portp->baud_base;
1555 sio.close_delay = portp->close_delay;
1556 sio.closing_wait = portp->closing_wait;
1557 sio.custom_divisor = portp->custom_divisor;
1558 sio.xmit_fifo_size = 0;
1559 sio.hub6 = 0;
1560
1561 brdp = stli_brds[portp->brdnr];
1562 if (brdp != NULL)
1563 sio.port = brdp->iobase;
1564
1565 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1566 -EFAULT : 0;
1567 }
1568
1569 /*****************************************************************************/
1570
1571 /*
1572 * Set port according to the serial struct info.
1573 * At this point we do not do any auto-configure stuff, so we will
1574 * just quietly ignore any requests to change irq, etc.
1575 */
1576
1577 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1578 {
1579 struct serial_struct sio;
1580 int rc;
1581 struct stliport *portp = tty->driver_data;
1582
1583 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1584 return -EFAULT;
1585 if (!capable(CAP_SYS_ADMIN)) {
1586 if ((sio.baud_base != portp->baud_base) ||
1587 (sio.close_delay != portp->close_delay) ||
1588 ((sio.flags & ~ASYNC_USR_MASK) !=
1589 (portp->port.flags & ~ASYNC_USR_MASK)))
1590 return -EPERM;
1591 }
1592
1593 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1594 (sio.flags & ASYNC_USR_MASK);
1595 portp->baud_base = sio.baud_base;
1596 portp->close_delay = sio.close_delay;
1597 portp->closing_wait = sio.closing_wait;
1598 portp->custom_divisor = sio.custom_divisor;
1599
1600 if ((rc = stli_setport(tty)) < 0)
1601 return rc;
1602 return 0;
1603 }
1604
1605 /*****************************************************************************/
1606
1607 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1608 {
1609 struct stliport *portp = tty->driver_data;
1610 struct stlibrd *brdp;
1611 int rc;
1612
1613 if (portp == NULL)
1614 return -ENODEV;
1615 if (portp->brdnr >= stli_nrbrds)
1616 return 0;
1617 brdp = stli_brds[portp->brdnr];
1618 if (brdp == NULL)
1619 return 0;
1620 if (tty->flags & (1 << TTY_IO_ERROR))
1621 return -EIO;
1622
1623 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1624 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1625 return rc;
1626
1627 return stli_mktiocm(portp->asig.sigvalue);
1628 }
1629
1630 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1631 unsigned int set, unsigned int clear)
1632 {
1633 struct stliport *portp = tty->driver_data;
1634 struct stlibrd *brdp;
1635 int rts = -1, dtr = -1;
1636
1637 if (portp == NULL)
1638 return -ENODEV;
1639 if (portp->brdnr >= stli_nrbrds)
1640 return 0;
1641 brdp = stli_brds[portp->brdnr];
1642 if (brdp == NULL)
1643 return 0;
1644 if (tty->flags & (1 << TTY_IO_ERROR))
1645 return -EIO;
1646
1647 if (set & TIOCM_RTS)
1648 rts = 1;
1649 if (set & TIOCM_DTR)
1650 dtr = 1;
1651 if (clear & TIOCM_RTS)
1652 rts = 0;
1653 if (clear & TIOCM_DTR)
1654 dtr = 0;
1655
1656 stli_mkasysigs(&portp->asig, dtr, rts);
1657
1658 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1659 sizeof(asysigs_t), 0);
1660 }
1661
1662 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1663 {
1664 struct stliport *portp;
1665 struct stlibrd *brdp;
1666 int rc;
1667 void __user *argp = (void __user *)arg;
1668
1669 portp = tty->driver_data;
1670 if (portp == NULL)
1671 return -ENODEV;
1672 if (portp->brdnr >= stli_nrbrds)
1673 return 0;
1674 brdp = stli_brds[portp->brdnr];
1675 if (brdp == NULL)
1676 return 0;
1677
1678 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1679 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1680 if (tty->flags & (1 << TTY_IO_ERROR))
1681 return -EIO;
1682 }
1683
1684 rc = 0;
1685
1686 switch (cmd) {
1687 case TIOCGSERIAL:
1688 rc = stli_getserial(portp, argp);
1689 break;
1690 case TIOCSSERIAL:
1691 rc = stli_setserial(tty, argp);
1692 break;
1693 case STL_GETPFLAG:
1694 rc = put_user(portp->pflag, (unsigned __user *)argp);
1695 break;
1696 case STL_SETPFLAG:
1697 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1698 stli_setport(tty);
1699 break;
1700 case COM_GETPORTSTATS:
1701 rc = stli_getportstats(tty, portp, argp);
1702 break;
1703 case COM_CLRPORTSTATS:
1704 rc = stli_clrportstats(portp, argp);
1705 break;
1706 case TIOCSERCONFIG:
1707 case TIOCSERGWILD:
1708 case TIOCSERSWILD:
1709 case TIOCSERGETLSR:
1710 case TIOCSERGSTRUCT:
1711 case TIOCSERGETMULTI:
1712 case TIOCSERSETMULTI:
1713 default:
1714 rc = -ENOIOCTLCMD;
1715 break;
1716 }
1717
1718 return rc;
1719 }
1720
1721 /*****************************************************************************/
1722
1723 /*
1724 * This routine assumes that we have user context and can sleep.
1725 * Looks like it is true for the current ttys implementation..!!
1726 */
1727
1728 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1729 {
1730 struct stliport *portp;
1731 struct stlibrd *brdp;
1732 struct ktermios *tiosp;
1733 asyport_t aport;
1734
1735 if (tty == NULL)
1736 return;
1737 portp = tty->driver_data;
1738 if (portp == NULL)
1739 return;
1740 if (portp->brdnr >= stli_nrbrds)
1741 return;
1742 brdp = stli_brds[portp->brdnr];
1743 if (brdp == NULL)
1744 return;
1745
1746 tiosp = tty->termios;
1747
1748 stli_mkasyport(tty, portp, &aport, tiosp);
1749 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1750 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1751 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1752 sizeof(asysigs_t), 0);
1753 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1754 tty->hw_stopped = 0;
1755 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1756 wake_up_interruptible(&portp->port.open_wait);
1757 }
1758
1759 /*****************************************************************************/
1760
1761 /*
1762 * Attempt to flow control who ever is sending us data. We won't really
1763 * do any flow control action here. We can't directly, and even if we
1764 * wanted to we would have to send a command to the slave. The slave
1765 * knows how to flow control, and will do so when its buffers reach its
1766 * internal high water marks. So what we will do is set a local state
1767 * bit that will stop us sending any RX data up from the poll routine
1768 * (which is the place where RX data from the slave is handled).
1769 */
1770
1771 static void stli_throttle(struct tty_struct *tty)
1772 {
1773 struct stliport *portp = tty->driver_data;
1774 if (portp == NULL)
1775 return;
1776 set_bit(ST_RXSTOP, &portp->state);
1777 }
1778
1779 /*****************************************************************************/
1780
1781 /*
1782 * Unflow control the device sending us data... That means that all
1783 * we have to do is clear the RXSTOP state bit. The next poll call
1784 * will then be able to pass the RX data back up.
1785 */
1786
1787 static void stli_unthrottle(struct tty_struct *tty)
1788 {
1789 struct stliport *portp = tty->driver_data;
1790 if (portp == NULL)
1791 return;
1792 clear_bit(ST_RXSTOP, &portp->state);
1793 }
1794
1795 /*****************************************************************************/
1796
1797 /*
1798 * Stop the transmitter.
1799 */
1800
1801 static void stli_stop(struct tty_struct *tty)
1802 {
1803 }
1804
1805 /*****************************************************************************/
1806
1807 /*
1808 * Start the transmitter again.
1809 */
1810
1811 static void stli_start(struct tty_struct *tty)
1812 {
1813 }
1814
1815 /*****************************************************************************/
1816
1817 /*
1818 * Hangup this port. This is pretty much like closing the port, only
1819 * a little more brutal. No waiting for data to drain. Shutdown the
1820 * port and maybe drop signals. This is rather tricky really. We want
1821 * to close the port as well.
1822 */
1823
1824 static void stli_hangup(struct tty_struct *tty)
1825 {
1826 struct stliport *portp;
1827 struct stlibrd *brdp;
1828 unsigned long flags;
1829
1830 portp = tty->driver_data;
1831 if (portp == NULL)
1832 return;
1833 if (portp->brdnr >= stli_nrbrds)
1834 return;
1835 brdp = stli_brds[portp->brdnr];
1836 if (brdp == NULL)
1837 return;
1838
1839 portp->port.flags &= ~ASYNC_INITIALIZED;
1840
1841 if (!test_bit(ST_CLOSING, &portp->state))
1842 stli_rawclose(brdp, portp, 0, 0);
1843
1844 spin_lock_irqsave(&stli_lock, flags);
1845 if (tty->termios->c_cflag & HUPCL) {
1846 stli_mkasysigs(&portp->asig, 0, 0);
1847 if (test_bit(ST_CMDING, &portp->state)) {
1848 set_bit(ST_DOSIGS, &portp->state);
1849 set_bit(ST_DOFLUSHTX, &portp->state);
1850 set_bit(ST_DOFLUSHRX, &portp->state);
1851 } else {
1852 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1853 &portp->asig, sizeof(asysigs_t), 0);
1854 }
1855 }
1856
1857 clear_bit(ST_TXBUSY, &portp->state);
1858 clear_bit(ST_RXSTOP, &portp->state);
1859 set_bit(TTY_IO_ERROR, &tty->flags);
1860 tty_port_tty_set(&portp->port, NULL);
1861 portp->port.flags &= ~ASYNC_NORMAL_ACTIVE;
1862 portp->port.count = 0;
1863 spin_unlock_irqrestore(&stli_lock, flags);
1864
1865 wake_up_interruptible(&portp->port.open_wait);
1866 }
1867
1868 /*****************************************************************************/
1869
1870 /*
1871 * Flush characters from the lower buffer. We may not have user context
1872 * so we cannot sleep waiting for it to complete. Also we need to check
1873 * if there is chars for this port in the TX cook buffer, and flush them
1874 * as well.
