6c817398232e45020a0e52d66c7b399efa94f028
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159 * alloc_tty_struct - allocate a tty object
160 *
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
163 *
164 * Locking: none
165 */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
175 *
176 * Free the write buffers, tty queue and tty memory itself.
177 *
178 * Locking: none. Must be called after tty is definitely unused
179 */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
194 *
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
197 *
198 * Locking: none
199 */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
221 }
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
227 }
228 #endif
229 return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
237
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
241 }
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
252 }
253 #endif
254 return 0;
255 }
256
257 /**
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
261 *
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
264 *
265 * Locking: caller must hold tty_mutex
266 */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270 struct tty_driver *p;
271
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
278 }
279 return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
288 *
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
292 */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str, *stp;
299
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
305
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
308
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 stp = str;
315 if (*stp == ',')
316 stp++;
317 if (*stp == '\0')
318 stp = NULL;
319
320 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322 res = tty_driver_kref_get(p);
323 *line = tty_line;
324 break;
325 }
326 }
327 mutex_unlock(&tty_mutex);
328
329 return res;
330 }
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
333
334 /**
335 * tty_check_change - check for POSIX terminal changes
336 * @tty: tty to check
337 *
338 * If we try to write to, or set the state of, a terminal and we're
339 * not in the foreground, send a SIGTTOU. If the signal is blocked or
340 * ignored, go ahead and perform the operation. (POSIX 7.2)
341 *
342 * Locking: ctrl_lock
343 */
344
345 int tty_check_change(struct tty_struct *tty)
346 {
347 unsigned long flags;
348 int ret = 0;
349
350 if (current->signal->tty != tty)
351 return 0;
352
353 spin_lock_irqsave(&tty->ctrl_lock, flags);
354
355 if (!tty->pgrp) {
356 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357 goto out_unlock;
358 }
359 if (task_pgrp(current) == tty->pgrp)
360 goto out_unlock;
361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362 if (is_ignored(SIGTTOU))
363 goto out;
364 if (is_current_pgrp_orphaned()) {
365 ret = -EIO;
366 goto out;
367 }
368 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369 set_thread_flag(TIF_SIGPENDING);
370 ret = -ERESTARTSYS;
371 out:
372 return ret;
373 out_unlock:
374 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375 return ret;
376 }
377
378 EXPORT_SYMBOL(tty_check_change);
379
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381 size_t count, loff_t *ppos)
382 {
383 return 0;
384 }
385
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387 size_t count, loff_t *ppos)
388 {
389 return -EIO;
390 }
391
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 {
395 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
396 }
397
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399 unsigned long arg)
400 {
401 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
402 }
403
404 static long hung_up_tty_compat_ioctl(struct file *file,
405 unsigned int cmd, unsigned long arg)
406 {
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static const struct file_operations tty_fops = {
411 .llseek = no_llseek,
412 .read = tty_read,
413 .write = tty_write,
414 .poll = tty_poll,
415 .unlocked_ioctl = tty_ioctl,
416 .compat_ioctl = tty_compat_ioctl,
417 .open = tty_open,
418 .release = tty_release,
419 .fasync = tty_fasync,
420 };
421
422 static const struct file_operations console_fops = {
423 .llseek = no_llseek,
424 .read = tty_read,
425 .write = redirected_tty_write,
426 .poll = tty_poll,
427 .unlocked_ioctl = tty_ioctl,
428 .compat_ioctl = tty_compat_ioctl,
429 .open = tty_open,
430 .release = tty_release,
431 .fasync = tty_fasync,
432 };
433
434 static const struct file_operations hung_up_tty_fops = {
435 .llseek = no_llseek,
436 .read = hung_up_tty_read,
437 .write = hung_up_tty_write,
438 .poll = hung_up_tty_poll,
439 .unlocked_ioctl = hung_up_tty_ioctl,
440 .compat_ioctl = hung_up_tty_compat_ioctl,
441 .release = tty_release,
442 };
443
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
446
447 /**
448 * tty_wakeup - request more data
449 * @tty: terminal
450 *
451 * Internal and external helper for wakeups of tty. This function
452 * informs the line discipline if present that the driver is ready
453 * to receive more output data.
454 */
455
456 void tty_wakeup(struct tty_struct *tty)
457 {
458 struct tty_ldisc *ld;
459
460 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461 ld = tty_ldisc_ref(tty);
462 if (ld) {
463 if (ld->ops->write_wakeup)
464 ld->ops->write_wakeup(tty);
465 tty_ldisc_deref(ld);
466 }
467 }
468 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
469 }
470
471 EXPORT_SYMBOL_GPL(tty_wakeup);
472
473 /**
474 * tty_ldisc_flush - flush line discipline queue
475 * @tty: tty
476 *
477 * Flush the line discipline queue (if any) for this tty. If there
478 * is no line discipline active this is a no-op.
