Merge branch 'suspend' into release
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159 * alloc_tty_struct - allocate a tty object
160 *
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
163 *
164 * Locking: none
165 */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
175 *
176 * Free the write buffers, tty queue and tty memory itself.
177 *
178 * Locking: none. Must be called after tty is definitely unused
179 */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
194 *
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
197 *
198 * Locking: none
199 */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
221 }
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
227 }
228 #endif
229 return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
237
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
241 }
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
252 }
253 #endif
254 return 0;
255 }
256
257 /**
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
261 *
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
264 *
265 * Locking: caller must hold tty_mutex
266 */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270 struct tty_driver *p;
271
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
278 }
279 return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
288 *
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
292 */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str;
299
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
305
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
308
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 if (*str == ',')
315 str++;
316 if (*str == '\0')
317 str = NULL;
318
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
324 }
325 }
326 mutex_unlock(&tty_mutex);
327
328 return res;
329 }
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
332
333 /**
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
336 *
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
340 *
341 * Locking: ctrl_lock
342 */
343
344 int tty_check_change(struct tty_struct *tty)
345 {
346 unsigned long flags;
347 int ret = 0;
348
349 if (current->signal->tty != tty)
350 return 0;
351
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
357 }
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
366 }
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370 out:
371 return ret;
372 out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
375 }
376
377 EXPORT_SYMBOL(tty_check_change);
378
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
381 {
382 return 0;
383 }
384
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
387 {
388 return -EIO;
389 }
390
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393 {
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395 }
396
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
399 {
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401 }
402
403 static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
405 {
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407 }
408
409 static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
419 };
420
421 static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
431 };
432
433 static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
441 };
442
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
445
446 /**
447 * tty_wakeup - request more data
448 * @tty: terminal
449 *
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
453 */
454
455 void tty_wakeup(struct tty_struct *tty)
456 {
457 struct tty_ldisc *ld;
458
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
465 }
466 }
467 wake_up_interruptible(&tty->write_wait);
468 }
469
470 EXPORT_SYMBOL_GPL(tty_wakeup);
471
472 /**
473 * tty_ldisc_flush - flush line discipline queue
474 * @tty: tty
475 *
476 * Flush the line discipline queue (if any) for this tty. If there
477 * is no line discipline active this is a no-op.
478 */
479
480 void tty_ldisc_flush(struct tty_struct *tty)
481 {
482 struct tty_ldisc *ld = tty_ldisc_ref(tty);
483 if (ld) {
484 if (ld->ops->flush_buffer)
485 ld->ops->flush_buffer(tty);
486 tty_ldisc_deref(ld);
487 }
488 tty_buffer_flush(tty);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
492
493 /**
494 * tty_reset_termios - reset terminal state
495 * @tty: tty to reset
496 *
497 * Restore a terminal to the driver default state
498 */
499
500 static void tty_reset_termios(struct tty_struct *tty)
501 {
502 mutex_lock(&tty->termios_mutex);
503 *tty->termios = tty->driver->init_termios;
504 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
505 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
506 mutex_unlock(&tty->termios_mutex);
507 }
508
509 /**
510 * do_tty_hangup - actual handler for hangup events
511 * @work: tty device
512 *
513 * This can be called by the "eventd" kernel thread. That is process
514 * synchronous but doesn't hold any locks, so we need to make sure we
515 * have the appropriate locks for what we're doing.
516 *
517 * The hangup event clears any pending redirections onto the hung up
518 * device. It ensures future writes will error and it does the needed
519 * line discipline hangup and signal delivery. The tty object itself
520 * remains intact.
521 *
522 * Locking:
523 * BKL
524 * redirect lock for undoing redirection
525 * file list lock for manipulating list of ttys
526 * tty_ldisc_lock from called functions
527 * termios_mutex resetting termios data
528 * tasklist_lock to walk task list for hangup event
529 * ->siglock to protect ->signal/->sighand
530 */
531 static void do_tty_hangup(struct work_struct *work)
532 {
533 struct tty_struct *tty =
534 container_of(work, struct tty_struct, hangup_work);
535 struct file *cons_filp = NULL;
536 struct file *filp, *f = NULL;
537 struct task_struct *p;
538 struct tty_ldisc *ld;
539 int closecount = 0, n;
540 unsigned long flags;
541 int refs = 0;
542
543 if (!tty)
544 return;
545
546 /* inuse_filps is protected by the single kernel lock */
547 lock_kernel();
548
549 spin_lock(&redirect_lock);
550 if (redirect && redirect->private_data == tty) {
551 f = redirect;
552 redirect = NULL;
553 }
554 spin_unlock(&redirect_lock);
555
556 check_tty_count(tty, "do_tty_hangup");
557 file_list_lock();
558 /* This breaks for file handles being sent over AF_UNIX sockets ? */
559 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
560 if (filp->f_op->write == redirected_tty_write)
561 cons_filp = filp;
562 if (filp->f_op->write != tty_write)
563 continue;
564 closecount++;
565 tty_fasync(-1, filp, 0); /* can't block */
566 filp->f_op = &hung_up_tty_fops;
567 }
568 file_list_unlock();
569 /*
570 * FIXME! What are the locking issues here? This may me overdoing
571 * things... This question is especially important now that we've
572 * removed the irqlock.
573 */
574 ld = tty_ldisc_ref(tty);
575 if (ld != NULL) {
576 /* We may have no line discipline at this point */
577 if (ld->ops->flush_buffer)
578 ld->ops->flush_buffer(tty);
579 tty_driver_flush_buffer(tty);
580 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
581 ld->ops->write_wakeup)
582 ld->ops->write_wakeup(tty);
583 if (ld->ops->hangup)
584 ld->ops->hangup(tty);
585 }
586 /*
587 * FIXME: Once we trust the LDISC code better we can wait here for
588 * ldisc completion and fix the driver call race
589 */
590 wake_up_interruptible(&tty->write_wait);
591 wake_up_interruptible(&tty->read_wait);
592 /*
593 * Shutdown the current line discipline, and reset it to
594 * N_TTY.
595 */
596 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
597 tty_reset_termios(tty);
598 /* Defer ldisc switch */
599 /* tty_deferred_ldisc_switch(N_TTY);
600
601 This should get done automatically when the port closes and
602 tty_release is called */
603
604 read_lock(&tasklist_lock);
605 if (tty->session) {
606 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
607 spin_lock_irq(&p->sighand->siglock);
608 if (p->signal->tty == tty) {
609 p->signal->tty = NULL;
610 /* We defer the dereferences outside fo
611 the tasklist lock */
612 refs++;
613 }
614 if (!p->signal->leader) {
615 spin_unlock_irq(&p->sighand->siglock);
616 continue;
617 }
618 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
619 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
620 put_pid(p->signal->tty_old_pgrp); /* A noop */
621 spin_lock_irqsave(&tty->ctrl_lock, flags);
622 if (tty->pgrp)
623 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
624 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
625 spin_unlock_irq(&p->sighand->siglock);
626 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
627 }
628 read_unlock(&tasklist_lock);
629
630 spin_lock_irqsave(&tty->ctrl_lock, flags);
631 tty->flags = 0;
632 put_pid(tty->session);
633 put_pid(tty->pgrp);
634 tty->session = NULL;
635 tty->pgrp = NULL;
636 tty->ctrl_status = 0;
637 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
638
639 /* Account for the p->signal references we killed */
640 while (refs--)
641 tty_kref_put(tty);
642
643 /*
644 * If one of the devices matches a console pointer, we
645 * cannot just call hangup() because that will cause
646 * tty->count and state->count to go out of sync.
647 * So we just call close() the right number of times.
648 */
649 if (cons_filp) {
650 if (tty->ops->close)
651 for (n = 0; n < closecount; n++)
652 tty->ops->close(tty, cons_filp);
653 } else if (tty->ops->hangup)
654 (tty->ops->hangup)(tty);
655 /*
656 * We don't want to have driver/ldisc interactions beyond
657 * the ones we did here. The driver layer expects no
658 * calls after ->hangup() from the ldisc side. However we
659 * can't yet guarantee all that.
660 */
661 set_bit(TTY_HUPPED, &tty->flags);
662 if (ld) {
663 tty_ldisc_enable(tty);
664 tty_ldisc_deref(ld);
665 }
666 unlock_kernel();
667 if (f)
668 fput(f);
669 }
670
671 /**
672 * tty_hangup - trigger a hangup event
673 * @tty: tty to hangup
674 *
675 * A carrier loss (virtual or otherwise) has occurred on this like
676 * schedule a hangup sequence to run after this event.
677 */
678
679 void tty_hangup(struct tty_struct *tty)
680 {
681 #ifdef TTY_DEBUG_HANGUP
682 char buf[64];
683 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
684 #endif
685 schedule_work(&tty->hangup_work);
686 }
687
688 EXPORT_SYMBOL(tty_hangup);
689
690 /**
691 * tty_vhangup - process vhangup
692 * @tty: tty to hangup
693 *
694 * The user has asked via system call for the terminal to be hung up.
695 * We do this synchronously so that when the syscall returns the process
696 * is complete. That guarantee is necessary for security reasons.
697 */
698
699 void tty_vhangup(struct tty_struct *tty)
700 {
701 #ifdef TTY_DEBUG_HANGUP
702 char buf[64];
703
704 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
705 #endif
706 do_tty_hangup(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_vhangup);
710
711 /**
712 * tty_vhangup_self - process vhangup for own ctty
713 *
714 * Perform a vhangup on the current controlling tty
715 */
716
717 void tty_vhangup_self(void)
718 {
719 struct tty_struct *tty;
720
721 tty = get_current_tty();
722 if (tty) {
723 tty_vhangup(tty);
724 tty_kref_put(tty);
725 }
726 }
727
728 /**
729 * tty_hung_up_p - was tty hung up
730 * @filp: file pointer of tty
731 *
732 * Return true if the tty has been subject to a vhangup or a carrier
733 * loss
734 */
735
736 int tty_hung_up_p(struct file *filp)
737 {
738 return (filp->f_op == &hung_up_tty_fops);
739 }
740
741 EXPORT_SYMBOL(tty_hung_up_p);
742
743 static void session_clear_tty(struct pid *session)
744 {
745 struct task_struct *p;
746 do_each_pid_task(session, PIDTYPE_SID, p) {
747 proc_clear_tty(p);
748 } while_each_pid_task(session, PIDTYPE_SID, p);
749 }
750
751 /**
752 * disassociate_ctty - disconnect controlling tty
753 * @on_exit: true if exiting so need to "hang up" the session
754 *
755 * This function is typically called only by the session leader, when
756 * it wants to disassociate itself from its controlling tty.