1875 */
1876
1877 static void stli_flushbuffer(struct tty_struct *tty)
1878 {
1879 struct stliport *portp;
1880 struct stlibrd *brdp;
1881 unsigned long ftype, flags;
1882
1883 portp = tty->driver_data;
1884 if (portp == NULL)
1885 return;
1886 if (portp->brdnr >= stli_nrbrds)
1887 return;
1888 brdp = stli_brds[portp->brdnr];
1889 if (brdp == NULL)
1890 return;
1891
1892 spin_lock_irqsave(&brd_lock, flags);
1893 if (tty == stli_txcooktty) {
1894 stli_txcooktty = NULL;
1895 stli_txcooksize = 0;
1896 stli_txcookrealsize = 0;
1897 }
1898 if (test_bit(ST_CMDING, &portp->state)) {
1899 set_bit(ST_DOFLUSHTX, &portp->state);
1900 } else {
1901 ftype = FLUSHTX;
1902 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1903 ftype |= FLUSHRX;
1904 clear_bit(ST_DOFLUSHRX, &portp->state);
1905 }
1906 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1907 }
1908 spin_unlock_irqrestore(&brd_lock, flags);
1909 tty_wakeup(tty);
1910 }
1911
1912 /*****************************************************************************/
1913
1914 static int stli_breakctl(struct tty_struct *tty, int state)
1915 {
1916 struct stlibrd *brdp;
1917 struct stliport *portp;
1918 long arg;
1919
1920 portp = tty->driver_data;
1921 if (portp == NULL)
1922 return -EINVAL;
1923 if (portp->brdnr >= stli_nrbrds)
1924 return -EINVAL;
1925 brdp = stli_brds[portp->brdnr];
1926 if (brdp == NULL)
1927 return -EINVAL;
1928
1929 arg = (state == -1) ? BREAKON : BREAKOFF;
1930 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1931 return 0;
1932 }
1933
1934 /*****************************************************************************/
1935
1936 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1937 {
1938 struct stliport *portp;
1939 unsigned long tend;
1940
1941 if (tty == NULL)
1942 return;
1943 portp = tty->driver_data;
1944 if (portp == NULL)
1945 return;
1946
1947 if (timeout == 0)
1948 timeout = HZ;
1949 tend = jiffies + timeout;
1950
1951 while (test_bit(ST_TXBUSY, &portp->state)) {
1952 if (signal_pending(current))
1953 break;
1954 msleep_interruptible(20);
1955 if (time_after_eq(jiffies, tend))
1956 break;
1957 }
1958 }
1959
1960 /*****************************************************************************/
1961
1962 static void stli_sendxchar(struct tty_struct *tty, char ch)
1963 {
1964 struct stlibrd *brdp;
1965 struct stliport *portp;
1966 asyctrl_t actrl;
1967
1968 portp = tty->driver_data;
1969 if (portp == NULL)
1970 return;
1971 if (portp->brdnr >= stli_nrbrds)
1972 return;
1973 brdp = stli_brds[portp->brdnr];
1974 if (brdp == NULL)
1975 return;
1976
1977 memset(&actrl, 0, sizeof(asyctrl_t));
1978 if (ch == STOP_CHAR(tty)) {
1979 actrl.rxctrl = CT_STOPFLOW;
1980 } else if (ch == START_CHAR(tty)) {
1981 actrl.rxctrl = CT_STARTFLOW;
1982 } else {
1983 actrl.txctrl = CT_SENDCHR;
1984 actrl.tximdch = ch;
1985 }
1986 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1987 }
1988
1989 /*****************************************************************************/
1990
1991 #define MAXLINE 80
1992
1993 /*
1994 * Format info for a specified port. The line is deliberately limited
1995 * to 80 characters. (If it is too long it will be truncated, if too
1996 * short then padded with spaces).
1997 */
1998
1999 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos)
2000 {
2001 char *sp, *uart;
2002 int rc, cnt;
2003
2004 rc = stli_portcmdstats(NULL, portp);
2005
2006 uart = "UNKNOWN";
2007 if (brdp->state & BST_STARTED) {
2008 switch (stli_comstats.hwid) {
2009 case 0: uart = "2681"; break;
2010 case 1: uart = "SC26198"; break;
2011 default:uart = "CD1400"; break;
2012 }
2013 }
2014
2015 sp = pos;
2016 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2017
2018 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2019 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2020 (int) stli_comstats.rxtotal);
2021
2022 if (stli_comstats.rxframing)
2023 sp += sprintf(sp, " fe:%d",
2024 (int) stli_comstats.rxframing);
2025 if (stli_comstats.rxparity)
2026 sp += sprintf(sp, " pe:%d",
2027 (int) stli_comstats.rxparity);
2028 if (stli_comstats.rxbreaks)
2029 sp += sprintf(sp, " brk:%d",
2030 (int) stli_comstats.rxbreaks);
2031 if (stli_comstats.rxoverrun)
2032 sp += sprintf(sp, " oe:%d",
2033 (int) stli_comstats.rxoverrun);
2034
2035 cnt = sprintf(sp, "%s%s%s%s%s ",
2036 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2037 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2038 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2039 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2040 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2041 *sp = ' ';
2042 sp += cnt;
2043 }
2044
2045 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2046 *sp++ = ' ';
2047 if (cnt >= MAXLINE)
2048 pos[(MAXLINE - 2)] = '+';
2049 pos[(MAXLINE - 1)] = '\n';
2050
2051 return(MAXLINE);
2052 }
2053
2054 /*****************************************************************************/
2055
2056 /*
2057 * Port info, read from the /proc file system.
2058 */
2059
2060 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2061 {
2062 struct stlibrd *brdp;
2063 struct stliport *portp;
2064 unsigned int brdnr, portnr, totalport;
2065 int curoff, maxoff;
2066 char *pos;
2067
2068 pos = page;
2069 totalport = 0;
2070 curoff = 0;
2071
2072 if (off == 0) {
2073 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2074 stli_drvversion);
2075 while (pos < (page + MAXLINE - 1))
2076 *pos++ = ' ';
2077 *pos++ = '\n';
2078 }
2079 curoff = MAXLINE;
2080
2081 /*
2082 * We scan through for each board, panel and port. The offset is
2083 * calculated on the fly, and irrelevant ports are skipped.
2084 */
2085 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2086 brdp = stli_brds[brdnr];
2087 if (brdp == NULL)
2088 continue;
2089 if (brdp->state == 0)
2090 continue;
2091
2092 maxoff = curoff + (brdp->nrports * MAXLINE);
2093 if (off >= maxoff) {
2094 curoff = maxoff;
2095 continue;
2096 }
2097
2098 totalport = brdnr * STL_MAXPORTS;
2099 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2100 totalport++) {
2101 portp = brdp->ports[portnr];
2102 if (portp == NULL)
2103 continue;
2104 if (off >= (curoff += MAXLINE))
2105 continue;
2106 if ((pos - page + MAXLINE) > count)
2107 goto stli_readdone;
2108 pos += stli_portinfo(brdp, portp, totalport, pos);
2109 }
2110 }
2111
2112 *eof = 1;
2113
2114 stli_readdone:
2115 *start = page;
2116 return(pos - page);
2117 }
2118
2119 /*****************************************************************************/
2120
2121 /*
2122 * Generic send command routine. This will send a message to the slave,
2123 * of the specified type with the specified argument. Must be very
2124 * careful of data that will be copied out from shared memory -
2125 * containing command results. The command completion is all done from
2126 * a poll routine that does not have user context. Therefore you cannot
2127 * copy back directly into user space, or to the kernel stack of a
2128 * process. This routine does not sleep, so can be called from anywhere.
2129 *
2130 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2131 * entry point)
2132 */
2133
2134 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2135 {
2136 cdkhdr_t __iomem *hdrp;
2137 cdkctrl_t __iomem *cp;
2138 unsigned char __iomem *bits;
2139
2140 if (test_bit(ST_CMDING, &portp->state)) {
2141 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2142 (int) cmd);
2143 return;
2144 }
2145
2146 EBRDENABLE(brdp);
2147 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2148 if (size > 0) {
2149 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2150 if (copyback) {
2151 portp->argp = arg;
2152 portp->argsize = size;
2153 }
2154 }
2155 writel(0, &cp->status);
2156 writel(cmd, &cp->cmd);
2157 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2158 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2159 portp->portidx;
2160 writeb(readb(bits) | portp->portbit, bits);
2161 set_bit(ST_CMDING, &portp->state);
2162 EBRDDISABLE(brdp);
2163 }
2164
2165 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2166 {
2167 unsigned long flags;
2168
2169 spin_lock_irqsave(&brd_lock, flags);
2170 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2171 spin_unlock_irqrestore(&brd_lock, flags);
2172 }
2173
2174 /*****************************************************************************/
2175
2176 /*
2177 * Read data from shared memory. This assumes that the shared memory
2178 * is enabled and that interrupts are off. Basically we just empty out
2179 * the shared memory buffer into the tty buffer. Must be careful to
2180 * handle the case where we fill up the tty buffer, but still have
2181 * more chars to unload.
2182 */
2183
2184 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2185 {
2186 cdkasyrq_t __iomem *rp;
2187 char __iomem *shbuf;
2188 struct tty_struct *tty;
2189 unsigned int head, tail, size;
2190 unsigned int len, stlen;
2191
2192 if (test_bit(ST_RXSTOP, &portp->state))
2193 return;
2194 tty = tty_port_tty_get(&portp->port);
2195 if (tty == NULL)
2196 return;
2197
2198 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2199 head = (unsigned int) readw(&rp->head);
2200 if (head != ((unsigned int) readw(&rp->head)))
2201 head = (unsigned int) readw(&rp->head);
2202 tail = (unsigned int) readw(&rp->tail);
2203 size = portp->rxsize;
2204 if (head >= tail) {
2205 len = head - tail;
2206 stlen = len;
2207 } else {
2208 len = size - (tail - head);
2209 stlen = size - tail;
2210 }
2211
2212 len = tty_buffer_request_room(tty, len);
2213
2214 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2215
2216 while (len > 0) {
2217 unsigned char *cptr;
2218
2219 stlen = min(len, stlen);
2220 tty_prepare_flip_string(tty, &cptr, stlen);
2221 memcpy_fromio(cptr, shbuf + tail, stlen);
2222 len -= stlen;
2223 tail += stlen;
2224 if (tail >= size) {
2225 tail = 0;
2226 stlen = head;
2227 }
2228 }
2229 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2230 writew(tail, &rp->tail);
2231
2232 if (head != tail)
2233 set_bit(ST_RXING, &portp->state);
2234
2235 tty_schedule_flip(tty);
2236 tty_kref_put(tty);
2237 }
2238
2239 /*****************************************************************************/
2240
2241 /*
2242 * Set up and carry out any delayed commands. There is only a small set
2243 * of slave commands that can be done "off-level". So it is not too
2244 * difficult to deal with them here.
2245 */
2246
2247 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2248 {
2249 int cmd;
2250
2251 if (test_bit(ST_DOSIGS, &portp->state)) {
2252 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2253 test_bit(ST_DOFLUSHRX, &portp->state))
2254 cmd = A_SETSIGNALSF;
2255 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2256 cmd = A_SETSIGNALSFTX;
2257 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2258 cmd = A_SETSIGNALSFRX;
2259 else
2260 cmd = A_SETSIGNALS;
2261 clear_bit(ST_DOFLUSHTX, &portp->state);
2262 clear_bit(ST_DOFLUSHRX, &portp->state);
2263 clear_bit(ST_DOSIGS, &portp->state);
2264 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2265 sizeof(asysigs_t));
2266 writel(0, &cp->status);
2267 writel(cmd, &cp->cmd);
2268 set_bit(ST_CMDING, &portp->state);
2269 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2270 test_bit(ST_DOFLUSHRX, &portp->state)) {
2271 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2272 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2273 clear_bit(ST_DOFLUSHTX, &portp->state);
2274 clear_bit(ST_DOFLUSHRX, &portp->state);
2275 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2276 writel(0, &cp->status);
2277 writel(A_FLUSH, &cp->cmd);
2278 set_bit(ST_CMDING, &portp->state);
2279 }
2280 }
2281
2282 /*****************************************************************************/
2283
2284 /*
2285 * Host command service checking. This handles commands or messages
2286 * coming from the slave to the host. Must have board shared memory
2287 * enabled and interrupts off when called. Notice that by servicing the
2288 * read data last we don't need to change the shared memory pointer
2289 * during processing (which is a slow IO operation).
2290 * Return value indicates if this port is still awaiting actions from
2291 * the slave (like open, command, or even TX data being sent). If 0
2292 * then port is still busy, otherwise no longer busy.
2293 */
2294
2295 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2296 {
2297 cdkasy_t __iomem *ap;
2298 cdkctrl_t __iomem *cp;
2299 struct tty_struct *tty;
2300 asynotify_t nt;
2301 unsigned long oldsigs;
2302 int rc, donerx;
2303
2304 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2305 cp = &ap->ctrl;
2306
2307 /*
2308 * Check if we are waiting for an open completion message.