479 */
480
481 void tty_ldisc_flush(struct tty_struct *tty)
482 {
483 struct tty_ldisc *ld = tty_ldisc_ref(tty);
484 if (ld) {
485 if (ld->ops->flush_buffer)
486 ld->ops->flush_buffer(tty);
487 tty_ldisc_deref(ld);
488 }
489 tty_buffer_flush(tty);
490 }
491
492 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
493
494 /**
495 * tty_reset_termios - reset terminal state
496 * @tty: tty to reset
497 *
498 * Restore a terminal to the driver default state
499 */
500
501 static void tty_reset_termios(struct tty_struct *tty)
502 {
503 mutex_lock(&tty->termios_mutex);
504 *tty->termios = tty->driver->init_termios;
505 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
506 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
507 mutex_unlock(&tty->termios_mutex);
508 }
509
510 /**
511 * do_tty_hangup - actual handler for hangup events
512 * @work: tty device
513 *
514 * This can be called by the "eventd" kernel thread. That is process
515 * synchronous but doesn't hold any locks, so we need to make sure we
516 * have the appropriate locks for what we're doing.
517 *
518 * The hangup event clears any pending redirections onto the hung up
519 * device. It ensures future writes will error and it does the needed
520 * line discipline hangup and signal delivery. The tty object itself
521 * remains intact.
522 *
523 * Locking:
524 * BKL
525 * redirect lock for undoing redirection
526 * file list lock for manipulating list of ttys
527 * tty_ldisc_lock from called functions
528 * termios_mutex resetting termios data
529 * tasklist_lock to walk task list for hangup event
530 * ->siglock to protect ->signal/->sighand
531 */
532 static void do_tty_hangup(struct work_struct *work)
533 {
534 struct tty_struct *tty =
535 container_of(work, struct tty_struct, hangup_work);
536 struct file *cons_filp = NULL;
537 struct file *filp, *f = NULL;
538 struct task_struct *p;
539 struct tty_ldisc *ld;
540 int closecount = 0, n;
541 unsigned long flags;
542 int refs = 0;
543
544 if (!tty)
545 return;
546
547 /* inuse_filps is protected by the single kernel lock */
548 lock_kernel();
549
550 spin_lock(&redirect_lock);
551 if (redirect && redirect->private_data == tty) {
552 f = redirect;
553 redirect = NULL;
554 }
555 spin_unlock(&redirect_lock);
556
557 check_tty_count(tty, "do_tty_hangup");
558 file_list_lock();
559 /* This breaks for file handles being sent over AF_UNIX sockets ? */
560 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
561 if (filp->f_op->write == redirected_tty_write)
562 cons_filp = filp;
563 if (filp->f_op->write != tty_write)
564 continue;
565 closecount++;
566 tty_fasync(-1, filp, 0); /* can't block */
567 filp->f_op = &hung_up_tty_fops;
568 }
569 file_list_unlock();
570 /*
571 * FIXME! What are the locking issues here? This may me overdoing
572 * things... This question is especially important now that we've
573 * removed the irqlock.
574 */
575 ld = tty_ldisc_ref(tty);
576 if (ld != NULL) {
577 /* We may have no line discipline at this point */
578 if (ld->ops->flush_buffer)
579 ld->ops->flush_buffer(tty);
580 tty_driver_flush_buffer(tty);
581 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
582 ld->ops->write_wakeup)
583 ld->ops->write_wakeup(tty);
584 if (ld->ops->hangup)
585 ld->ops->hangup(tty);
586 }
587 /*
588 * FIXME: Once we trust the LDISC code better we can wait here for
589 * ldisc completion and fix the driver call race
590 */
591 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
592 wake_up_interruptible_poll(&tty->read_wait, POLLIN);
593 /*
594 * Shutdown the current line discipline, and reset it to
595 * N_TTY.
596 */
597 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
598 tty_reset_termios(tty);
599 /* Defer ldisc switch */
600 /* tty_deferred_ldisc_switch(N_TTY);
601
602 This should get done automatically when the port closes and
603 tty_release is called */
604
605 read_lock(&tasklist_lock);
606 if (tty->session) {
607 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
608 spin_lock_irq(&p->sighand->siglock);
609 if (p->signal->tty == tty) {
610 p->signal->tty = NULL;
611 /* We defer the dereferences outside fo
612 the tasklist lock */
613 refs++;
614 }
615 if (!p->signal->leader) {
616 spin_unlock_irq(&p->sighand->siglock);
617 continue;
618 }
619 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
620 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
621 put_pid(p->signal->tty_old_pgrp); /* A noop */
622 spin_lock_irqsave(&tty->ctrl_lock, flags);
623 if (tty->pgrp)
624 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
625 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
626 spin_unlock_irq(&p->sighand->siglock);
627 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
628 }
629 read_unlock(&tasklist_lock);
630
631 spin_lock_irqsave(&tty->ctrl_lock, flags);
632 tty->flags = 0;
633 put_pid(tty->session);
634 put_pid(tty->pgrp);
635 tty->session = NULL;
636 tty->pgrp = NULL;
637 tty->ctrl_status = 0;
638 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
639
640 /* Account for the p->signal references we killed */
641 while (refs--)
642 tty_kref_put(tty);
643
644 /*
645 * If one of the devices matches a console pointer, we
646 * cannot just call hangup() because that will cause
647 * tty->count and state->count to go out of sync.