757 *
758 * It performs the following functions:
759 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
760 * (2) Clears the tty from being controlling the session
761 * (3) Clears the controlling tty for all processes in the
762 * session group.
763 *
764 * The argument on_exit is set to 1 if called when a process is
765 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
766 *
767 * Locking:
768 * BKL is taken for hysterical raisins
769 * tty_mutex is taken to protect tty
770 * ->siglock is taken to protect ->signal/->sighand
771 * tasklist_lock is taken to walk process list for sessions
772 * ->siglock is taken to protect ->signal/->sighand
773 */
774
775 void disassociate_ctty(int on_exit)
776 {
777 struct tty_struct *tty;
778 struct pid *tty_pgrp = NULL;
779
780
781 tty = get_current_tty();
782 if (tty) {
783 tty_pgrp = get_pid(tty->pgrp);
784 lock_kernel();
785 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
786 tty_vhangup(tty);
787 unlock_kernel();
788 tty_kref_put(tty);
789 } else if (on_exit) {
790 struct pid *old_pgrp;
791 spin_lock_irq(&current->sighand->siglock);
792 old_pgrp = current->signal->tty_old_pgrp;
793 current->signal->tty_old_pgrp = NULL;
794 spin_unlock_irq(&current->sighand->siglock);
795 if (old_pgrp) {
796 kill_pgrp(old_pgrp, SIGHUP, on_exit);
797 kill_pgrp(old_pgrp, SIGCONT, on_exit);
798 put_pid(old_pgrp);
799 }
800 return;
801 }
802 if (tty_pgrp) {
803 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
804 if (!on_exit)
805 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
806 put_pid(tty_pgrp);
807 }
808
809 spin_lock_irq(&current->sighand->siglock);
810 put_pid(current->signal->tty_old_pgrp);
811 current->signal->tty_old_pgrp = NULL;
812 spin_unlock_irq(&current->sighand->siglock);
813
814 tty = get_current_tty();
815 if (tty) {
816 unsigned long flags;
817 spin_lock_irqsave(&tty->ctrl_lock, flags);
818 put_pid(tty->session);
819 put_pid(tty->pgrp);
820 tty->session = NULL;
821 tty->pgrp = NULL;
822 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
823 tty_kref_put(tty);
824 } else {
825 #ifdef TTY_DEBUG_HANGUP
826 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
827 " = NULL", tty);
828 #endif
829 }
830
831 /* Now clear signal->tty under the lock */
832 read_lock(&tasklist_lock);
833 session_clear_tty(task_session(current));
834 read_unlock(&tasklist_lock);
835 }
836
837 /**
838 *
839 * no_tty - Ensure the current process does not have a controlling tty
840 */
841 void no_tty(void)
842 {
843 struct task_struct *tsk = current;
844 lock_kernel();
845 if (tsk->signal->leader)
846 disassociate_ctty(0);
847 unlock_kernel();
848 proc_clear_tty(tsk);
849 }
850
851
852 /**
853 * stop_tty - propagate flow control
854 * @tty: tty to stop
855 *
856 * Perform flow control to the driver. For PTY/TTY pairs we
857 * must also propagate the TIOCKPKT status. May be called
858 * on an already stopped device and will not re-call the driver
859 * method.
860 *
861 * This functionality is used by both the line disciplines for
862 * halting incoming flow and by the driver. It may therefore be
863 * called from any context, may be under the tty atomic_write_lock
864 * but not always.
865 *
866 * Locking:
867 * Uses the tty control lock internally
868 */
869
870 void stop_tty(struct tty_struct *tty)
871 {
872 unsigned long flags;
873 spin_lock_irqsave(&tty->ctrl_lock, flags);
874 if (tty->stopped) {
875 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
876 return;
877 }
878 tty->stopped = 1;
879 if (tty->link && tty->link->packet) {
880 tty->ctrl_status &= ~TIOCPKT_START;
881 tty->ctrl_status |= TIOCPKT_STOP;
882 wake_up_interruptible(&tty->link->read_wait);
883 }
884 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
885 if (tty->ops->stop)
886 (tty->ops->stop)(tty);
887 }
888
889 EXPORT_SYMBOL(stop_tty);
890
891 /**
892 * start_tty - propagate flow control
893 * @tty: tty to start
894 *
895 * Start a tty that has been stopped if at all possible. Perform
896 * any necessary wakeups and propagate the TIOCPKT status. If this
897 * is the tty was previous stopped and is being started then the
898 * driver start method is invoked and the line discipline woken.
899 *
900 * Locking:
901 * ctrl_lock
902 */
903
904 void start_tty(struct tty_struct *tty)
905 {
906 unsigned long flags;
907 spin_lock_irqsave(&tty->ctrl_lock, flags);
908 if (!tty->stopped || tty->flow_stopped) {
909 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
910 return;
911 }
912 tty->stopped = 0;
913 if (tty->link && tty->link->packet) {
914 tty->ctrl_status &= ~TIOCPKT_STOP;
915 tty->ctrl_status |= TIOCPKT_START;
916 wake_up_interruptible(&tty->link->read_wait);
917 }
918 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919 if (tty->ops->start)
920 (tty->ops->start)(tty);
921 /* If we have a running line discipline it may need kicking */
922 tty_wakeup(tty);
923 }
924
925 EXPORT_SYMBOL(start_tty);
926
927 /**
928 * tty_read - read method for tty device files
929 * @file: pointer to tty file
930 * @buf: user buffer
931 * @count: size of user buffer
932 * @ppos: unused
933 *
934 * Perform the read system call function on this terminal device. Checks
935 * for hung up devices before calling the line discipline method.
936 *
937 * Locking:
938 * Locks the line discipline internally while needed. Multiple
939 * read calls may be outstanding in parallel.
940 */
941
942 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
943 loff_t *ppos)
944 {
945 int i;
946 struct tty_struct *tty;
947 struct inode *inode;
948 struct tty_ldisc *ld;
949
950 tty = (struct tty_struct *)file->private_data;
951 inode = file->f_path.dentry->d_inode;
952 if (tty_paranoia_check(tty, inode, "tty_read"))
953 return -EIO;
954 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
955 return -EIO;
956
957 /* We want to wait for the line discipline to sort out in this
958 situation */
959 ld = tty_ldisc_ref_wait(tty);
960 if (ld->ops->read)
961 i = (ld->ops->read)(tty, file, buf, count);
962 else
963 i = -EIO;
964 tty_ldisc_deref(ld);
965 if (i > 0)
966 inode->i_atime = current_fs_time(inode->i_sb);
967 return i;
968 }
969
970 void tty_write_unlock(struct tty_struct *tty)
971 {
972 mutex_unlock(&tty->atomic_write_lock);
973 wake_up_interruptible(&tty->write_wait);
974 }
975
976 int tty_write_lock(struct tty_struct *tty, int ndelay)
977 {
978 if (!mutex_trylock(&tty->atomic_write_lock)) {
979 if (ndelay)
980 return -EAGAIN;
981 if (mutex_lock_interruptible(&tty->atomic_write_lock))
982 return -ERESTARTSYS;
983 }
984 return 0;
985 }
986
987 /*
988 * Split writes up in sane blocksizes to avoid
989 * denial-of-service type attacks
990 */
991 static inline ssize_t do_tty_write(
992 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
993 struct tty_struct *tty,
994 struct file *file,
995 const char __user *buf,
996 size_t count)
997 {
998 ssize_t ret, written = 0;
999 unsigned int chunk;
1000
1001 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1002 if (ret < 0)
1003 return ret;
1004
1005 /*
1006 * We chunk up writes into a temporary buffer. This
1007 * simplifies low-level drivers immensely, since they
1008 * don't have locking issues and user mode accesses.
1009 *
1010 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1011 * big chunk-size..
1012 *
1013 * The default chunk-size is 2kB, because the NTTY
1014 * layer has problems with bigger chunks. It will
1015 * claim to be able to handle more characters than
1016 * it actually does.
1017 *
1018 * FIXME: This can probably go away now except that 64K chunks
1019 * are too likely to fail unless switched to vmalloc...
1020 */
1021 chunk = 2048;
1022 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1023 chunk = 65536;
1024 if (count < chunk)
1025 chunk = count;
1026
1027 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1028 if (tty->write_cnt < chunk) {
1029 unsigned char *buf_chunk;
1030
1031 if (chunk < 1024)
1032 chunk = 1024;
1033
1034 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1035 if (!buf_chunk) {
1036 ret = -ENOMEM;
1037 goto out;
1038 }
1039 kfree(tty->write_buf);
1040 tty->write_cnt = chunk;
1041 tty->write_buf = buf_chunk;
1042 }
1043
1044 /* Do the write .. */
1045 for (;;) {
1046 size_t size = count;
1047 if (size > chunk)
1048 size = chunk;
1049 ret = -EFAULT;
1050 if (copy_from_user(tty->write_buf, buf, size))
1051 break;
1052 ret = write(tty, file, tty->write_buf, size);
1053 if (ret <= 0)
1054 break;
1055 written += ret;
1056 buf += ret;
1057 count -= ret;
1058 if (!count)
1059 break;
1060 ret = -ERESTARTSYS;
1061 if (signal_pending(current))
1062 break;
1063 cond_resched();
1064 }
1065 if (written) {
1066 struct inode *inode = file->f_path.dentry->d_inode;
1067 inode->i_mtime = current_fs_time(inode->i_sb);
1068 ret = written;
1069 }
1070 out:
1071 tty_write_unlock(tty);
1072 return ret;
1073 }
1074
1075 /**
1076 * tty_write_message - write a message to a certain tty, not just the console.
1077 * @tty: the destination tty_struct
1078 * @msg: the message to write
1079 *
1080 * This is used for messages that need to be redirected to a specific tty.
1081 * We don't put it into the syslog queue right now maybe in the future if
1082 * really needed.
1083 *
1084 * We must still hold the BKL and test the CLOSING flag for the moment.
1085 */
1086
1087 void tty_write_message(struct tty_struct *tty, char *msg)
1088 {
1089 lock_kernel();
1090 if (tty) {
1091 mutex_lock(&tty->atomic_write_lock);
1092 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1093 tty->ops->write(tty, msg, strlen(msg));
1094 tty_write_unlock(tty);
1095 }
1096 unlock_kernel();
1097 return;
1098 }
1099
1100
1101 /**
1102 * tty_write - write method for tty device file
1103 * @file: tty file pointer
1104 * @buf: user data to write
1105 * @count: bytes to write
1106 * @ppos: unused
1107 *
1108 * Write data to a tty device via the line discipline.