2309 */
2310 if (test_bit(ST_OPENING, &portp->state)) {
2311 rc = readl(&cp->openarg);
2312 if (readb(&cp->open) == 0 && rc != 0) {
2313 if (rc > 0)
2314 rc--;
2315 writel(0, &cp->openarg);
2316 portp->rc = rc;
2317 clear_bit(ST_OPENING, &portp->state);
2318 wake_up_interruptible(&portp->raw_wait);
2319 }
2320 }
2321
2322 /*
2323 * Check if we are waiting for a close completion message.
2324 */
2325 if (test_bit(ST_CLOSING, &portp->state)) {
2326 rc = (int) readl(&cp->closearg);
2327 if (readb(&cp->close) == 0 && rc != 0) {
2328 if (rc > 0)
2329 rc--;
2330 writel(0, &cp->closearg);
2331 portp->rc = rc;
2332 clear_bit(ST_CLOSING, &portp->state);
2333 wake_up_interruptible(&portp->raw_wait);
2334 }
2335 }
2336
2337 /*
2338 * Check if we are waiting for a command completion message. We may
2339 * need to copy out the command results associated with this command.
2340 */
2341 if (test_bit(ST_CMDING, &portp->state)) {
2342 rc = readl(&cp->status);
2343 if (readl(&cp->cmd) == 0 && rc != 0) {
2344 if (rc > 0)
2345 rc--;
2346 if (portp->argp != NULL) {
2347 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2348 portp->argsize);
2349 portp->argp = NULL;
2350 }
2351 writel(0, &cp->status);
2352 portp->rc = rc;
2353 clear_bit(ST_CMDING, &portp->state);
2354 stli_dodelaycmd(portp, cp);
2355 wake_up_interruptible(&portp->raw_wait);
2356 }
2357 }
2358
2359 /*
2360 * Check for any notification messages ready. This includes lots of
2361 * different types of events - RX chars ready, RX break received,
2362 * TX data low or empty in the slave, modem signals changed state.
2363 */
2364 donerx = 0;
2365
2366 if (ap->notify) {
2367 nt = ap->changed;
2368 ap->notify = 0;
2369 tty = tty_port_tty_get(&portp->port);
2370
2371 if (nt.signal & SG_DCD) {
2372 oldsigs = portp->sigs;
2373 portp->sigs = stli_mktiocm(nt.sigvalue);
2374 clear_bit(ST_GETSIGS, &portp->state);
2375 if ((portp->sigs & TIOCM_CD) &&
2376 ((oldsigs & TIOCM_CD) == 0))
2377 wake_up_interruptible(&portp->port.open_wait);
2378 if ((oldsigs & TIOCM_CD) &&
2379 ((portp->sigs & TIOCM_CD) == 0)) {
2380 if (portp->port.flags & ASYNC_CHECK_CD) {
2381 if (tty)
2382 tty_hangup(tty);
2383 }
2384 }
2385 }
2386
2387 if (nt.data & DT_TXEMPTY)
2388 clear_bit(ST_TXBUSY, &portp->state);
2389 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2390 if (tty != NULL) {
2391 tty_wakeup(tty);
2392 EBRDENABLE(brdp);
2393 }
2394 }
2395
2396 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2397 if (tty != NULL) {
2398 tty_insert_flip_char(tty, 0, TTY_BREAK);
2399 if (portp->port.flags & ASYNC_SAK) {
2400 do_SAK(tty);
2401 EBRDENABLE(brdp);
2402 }
2403 tty_schedule_flip(tty);
2404 }
2405 }
2406 tty_kref_put(tty);
2407
2408 if (nt.data & DT_RXBUSY) {
2409 donerx++;
2410 stli_read(brdp, portp);
2411 }
2412 }
2413
2414 /*
2415 * It might seem odd that we are checking for more RX chars here.
2416 * But, we need to handle the case where the tty buffer was previously
2417 * filled, but we had more characters to pass up. The slave will not
2418 * send any more RX notify messages until the RX buffer has been emptied.
2419 * But it will leave the service bits on (since the buffer is not empty).
2420 * So from here we can try to process more RX chars.
2421 */
2422 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2423 clear_bit(ST_RXING, &portp->state);
2424 stli_read(brdp, portp);
2425 }
2426
2427 return((test_bit(ST_OPENING, &portp->state) ||
2428 test_bit(ST_CLOSING, &portp->state) ||
2429 test_bit(ST_CMDING, &portp->state) ||
2430 test_bit(ST_TXBUSY, &portp->state) ||
2431 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2432 }
2433
2434 /*****************************************************************************/
2435
2436 /*
2437 * Service all ports on a particular board. Assumes that the boards
2438 * shared memory is enabled, and that the page pointer is pointed
2439 * at the cdk header structure.
2440 */
2441
2442 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2443 {
2444 struct stliport *portp;
2445 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2446 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2447 unsigned char __iomem *slavep;
2448 int bitpos, bitat, bitsize;
2449 int channr, nrdevs, slavebitchange;
2450
2451 bitsize = brdp->bitsize;
2452 nrdevs = brdp->nrdevs;
2453
2454 /*
2455 * Check if slave wants any service. Basically we try to do as
2456 * little work as possible here. There are 2 levels of service
2457 * bits. So if there is nothing to do we bail early. We check
2458 * 8 service bits at a time in the inner loop, so we can bypass
2459 * the lot if none of them want service.
2460 */
2461 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2462 bitsize);
2463
2464 memset(&slavebits[0], 0, bitsize);
2465 slavebitchange = 0;
2466
2467 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2468 if (hostbits[bitpos] == 0)
2469 continue;
2470 channr = bitpos * 8;
2471 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2472 if (hostbits[bitpos] & bitat) {
2473 portp = brdp->ports[(channr - 1)];
2474 if (stli_hostcmd(brdp, portp)) {
2475 slavebitchange++;
2476 slavebits[bitpos] |= bitat;
2477 }
2478 }
2479 }
2480 }
2481
2482 /*
2483 * If any of the ports are no longer busy then update them in the
2484 * slave request bits. We need to do this after, since a host port
2485 * service may initiate more slave requests.
2486 */
2487 if (slavebitchange) {
2488 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2489 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2490 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2491 if (readb(slavebits + bitpos))
2492 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2493 }
2494 }
2495 }
2496
2497 /*****************************************************************************/
2498
2499 /*
2500 * Driver poll routine. This routine polls the boards in use and passes
2501 * messages back up to host when necessary. This is actually very
2502 * CPU efficient, since we will always have the kernel poll clock, it
2503 * adds only a few cycles when idle (since board service can be
2504 * determined very easily), but when loaded generates no interrupts
2505 * (with their expensive associated context change).
2506 */
2507
2508 static void stli_poll(unsigned long arg)
2509 {
2510 cdkhdr_t __iomem *hdrp;
2511 struct stlibrd *brdp;
2512 unsigned int brdnr;
2513
2514 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2515
2516 /*
2517 * Check each board and do any servicing required.
2518 */
2519 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2520 brdp = stli_brds[brdnr];
2521 if (brdp == NULL)
2522 continue;
2523 if ((brdp->state & BST_STARTED) == 0)
2524 continue;
2525
2526 spin_lock(&brd_lock);
2527 EBRDENABLE(brdp);
2528 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2529 if (readb(&hdrp->hostreq))
2530 stli_brdpoll(brdp, hdrp);
2531 EBRDDISABLE(brdp);
2532 spin_unlock(&brd_lock);
2533 }
2534 }
2535
2536 /*****************************************************************************/
2537
2538 /*
2539 * Translate the termios settings into the port setting structure of
2540 * the slave.
2541 */
2542
2543 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2544 asyport_t *pp, struct ktermios *tiosp)
2545 {
2546 memset(pp, 0, sizeof(asyport_t));
2547
2548 /*
2549 * Start of by setting the baud, char size, parity and stop bit info.
2550 */
2551 pp->baudout = tty_get_baud_rate(tty);
2552 if ((tiosp->c_cflag & CBAUD) == B38400) {
2553 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2554 pp->baudout = 57600;
2555 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2556 pp->baudout = 115200;
2557 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2558 pp->baudout = 230400;
2559 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2560 pp->baudout = 460800;
2561 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2562 pp->baudout = (portp->baud_base / portp->custom_divisor);
2563 }
2564 if (pp->baudout > STL_MAXBAUD)
2565 pp->baudout = STL_MAXBAUD;
2566 pp->baudin = pp->baudout;
2567
2568 switch (tiosp->c_cflag & CSIZE) {
2569 case CS5:
2570 pp->csize = 5;
2571 break;
2572 case CS6:
2573 pp->csize = 6;
2574 break;
2575 case CS7:
2576 pp->csize = 7;
2577 break;
2578 default:
2579 pp->csize = 8;
2580 break;
2581 }
2582
2583 if (tiosp->c_cflag & CSTOPB)
2584 pp->stopbs = PT_STOP2;
2585 else
2586 pp->stopbs = PT_STOP1;
2587
2588 if (tiosp->c_cflag & PARENB) {
2589 if (tiosp->c_cflag & PARODD)
2590 pp->parity = PT_ODDPARITY;
2591 else
2592 pp->parity = PT_EVENPARITY;
2593 } else {
2594 pp->parity = PT_NOPARITY;
2595 }
2596
2597 /*
2598 * Set up any flow control options enabled.
2599 */
2600 if (tiosp->c_iflag & IXON) {
2601 pp->flow |= F_IXON;
2602 if (tiosp->c_iflag & IXANY)
2603 pp->flow |= F_IXANY;
2604 }
2605 if (tiosp->c_cflag & CRTSCTS)
2606 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2607
2608 pp->startin = tiosp->c_cc[VSTART];
2609 pp->stopin = tiosp->c_cc[VSTOP];
2610 pp->startout = tiosp->c_cc[VSTART];
2611 pp->stopout = tiosp->c_cc[VSTOP];
2612
2613 /*
2614 * Set up the RX char marking mask with those RX error types we must
2615 * catch. We can get the slave to help us out a little here, it will
2616 * ignore parity errors and breaks for us, and mark parity errors in
2617 * the data stream.
2618 */
2619 if (tiosp->c_iflag & IGNPAR)
2620 pp->iflag |= FI_IGNRXERRS;
2621 if (tiosp->c_iflag & IGNBRK)
2622 pp->iflag |= FI_IGNBREAK;
2623
2624 portp->rxmarkmsk = 0;
2625 if (tiosp->c_iflag & (INPCK | PARMRK))
2626 pp->iflag |= FI_1MARKRXERRS;
2627 if (tiosp->c_iflag & BRKINT)
2628 portp->rxmarkmsk |= BRKINT;
2629
2630 /*
2631 * Set up clocal processing as required.
2632 */
2633 if (tiosp->c_cflag & CLOCAL)
2634 portp->port.flags &= ~ASYNC_CHECK_CD;
2635 else
2636 portp->port.flags |= ASYNC_CHECK_CD;
2637
2638 /*
2639 * Transfer any persistent flags into the asyport structure.
2640 */
2641 pp->pflag = (portp->pflag & 0xffff);
2642 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2643 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2644 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2645 }
2646
2647 /*****************************************************************************/
2648
2649 /*
2650 * Construct a slave signals structure for setting the DTR and RTS
2651 * signals as specified.
2652 */
2653
2654 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2655 {
2656 memset(sp, 0, sizeof(asysigs_t));
2657 if (dtr >= 0) {
2658 sp->signal |= SG_DTR;
2659 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2660 }
2661 if (rts >= 0) {
2662 sp->signal |= SG_RTS;
2663 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2664 }
2665 }
2666
2667 /*****************************************************************************/
2668
2669 /*
2670 * Convert the signals returned from the slave into a local TIOCM type
2671 * signals value. We keep them locally in TIOCM format.
2672 */
2673
2674 static long stli_mktiocm(unsigned long sigvalue)
2675 {
2676 long tiocm = 0;
2677 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2678 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2679 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2680 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2681 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2682 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2683 return(tiocm);
2684 }
2685
2686 /*****************************************************************************/
2687
2688 /*
2689 * All panels and ports actually attached have been worked out. All
2690 * we need to do here is set up the appropriate per port data structures.
2691 */
2692
2693 static int stli_initports(struct stlibrd *brdp)
2694 {
2695 struct stliport *portp;
2696 unsigned int i, panelnr, panelport;
2697
2698 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2699 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2700 if (!portp) {
2701 printk("STALLION: failed to allocate port structure\n");
2702 continue;
2703 }
2704 tty_port_init(&portp->port);
2705 portp->magic = STLI_PORTMAGIC;
2706 portp->portnr = i;
2707 portp->brdnr = brdp->brdnr;
2708 portp->panelnr = panelnr;
2709 portp->baud_base = STL_BAUDBASE;
2710 portp->close_delay = STL_CLOSEDELAY;
2711 portp->closing_wait = 30 * HZ;
2712 init_waitqueue_head(&portp->port.open_wait);
2713 init_waitqueue_head(&portp->port.close_wait);
2714 init_waitqueue_head(&portp->raw_wait);
2715 panelport++;
2716 if (panelport >= brdp->panels[panelnr]) {
2717 panelport = 0;
2718 panelnr++;
2719 }
2720 brdp->ports[i] = portp;
2721 }
2722
2723 return 0;
2724 }
2725
2726 /*****************************************************************************/
2727
2728 /*
2729 * All the following routines are board specific hardware operations.
2730 */
2731
2732 static void stli_ecpinit(struct stlibrd *brdp)
2733 {
2734 unsigned long memconf;
2735
2736 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2737 udelay(10);
2738 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2739 udelay(100);
2740
2741 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2742 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2743 }
2744
2745 /*****************************************************************************/
2746
2747 static void stli_ecpenable(struct stlibrd *brdp)
2748 {
2749 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2750 }
2751
2752 /*****************************************************************************/
2753
2754 static void stli_ecpdisable(struct stlibrd *brdp)
2755 {
2756 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2757 }
2758
2759 /*****************************************************************************/
2760
2761 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2762 {
2763 void __iomem *ptr;
2764 unsigned char val;
2765
2766 if (offset > brdp->memsize) {
2767 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2768 "range at line=%d(%d), brd=%d\n",
2769 (int) offset, line, __LINE__, brdp->brdnr);
2770 ptr = NULL;
2771 val = 0;
2772 } else {
2773 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2774 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2775 }
2776 outb(val, (brdp->iobase + ECP_ATMEMPR));
2777 return(ptr);
2778 }
2779
2780 /*****************************************************************************/
2781
2782 static void stli_ecpreset(struct stlibrd *brdp)
2783 {
2784 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2785 udelay(10);
2786 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2787 udelay(500);
2788 }
2789
2790 /*****************************************************************************/
2791
2792 static void stli_ecpintr(struct stlibrd *brdp)
2793 {
2794 outb(0x1, brdp->iobase);
2795 }
2796
2797 /*****************************************************************************/
2798
2799 /*
2800 * The following set of functions act on ECP EISA boards.
2801 */
2802
2803 static void stli_ecpeiinit(struct stlibrd *brdp)
2804 {
2805 unsigned long memconf;
2806
2807 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2808 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2809 udelay(10);
2810 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2811 udelay(500);
2812
2813 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2814 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2815 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2816 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2817 }
2818
2819 /*****************************************************************************/
2820
2821 static void stli_ecpeienable(struct stlibrd *brdp)
2822 {
2823 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2824 }
2825
2826 /*****************************************************************************/
2827
2828 static void stli_ecpeidisable(struct stlibrd *brdp)
2829 {
2830 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2831 }
2832
2833 /*****************************************************************************/
2834
2835 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2836 {
2837 void __iomem *ptr;
2838 unsigned char val;
2839
2840 if (offset > brdp->memsize) {
2841 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2842 "range at line=%d(%d), brd=%d\n",
2843 (int) offset, line, __LINE__, brdp->brdnr);
2844 ptr = NULL;
2845 val = 0;
2846 } else {
2847 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2848 if (offset < ECP_EIPAGESIZE)
2849 val = ECP_EIENABLE;
2850 else
2851 val = ECP_EIENABLE | 0x40;
2852 }
2853 outb(val, (brdp->iobase + ECP_EICONFR));
2854 return(ptr);
2855 }
2856
2857 /*****************************************************************************/
2858
2859 static void stli_ecpeireset(struct stlibrd *brdp)
2860 {
2861 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2862 udelay(10);
2863 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2864 udelay(500);
2865 }
2866
2867 /*****************************************************************************/
2868
2869 /*
2870 * The following set of functions act on ECP MCA boards.
2871 */
2872
2873 static void stli_ecpmcenable(struct stlibrd *brdp)
2874 {
2875 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2876 }
2877
2878 /*****************************************************************************/
2879
2880 static void stli_ecpmcdisable(struct stlibrd *brdp)
2881 {
2882 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2883 }
2884
2885 /*****************************************************************************/
2886
2887 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2888 {
2889 void __iomem *ptr;
2890 unsigned char val;
2891
2892 if (offset > brdp->memsize) {
2893 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2894 "range at line=%d(%d), brd=%d\n",
2895 (int) offset, line, __LINE__, brdp->brdnr);
2896 ptr = NULL;
2897 val = 0;
2898 } else {
2899 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2900 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2901 }
2902 outb(val, (brdp->iobase + ECP_MCCONFR));
2903 return(ptr);
2904 }
2905
2906 /*****************************************************************************/
2907
2908 static void stli_ecpmcreset(struct stlibrd *brdp)
2909 {
2910 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2911 udelay(10);
2912 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2913 udelay(500);
2914 }
2915
2916 /*****************************************************************************/
2917
2918 /*
2919 * The following set of functions act on ECP PCI boards.
2920 */
2921
2922 static void stli_ecppciinit(struct stlibrd *brdp)
2923 {
2924 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2925 udelay(10);
2926 outb(0, (brdp->iobase + ECP_PCICONFR));
2927 udelay(500);
2928 }
2929
2930 /*****************************************************************************/
2931
2932 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2933 {
2934 void __iomem *ptr;
2935 unsigned char val;
2936
2937 if (offset > brdp->memsize) {
2938 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2939 "range at line=%d(%d), board=%d\n",
2940 (int) offset, line, __LINE__, brdp->brdnr);
2941 ptr = NULL;
2942 val = 0;
2943 } else {
2944 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2945 val = (offset / ECP_PCIPAGESIZE) << 1;
2946 }
2947 outb(val, (brdp->iobase + ECP_PCICONFR));
2948 return(ptr);
2949 }
2950
2951 /*****************************************************************************/
2952
2953 static void stli_ecppcireset(struct stlibrd *brdp)
2954 {
2955 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2956 udelay(10);
2957 outb(0, (brdp->iobase + ECP_PCICONFR));
2958 udelay(500);
2959 }
2960
2961 /*****************************************************************************/
2962
2963 /*
2964 * The following routines act on ONboards.
2965 */
2966
2967 static void stli_onbinit(struct stlibrd *brdp)
2968 {
2969 unsigned long memconf;
2970
2971 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2972 udelay(10);
2973 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2974 mdelay(1000);
2975
2976 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2977 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2978 outb(0x1, brdp->iobase);
2979 mdelay(1);
2980 }
2981
2982 /*****************************************************************************/
2983
2984 static void stli_onbenable(struct stlibrd *brdp)
2985 {
2986 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2987 }
2988
2989 /*****************************************************************************/
2990
2991 static void stli_onbdisable(struct stlibrd *brdp)
2992 {
2993 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2994 }
2995
2996 /*****************************************************************************/
2997
2998 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2999 {
3000 void __iomem *ptr;
3001
3002 if (offset > brdp->memsize) {
3003 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3004 "range at line=%d(%d), brd=%d\n",
3005 (int) offset, line, __LINE__, brdp->brdnr);
3006 ptr = NULL;
3007 } else {
3008 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3009 }
3010 return(ptr);
3011 }
3012
3013 /*****************************************************************************/
3014
3015 static void stli_onbreset(struct stlibrd *brdp)
3016 {
3017 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3018 udelay(10);
3019 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3020 mdelay(1000);
3021 }
3022
3023 /*****************************************************************************/
3024
3025 /*
3026 * The following routines act on ONboard EISA.
3027 */
3028
3029 static void stli_onbeinit(struct stlibrd *brdp)
3030 {
3031 unsigned long memconf;
3032
3033 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3034 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3035 udelay(10);
3036 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3037 mdelay(1000);
3038
3039 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3040 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3041 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3042 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3043 outb(0x1, brdp->iobase);
3044 mdelay(1);
3045 }
3046
3047 /*****************************************************************************/
3048
3049 static void stli_onbeenable(struct stlibrd *brdp)
3050 {
3051 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3052 }
3053
3054 /*****************************************************************************/
3055
3056 static void stli_onbedisable(struct stlibrd *brdp)
3057 {
3058 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3059 }
3060
3061 /*****************************************************************************/
3062
3063 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3064 {
3065 void __iomem *ptr;
3066 unsigned char val;
3067
3068 if (offset > brdp->memsize) {
3069 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3070 "range at line=%d(%d), brd=%d\n",
3071 (int) offset, line, __LINE__, brdp->brdnr);
3072 ptr = NULL;
3073 val = 0;
3074 } else {
3075 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3076 if (offset < ONB_EIPAGESIZE)
3077 val = ONB_EIENABLE;
3078 else
3079 val = ONB_EIENABLE | 0x40;
3080 }
3081 outb(val, (brdp->iobase + ONB_EICONFR));
3082 return(ptr);
3083 }
3084
3085 /*****************************************************************************/
3086
3087 static void stli_onbereset(struct stlibrd *brdp)
3088 {
3089 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3090 udelay(10);
3091 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3092 mdelay(1000);
3093 }
3094
3095 /*****************************************************************************/
3096
3097 /*
3098 * The following routines act on Brumby boards.
3099 */
3100
3101 static void stli_bbyinit(struct stlibrd *brdp)
3102 {
3103 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3104 udelay(10);
3105 outb(0, (brdp->iobase + BBY_ATCONFR));
3106 mdelay(1000);
3107 outb(0x1, brdp->iobase);
3108 mdelay(1);
3109 }
3110
3111 /*****************************************************************************/
3112
3113 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3114 {
3115 void __iomem *ptr;
3116 unsigned char val;
3117
3118 BUG_ON(offset > brdp->memsize);
3119
3120 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3121 val = (unsigned char) (offset / BBY_PAGESIZE);
3122 outb(val, (brdp->iobase + BBY_ATCONFR));
3123 return(ptr);
3124 }
3125
3126 /*****************************************************************************/
3127
3128 static void stli_bbyreset(struct stlibrd *brdp)
3129 {
3130 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3131 udelay(10);
3132 outb(0, (brdp->iobase + BBY_ATCONFR));
3133 mdelay(1000);
3134 }
3135
3136 /*****************************************************************************/
3137
3138 /*
3139 * The following routines act on original old Stallion boards.