1109 *
1110 * Locking:
1111 * Locks the line discipline as required
1112 * Writes to the tty driver are serialized by the atomic_write_lock
1113 * and are then processed in chunks to the device. The line discipline
1114 * write method will not be involked in parallel for each device
1115 * The line discipline write method is called under the big
1116 * kernel lock for historical reasons. New code should not rely on this.
1117 */
1118
1119 static ssize_t tty_write(struct file *file, const char __user *buf,
1120 size_t count, loff_t *ppos)
1121 {
1122 struct tty_struct *tty;
1123 struct inode *inode = file->f_path.dentry->d_inode;
1124 ssize_t ret;
1125 struct tty_ldisc *ld;
1126
1127 tty = (struct tty_struct *)file->private_data;
1128 if (tty_paranoia_check(tty, inode, "tty_write"))
1129 return -EIO;
1130 if (!tty || !tty->ops->write ||
1131 (test_bit(TTY_IO_ERROR, &tty->flags)))
1132 return -EIO;
1133 /* Short term debug to catch buggy drivers */
1134 if (tty->ops->write_room == NULL)
1135 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1136 tty->driver->name);
1137 ld = tty_ldisc_ref_wait(tty);
1138 if (!ld->ops->write)
1139 ret = -EIO;
1140 else
1141 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1142 tty_ldisc_deref(ld);
1143 return ret;
1144 }
1145
1146 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1147 size_t count, loff_t *ppos)
1148 {
1149 struct file *p = NULL;
1150
1151 spin_lock(&redirect_lock);
1152 if (redirect) {
1153 get_file(redirect);
1154 p = redirect;
1155 }
1156 spin_unlock(&redirect_lock);
1157
1158 if (p) {
1159 ssize_t res;
1160 res = vfs_write(p, buf, count, &p->f_pos);
1161 fput(p);
1162 return res;
1163 }
1164 return tty_write(file, buf, count, ppos);
1165 }
1166
1167 static char ptychar[] = "pqrstuvwxyzabcde";
1168
1169 /**
1170 * pty_line_name - generate name for a pty
1171 * @driver: the tty driver in use
1172 * @index: the minor number
1173 * @p: output buffer of at least 6 bytes
1174 *
1175 * Generate a name from a driver reference and write it to the output
1176 * buffer.
1177 *
1178 * Locking: None
1179 */
1180 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1181 {
1182 int i = index + driver->name_base;
1183 /* ->name is initialized to "ttyp", but "tty" is expected */
1184 sprintf(p, "%s%c%x",
1185 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1186 ptychar[i >> 4 & 0xf], i & 0xf);
1187 }
1188
1189 /**
1190 * tty_line_name - generate name for a tty
1191 * @driver: the tty driver in use
1192 * @index: the minor number
1193 * @p: output buffer of at least 7 bytes
1194 *
1195 * Generate a name from a driver reference and write it to the output
1196 * buffer.
1197 *
1198 * Locking: None
1199 */
1200 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1201 {
1202 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1203 }
1204
1205 /**
1206 * tty_driver_lookup_tty() - find an existing tty, if any
1207 * @driver: the driver for the tty
1208 * @idx: the minor number
1209 *
1210 * Return the tty, if found or ERR_PTR() otherwise.
1211 *
1212 * Locking: tty_mutex must be held. If tty is found, the mutex must
1213 * be held until the 'fast-open' is also done. Will change once we
1214 * have refcounting in the driver and per driver locking
1215 */
1216 struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1217 struct inode *inode, int idx)
1218 {
1219 struct tty_struct *tty;
1220
1221 if (driver->ops->lookup)
1222 return driver->ops->lookup(driver, inode, idx);
1223
1224 tty = driver->ttys[idx];
1225 return tty;
1226 }
1227
1228 /**
1229 * tty_init_termios - helper for termios setup
1230 * @tty: the tty to set up
1231 *
1232 * Initialise the termios structures for this tty. Thus runs under
1233 * the tty_mutex currently so we can be relaxed about ordering.
1234 */
1235
1236 int tty_init_termios(struct tty_struct *tty)
1237 {
1238 struct ktermios *tp;
1239 int idx = tty->index;
1240
1241 tp = tty->driver->termios[idx];
1242 if (tp == NULL) {
1243 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1244 if (tp == NULL)
1245 return -ENOMEM;
1246 memcpy(tp, &tty->driver->init_termios,
1247 sizeof(struct ktermios));
1248 tty->driver->termios[idx] = tp;
1249 }
1250 tty->termios = tp;
1251 tty->termios_locked = tp + 1;
1252
1253 /* Compatibility until drivers always set this */
1254 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1255 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1256 return 0;
1257 }
1258
1259 /**
1260 * tty_driver_install_tty() - install a tty entry in the driver
1261 * @driver: the driver for the tty
1262 * @tty: the tty
1263 *
1264 * Install a tty object into the driver tables. The tty->index field
1265 * will be set by the time this is called. This method is responsible
1266 * for ensuring any need additional structures are allocated and
1267 * configured.
1268 *
1269 * Locking: tty_mutex for now
1270 */
1271 static int tty_driver_install_tty(struct tty_driver *driver,
1272 struct tty_struct *tty)
1273 {
1274 int idx = tty->index;
1275
1276 if (driver->ops->install)
1277 return driver->ops->install(driver, tty);
1278
1279 if (tty_init_termios(tty) == 0) {
1280 tty_driver_kref_get(driver);
1281 tty->count++;
1282 driver->ttys[idx] = tty;
1283 return 0;
1284 }
1285 return -ENOMEM;
1286 }
1287
1288 /**
1289 * tty_driver_remove_tty() - remove a tty from the driver tables
1290 * @driver: the driver for the tty
1291 * @idx: the minor number
1292 *
1293 * Remvoe a tty object from the driver tables. The tty->index field
1294 * will be set by the time this is called.
1295 *
1296 * Locking: tty_mutex for now
1297 */
1298 static void tty_driver_remove_tty(struct tty_driver *driver,
1299 struct tty_struct *tty)
1300 {
1301 if (driver->ops->remove)
1302 driver->ops->remove(driver, tty);
1303 else
1304 driver->ttys[tty->index] = NULL;
1305 }
1306
1307 /*
1308 * tty_reopen() - fast re-open of an open tty
1309 * @tty - the tty to open
1310 *
1311 * Return 0 on success, -errno on error.
1312 *
1313 * Locking: tty_mutex must be held from the time the tty was found
1314 * till this open completes.
1315 */
1316 static int tty_reopen(struct tty_struct *tty)
1317 {
1318 struct tty_driver *driver = tty->driver;
1319
1320 if (test_bit(TTY_CLOSING, &tty->flags))
1321 return -EIO;
1322
1323 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1324 driver->subtype == PTY_TYPE_MASTER) {
1325 /*
1326 * special case for PTY masters: only one open permitted,
1327 * and the slave side open count is incremented as well.
1328 */
1329 if (tty->count)
1330 return -EIO;
1331
1332 tty->link->count++;
1333 }
1334 tty->count++;
1335 tty->driver = driver; /* N.B. why do this every time?? */
1336
1337 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1338
1339 return 0;
1340 }
1341
1342 /**
1343 * tty_init_dev - initialise a tty device
1344 * @driver: tty driver we are opening a device on
1345 * @idx: device index
1346 * @ret_tty: returned tty structure
1347 * @first_ok: ok to open a new device (used by ptmx)
1348 *
1349 * Prepare a tty device. This may not be a "new" clean device but
1350 * could also be an active device. The pty drivers require special
1351 * handling because of this.
1352 *
1353 * Locking:
1354 * The function is called under the tty_mutex, which
1355 * protects us from the tty struct or driver itself going away.
1356 *
1357 * On exit the tty device has the line discipline attached and
1358 * a reference count of 1. If a pair was created for pty/tty use
1359 * and the other was a pty master then it too has a reference count of 1.
1360 *
1361 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1362 * failed open. The new code protects the open with a mutex, so it's
1363 * really quite straightforward. The mutex locking can probably be
1364 * relaxed for the (most common) case of reopening a tty.
1365 */
1366
1367 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1368 int first_ok)
1369 {
1370 struct tty_struct *tty;
1371 int retval;
1372
1373 /* Check if pty master is being opened multiple times */
1374 if (driver->subtype == PTY_TYPE_MASTER &&
1375 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1376 return ERR_PTR(-EIO);
1377
1378 /*
1379 * First time open is complex, especially for PTY devices.
1380 * This code guarantees that either everything succeeds and the
1381 * TTY is ready for operation, or else the table slots are vacated
1382 * and the allocated memory released. (Except that the termios
1383 * and locked termios may be retained.)
1384 */
1385
1386 if (!try_module_get(driver->owner))
1387 return ERR_PTR(-ENODEV);
1388
1389 tty = alloc_tty_struct();
1390 if (!tty)
1391 goto fail_no_mem;
1392 initialize_tty_struct(tty, driver, idx);
1393
1394 retval = tty_driver_install_tty(driver, tty);
1395 if (retval < 0) {
1396 free_tty_struct(tty);
1397 module_put(driver->owner);
1398 return ERR_PTR(retval);
1399 }
1400
1401 /*
1402 * Structures all installed ... call the ldisc open routines.
1403 * If we fail here just call release_tty to clean up. No need
1404 * to decrement the use counts, as release_tty doesn't care.
1405 */
1406
1407 retval = tty_ldisc_setup(tty, tty->link);
1408 if (retval)
1409 goto release_mem_out;
1410 return tty;
1411
1412 fail_no_mem:
1413 module_put(driver->owner);
1414 return ERR_PTR(-ENOMEM);
1415
1416 /* call the tty release_tty routine to clean out this slot */
1417 release_mem_out:
1418 if (printk_ratelimit())
1419 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1420 "clearing slot %d\n", idx);
1421 release_tty(tty, idx);
1422 return ERR_PTR(retval);
1423 }
1424
1425 void tty_free_termios(struct tty_struct *tty)
1426 {
1427 struct ktermios *tp;
1428 int idx = tty->index;
1429 /* Kill this flag and push into drivers for locking etc */
1430 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1431 /* FIXME: Locking on ->termios array */
1432 tp = tty->termios;
1433 tty->driver->termios[idx] = NULL;
1434 kfree(tp);
1435 }
1436 }
1437 EXPORT_SYMBOL(tty_free_termios);
1438
1439 void tty_shutdown(struct tty_struct *tty)
1440 {
1441 tty_driver_remove_tty(tty->driver, tty);
1442 tty_free_termios(tty);
1443 }
1444 EXPORT_SYMBOL(tty_shutdown);
1445
1446 /**
1447 * release_one_tty - release tty structure memory
1448 * @kref: kref of tty we are obliterating
1449 *
1450 * Releases memory associated with a tty structure, and clears out the
1451 * driver table slots. This function is called when a device is no longer
1452 * in use. It also gets called when setup of a device fails.