3140 */
3141
3142 static void stli_stalinit(struct stlibrd *brdp)
3143 {
3144 outb(0x1, brdp->iobase);
3145 mdelay(1000);
3146 }
3147
3148 /*****************************************************************************/
3149
3150 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3151 {
3152 BUG_ON(offset > brdp->memsize);
3153 return brdp->membase + (offset % STAL_PAGESIZE);
3154 }
3155
3156 /*****************************************************************************/
3157
3158 static void stli_stalreset(struct stlibrd *brdp)
3159 {
3160 u32 __iomem *vecp;
3161
3162 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3163 writel(0xffff0000, vecp);
3164 outb(0, brdp->iobase);
3165 mdelay(1000);
3166 }
3167
3168 /*****************************************************************************/
3169
3170 /*
3171 * Try to find an ECP board and initialize it. This handles only ECP
3172 * board types.
3173 */
3174
3175 static int stli_initecp(struct stlibrd *brdp)
3176 {
3177 cdkecpsig_t sig;
3178 cdkecpsig_t __iomem *sigsp;
3179 unsigned int status, nxtid;
3180 char *name;
3181 int retval, panelnr, nrports;
3182
3183 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3184 retval = -ENODEV;
3185 goto err;
3186 }
3187
3188 brdp->iosize = ECP_IOSIZE;
3189
3190 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3191 retval = -EIO;
3192 goto err;
3193 }
3194
3195 /*
3196 * Based on the specific board type setup the common vars to access
3197 * and enable shared memory. Set all board specific information now
3198 * as well.
3199 */
3200 switch (brdp->brdtype) {
3201 case BRD_ECP:
3202 brdp->memsize = ECP_MEMSIZE;
3203 brdp->pagesize = ECP_ATPAGESIZE;
3204 brdp->init = stli_ecpinit;
3205 brdp->enable = stli_ecpenable;
3206 brdp->reenable = stli_ecpenable;
3207 brdp->disable = stli_ecpdisable;
3208 brdp->getmemptr = stli_ecpgetmemptr;
3209 brdp->intr = stli_ecpintr;
3210 brdp->reset = stli_ecpreset;
3211 name = "serial(EC8/64)";
3212 break;
3213
3214 case BRD_ECPE:
3215 brdp->memsize = ECP_MEMSIZE;
3216 brdp->pagesize = ECP_EIPAGESIZE;
3217 brdp->init = stli_ecpeiinit;
3218 brdp->enable = stli_ecpeienable;
3219 brdp->reenable = stli_ecpeienable;
3220 brdp->disable = stli_ecpeidisable;
3221 brdp->getmemptr = stli_ecpeigetmemptr;
3222 brdp->intr = stli_ecpintr;
3223 brdp->reset = stli_ecpeireset;
3224 name = "serial(EC8/64-EI)";
3225 break;
3226
3227 case BRD_ECPMC:
3228 brdp->memsize = ECP_MEMSIZE;
3229 brdp->pagesize = ECP_MCPAGESIZE;
3230 brdp->init = NULL;
3231 brdp->enable = stli_ecpmcenable;
3232 brdp->reenable = stli_ecpmcenable;
3233 brdp->disable = stli_ecpmcdisable;
3234 brdp->getmemptr = stli_ecpmcgetmemptr;
3235 brdp->intr = stli_ecpintr;
3236 brdp->reset = stli_ecpmcreset;
3237 name = "serial(EC8/64-MCA)";
3238 break;
3239
3240 case BRD_ECPPCI:
3241 brdp->memsize = ECP_PCIMEMSIZE;
3242 brdp->pagesize = ECP_PCIPAGESIZE;
3243 brdp->init = stli_ecppciinit;
3244 brdp->enable = NULL;
3245 brdp->reenable = NULL;
3246 brdp->disable = NULL;
3247 brdp->getmemptr = stli_ecppcigetmemptr;
3248 brdp->intr = stli_ecpintr;
3249 brdp->reset = stli_ecppcireset;
3250 name = "serial(EC/RA-PCI)";
3251 break;
3252
3253 default:
3254 retval = -EINVAL;
3255 goto err_reg;
3256 }
3257
3258 /*
3259 * The per-board operations structure is all set up, so now let's go
3260 * and get the board operational. Firstly initialize board configuration
3261 * registers. Set the memory mapping info so we can get at the boards
3262 * shared memory.
3263 */
3264 EBRDINIT(brdp);
3265
3266 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3267 if (brdp->membase == NULL) {
3268 retval = -ENOMEM;
3269 goto err_reg;
3270 }
3271
3272 /*
3273 * Now that all specific code is set up, enable the shared memory and
3274 * look for the a signature area that will tell us exactly what board
3275 * this is, and what it is connected to it.
3276 */
3277 EBRDENABLE(brdp);
3278 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3279 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3280 EBRDDISABLE(brdp);
3281
3282 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3283 retval = -ENODEV;
3284 goto err_unmap;
3285 }
3286
3287 /*
3288 * Scan through the signature looking at the panels connected to the
3289 * board. Calculate the total number of ports as we go.
3290 */
3291 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3292 status = sig.panelid[nxtid];
3293 if ((status & ECH_PNLIDMASK) != nxtid)
3294 break;
3295
3296 brdp->panelids[panelnr] = status;
3297 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3298 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3299 nxtid++;
3300 brdp->panels[panelnr] = nrports;
3301 brdp->nrports += nrports;
3302 nxtid++;
3303 brdp->nrpanels++;
3304 }
3305
3306
3307 brdp->state |= BST_FOUND;
3308 return 0;
3309 err_unmap:
3310 iounmap(brdp->membase);
3311 brdp->membase = NULL;
3312 err_reg:
3313 release_region(brdp->iobase, brdp->iosize);
3314 err:
3315 return retval;
3316 }
3317
3318 /*****************************************************************************/
3319
3320 /*
3321 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3322 * This handles only these board types.
3323 */
3324
3325 static int stli_initonb(struct stlibrd *brdp)
3326 {
3327 cdkonbsig_t sig;
3328 cdkonbsig_t __iomem *sigsp;
3329 char *name;
3330 int i, retval;
3331
3332 /*
3333 * Do a basic sanity check on the IO and memory addresses.
3334 */
3335 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3336 retval = -ENODEV;
3337 goto err;
3338 }
3339
3340 brdp->iosize = ONB_IOSIZE;
3341
3342 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3343 retval = -EIO;
3344 goto err;
3345 }
3346
3347 /*
3348 * Based on the specific board type setup the common vars to access
3349 * and enable shared memory. Set all board specific information now
3350 * as well.
3351 */
3352 switch (brdp->brdtype) {
3353 case BRD_ONBOARD:
3354 case BRD_ONBOARD2:
3355 brdp->memsize = ONB_MEMSIZE;
3356 brdp->pagesize = ONB_ATPAGESIZE;
3357 brdp->init = stli_onbinit;
3358 brdp->enable = stli_onbenable;
3359 brdp->reenable = stli_onbenable;
3360 brdp->disable = stli_onbdisable;
3361 brdp->getmemptr = stli_onbgetmemptr;
3362 brdp->intr = stli_ecpintr;
3363 brdp->reset = stli_onbreset;
3364 if (brdp->memaddr > 0x100000)
3365 brdp->enabval = ONB_MEMENABHI;
3366 else
3367 brdp->enabval = ONB_MEMENABLO;
3368 name = "serial(ONBoard)";
3369 break;
3370
3371 case BRD_ONBOARDE:
3372 brdp->memsize = ONB_EIMEMSIZE;
3373 brdp->pagesize = ONB_EIPAGESIZE;
3374 brdp->init = stli_onbeinit;
3375 brdp->enable = stli_onbeenable;
3376 brdp->reenable = stli_onbeenable;
3377 brdp->disable = stli_onbedisable;
3378 brdp->getmemptr = stli_onbegetmemptr;
3379 brdp->intr = stli_ecpintr;
3380 brdp->reset = stli_onbereset;
3381 name = "serial(ONBoard/E)";
3382 break;
3383
3384 case BRD_BRUMBY4:
3385 brdp->memsize = BBY_MEMSIZE;
3386 brdp->pagesize = BBY_PAGESIZE;
3387 brdp->init = stli_bbyinit;
3388 brdp->enable = NULL;
3389 brdp->reenable = NULL;
3390 brdp->disable = NULL;
3391 brdp->getmemptr = stli_bbygetmemptr;
3392 brdp->intr = stli_ecpintr;
3393 brdp->reset = stli_bbyreset;
3394 name = "serial(Brumby)";
3395 break;
3396
3397 case BRD_STALLION:
3398 brdp->memsize = STAL_MEMSIZE;
3399 brdp->pagesize = STAL_PAGESIZE;
3400 brdp->init = stli_stalinit;
3401 brdp->enable = NULL;
3402 brdp->reenable = NULL;
3403 brdp->disable = NULL;
3404 brdp->getmemptr = stli_stalgetmemptr;
3405 brdp->intr = stli_ecpintr;
3406 brdp->reset = stli_stalreset;
3407 name = "serial(Stallion)";
3408 break;
3409
3410 default:
3411 retval = -EINVAL;
3412 goto err_reg;
3413 }
3414
3415 /*
3416 * The per-board operations structure is all set up, so now let's go
3417 * and get the board operational. Firstly initialize board configuration
3418 * registers. Set the memory mapping info so we can get at the boards
3419 * shared memory.
3420 */
3421 EBRDINIT(brdp);
3422
3423 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3424 if (brdp->membase == NULL) {
3425 retval = -ENOMEM;
3426 goto err_reg;
3427 }
3428
3429 /*
3430 * Now that all specific code is set up, enable the shared memory and
3431 * look for the a signature area that will tell us exactly what board
3432 * this is, and how many ports.
3433 */
3434 EBRDENABLE(brdp);
3435 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3436 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3437 EBRDDISABLE(brdp);
3438
3439 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3440 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3441 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3442 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3443 retval = -ENODEV;
3444 goto err_unmap;
3445 }
3446
3447 /*
3448 * Scan through the signature alive mask and calculate how many ports
3449 * there are on this board.
3450 */
3451 brdp->nrpanels = 1;
3452 if (sig.amask1) {
3453 brdp->nrports = 32;
3454 } else {
3455 for (i = 0; (i < 16); i++) {
3456 if (((sig.amask0 << i) & 0x8000) == 0)
3457 break;
3458 }
3459 brdp->nrports = i;
3460 }
3461 brdp->panels[0] = brdp->nrports;
3462
3463
3464 brdp->state |= BST_FOUND;
3465 return 0;
3466 err_unmap:
3467 iounmap(brdp->membase);
3468 brdp->membase = NULL;
3469 err_reg:
3470 release_region(brdp->iobase, brdp->iosize);
3471 err:
3472 return retval;
3473 }
3474
3475 /*****************************************************************************/
3476
3477 /*
3478 * Start up a running board. This routine is only called after the
3479 * code has been down loaded to the board and is operational. It will
3480 * read in the memory map, and get the show on the road...
3481 */
3482
3483 static int stli_startbrd(struct stlibrd *brdp)
3484 {
3485 cdkhdr_t __iomem *hdrp;
3486 cdkmem_t __iomem *memp;
3487 cdkasy_t __iomem *ap;
3488 unsigned long flags;
3489 unsigned int portnr, nrdevs, i;
3490 struct stliport *portp;
3491 int rc = 0;
3492 u32 memoff;
3493
3494 spin_lock_irqsave(&brd_lock, flags);
3495 EBRDENABLE(brdp);
3496 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3497 nrdevs = hdrp->nrdevs;
3498
3499 #if 0
3500 printk("%s(%d): CDK version %d.%d.%d --> "
3501 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3502 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3503 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3504 readl(&hdrp->slavep));
3505 #endif
3506
3507 if (nrdevs < (brdp->nrports + 1)) {
3508 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
3509 "all devices, devices=%d\n", nrdevs);
3510 brdp->nrports = nrdevs - 1;
3511 }
3512 brdp->nrdevs = nrdevs;
3513 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3514 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3515 brdp->bitsize = (nrdevs + 7) / 8;
3516 memoff = readl(&hdrp->memp);
3517 if (memoff > brdp->memsize) {
3518 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
3519 rc = -EIO;
3520 goto stli_donestartup;
3521 }
3522 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3523 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3524 printk(KERN_ERR "STALLION: no slave control device found\n");
3525 goto stli_donestartup;
3526 }
3527 memp++;
3528
3529 /*
3530 * Cycle through memory allocation of each port. We are guaranteed to
3531 * have all ports inside the first page of slave window, so no need to
3532 * change pages while reading memory map.
3533 */
3534 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3535 if (readw(&memp->dtype) != TYP_ASYNC)
3536 break;
3537 portp = brdp->ports[portnr];
3538 if (portp == NULL)
3539 break;
3540 portp->devnr = i;
3541 portp->addr = readl(&memp->offset);
3542 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3543 portp->portidx = (unsigned char) (i / 8);
3544 portp->portbit = (unsigned char) (0x1 << (i % 8));
3545 }
3546
3547 writeb(0xff, &hdrp->slavereq);
3548
3549 /*
3550 * For each port setup a local copy of the RX and TX buffer offsets
3551 * and sizes. We do this separate from the above, because we need to
3552 * move the shared memory page...
3553 */
3554 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3555 portp = brdp->ports[portnr];
3556 if (portp == NULL)
3557 break;
3558 if (portp->addr == 0)
3559 break;
3560 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3561 if (ap != NULL) {
3562 portp->rxsize = readw(&ap->rxq.size);
3563 portp->txsize = readw(&ap->txq.size);
3564 portp->rxoffset = readl(&ap->rxq.offset);
3565 portp->txoffset = readl(&ap->txq.offset);
3566 }
3567 }
3568
3569 stli_donestartup:
3570 EBRDDISABLE(brdp);
3571 spin_unlock_irqrestore(&brd_lock, flags);
3572
3573 if (rc == 0)
3574 brdp->state |= BST_STARTED;
3575
3576 if (! stli_timeron) {
3577 stli_timeron++;
3578 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3579 }
3580
3581 return rc;
3582 }
3583
3584 /*****************************************************************************/
3585
3586 /*
3587 * Probe and initialize the specified board.
3588 */
3589
3590 static int __devinit stli_brdinit(struct stlibrd *brdp)
3591 {
3592 int retval;
3593
3594 switch (brdp->brdtype) {
3595 case BRD_ECP:
3596 case BRD_ECPE:
3597 case BRD_ECPMC:
3598 case BRD_ECPPCI:
3599 retval = stli_initecp(brdp);
3600 break;
3601 case BRD_ONBOARD:
3602 case BRD_ONBOARDE:
3603 case BRD_ONBOARD2:
3604 case BRD_BRUMBY4:
3605 case BRD_STALLION:
3606 retval = stli_initonb(brdp);
3607 break;
3608 default:
3609 printk(KERN_ERR "STALLION: board=%d is unknown board "
3610 "type=%d\n", brdp->brdnr, brdp->brdtype);
3611 retval = -ENODEV;
3612 }
3613
3614 if (retval)
3615 return retval;
3616
3617 stli_initports(brdp);
3618 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
3619 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3620 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3621 brdp->nrpanels, brdp->nrports);
3622 return 0;
3623 }
3624
3625 #if STLI_EISAPROBE != 0
3626 /*****************************************************************************/
3627
3628 /*
3629 * Probe around trying to find where the EISA boards shared memory
3630 * might be. This is a bit if hack, but it is the best we can do.
3631 */
3632
3633 static int stli_eisamemprobe(struct stlibrd *brdp)
3634 {
3635 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3636 cdkonbsig_t onbsig, __iomem *onbsigp;
3637 int i, foundit;
3638
3639 /*
3640 * First up we reset the board, to get it into a known state. There
3641 * is only 2 board types here we need to worry about. Don;t use the
3642 * standard board init routine here, it programs up the shared
3643 * memory address, and we don't know it yet...
3644 */
3645 if (brdp->brdtype == BRD_ECPE) {
3646 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3647 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3648 udelay(10);
3649 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3650 udelay(500);
3651 stli_ecpeienable(brdp);
3652 } else if (brdp->brdtype == BRD_ONBOARDE) {
3653 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3654 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3655 udelay(10);
3656 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3657 mdelay(100);
3658 outb(0x1, brdp->iobase);
3659 mdelay(1);
3660 stli_onbeenable(brdp);
3661 } else {
3662 return -ENODEV;
3663 }
3664
3665 foundit = 0;
3666 brdp->memsize = ECP_MEMSIZE;
3667
3668 /*
3669 * Board shared memory is enabled, so now we have a poke around and
3670 * see if we can find it.
3671 */
3672 for (i = 0; (i < stli_eisamempsize); i++) {
3673 brdp->memaddr = stli_eisamemprobeaddrs[i];
3674 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3675 if (brdp->membase == NULL)
3676 continue;
3677
3678 if (brdp->brdtype == BRD_ECPE) {
3679 ecpsigp = stli_ecpeigetmemptr(brdp,
3680 CDK_SIGADDR, __LINE__);
3681 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3682 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3683 foundit = 1;
3684 } else {
3685 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3686 CDK_SIGADDR, __LINE__);
3687 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3688 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3689 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3690 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3691 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3692 foundit = 1;
3693 }
3694
3695 iounmap(brdp->membase);
3696 if (foundit)
3697 break;
3698 }
3699
3700 /*
3701 * Regardless of whether we found the shared memory or not we must
3702 * disable the region. After that return success or failure.
3703 */
3704 if (brdp->brdtype == BRD_ECPE)
3705 stli_ecpeidisable(brdp);
3706 else
3707 stli_onbedisable(brdp);
3708
3709 if (! foundit) {
3710 brdp->memaddr = 0;
3711 brdp->membase = NULL;
3712 printk(KERN_ERR "STALLION: failed to probe shared memory "
3713 "region for %s in EISA slot=%d\n",
3714 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3715 return -ENODEV;
3716 }
3717 return 0;
3718 }
3719 #endif
3720
3721 static int stli_getbrdnr(void)
3722 {
3723 unsigned int i;
3724
3725 for (i = 0; i < STL_MAXBRDS; i++) {
3726 if (!stli_brds[i]) {
3727 if (i >= stli_nrbrds)
3728 stli_nrbrds = i + 1;
3729 return i;
3730 }
3731 }
3732 return -1;
3733 }
3734
3735 #if STLI_EISAPROBE != 0
3736 /*****************************************************************************/
3737
3738 /*
3739 * Probe around and try to find any EISA boards in system. The biggest
3740 * problem here is finding out what memory address is associated with
3741 * an EISA board after it is found. The registers of the ECPE and
3742 * ONboardE are not readable - so we can't read them from there. We
3743 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3744 * actually have any way to find out the real value. The best we can
3745 * do is go probing around in the usual places hoping we can find it.
3746 */
3747
3748 static int stli_findeisabrds(void)
3749 {
3750 struct stlibrd *brdp;
3751 unsigned int iobase, eid, i;
3752 int brdnr, found = 0;
3753
3754 /*
3755 * Firstly check if this is an EISA system. If this is not an EISA system then
3756 * don't bother going any further!
3757 */
3758 if (EISA_bus)
3759 return 0;
3760
3761 /*
3762 * Looks like an EISA system, so go searching for EISA boards.
3763 */
3764 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3765 outb(0xff, (iobase + 0xc80));
3766 eid = inb(iobase + 0xc80);
3767 eid |= inb(iobase + 0xc81) << 8;
3768 if (eid != STL_EISAID)
3769 continue;
3770
3771 /*
3772 * We have found a board. Need to check if this board was
3773 * statically configured already (just in case!).
3774 */
3775 for (i = 0; (i < STL_MAXBRDS); i++) {
3776 brdp = stli_brds[i];
3777 if (brdp == NULL)
3778 continue;
3779 if (brdp->iobase == iobase)
3780 break;
3781 }
3782 if (i < STL_MAXBRDS)
3783 continue;
3784
3785 /*
3786 * We have found a Stallion board and it is not configured already.
3787 * Allocate a board structure and initialize it.
3788 */
3789 if ((brdp = stli_allocbrd()) == NULL)
3790 return found ? : -ENOMEM;
3791 brdnr = stli_getbrdnr();
3792 if (brdnr < 0)
3793 return found ? : -ENOMEM;
3794 brdp->brdnr = (unsigned int)brdnr;
3795 eid = inb(iobase + 0xc82);
3796 if (eid == ECP_EISAID)
3797 brdp->brdtype = BRD_ECPE;
3798 else if (eid == ONB_EISAID)
3799 brdp->brdtype = BRD_ONBOARDE;
3800 else
3801 brdp->brdtype = BRD_UNKNOWN;
3802 brdp->iobase = iobase;
3803 outb(0x1, (iobase + 0xc84));
3804 if (stli_eisamemprobe(brdp))
3805 outb(0, (iobase + 0xc84));
3806 if (stli_brdinit(brdp) < 0) {
3807 kfree(brdp);
3808 continue;
3809 }
3810
3811 stli_brds[brdp->brdnr] = brdp;
3812 found++;
3813
3814 for (i = 0; i < brdp->nrports; i++)
3815 tty_register_device(stli_serial,
3816 brdp->brdnr * STL_MAXPORTS + i, NULL);
3817 }
3818
3819 return found;
3820 }
3821 #else
3822 static inline int stli_findeisabrds(void) { return 0; }
3823 #endif
3824
3825 /*****************************************************************************/
3826
3827 /*
3828 * Find the next available board number that is free.
3829 */
3830
3831 /*****************************************************************************/
3832
3833 /*
3834 * We have a Stallion board. Allocate a board structure and
3835 * initialize it. Read its IO and MEMORY resources from PCI
3836 * configuration space.
3837 */
3838
3839 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3840 const struct pci_device_id *ent)
3841 {
3842 struct stlibrd *brdp;
3843 unsigned int i;
3844 int brdnr, retval = -EIO;
3845
3846 retval = pci_enable_device(pdev);
3847 if (retval)
3848 goto err;
3849 brdp = stli_allocbrd();
3850 if (brdp == NULL) {
3851 retval = -ENOMEM;
3852 goto err;
3853 }
3854 mutex_lock(&stli_brdslock);
3855 brdnr = stli_getbrdnr();
3856 if (brdnr < 0) {
3857 printk(KERN_INFO "STALLION: too many boards found, "
3858 "maximum supported %d\n", STL_MAXBRDS);
3859 mutex_unlock(&stli_brdslock);
3860 retval = -EIO;
3861 goto err_fr;
3862 }
3863 brdp->brdnr = (unsigned int)brdnr;
3864 stli_brds[brdp->brdnr] = brdp;
3865 mutex_unlock(&stli_brdslock);
3866 brdp->brdtype = BRD_ECPPCI;
3867 /*
3868 * We have all resources from the board, so lets setup the actual
3869 * board structure now.