1453 *
1454 * Locking:
1455 * tty_mutex - sometimes only
1456 * takes the file list lock internally when working on the list
1457 * of ttys that the driver keeps.
1458 */
1459 static void release_one_tty(struct kref *kref)
1460 {
1461 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1462 struct tty_driver *driver = tty->driver;
1463
1464 if (tty->ops->shutdown)
1465 tty->ops->shutdown(tty);
1466 else
1467 tty_shutdown(tty);
1468 tty->magic = 0;
1469 tty_driver_kref_put(driver);
1470 module_put(driver->owner);
1471
1472 file_list_lock();
1473 list_del_init(&tty->tty_files);
1474 file_list_unlock();
1475
1476 free_tty_struct(tty);
1477 }
1478
1479 /**
1480 * tty_kref_put - release a tty kref
1481 * @tty: tty device
1482 *
1483 * Release a reference to a tty device and if need be let the kref
1484 * layer destruct the object for us
1485 */
1486
1487 void tty_kref_put(struct tty_struct *tty)
1488 {
1489 if (tty)
1490 kref_put(&tty->kref, release_one_tty);
1491 }
1492 EXPORT_SYMBOL(tty_kref_put);
1493
1494 /**
1495 * release_tty - release tty structure memory
1496 *
1497 * Release both @tty and a possible linked partner (think pty pair),
1498 * and decrement the refcount of the backing module.
1499 *
1500 * Locking:
1501 * tty_mutex - sometimes only
1502 * takes the file list lock internally when working on the list
1503 * of ttys that the driver keeps.
1504 * FIXME: should we require tty_mutex is held here ??
1505 *
1506 */
1507 static void release_tty(struct tty_struct *tty, int idx)
1508 {
1509 /* This should always be true but check for the moment */
1510 WARN_ON(tty->index != idx);
1511
1512 if (tty->link)
1513 tty_kref_put(tty->link);
1514 tty_kref_put(tty);
1515 }
1516
1517 /*
1518 * Even releasing the tty structures is a tricky business.. We have
1519 * to be very careful that the structures are all released at the
1520 * same time, as interrupts might otherwise get the wrong pointers.
1521 *
1522 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1523 * lead to double frees or releasing memory still in use.
1524 */
1525 void tty_release_dev(struct file *filp)
1526 {
1527 struct tty_struct *tty, *o_tty;
1528 int pty_master, tty_closing, o_tty_closing, do_sleep;
1529 int devpts;
1530 int idx;
1531 char buf[64];
1532 struct inode *inode;
1533
1534 inode = filp->f_path.dentry->d_inode;
1535 tty = (struct tty_struct *)filp->private_data;
1536 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1537 return;
1538
1539 check_tty_count(tty, "tty_release_dev");
1540
1541 tty_fasync(-1, filp, 0);
1542
1543 idx = tty->index;
1544 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1545 tty->driver->subtype == PTY_TYPE_MASTER);
1546 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1547 o_tty = tty->link;
1548
1549 #ifdef TTY_PARANOIA_CHECK
1550 if (idx < 0 || idx >= tty->driver->num) {
1551 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1552 "free (%s)\n", tty->name);
1553 return;
1554 }
1555 if (!devpts) {
1556 if (tty != tty->driver->ttys[idx]) {
1557 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1558 "for (%s)\n", idx, tty->name);
1559 return;
1560 }
1561 if (tty->termios != tty->driver->termios[idx]) {
1562 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1563 "for (%s)\n",
1564 idx, tty->name);
1565 return;
1566 }
1567 }
1568 #endif
1569
1570 #ifdef TTY_DEBUG_HANGUP
1571 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1572 tty_name(tty, buf), tty->count);
1573 #endif
1574
1575 #ifdef TTY_PARANOIA_CHECK
1576 if (tty->driver->other &&
1577 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1578 if (o_tty != tty->driver->other->ttys[idx]) {
1579 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1580 "not o_tty for (%s)\n",
1581 idx, tty->name);
1582 return;
1583 }
1584 if (o_tty->termios != tty->driver->other->termios[idx]) {
1585 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1586 "not o_termios for (%s)\n",
1587 idx, tty->name);
1588 return;
1589 }
1590 if (o_tty->link != tty) {
1591 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1592 return;
1593 }
1594 }
1595 #endif
1596 if (tty->ops->close)
1597 tty->ops->close(tty, filp);
1598
1599 /*
1600 * Sanity check: if tty->count is going to zero, there shouldn't be
1601 * any waiters on tty->read_wait or tty->write_wait. We test the
1602 * wait queues and kick everyone out _before_ actually starting to
1603 * close. This ensures that we won't block while releasing the tty
1604 * structure.
1605 *
1606 * The test for the o_tty closing is necessary, since the master and
1607 * slave sides may close in any order. If the slave side closes out
1608 * first, its count will be one, since the master side holds an open.
1609 * Thus this test wouldn't be triggered at the time the slave closes,
1610 * so we do it now.
1611 *
1612 * Note that it's possible for the tty to be opened again while we're
1613 * flushing out waiters. By recalculating the closing flags before
1614 * each iteration we avoid any problems.
1615 */
1616 while (1) {
1617 /* Guard against races with tty->count changes elsewhere and
1618 opens on /dev/tty */
1619
1620 mutex_lock(&tty_mutex);
1621 tty_closing = tty->count <= 1;
1622 o_tty_closing = o_tty &&
1623 (o_tty->count <= (pty_master ? 1 : 0));
1624 do_sleep = 0;
1625
1626 if (tty_closing) {
1627 if (waitqueue_active(&tty->read_wait)) {
1628 wake_up(&tty->read_wait);
1629 do_sleep++;
1630 }
1631 if (waitqueue_active(&tty->write_wait)) {
1632 wake_up(&tty->write_wait);
1633 do_sleep++;
1634 }
1635 }
1636 if (o_tty_closing) {
1637 if (waitqueue_active(&o_tty->read_wait)) {
1638 wake_up(&o_tty->read_wait);
1639 do_sleep++;
1640 }
1641 if (waitqueue_active(&o_tty->write_wait)) {
1642 wake_up(&o_tty->write_wait);
1643 do_sleep++;
1644 }
1645 }
1646 if (!do_sleep)
1647 break;
1648
1649 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1650 "active!\n", tty_name(tty, buf));
1651 mutex_unlock(&tty_mutex);
1652 schedule();
1653 }
1654
1655 /*
1656 * The closing flags are now consistent with the open counts on
1657 * both sides, and we've completed the last operation that could
1658 * block, so it's safe to proceed with closing.
1659 */
1660 if (pty_master) {
1661 if (--o_tty->count < 0) {
1662 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1663 "(%d) for %s\n",
1664 o_tty->count, tty_name(o_tty, buf));
1665 o_tty->count = 0;
1666 }
1667 }
1668 if (--tty->count < 0) {
1669 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1670 tty->count, tty_name(tty, buf));
1671 tty->count = 0;
1672 }
1673
1674 /*
1675 * We've decremented tty->count, so we need to remove this file
1676 * descriptor off the tty->tty_files list; this serves two
1677 * purposes:
1678 * - check_tty_count sees the correct number of file descriptors
1679 * associated with this tty.
1680 * - do_tty_hangup no longer sees this file descriptor as
1681 * something that needs to be handled for hangups.
1682 */
1683 file_kill(filp);
1684 filp->private_data = NULL;
1685
1686 /*
1687 * Perform some housekeeping before deciding whether to return.
1688 *
1689 * Set the TTY_CLOSING flag if this was the last open. In the
1690 * case of a pty we may have to wait around for the other side
1691 * to close, and TTY_CLOSING makes sure we can't be reopened.
1692 */
1693 if (tty_closing)
1694 set_bit(TTY_CLOSING, &tty->flags);
1695 if (o_tty_closing)
1696 set_bit(TTY_CLOSING, &o_tty->flags);
1697
1698 /*
1699 * If _either_ side is closing, make sure there aren't any
1700 * processes that still think tty or o_tty is their controlling
1701 * tty.
1702 */
1703 if (tty_closing || o_tty_closing) {
1704 read_lock(&tasklist_lock);
1705 session_clear_tty(tty->session);
1706 if (o_tty)
1707 session_clear_tty(o_tty->session);
1708 read_unlock(&tasklist_lock);
1709 }
1710
1711 mutex_unlock(&tty_mutex);
1712
1713 /* check whether both sides are closing ... */
1714 if (!tty_closing || (o_tty && !o_tty_closing))
1715 return;
1716
1717 #ifdef TTY_DEBUG_HANGUP
1718 printk(KERN_DEBUG "freeing tty structure...");
1719 #endif
1720 /*
1721 * Ask the line discipline code to release its structures
1722 */
1723 tty_ldisc_release(tty, o_tty);
1724 /*
1725 * The release_tty function takes care of the details of clearing
1726 * the slots and preserving the termios structure.
1727 */
1728 release_tty(tty, idx);
1729
1730 /* Make this pty number available for reallocation */
1731 if (devpts)
1732 devpts_kill_index(inode, idx);
1733 }
1734
1735 /**
1736 * __tty_open - open a tty device
1737 * @inode: inode of device file
1738 * @filp: file pointer to tty
1739 *
1740 * tty_open and tty_release keep up the tty count that contains the
1741 * number of opens done on a tty. We cannot use the inode-count, as
1742 * different inodes might point to the same tty.
1743 *
1744 * Open-counting is needed for pty masters, as well as for keeping
1745 * track of serial lines: DTR is dropped when the last close happens.
1746 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1747 *
1748 * The termios state of a pty is reset on first open so that
1749 * settings don't persist across reuse.
1750 *
1751 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1752 * tty->count should protect the rest.