3870 */
3871 brdp->iobase = pci_resource_start(pdev, 3);
3872 brdp->memaddr = pci_resource_start(pdev, 2);
3873 retval = stli_brdinit(brdp);
3874 if (retval)
3875 goto err_null;
3876
3877 brdp->state |= BST_PROBED;
3878 pci_set_drvdata(pdev, brdp);
3879
3880 EBRDENABLE(brdp);
3881 brdp->enable = NULL;
3882 brdp->disable = NULL;
3883
3884 for (i = 0; i < brdp->nrports; i++)
3885 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3886 &pdev->dev);
3887
3888 return 0;
3889 err_null:
3890 stli_brds[brdp->brdnr] = NULL;
3891 err_fr:
3892 kfree(brdp);
3893 err:
3894 return retval;
3895 }
3896
3897 static void stli_pciremove(struct pci_dev *pdev)
3898 {
3899 struct stlibrd *brdp = pci_get_drvdata(pdev);
3900
3901 stli_cleanup_ports(brdp);
3902
3903 iounmap(brdp->membase);
3904 if (brdp->iosize > 0)
3905 release_region(brdp->iobase, brdp->iosize);
3906
3907 stli_brds[brdp->brdnr] = NULL;
3908 kfree(brdp);
3909 }
3910
3911 static struct pci_driver stli_pcidriver = {
3912 .name = "istallion",
3913 .id_table = istallion_pci_tbl,
3914 .probe = stli_pciprobe,
3915 .remove = __devexit_p(stli_pciremove)
3916 };
3917 /*****************************************************************************/
3918
3919 /*
3920 * Allocate a new board structure. Fill out the basic info in it.
3921 */
3922
3923 static struct stlibrd *stli_allocbrd(void)
3924 {
3925 struct stlibrd *brdp;
3926
3927 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3928 if (!brdp) {
3929 printk(KERN_ERR "STALLION: failed to allocate memory "
3930 "(size=%Zd)\n", sizeof(struct stlibrd));
3931 return NULL;
3932 }
3933 brdp->magic = STLI_BOARDMAGIC;
3934 return brdp;
3935 }
3936
3937 /*****************************************************************************/
3938
3939 /*
3940 * Scan through all the boards in the configuration and see what we
3941 * can find.
3942 */
3943
3944 static int stli_initbrds(void)
3945 {
3946 struct stlibrd *brdp, *nxtbrdp;
3947 struct stlconf conf;
3948 unsigned int i, j, found = 0;
3949 int retval;
3950
3951 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3952 stli_nrbrds++) {
3953 memset(&conf, 0, sizeof(conf));
3954 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3955 continue;
3956 if ((brdp = stli_allocbrd()) == NULL)
3957 continue;
3958 brdp->brdnr = stli_nrbrds;
3959 brdp->brdtype = conf.brdtype;
3960 brdp->iobase = conf.ioaddr1;
3961 brdp->memaddr = conf.memaddr;
3962 if (stli_brdinit(brdp) < 0) {
3963 kfree(brdp);
3964 continue;
3965 }
3966 stli_brds[brdp->brdnr] = brdp;
3967 found++;
3968
3969 for (i = 0; i < brdp->nrports; i++)
3970 tty_register_device(stli_serial,
3971 brdp->brdnr * STL_MAXPORTS + i, NULL);
3972 }
3973
3974 retval = stli_findeisabrds();
3975 if (retval > 0)
3976 found += retval;
3977
3978 /*
3979 * All found boards are initialized. Now for a little optimization, if
3980 * no boards are sharing the "shared memory" regions then we can just
3981 * leave them all enabled. This is in fact the usual case.
3982 */
3983 stli_shared = 0;
3984 if (stli_nrbrds > 1) {
3985 for (i = 0; (i < stli_nrbrds); i++) {
3986 brdp = stli_brds[i];
3987 if (brdp == NULL)
3988 continue;
3989 for (j = i + 1; (j < stli_nrbrds); j++) {
3990 nxtbrdp = stli_brds[j];
3991 if (nxtbrdp == NULL)
3992 continue;
3993 if ((brdp->membase >= nxtbrdp->membase) &&
3994 (brdp->membase <= (nxtbrdp->membase +
3995 nxtbrdp->memsize - 1))) {
3996 stli_shared++;
3997 break;
3998 }
3999 }
4000 }
4001 }
4002
4003 if (stli_shared == 0) {
4004 for (i = 0; (i < stli_nrbrds); i++) {
4005 brdp = stli_brds[i];
4006 if (brdp == NULL)
4007 continue;
4008 if (brdp->state & BST_FOUND) {
4009 EBRDENABLE(brdp);
4010 brdp->enable = NULL;
4011 brdp->disable = NULL;
4012 }
4013 }
4014 }
4015
4016 retval = pci_register_driver(&stli_pcidriver);
4017 if (retval && found == 0) {
4018 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
4019 "driver can be registered!\n");
4020 goto err;
4021 }
4022
4023 return 0;
4024 err:
4025 return retval;
4026 }
4027
4028 /*****************************************************************************/
4029
4030 /*
4031 * Code to handle an "staliomem" read operation. This device is the
4032 * contents of the board shared memory. It is used for down loading
4033 * the slave image (and debugging :-)
4034 */
4035
4036 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4037 {
4038 unsigned long flags;
4039 void __iomem *memptr;
4040 struct stlibrd *brdp;
4041 unsigned int brdnr;
4042 int size, n;
4043 void *p;
4044 loff_t off = *offp;
4045
4046 brdnr = iminor(fp->f_path.dentry->d_inode);
4047 if (brdnr >= stli_nrbrds)
4048 return -ENODEV;
4049 brdp = stli_brds[brdnr];
4050 if (brdp == NULL)
4051 return -ENODEV;
4052 if (brdp->state == 0)
4053 return -ENODEV;
4054 if (off >= brdp->memsize || off + count < off)
4055 return 0;
4056
4057 size = min(count, (size_t)(brdp->memsize - off));
4058
4059 /*
4060 * Copy the data a page at a time
4061 */
4062
4063 p = (void *)__get_free_page(GFP_KERNEL);
4064 if(p == NULL)
4065 return -ENOMEM;
4066
4067 while (size > 0) {
4068 spin_lock_irqsave(&brd_lock, flags);
4069 EBRDENABLE(brdp);
4070 memptr = EBRDGETMEMPTR(brdp, off);
4071 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4072 n = min(n, (int)PAGE_SIZE);
4073 memcpy_fromio(p, memptr, n);
4074 EBRDDISABLE(brdp);
4075 spin_unlock_irqrestore(&brd_lock, flags);
4076 if (copy_to_user(buf, p, n)) {
4077 count = -EFAULT;
4078 goto out;
4079 }
4080 off += n;
4081 buf += n;
4082 size -= n;
4083 }
4084 out:
4085 *offp = off;
4086 free_page((unsigned long)p);
4087 return count;
4088 }
4089
4090 /*****************************************************************************/
4091
4092 /*
4093 * Code to handle an "staliomem" write operation. This device is the
4094 * contents of the board shared memory. It is used for down loading
4095 * the slave image (and debugging :-)
4096 *
4097 * FIXME: copy under lock
4098 */
4099
4100 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4101 {
4102 unsigned long flags;
4103 void __iomem *memptr;
4104 struct stlibrd *brdp;
4105 char __user *chbuf;
4106 unsigned int brdnr;
4107 int size, n;
4108 void *p;
4109 loff_t off = *offp;
4110
4111 brdnr = iminor(fp->f_path.dentry->d_inode);
4112
4113 if (brdnr >= stli_nrbrds)
4114 return -ENODEV;
4115 brdp = stli_brds[brdnr];
4116 if (brdp == NULL)
4117 return -ENODEV;
4118 if (brdp->state == 0)
4119 return -ENODEV;
4120 if (off >= brdp->memsize || off + count < off)
4121 return 0;
4122
4123 chbuf = (char __user *) buf;
4124 size = min(count, (size_t)(brdp->memsize - off));
4125
4126 /*
4127 * Copy the data a page at a time
4128 */
4129
4130 p = (void *)__get_free_page(GFP_KERNEL);
4131 if(p == NULL)
4132 return -ENOMEM;
4133
4134 while (size > 0) {
4135 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4136 n = min(n, (int)PAGE_SIZE);
4137 if (copy_from_user(p, chbuf, n)) {
4138 if (count == 0)
4139 count = -EFAULT;
4140 goto out;
4141 }
4142 spin_lock_irqsave(&brd_lock, flags);
4143 EBRDENABLE(brdp);
4144 memptr = EBRDGETMEMPTR(brdp, off);
4145 memcpy_toio(memptr, p, n);
4146 EBRDDISABLE(brdp);
4147 spin_unlock_irqrestore(&brd_lock, flags);
4148 off += n;
4149 chbuf += n;
4150 size -= n;
4151 }
4152 out:
4153 free_page((unsigned long) p);
4154 *offp = off;
4155 return count;
4156 }
4157
4158 /*****************************************************************************/
4159
4160 /*
4161 * Return the board stats structure to user app.
4162 */
4163
4164 static int stli_getbrdstats(combrd_t __user *bp)
4165 {
4166 struct stlibrd *brdp;
4167 unsigned int i;
4168
4169 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4170 return -EFAULT;
4171 if (stli_brdstats.brd >= STL_MAXBRDS)
4172 return -ENODEV;
4173 brdp = stli_brds[stli_brdstats.brd];
4174 if (brdp == NULL)
4175 return -ENODEV;
4176
4177 memset(&stli_brdstats, 0, sizeof(combrd_t));
4178 stli_brdstats.brd = brdp->brdnr;
4179 stli_brdstats.type = brdp->brdtype;
4180 stli_brdstats.hwid = 0;
4181 stli_brdstats.state = brdp->state;
4182 stli_brdstats.ioaddr = brdp->iobase;
4183 stli_brdstats.memaddr = brdp->memaddr;
4184 stli_brdstats.nrpanels = brdp->nrpanels;
4185 stli_brdstats.nrports = brdp->nrports;
4186 for (i = 0; (i < brdp->nrpanels); i++) {
4187 stli_brdstats.panels[i].panel = i;
4188 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4189 stli_brdstats.panels[i].nrports = brdp->panels[i];
4190 }
4191
4192 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4193 return -EFAULT;
4194 return 0;
4195 }
4196
4197 /*****************************************************************************/
4198
4199 /*
4200 * Resolve the referenced port number into a port struct pointer.
4201 */
4202
4203 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4204 unsigned int portnr)
4205 {
4206 struct stlibrd *brdp;
4207 unsigned int i;
4208
4209 if (brdnr >= STL_MAXBRDS)
4210 return NULL;
4211 brdp = stli_brds[brdnr];
4212 if (brdp == NULL)
4213 return NULL;
4214 for (i = 0; (i < panelnr); i++)
4215 portnr += brdp->panels[i];
4216 if (portnr >= brdp->nrports)
4217 return NULL;
4218 return brdp->ports[portnr];
4219 }
4220
4221 /*****************************************************************************/
4222
4223 /*
4224 * Return the port stats structure to user app. A NULL port struct
4225 * pointer passed in means that we need to find out from the app
4226 * what port to get stats for (used through board control device).
4227 */
4228
4229 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4230 {
4231 unsigned long flags;
4232 struct stlibrd *brdp;
4233 int rc;
4234
4235 memset(&stli_comstats, 0, sizeof(comstats_t));
4236
4237 if (portp == NULL)
4238 return -ENODEV;
4239 brdp = stli_brds[portp->brdnr];
4240 if (brdp == NULL)
4241 return -ENODEV;
4242
4243 if (brdp->state & BST_STARTED) {
4244 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4245 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4246 return rc;
4247 } else {
4248 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4249 }
4250
4251 stli_comstats.brd = portp->brdnr;
4252 stli_comstats.panel = portp->panelnr;
4253 stli_comstats.port = portp->portnr;
4254 stli_comstats.state = portp->state;
4255 stli_comstats.flags = portp->port.flags;
4256
4257 spin_lock_irqsave(&brd_lock, flags);
4258 if (tty != NULL) {
4259 if (portp->port.tty == tty) {
4260 stli_comstats.ttystate = tty->flags;
4261 stli_comstats.rxbuffered = -1;
4262 if (tty->termios != NULL) {
4263 stli_comstats.cflags = tty->termios->c_cflag;
4264 stli_comstats.iflags = tty->termios->c_iflag;
4265 stli_comstats.oflags = tty->termios->c_oflag;
4266 stli_comstats.lflags = tty->termios->c_lflag;
4267 }
4268 }
4269 }
4270 spin_unlock_irqrestore(&brd_lock, flags);
4271
4272 stli_comstats.txtotal = stli_cdkstats.txchars;
4273 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4274 stli_comstats.txbuffered = stli_cdkstats.txringq;
4275 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4276 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4277 stli_comstats.rxparity = stli_cdkstats.parity;
4278 stli_comstats.rxframing = stli_cdkstats.framing;
4279 stli_comstats.rxlost = stli_cdkstats.ringover;
4280 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4281 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4282 stli_comstats.txxon = stli_cdkstats.txstart;
4283 stli_comstats.txxoff = stli_cdkstats.txstop;
4284 stli_comstats.rxxon = stli_cdkstats.rxstart;
4285 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4286 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4287 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4288 stli_comstats.modem = stli_cdkstats.dcdcnt;
4289 stli_comstats.hwid = stli_cdkstats.hwid;
4290 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4291
4292 return 0;
4293 }
4294
4295 /*****************************************************************************/
4296
4297 /*
4298 * Return the port stats structure to user app. A NULL port struct
4299 * pointer passed in means that we need to find out from the app
4300 * what port to get stats for (used through board control device).
4301 */
4302
4303 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4304 comstats_t __user *cp)
4305 {
4306 struct stlibrd *brdp;
4307 int rc;
4308
4309 if (!portp) {
4310 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4311 return -EFAULT;
4312 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4313 stli_comstats.port);
4314 if (!portp)
4315 return -ENODEV;
4316 }
4317
4318 brdp = stli_brds[portp->brdnr];
4319 if (!brdp)
4320 return -ENODEV;
4321
4322 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4323 return rc;
4324
4325 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4326 -EFAULT : 0;
4327 }
4328
4329 /*****************************************************************************/
4330
4331 /*
4332 * Clear the port stats structure. We also return it zeroed out...
4333 */
4334
4335 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4336 {
4337 struct stlibrd *brdp;
4338 int rc;
4339
4340 if (!portp) {
4341 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4342 return -EFAULT;
4343 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4344 stli_comstats.port);
4345 if (!portp)
4346 return -ENODEV;
4347 }
4348
4349 brdp = stli_brds[portp->brdnr];
4350 if (!brdp)
4351 return -ENODEV;
4352
4353 if (brdp->state & BST_STARTED) {
4354 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4355 return rc;
4356 }
4357
4358 memset(&stli_comstats, 0, sizeof(comstats_t));
4359 stli_comstats.brd = portp->brdnr;
4360 stli_comstats.panel = portp->panelnr;
4361 stli_comstats.port = portp->portnr;
4362
4363 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4364 return -EFAULT;
4365 return 0;
4366 }
4367
4368 /*****************************************************************************/
4369
4370 /*
4371 * Return the entire driver ports structure to a user app.
4372 */
4373
4374 static int stli_getportstruct(struct stliport __user *arg)
4375 {
4376 struct stliport stli_dummyport;
4377 struct stliport *portp;
4378
4379 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4380 return -EFAULT;
4381 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4382 stli_dummyport.portnr);
4383 if (!portp)
4384 return -ENODEV;
4385 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4386 return -EFAULT;
4387 return 0;
4388 }
4389
4390 /*****************************************************************************/
4391
4392 /*
4393 * Return the entire driver board structure to a user app.
4394 */
4395
4396 static int stli_getbrdstruct(struct stlibrd __user *arg)
4397 {
4398 struct stlibrd stli_dummybrd;
4399 struct stlibrd *brdp;
4400
4401 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4402 return -EFAULT;
4403 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4404 return -ENODEV;
4405 brdp = stli_brds[stli_dummybrd.brdnr];
4406 if (!brdp)
4407 return -ENODEV;
4408 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4409 return -EFAULT;
4410 return 0;
4411 }
4412
4413 /*****************************************************************************/
4414
4415 /*
4416 * The "staliomem" device is also required to do some special operations on
4417 * the board. We need to be able to send an interrupt to the board,
4418 * reset it, and start/stop it.
4419 */
4420
4421 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4422 {
4423 struct stlibrd *brdp;
4424 int brdnr, rc, done;
4425 void __user *argp = (void __user *)arg;
4426
4427 /*
4428 * First up handle the board independent ioctls.
4429 */
4430 done = 0;
4431 rc = 0;
4432
4433 lock_kernel();
4434
4435 switch (cmd) {
4436 case COM_GETPORTSTATS:
4437 rc = stli_getportstats(NULL, NULL, argp);
4438 done++;
4439 break;
4440 case COM_CLRPORTSTATS:
4441 rc = stli_clrportstats(NULL, argp);
4442 done++;
4443 break;
4444 case COM_GETBRDSTATS:
4445 rc = stli_getbrdstats(argp);
4446 done++;
4447 break;
4448 case COM_READPORT:
4449 rc = stli_getportstruct(argp);
4450 done++;
4451 break;
4452 case COM_READBOARD:
4453 rc = stli_getbrdstruct(argp);
4454 done++;
4455 break;
4456 }
4457 unlock_kernel();
4458
4459 if (done)
4460 return rc;
4461
4462 /*
4463 * Now handle the board specific ioctls. These all depend on the
4464 * minor number of the device they were called from.
4465 */
4466 brdnr = iminor(ip);
4467 if (brdnr >= STL_MAXBRDS)
4468 return -ENODEV;
4469 brdp = stli_brds[brdnr];
4470 if (!brdp)
4471 return -ENODEV;
4472 if (brdp->state == 0)
4473 return -ENODEV;
4474
4475 lock_kernel();
4476
4477 switch (cmd) {
4478 case STL_BINTR:
4479 EBRDINTR(brdp);
4480 break;
4481 case STL_BSTART:
4482 rc = stli_startbrd(brdp);
4483 break;
4484 case STL_BSTOP:
4485 brdp->state &= ~BST_STARTED;
4486 break;
4487 case STL_BRESET:
4488 brdp->state &= ~BST_STARTED;
4489 EBRDRESET(brdp);
4490 if (stli_shared == 0) {
4491 if (brdp->reenable != NULL)
4492 (* brdp->reenable)(brdp);
4493 }
4494 break;
4495 default:
4496 rc = -ENOIOCTLCMD;
4497 break;
4498 }
4499 unlock_kernel();
4500 return rc;
4501 }
4502
4503 static const struct tty_operations stli_ops = {
4504 .open = stli_open,
4505 .close = stli_close,
4506 .write = stli_write,
4507 .put_char = stli_putchar,
4508 .flush_chars = stli_flushchars,
4509 .write_room = stli_writeroom,
4510 .chars_in_buffer = stli_charsinbuffer,
4511 .ioctl = stli_ioctl,
4512 .set_termios = stli_settermios,
4513 .throttle = stli_throttle,
4514 .unthrottle = stli_unthrottle,
4515 .stop = stli_stop,
4516 .start = stli_start,
4517 .hangup = stli_hangup,
4518 .flush_buffer = stli_flushbuffer,
4519 .break_ctl = stli_breakctl,
4520 .wait_until_sent = stli_waituntilsent,
4521 .send_xchar = stli_sendxchar,
4522 .read_proc = stli_readproc,
4523 .tiocmget = stli_tiocmget,
4524 .tiocmset = stli_tiocmset,
4525 };
4526
4527 /*****************************************************************************/
4528 /*
4529 * Loadable module initialization stuff.
4530 */
4531
4532 static void istallion_cleanup_isa(void)
4533 {
4534 struct stlibrd *brdp;
4535 unsigned int j;
4536
4537 for (j = 0; (j < stli_nrbrds); j++) {
4538 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4539 continue;
4540
4541 stli_cleanup_ports(brdp);
4542
4543 iounmap(brdp->membase);
4544 if (brdp->iosize > 0)
4545 release_region(brdp->iobase, brdp->iosize);
4546 kfree(brdp);
4547 stli_brds[j] = NULL;
4548 }
4549 }
4550
4551 static int __init istallion_module_init(void)
4552 {
4553 unsigned int i;
4554 int retval;
4555
4556 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4557
4558 spin_lock_init(&stli_lock);
4559 spin_lock_init(&brd_lock);
4560
4561 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4562 if (!stli_txcookbuf) {
4563 printk(KERN_ERR "STALLION: failed to allocate memory "
4564 "(size=%d)\n", STLI_TXBUFSIZE);
4565 retval = -ENOMEM;
4566 goto err;
4567 }
4568
4569 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4570 if (!stli_serial) {
4571 retval = -ENOMEM;
4572 goto err_free;
4573 }
4574
4575 stli_serial->owner = THIS_MODULE;
4576 stli_serial->driver_name = stli_drvname;
4577 stli_serial->name = stli_serialname;
4578 stli_serial->major = STL_SERIALMAJOR;
4579 stli_serial->minor_start = 0;
4580 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4581 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4582 stli_serial->init_termios = stli_deftermios;
4583 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4584 tty_set_operations(stli_serial, &stli_ops);
4585
4586 retval = tty_register_driver(stli_serial);
4587 if (retval) {
4588 printk(KERN_ERR "STALLION: failed to register serial driver\n");
4589 goto err_ttyput;
4590 }
4591
4592 retval = stli_initbrds();
4593 if (retval)
4594 goto err_ttyunr;
4595
4596 /*
4597 * Set up a character driver for the shared memory region. We need this
4598 * to down load the slave code image. Also it is a useful debugging tool.
4599 */
4600 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4601 if (retval) {
4602 printk(KERN_ERR "STALLION: failed to register serial memory "
4603 "device\n");
4604 goto err_deinit;
4605 }
4606
4607 istallion_class = class_create(THIS_MODULE, "staliomem");
4608 for (i = 0; i < 4; i++)
4609 device_create_drvdata(istallion_class, NULL,
4610 MKDEV(STL_SIOMEMMAJOR, i),
4611 NULL, "staliomem%d", i);
4612
4613 return 0;
4614 err_deinit:
4615 pci_unregister_driver(&stli_pcidriver);
4616 istallion_cleanup_isa();
4617 err_ttyunr:
4618 tty_unregister_driver(stli_serial);
4619 err_ttyput:
4620 put_tty_driver(stli_serial);
4621 err_free:
4622 kfree(stli_txcookbuf);
4623 err:
4624 return retval;
4625 }
4626
4627 /*****************************************************************************/
4628
4629 static void __exit istallion_module_exit(void)
4630 {
4631 unsigned int j;
4632
4633 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4634 stli_drvversion);
4635
4636 if (stli_timeron) {
4637 stli_timeron = 0;
4638 del_timer_sync(&stli_timerlist);
4639 }
4640
4641 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4642
4643 for (j = 0; j < 4; j++)
4644 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4645 class_destroy(istallion_class);
4646
4647 pci_unregister_driver(&stli_pcidriver);
4648 istallion_cleanup_isa();
4649
4650 tty_unregister_driver(stli_serial);
4651 put_tty_driver(stli_serial);
4652
4653 kfree(stli_txcookbuf);
4654 }
4655
4656 module_init(istallion_module_init);
4657 module_exit(istallion_module_exit);
This page took 0.129538 seconds and 5 git commands to generate.