1753 * ->siglock protects ->signal/->sighand
1754 */
1755
1756 static int __tty_open(struct inode *inode, struct file *filp)
1757 {
1758 struct tty_struct *tty = NULL;
1759 int noctty, retval;
1760 struct tty_driver *driver;
1761 int index;
1762 dev_t device = inode->i_rdev;
1763 unsigned short saved_flags = filp->f_flags;
1764
1765 nonseekable_open(inode, filp);
1766
1767 retry_open:
1768 noctty = filp->f_flags & O_NOCTTY;
1769 index = -1;
1770 retval = 0;
1771
1772 mutex_lock(&tty_mutex);
1773
1774 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1775 tty = get_current_tty();
1776 if (!tty) {
1777 mutex_unlock(&tty_mutex);
1778 return -ENXIO;
1779 }
1780 driver = tty_driver_kref_get(tty->driver);
1781 index = tty->index;
1782 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1783 /* noctty = 1; */
1784 /* FIXME: Should we take a driver reference ? */
1785 tty_kref_put(tty);
1786 goto got_driver;
1787 }
1788 #ifdef CONFIG_VT
1789 if (device == MKDEV(TTY_MAJOR, 0)) {
1790 extern struct tty_driver *console_driver;
1791 driver = tty_driver_kref_get(console_driver);
1792 index = fg_console;
1793 noctty = 1;
1794 goto got_driver;
1795 }
1796 #endif
1797 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1798 struct tty_driver *console_driver = console_device(&index);
1799 if (console_driver) {
1800 driver = tty_driver_kref_get(console_driver);
1801 if (driver) {
1802 /* Don't let /dev/console block */
1803 filp->f_flags |= O_NONBLOCK;
1804 noctty = 1;
1805 goto got_driver;
1806 }
1807 }
1808 mutex_unlock(&tty_mutex);
1809 return -ENODEV;
1810 }
1811
1812 driver = get_tty_driver(device, &index);
1813 if (!driver) {
1814 mutex_unlock(&tty_mutex);
1815 return -ENODEV;
1816 }
1817 got_driver:
1818 if (!tty) {
1819 /* check whether we're reopening an existing tty */
1820 tty = tty_driver_lookup_tty(driver, inode, index);
1821
1822 if (IS_ERR(tty))
1823 return PTR_ERR(tty);
1824 }
1825
1826 if (tty) {
1827 retval = tty_reopen(tty);
1828 if (retval)
1829 tty = ERR_PTR(retval);
1830 } else
1831 tty = tty_init_dev(driver, index, 0);
1832
1833 mutex_unlock(&tty_mutex);
1834 tty_driver_kref_put(driver);
1835 if (IS_ERR(tty))
1836 return PTR_ERR(tty);
1837
1838 filp->private_data = tty;
1839 file_move(filp, &tty->tty_files);
1840 check_tty_count(tty, "tty_open");
1841 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1842 tty->driver->subtype == PTY_TYPE_MASTER)
1843 noctty = 1;
1844 #ifdef TTY_DEBUG_HANGUP
1845 printk(KERN_DEBUG "opening %s...", tty->name);
1846 #endif
1847 if (!retval) {
1848 if (tty->ops->open)
1849 retval = tty->ops->open(tty, filp);
1850 else
1851 retval = -ENODEV;
1852 }
1853 filp->f_flags = saved_flags;
1854
1855 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1856 !capable(CAP_SYS_ADMIN))
1857 retval = -EBUSY;
1858
1859 if (retval) {
1860 #ifdef TTY_DEBUG_HANGUP
1861 printk(KERN_DEBUG "error %d in opening %s...", retval,
1862 tty->name);
1863 #endif
1864 tty_release_dev(filp);
1865 if (retval != -ERESTARTSYS)
1866 return retval;
1867 if (signal_pending(current))
1868 return retval;
1869 schedule();
1870 /*
1871 * Need to reset f_op in case a hangup happened.
1872 */
1873 if (filp->f_op == &hung_up_tty_fops)
1874 filp->f_op = &tty_fops;
1875 goto retry_open;
1876 }
1877
1878 mutex_lock(&tty_mutex);
1879 spin_lock_irq(&current->sighand->siglock);
1880 if (!noctty &&
1881 current->signal->leader &&
1882 !current->signal->tty &&
1883 tty->session == NULL)
1884 __proc_set_tty(current, tty);
1885 spin_unlock_irq(&current->sighand->siglock);
1886 mutex_unlock(&tty_mutex);
1887 return 0;
1888 }
1889
1890 /* BKL pushdown: scary code avoidance wrapper */
1891 static int tty_open(struct inode *inode, struct file *filp)
1892 {
1893 int ret;
1894
1895 lock_kernel();
1896 ret = __tty_open(inode, filp);
1897 unlock_kernel();
1898 return ret;
1899 }
1900
1901
1902
1903
1904 /**
1905 * tty_release - vfs callback for close
1906 * @inode: inode of tty
1907 * @filp: file pointer for handle to tty
1908 *
1909 * Called the last time each file handle is closed that references
1910 * this tty. There may however be several such references.
1911 *
1912 * Locking:
1913 * Takes bkl. See tty_release_dev
1914 */
1915
1916 static int tty_release(struct inode *inode, struct file *filp)
1917 {
1918 lock_kernel();
1919 tty_release_dev(filp);
1920 unlock_kernel();
1921 return 0;
1922 }
1923
1924 /**
1925 * tty_poll - check tty status
1926 * @filp: file being polled
1927 * @wait: poll wait structures to update
1928 *
1929 * Call the line discipline polling method to obtain the poll
1930 * status of the device.
1931 *
1932 * Locking: locks called line discipline but ldisc poll method
1933 * may be re-entered freely by other callers.
1934 */
1935
1936 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1937 {
1938 struct tty_struct *tty;
1939 struct tty_ldisc *ld;
1940 int ret = 0;
1941
1942 tty = (struct tty_struct *)filp->private_data;
1943 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1944 return 0;
1945
1946 ld = tty_ldisc_ref_wait(tty);
1947 if (ld->ops->poll)
1948 ret = (ld->ops->poll)(tty, filp, wait);
1949 tty_ldisc_deref(ld);
1950 return ret;
1951 }
1952
1953 static int tty_fasync(int fd, struct file *filp, int on)
1954 {
1955 struct tty_struct *tty;
1956 unsigned long flags;
1957 int retval = 0;
1958
1959 lock_kernel();
1960 tty = (struct tty_struct *)filp->private_data;
1961 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1962 goto out;
1963
1964 retval = fasync_helper(fd, filp, on, &tty->fasync);
1965 if (retval <= 0)
1966 goto out;
1967
1968 if (on) {
1969 enum pid_type type;
1970 struct pid *pid;
1971 if (!waitqueue_active(&tty->read_wait))
1972 tty->minimum_to_wake = 1;
1973 spin_lock_irqsave(&tty->ctrl_lock, flags);
1974 if (tty->pgrp) {
1975 pid = tty->pgrp;
1976 type = PIDTYPE_PGID;
1977 } else {
1978 pid = task_pid(current);
1979 type = PIDTYPE_PID;
1980 }
1981 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1982 retval = __f_setown(filp, pid, type, 0);
1983 if (retval)
1984 goto out;
1985 } else {
1986 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1987 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1988 }
1989 retval = 0;
1990 out:
1991 unlock_kernel();
1992 return retval;
1993 }
1994
1995 /**
1996 * tiocsti - fake input character
1997 * @tty: tty to fake input into
1998 * @p: pointer to character
1999 *
2000 * Fake input to a tty device. Does the necessary locking and
2001 * input management.
2002 *
2003 * FIXME: does not honour flow control ??
2004 *
2005 * Locking:
2006 * Called functions take tty_ldisc_lock
2007 * current->signal->tty check is safe without locks
2008 *
2009 * FIXME: may race normal receive processing
2010 */
2011
2012 static int tiocsti(struct tty_struct *tty, char __user *p)
2013 {
2014 char ch, mbz = 0;
2015 struct tty_ldisc *ld;
2016
2017 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2018 return -EPERM;
2019 if (get_user(ch, p))
2020 return -EFAULT;
2021 ld = tty_ldisc_ref_wait(tty);
2022 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2023 tty_ldisc_deref(ld);
2024 return 0;
2025 }
2026
2027 /**
2028 * tiocgwinsz - implement window query ioctl
2029 * @tty; tty
2030 * @arg: user buffer for result
2031 *
2032 * Copies the kernel idea of the window size into the user buffer.
2033 *
2034 * Locking: tty->termios_mutex is taken to ensure the winsize data
2035 * is consistent.
2036 */
2037
2038 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2039 {
2040 int err;
2041
2042 mutex_lock(&tty->termios_mutex);
2043 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2044 mutex_unlock(&tty->termios_mutex);
2045
2046 return err ? -EFAULT: 0;
2047 }
2048
2049 /**
2050 * tty_do_resize - resize event
2051 * @tty: tty being resized
2052 * @real_tty: real tty (not the same as tty if using a pty/tty pair)
2053 * @rows: rows (character)
2054 * @cols: cols (character)
2055 *
2056 * Update the termios variables and send the neccessary signals to
2057 * peform a terminal resize correctly
2058 */
2059
2060 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2061 struct winsize *ws)
2062 {
2063 struct pid *pgrp, *rpgrp;
2064 unsigned long flags;
2065
2066 /* For a PTY we need to lock the tty side */
2067 mutex_lock(&real_tty->termios_mutex);
2068 if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2069 goto done;
2070 /* Get the PID values and reference them so we can
2071 avoid holding the tty ctrl lock while sending signals */
2072 spin_lock_irqsave(&tty->ctrl_lock, flags);
2073 pgrp = get_pid(tty->pgrp);
2074 rpgrp = get_pid(real_tty->pgrp);
2075 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2076
2077 if (pgrp)
2078 kill_pgrp(pgrp, SIGWINCH, 1);
2079 if (rpgrp != pgrp && rpgrp)
2080 kill_pgrp(rpgrp, SIGWINCH, 1);
2081
2082 put_pid(pgrp);
2083 put_pid(rpgrp);
2084
2085 tty->winsize = *ws;
2086 real_tty->winsize = *ws;
2087 done:
2088 mutex_unlock(&real_tty->termios_mutex);
2089 return 0;
2090 }
2091
2092 /**
2093 * tiocswinsz - implement window size set ioctl
2094 * @tty; tty
2095 * @arg: user buffer for result
2096 *
2097 * Copies the user idea of the window size to the kernel. Traditionally
2098 * this is just advisory information but for the Linux console it
2099 * actually has driver level meaning and triggers a VC resize.
2100 *
2101 * Locking:
2102 * Driver dependant. The default do_resize method takes the
2103 * tty termios mutex and ctrl_lock. The console takes its own lock
2104 * then calls into the default method.
2105 */
2106
2107 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2108 struct winsize __user *arg)
2109 {
2110 struct winsize tmp_ws;
2111 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2112 return -EFAULT;
2113
2114 if (tty->ops->resize)
2115 return tty->ops->resize(tty, real_tty, &tmp_ws);
2116 else
2117 return tty_do_resize(tty, real_tty, &tmp_ws);
2118 }
2119
2120 /**
2121 * tioccons - allow admin to move logical console
2122 * @file: the file to become console
2123 *
2124 * Allow the adminstrator to move the redirected console device
2125 *
2126 * Locking: uses redirect_lock to guard the redirect information
2127 */
2128
2129 static int tioccons(struct file *file)
2130 {
2131 if (!capable(CAP_SYS_ADMIN))
2132 return -EPERM;
2133 if (file->f_op->write == redirected_tty_write) {
2134 struct file *f;
2135 spin_lock(&redirect_lock);
2136 f = redirect;
2137 redirect = NULL;
2138 spin_unlock(&redirect_lock);
2139 if (f)
2140 fput(f);
2141 return 0;
2142 }
2143 spin_lock(&redirect_lock);
2144 if (redirect) {
2145 spin_unlock(&redirect_lock);
2146 return -EBUSY;
2147 }
2148 get_file(file);
2149 redirect = file;
2150 spin_unlock(&redirect_lock);
2151 return 0;
2152 }
2153
2154 /**
2155 * fionbio - non blocking ioctl
2156 * @file: file to set blocking value
2157 * @p: user parameter
2158 *
2159 * Historical tty interfaces had a blocking control ioctl before
2160 * the generic functionality existed. This piece of history is preserved
2161 * in the expected tty API of posix OS's.
2162 *
2163 * Locking: none, the open fle handle ensures it won't go away.
2164 */
2165
2166 static int fionbio(struct file *file, int __user *p)
2167 {
2168 int nonblock;
2169
2170 if (get_user(nonblock, p))
2171 return -EFAULT;
2172
2173 /* file->f_flags is still BKL protected in the fs layer - vomit */
2174 lock_kernel();
2175 if (nonblock)
2176 file->f_flags |= O_NONBLOCK;
2177 else
2178 file->f_flags &= ~O_NONBLOCK;
2179 unlock_kernel();
2180 return 0;
2181 }
2182
2183 /**
2184 * tiocsctty - set controlling tty
2185 * @tty: tty structure
2186 * @arg: user argument
2187 *
2188 * This ioctl is used to manage job control. It permits a session
2189 * leader to set this tty as the controlling tty for the session.
2190 *
2191 * Locking:
2192 * Takes tty_mutex() to protect tty instance
2193 * Takes tasklist_lock internally to walk sessions
2194 * Takes ->siglock() when updating signal->tty
2195 */
2196
2197 static int tiocsctty(struct tty_struct *tty, int arg)
2198 {
2199 int ret = 0;
2200 if (current->signal->leader && (task_session(current) == tty->session))
2201 return ret;
2202
2203 mutex_lock(&tty_mutex);
2204 /*
2205 * The process must be a session leader and
2206 * not have a controlling tty already.
2207 */
2208 if (!current->signal->leader || current->signal->tty) {
2209 ret = -EPERM;
2210 goto unlock;
2211 }
2212
2213 if (tty->session) {
2214 /*
2215 * This tty is already the controlling
2216 * tty for another session group!
2217 */
2218 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2219 /*
2220 * Steal it away
2221 */
2222 read_lock(&tasklist_lock);
2223 session_clear_tty(tty->session);
2224 read_unlock(&tasklist_lock);
2225 } else {
2226 ret = -EPERM;
2227 goto unlock;
2228 }
2229 }
2230 proc_set_tty(current, tty);
2231 unlock:
2232 mutex_unlock(&tty_mutex);
2233 return ret;
2234 }
2235
2236 /**
2237 * tty_get_pgrp - return a ref counted pgrp pid
2238 * @tty: tty to read
2239 *
2240 * Returns a refcounted instance of the pid struct for the process
2241 * group controlling the tty.
2242 */
2243
2244 struct pid *tty_get_pgrp(struct tty_struct *tty)
2245 {
2246 unsigned long flags;
2247 struct pid *pgrp;
2248
2249 spin_lock_irqsave(&tty->ctrl_lock, flags);
2250 pgrp = get_pid(tty->pgrp);
2251 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2252
2253 return pgrp;
2254 }
2255 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2256
2257 /**
2258 * tiocgpgrp - get process group
2259 * @tty: tty passed by user
2260 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2261 * @p: returned pid
2262 *
2263 * Obtain the process group of the tty. If there is no process group
2264 * return an error.
2265 *
2266 * Locking: none. Reference to current->signal->tty is safe.
2267 */
2268
2269 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2270 {
2271 struct pid *pid;
2272 int ret;
2273 /*
2274 * (tty == real_tty) is a cheap way of
2275 * testing if the tty is NOT a master pty.
2276 */
2277 if (tty == real_tty && current->signal->tty != real_tty)
2278 return -ENOTTY;
2279 pid = tty_get_pgrp(real_tty);
2280 ret = put_user(pid_vnr(pid), p);
2281 put_pid(pid);
2282 return ret;
2283 }
2284
2285 /**
2286 * tiocspgrp - attempt to set process group
2287 * @tty: tty passed by user
2288 * @real_tty: tty side device matching tty passed by user
2289 * @p: pid pointer
2290 *
2291 * Set the process group of the tty to the session passed. Only
2292 * permitted where the tty session is our session.
2293 *
2294 * Locking: RCU, ctrl lock
2295 */
2296
2297 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2298 {
2299 struct pid *pgrp;
2300 pid_t pgrp_nr;
2301 int retval = tty_check_change(real_tty);
2302 unsigned long flags;
2303
2304 if (retval == -EIO)
2305 return -ENOTTY;
2306 if (retval)
2307 return retval;
2308 if (!current->signal->tty ||
2309 (current->signal->tty != real_tty) ||
2310 (real_tty->session != task_session(current)))
2311 return -ENOTTY;
2312 if (get_user(pgrp_nr, p))
2313 return -EFAULT;
2314 if (pgrp_nr < 0)
2315 return -EINVAL;
2316 rcu_read_lock();
2317 pgrp = find_vpid(pgrp_nr);
2318 retval = -ESRCH;
2319 if (!pgrp)
2320 goto out_unlock;
2321 retval = -EPERM;
2322 if (session_of_pgrp(pgrp) != task_session(current))
2323 goto out_unlock;
2324 retval = 0;
2325 spin_lock_irqsave(&tty->ctrl_lock, flags);
2326 put_pid(real_tty->pgrp);
2327 real_tty->pgrp = get_pid(pgrp);
2328 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2329 out_unlock:
2330 rcu_read_unlock();
2331 return retval;
2332 }
2333
2334 /**
2335 * tiocgsid - get session id
2336 * @tty: tty passed by user
2337 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2338 * @p: pointer to returned session id
2339 *
2340 * Obtain the session id of the tty. If there is no session
2341 * return an error.
2342 *
2343 * Locking: none. Reference to current->signal->tty is safe.
2344 */
2345
2346 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2347 {
2348 /*
2349 * (tty == real_tty) is a cheap way of
2350 * testing if the tty is NOT a master pty.
2351 */
2352 if (tty == real_tty && current->signal->tty != real_tty)
2353 return -ENOTTY;
2354 if (!real_tty->session)
2355 return -ENOTTY;
2356 return put_user(pid_vnr(real_tty->session), p);
2357 }
2358
2359 /**
2360 * tiocsetd - set line discipline
2361 * @tty: tty device
2362 * @p: pointer to user data
2363 *
2364 * Set the line discipline according to user request.
2365 *
2366 * Locking: see tty_set_ldisc, this function is just a helper
2367 */
2368
2369 static int tiocsetd(struct tty_struct *tty, int __user *p)
2370 {
2371 int ldisc;
2372 int ret;
2373
2374 if (get_user(ldisc, p))
2375 return -EFAULT;
2376
2377 lock_kernel();
2378 ret = tty_set_ldisc(tty, ldisc);
2379 unlock_kernel();
2380
2381 return ret;
2382 }
2383
2384 /**
2385 * send_break - performed time break
2386 * @tty: device to break on
2387 * @duration: timeout in mS
2388 *
2389 * Perform a timed break on hardware that lacks its own driver level
2390 * timed break functionality.
2391 *
2392 * Locking:
2393 * atomic_write_lock serializes
2394 *
2395 */
2396
2397 static int send_break(struct tty_struct *tty, unsigned int duration)
2398 {
2399 int retval;
2400
2401 if (tty->ops->break_ctl == NULL)
2402 return 0;
2403
2404 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2405 retval = tty->ops->break_ctl(tty, duration);
2406 else {
2407 /* Do the work ourselves */
2408 if (tty_write_lock(tty, 0) < 0)
2409 return -EINTR;
2410 retval = tty->ops->break_ctl(tty, -1);
2411 if (retval)
2412 goto out;
2413 if (!signal_pending(current))
2414 msleep_interruptible(duration);
2415 retval = tty->ops->break_ctl(tty, 0);
2416 out:
2417 tty_write_unlock(tty);
2418 if (signal_pending(current))
2419 retval = -EINTR;
2420 }
2421 return retval;
2422 }
2423
2424 /**
2425 * tty_tiocmget - get modem status
2426 * @tty: tty device
2427 * @file: user file pointer
2428 * @p: pointer to result
2429 *
2430 * Obtain the modem status bits from the tty driver if the feature
2431 * is supported. Return -EINVAL if it is not available.
2432 *
2433 * Locking: none (up to the driver)
2434 */
2435
2436 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2437 {
2438 int retval = -EINVAL;
2439
2440 if (tty->ops->tiocmget) {
2441 retval = tty->ops->tiocmget(tty, file);
2442
2443 if (retval >= 0)
2444 retval = put_user(retval, p);
2445 }
2446 return retval;
2447 }
2448
2449 /**
2450 * tty_tiocmset - set modem status
2451 * @tty: tty device
2452 * @file: user file pointer
2453 * @cmd: command - clear bits, set bits or set all
2454 * @p: pointer to desired bits
2455 *
2456 * Set the modem status bits from the tty driver if the feature
2457 * is supported. Return -EINVAL if it is not available.
2458 *
2459 * Locking: none (up to the driver)
2460 */
2461
2462 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2463 unsigned __user *p)
2464 {
2465 int retval;
2466 unsigned int set, clear, val;
2467
2468 if (tty->ops->tiocmset == NULL)
2469 return -EINVAL;
2470
2471 retval = get_user(val, p);
2472 if (retval)
2473 return retval;
2474 set = clear = 0;
2475 switch (cmd) {
2476 case TIOCMBIS:
2477 set = val;
2478 break;
2479 case TIOCMBIC:
2480 clear = val;
2481 break;
2482 case TIOCMSET:
2483 set = val;
2484 clear = ~val;
2485 break;
2486 }
2487 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2488 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2489 return tty->ops->tiocmset(tty, file, set, clear);
2490 }
2491
2492 /*
2493 * Split this up, as gcc can choke on it otherwise..
2494 */
2495 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2496 {
2497 struct tty_struct *tty, *real_tty;
2498 void __user *p = (void __user *)arg;
2499 int retval;
2500 struct tty_ldisc *ld;
2501 struct inode *inode = file->f_dentry->d_inode;
2502
2503 tty = (struct tty_struct *)file->private_data;
2504 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2505 return -EINVAL;
2506
2507 real_tty = tty;
2508 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2509 tty->driver->subtype == PTY_TYPE_MASTER)
2510 real_tty = tty->link;
2511
2512
2513 /*
2514 * Factor out some common prep work
2515 */
2516 switch (cmd) {
2517 case TIOCSETD:
2518 case TIOCSBRK:
2519 case TIOCCBRK:
2520 case TCSBRK:
2521 case TCSBRKP:
2522 retval = tty_check_change(tty);
2523 if (retval)
2524 return retval;
2525 if (cmd != TIOCCBRK) {
2526 tty_wait_until_sent(tty, 0);
2527 if (signal_pending(current))
2528 return -EINTR;
2529 }
2530 break;
2531 }
2532
2533 /*
2534 * Now do the stuff.
2535 */
2536 switch (cmd) {
2537 case TIOCSTI:
2538 return tiocsti(tty, p);
2539 case TIOCGWINSZ:
2540 return tiocgwinsz(real_tty, p);
2541 case TIOCSWINSZ:
2542 return tiocswinsz(tty, real_tty, p);
2543 case TIOCCONS:
2544 return real_tty != tty ? -EINVAL : tioccons(file);
2545 case FIONBIO:
2546 return fionbio(file, p);
2547 case TIOCEXCL:
2548 set_bit(TTY_EXCLUSIVE, &tty->flags);
2549 return 0;
2550 case TIOCNXCL:
2551 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2552 return 0;
2553 case TIOCNOTTY:
2554 if (current->signal->tty != tty)
2555 return -ENOTTY;
2556 no_tty();
2557 return 0;
2558 case TIOCSCTTY:
2559 return tiocsctty(tty, arg);
2560 case TIOCGPGRP:
2561 return tiocgpgrp(tty, real_tty, p);
2562 case TIOCSPGRP:
2563 return tiocspgrp(tty, real_tty, p);
2564 case TIOCGSID:
2565 return tiocgsid(tty, real_tty, p);
2566 case TIOCGETD:
2567 return put_user(tty->ldisc.ops->num, (int __user *)p);
2568 case TIOCSETD:
2569 return tiocsetd(tty, p);
2570 /*
2571 * Break handling
2572 */
2573 case TIOCSBRK: /* Turn break on, unconditionally */
2574 if (tty->ops->break_ctl)
2575 return tty->ops->break_ctl(tty, -1);
2576 return 0;
2577 case TIOCCBRK: /* Turn break off, unconditionally */
2578 if (tty->ops->break_ctl)
2579 return tty->ops->break_ctl(tty, 0);
2580 return 0;
2581 case TCSBRK: /* SVID version: non-zero arg --> no break */
2582 /* non-zero arg means wait for all output data
2583 * to be sent (performed above) but don't send break.
2584 * This is used by the tcdrain() termios function.
2585 */
2586 if (!arg)
2587 return send_break(tty, 250);
2588 return 0;
2589 case TCSBRKP: /* support for POSIX tcsendbreak() */
2590 return send_break(tty, arg ? arg*100 : 250);
2591
2592 case TIOCMGET:
2593 return tty_tiocmget(tty, file, p);
2594 case TIOCMSET:
2595 case TIOCMBIC:
2596 case TIOCMBIS:
2597 return tty_tiocmset(tty, file, cmd, p);
2598 case TCFLSH:
2599 switch (arg) {
2600 case TCIFLUSH:
2601 case TCIOFLUSH:
2602 /* flush tty buffer and allow ldisc to process ioctl */
2603 tty_buffer_flush(tty);
2604 break;
2605 }
2606 break;
2607 }
2608 if (tty->ops->ioctl) {
2609 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2610 if (retval != -ENOIOCTLCMD)
2611 return retval;
2612 }
2613 ld = tty_ldisc_ref_wait(tty);
2614 retval = -EINVAL;
2615 if (ld->ops->ioctl) {
2616 retval = ld->ops->ioctl(tty, file, cmd, arg);
2617 if (retval == -ENOIOCTLCMD)
2618 retval = -EINVAL;
2619 }
2620 tty_ldisc_deref(ld);
2621 return retval;
2622 }
2623
2624 #ifdef CONFIG_COMPAT
2625 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2626 unsigned long arg)
2627 {
2628 struct inode *inode = file->f_dentry->d_inode;
2629 struct tty_struct *tty = file->private_data;
2630 struct tty_ldisc *ld;
2631 int retval = -ENOIOCTLCMD;
2632
2633 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634 return -EINVAL;
2635
2636 if (tty->ops->compat_ioctl) {
2637 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2638 if (retval != -ENOIOCTLCMD)
2639 return retval;
2640 }
2641
2642 ld = tty_ldisc_ref_wait(tty);
2643 if (ld->ops->compat_ioctl)
2644 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2645 tty_ldisc_deref(ld);
2646
2647 return retval;
2648 }
2649 #endif
2650
2651 /*
2652 * This implements the "Secure Attention Key" --- the idea is to
2653 * prevent trojan horses by killing all processes associated with this
2654 * tty when the user hits the "Secure Attention Key". Required for
2655 * super-paranoid applications --- see the Orange Book for more details.
2656 *
2657 * This code could be nicer; ideally it should send a HUP, wait a few
2658 * seconds, then send a INT, and then a KILL signal. But you then
2659 * have to coordinate with the init process, since all processes associated
2660 * with the current tty must be dead before the new getty is allowed
2661 * to spawn.
2662 *
2663 * Now, if it would be correct ;-/ The current code has a nasty hole -
2664 * it doesn't catch files in flight. We may send the descriptor to ourselves
2665 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2666 *
2667 * Nasty bug: do_SAK is being called in interrupt context. This can
2668 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2669 */
2670 void __do_SAK(struct tty_struct *tty)
2671 {
2672 #ifdef TTY_SOFT_SAK
2673 tty_hangup(tty);
2674 #else
2675 struct task_struct *g, *p;
2676 struct pid *session;
2677 int i;
2678 struct file *filp;
2679 struct fdtable *fdt;
2680
2681 if (!tty)
2682 return;
2683 session = tty->session;
2684
2685 tty_ldisc_flush(tty);
2686
2687 tty_driver_flush_buffer(tty);
2688
2689 read_lock(&tasklist_lock);
2690 /* Kill the entire session */
2691 do_each_pid_task(session, PIDTYPE_SID, p) {
2692 printk(KERN_NOTICE "SAK: killed process %d"
2693 " (%s): task_session_nr(p)==tty->session\n",
2694 task_pid_nr(p), p->comm);
2695 send_sig(SIGKILL, p, 1);
2696 } while_each_pid_task(session, PIDTYPE_SID, p);
2697 /* Now kill any processes that happen to have the
2698 * tty open.
2699 */
2700 do_each_thread(g, p) {
2701 if (p->signal->tty == tty) {
2702 printk(KERN_NOTICE "SAK: killed process %d"
2703 " (%s): task_session_nr(p)==tty->session\n",
2704 task_pid_nr(p), p->comm);
2705 send_sig(SIGKILL, p, 1);
2706 continue;
2707 }
2708 task_lock(p);
2709 if (p->files) {
2710 /*
2711 * We don't take a ref to the file, so we must
2712 * hold ->file_lock instead.
2713 */
2714 spin_lock(&p->files->file_lock);
2715 fdt = files_fdtable(p->files);
2716 for (i = 0; i < fdt->max_fds; i++) {
2717 filp = fcheck_files(p->files, i);
2718 if (!filp)
2719 continue;
2720 if (filp->f_op->read == tty_read &&
2721 filp->private_data == tty) {
2722 printk(KERN_NOTICE "SAK: killed process %d"
2723 " (%s): fd#%d opened to the tty\n",
2724 task_pid_nr(p), p->comm, i);
2725 force_sig(SIGKILL, p);
2726 break;
2727 }
2728 }
2729 spin_unlock(&p->files->file_lock);
2730 }
2731 task_unlock(p);
2732 } while_each_thread(g, p);
2733 read_unlock(&tasklist_lock);
2734 #endif
2735 }
2736
2737 static void do_SAK_work(struct work_struct *work)
2738 {
2739 struct tty_struct *tty =
2740 container_of(work, struct tty_struct, SAK_work);
2741 __do_SAK(tty);
2742 }
2743
2744 /*
2745 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2746 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2747 * the values which we write to it will be identical to the values which it
2748 * already has. --akpm
2749 */
2750 void do_SAK(struct tty_struct *tty)
2751 {
2752 if (!tty)
2753 return;
2754 schedule_work(&tty->SAK_work);
2755 }
2756
2757 EXPORT_SYMBOL(do_SAK);
2758
2759 /**
2760 * initialize_tty_struct
2761 * @tty: tty to initialize
2762 *
2763 * This subroutine initializes a tty structure that has been newly
2764 * allocated.
2765 *
2766 * Locking: none - tty in question must not be exposed at this point
2767 */
2768
2769 void initialize_tty_struct(struct tty_struct *tty,
2770 struct tty_driver *driver, int idx)
2771 {
2772 memset(tty, 0, sizeof(struct tty_struct));
2773 kref_init(&tty->kref);
2774 tty->magic = TTY_MAGIC;
2775 tty_ldisc_init(tty);
2776 tty->session = NULL;
2777 tty->pgrp = NULL;
2778 tty->overrun_time = jiffies;
2779 tty->buf.head = tty->buf.tail = NULL;
2780 tty_buffer_init(tty);
2781 mutex_init(&tty->termios_mutex);
2782 init_waitqueue_head(&tty->write_wait);
2783 init_waitqueue_head(&tty->read_wait);
2784 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2785 mutex_init(&tty->atomic_read_lock);
2786 mutex_init(&tty->atomic_write_lock);
2787 spin_lock_init(&tty->read_lock);
2788 spin_lock_init(&tty->ctrl_lock);
2789 INIT_LIST_HEAD(&tty->tty_files);
2790 INIT_WORK(&tty->SAK_work, do_SAK_work);
2791
2792 tty->driver = driver;
2793 tty->ops = driver->ops;
2794 tty->index = idx;
2795 tty_line_name(driver, idx, tty->name);
2796 }
2797
2798 /**
2799 * tty_put_char - write one character to a tty
2800 * @tty: tty
2801 * @ch: character
2802 *
2803 * Write one byte to the tty using the provided put_char method
2804 * if present. Returns the number of characters successfully output.
2805 *
2806 * Note: the specific put_char operation in the driver layer may go
2807 * away soon. Don't call it directly, use this method
2808 */
2809
2810 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2811 {
2812 if (tty->ops->put_char)
2813 return tty->ops->put_char(tty, ch);
2814 return tty->ops->write(tty, &ch, 1);
2815 }
2816 EXPORT_SYMBOL_GPL(tty_put_char);
2817
2818 struct class *tty_class;
2819
2820 /**
2821 * tty_register_device - register a tty device
2822 * @driver: the tty driver that describes the tty device
2823 * @index: the index in the tty driver for this tty device
2824 * @device: a struct device that is associated with this tty device.
2825 * This field is optional, if there is no known struct device
2826 * for this tty device it can be set to NULL safely.
2827 *
2828 * Returns a pointer to the struct device for this tty device
2829 * (or ERR_PTR(-EFOO) on error).
2830 *
2831 * This call is required to be made to register an individual tty device
2832 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2833 * that bit is not set, this function should not be called by a tty
2834 * driver.
2835 *
2836 * Locking: ??
2837 */
2838
2839 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2840 struct device *device)
2841 {
2842 char name[64];
2843 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2844
2845 if (index >= driver->num) {
2846 printk(KERN_ERR "Attempt to register invalid tty line number "
2847 " (%d).\n", index);
2848 return ERR_PTR(-EINVAL);
2849 }
2850
2851 if (driver->type == TTY_DRIVER_TYPE_PTY)
2852 pty_line_name(driver, index, name);
2853 else
2854 tty_line_name(driver, index, name);
2855
2856 return device_create(tty_class, device, dev, NULL, name);
2857 }
2858 EXPORT_SYMBOL(tty_register_device);
2859
2860 /**
2861 * tty_unregister_device - unregister a tty device
2862 * @driver: the tty driver that describes the tty device
2863 * @index: the index in the tty driver for this tty device
2864 *
2865 * If a tty device is registered with a call to tty_register_device() then
2866 * this function must be called when the tty device is gone.
2867 *
2868 * Locking: ??
2869 */
2870
2871 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2872 {
2873 device_destroy(tty_class,
2874 MKDEV(driver->major, driver->minor_start) + index);
2875 }
2876 EXPORT_SYMBOL(tty_unregister_device);
2877
2878 struct tty_driver *alloc_tty_driver(int lines)
2879 {
2880 struct tty_driver *driver;
2881
2882 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2883 if (driver) {
2884 kref_init(&driver->kref);
2885 driver->magic = TTY_DRIVER_MAGIC;
2886 driver->num = lines;
2887 /* later we'll move allocation of tables here */
2888 }
2889 return driver;
2890 }
2891 EXPORT_SYMBOL(alloc_tty_driver);
2892
2893 static void destruct_tty_driver(struct kref *kref)
2894 {
2895 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2896 int i;
2897 struct ktermios *tp;
2898 void *p;
2899
2900 if (driver->flags & TTY_DRIVER_INSTALLED) {
2901 /*
2902 * Free the termios and termios_locked structures because
2903 * we don't want to get memory leaks when modular tty
2904 * drivers are removed from the kernel.
2905 */
2906 for (i = 0; i < driver->num; i++) {
2907 tp = driver->termios[i];
2908 if (tp) {
2909 driver->termios[i] = NULL;
2910 kfree(tp);
2911 }
2912 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2913 tty_unregister_device(driver, i);
2914 }
2915 p = driver->ttys;
2916 proc_tty_unregister_driver(driver);
2917 driver->ttys = NULL;
2918 driver->termios = NULL;
2919 kfree(p);
2920 cdev_del(&driver->cdev);
2921 }
2922 kfree(driver);
2923 }
2924
2925 void tty_driver_kref_put(struct tty_driver *driver)
2926 {
2927 kref_put(&driver->kref, destruct_tty_driver);
2928 }
2929 EXPORT_SYMBOL(tty_driver_kref_put);
2930
2931 void tty_set_operations(struct tty_driver *driver,
2932 const struct tty_operations *op)
2933 {
2934 driver->ops = op;
2935 };
2936 EXPORT_SYMBOL(tty_set_operations);
2937
2938 void put_tty_driver(struct tty_driver *d)
2939 {
2940 tty_driver_kref_put(d);
2941 }
2942 EXPORT_SYMBOL(put_tty_driver);
2943
2944 /*
2945 * Called by a tty driver to register itself.
2946 */
2947 int tty_register_driver(struct tty_driver *driver)
2948 {
2949 int error;
2950 int i;
2951 dev_t dev;
2952 void **p = NULL;
2953
2954 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2955 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2956 if (!p)
2957 return -ENOMEM;
2958 }
2959
2960 if (!driver->major) {
2961 error = alloc_chrdev_region(&dev, driver->minor_start,
2962 driver->num, driver->name);
2963 if (!error) {
2964 driver->major = MAJOR(dev);
2965 driver->minor_start = MINOR(dev);
2966 }
2967 } else {
2968 dev = MKDEV(driver->major, driver->minor_start);
2969 error = register_chrdev_region(dev, driver->num, driver->name);
2970 }
2971 if (error < 0) {
2972 kfree(p);
2973 return error;
2974 }
2975
2976 if (p) {
2977 driver->ttys = (struct tty_struct **)p;
2978 driver->termios = (struct ktermios **)(p + driver->num);
2979 } else {
2980 driver->ttys = NULL;
2981 driver->termios = NULL;
2982 }
2983
2984 cdev_init(&driver->cdev, &tty_fops);
2985 driver->cdev.owner = driver->owner;
2986 error = cdev_add(&driver->cdev, dev, driver->num);
2987 if (error) {
2988 unregister_chrdev_region(dev, driver->num);
2989 driver->ttys = NULL;
2990 driver->termios = NULL;
2991 kfree(p);
2992 return error;
2993 }
2994
2995 mutex_lock(&tty_mutex);
2996 list_add(&driver->tty_drivers, &tty_drivers);
2997 mutex_unlock(&tty_mutex);
2998
2999 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3000 for (i = 0; i < driver->num; i++)
3001 tty_register_device(driver, i, NULL);
3002 }
3003 proc_tty_register_driver(driver);
3004 driver->flags |= TTY_DRIVER_INSTALLED;
3005 return 0;
3006 }
3007
3008 EXPORT_SYMBOL(tty_register_driver);
3009
3010 /*
3011 * Called by a tty driver to unregister itself.
3012 */
3013 int tty_unregister_driver(struct tty_driver *driver)
3014 {
3015 #if 0
3016 /* FIXME */
3017 if (driver->refcount)
3018 return -EBUSY;
3019 #endif
3020 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3021 driver->num);
3022 mutex_lock(&tty_mutex);
3023 list_del(&driver->tty_drivers);
3024 mutex_unlock(&tty_mutex);
3025 return 0;
3026 }
3027
3028 EXPORT_SYMBOL(tty_unregister_driver);
3029
3030 dev_t tty_devnum(struct tty_struct *tty)
3031 {
3032 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3033 }
3034 EXPORT_SYMBOL(tty_devnum);
3035
3036 void proc_clear_tty(struct task_struct *p)
3037 {
3038 unsigned long flags;
3039 struct tty_struct *tty;
3040 spin_lock_irqsave(&p->sighand->siglock, flags);
3041 tty = p->signal->tty;
3042 p->signal->tty = NULL;
3043 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3044 tty_kref_put(tty);
3045 }
3046
3047 /* Called under the sighand lock */
3048
3049 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3050 {
3051 if (tty) {
3052 unsigned long flags;
3053 /* We should not have a session or pgrp to put here but.... */
3054 spin_lock_irqsave(&tty->ctrl_lock, flags);
3055 put_pid(tty->session);
3056 put_pid(tty->pgrp);
3057 tty->pgrp = get_pid(task_pgrp(tsk));
3058 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3059 tty->session = get_pid(task_session(tsk));
3060 if (tsk->signal->tty) {
3061 printk(KERN_DEBUG "tty not NULL!!\n");
3062 tty_kref_put(tsk->signal->tty);
3063 }
3064 }
3065 put_pid(tsk->signal->tty_old_pgrp);
3066 tsk->signal->tty = tty_kref_get(tty);
3067 tsk->signal->tty_old_pgrp = NULL;
3068 }
3069
3070 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3071 {
3072 spin_lock_irq(&tsk->sighand->siglock);
3073 __proc_set_tty(tsk, tty);
3074 spin_unlock_irq(&tsk->sighand->siglock);
3075 }
3076
3077 struct tty_struct *get_current_tty(void)
3078 {
3079 struct tty_struct *tty;
3080 unsigned long flags;
3081
3082 spin_lock_irqsave(&current->sighand->siglock, flags);
3083 tty = tty_kref_get(current->signal->tty);
3084 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3085 return tty;
3086 }
3087 EXPORT_SYMBOL_GPL(get_current_tty);
3088
3089 void tty_default_fops(struct file_operations *fops)
3090 {
3091 *fops = tty_fops;
3092 }
3093
3094 /*
3095 * Initialize the console device. This is called *early*, so
3096 * we can't necessarily depend on lots of kernel help here.
3097 * Just do some early initializations, and do the complex setup
3098 * later.
3099 */
3100 void __init console_init(void)
3101 {
3102 initcall_t *call;
3103
3104 /* Setup the default TTY line discipline. */
3105 tty_ldisc_begin();
3106
3107 /*
3108 * set up the console device so that later boot sequences can
3109 * inform about problems etc..
3110 */
3111 call = __con_initcall_start;
3112 while (call < __con_initcall_end) {
3113 (*call)();
3114 call++;
3115 }
3116 }
3117
3118 static int __init tty_class_init(void)
3119 {
3120 tty_class = class_create(THIS_MODULE, "tty");
3121 if (IS_ERR(tty_class))
3122 return PTR_ERR(tty_class);
3123 return 0;
3124 }
3125
3126 postcore_initcall(tty_class_init);
3127
3128 /* 3/2004 jmc: why do these devices exist? */
3129
3130 static struct cdev tty_cdev, console_cdev;
3131
3132 /*
3133 * Ok, now we can initialize the rest of the tty devices and can count
3134 * on memory allocations, interrupts etc..
3135 */
3136 static int __init tty_init(void)
3137 {
3138 cdev_init(&tty_cdev, &tty_fops);
3139 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3140 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3141 panic("Couldn't register /dev/tty driver\n");
3142 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3143 "tty");
3144
3145 cdev_init(&console_cdev, &console_fops);
3146 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3147 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3148 panic("Couldn't register /dev/console driver\n");
3149 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3150 "console");
3151
3152 #ifdef CONFIG_VT
3153 vty_init(&console_fops);
3154 #endif
3155 return 0;
3156 }
3157 module_init(tty_init);
This page took 0.094852 seconds and 5 git commands to generate.