648 * So we just call close() the right number of times.
649 */
650 if (cons_filp) {
651 if (tty->ops->close)
652 for (n = 0; n < closecount; n++)
653 tty->ops->close(tty, cons_filp);
654 } else if (tty->ops->hangup)
655 (tty->ops->hangup)(tty);
656 /*
657 * We don't want to have driver/ldisc interactions beyond
658 * the ones we did here. The driver layer expects no
659 * calls after ->hangup() from the ldisc side. However we
660 * can't yet guarantee all that.
661 */
662 set_bit(TTY_HUPPED, &tty->flags);
663 if (ld) {
664 tty_ldisc_enable(tty);
665 tty_ldisc_deref(ld);
666 }
667 unlock_kernel();
668 if (f)
669 fput(f);
670 }
671
672 /**
673 * tty_hangup - trigger a hangup event
674 * @tty: tty to hangup
675 *
676 * A carrier loss (virtual or otherwise) has occurred on this like
677 * schedule a hangup sequence to run after this event.
678 */
679
680 void tty_hangup(struct tty_struct *tty)
681 {
682 #ifdef TTY_DEBUG_HANGUP
683 char buf[64];
684 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
685 #endif
686 schedule_work(&tty->hangup_work);
687 }
688
689 EXPORT_SYMBOL(tty_hangup);
690
691 /**
692 * tty_vhangup - process vhangup
693 * @tty: tty to hangup
694 *
695 * The user has asked via system call for the terminal to be hung up.
696 * We do this synchronously so that when the syscall returns the process
697 * is complete. That guarantee is necessary for security reasons.
698 */
699
700 void tty_vhangup(struct tty_struct *tty)
701 {
702 #ifdef TTY_DEBUG_HANGUP
703 char buf[64];
704
705 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
706 #endif
707 do_tty_hangup(&tty->hangup_work);
708 }
709
710 EXPORT_SYMBOL(tty_vhangup);
711
712 /**
713 * tty_vhangup_self - process vhangup for own ctty
714 *
715 * Perform a vhangup on the current controlling tty
716 */
717
718 void tty_vhangup_self(void)
719 {
720 struct tty_struct *tty;
721
722 tty = get_current_tty();
723 if (tty) {
724 tty_vhangup(tty);
725 tty_kref_put(tty);
726 }
727 }
728
729 /**
730 * tty_hung_up_p - was tty hung up
731 * @filp: file pointer of tty
732 *
733 * Return true if the tty has been subject to a vhangup or a carrier
734 * loss
735 */
736
737 int tty_hung_up_p(struct file *filp)
738 {
739 return (filp->f_op == &hung_up_tty_fops);
740 }
741
742 EXPORT_SYMBOL(tty_hung_up_p);
743
744 static void session_clear_tty(struct pid *session)
745 {
746 struct task_struct *p;
747 do_each_pid_task(session, PIDTYPE_SID, p) {
748 proc_clear_tty(p);
749 } while_each_pid_task(session, PIDTYPE_SID, p);
750 }
751
752 /**
753 * disassociate_ctty - disconnect controlling tty
754 * @on_exit: true if exiting so need to "hang up" the session
755 *
756 * This function is typically called only by the session leader, when
757 * it wants to disassociate itself from its controlling tty.
758 *
759 * It performs the following functions:
760 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
761 * (2) Clears the tty from being controlling the session
762 * (3) Clears the controlling tty for all processes in the
763 * session group.
764 *
765 * The argument on_exit is set to 1 if called when a process is
766 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
767 *
768 * Locking:
769 * BKL is taken for hysterical raisins
770 * tty_mutex is taken to protect tty
771 * ->siglock is taken to protect ->signal/->sighand
772 * tasklist_lock is taken to walk process list for sessions
773 * ->siglock is taken to protect ->signal/->sighand
774 */
775
776 void disassociate_ctty(int on_exit)
777 {
778 struct tty_struct *tty;
779 struct pid *tty_pgrp = NULL;
780
781
782 tty = get_current_tty();
783 if (tty) {
784 tty_pgrp = get_pid(tty->pgrp);
785 lock_kernel();
786 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
787 tty_vhangup(tty);
788 unlock_kernel();
789 tty_kref_put(tty);
790 } else if (on_exit) {
791 struct pid *old_pgrp;
792 spin_lock_irq(&current->sighand->siglock);
793 old_pgrp = current->signal->tty_old_pgrp;
794 current->signal->tty_old_pgrp = NULL;
795 spin_unlock_irq(&current->sighand->siglock);
796 if (old_pgrp) {
797 kill_pgrp(old_pgrp, SIGHUP, on_exit);
798 kill_pgrp(old_pgrp, SIGCONT, on_exit);
799 put_pid(old_pgrp);
800 }
801 return;
802 }
803 if (tty_pgrp) {
804 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
805 if (!on_exit)
806 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
807 put_pid(tty_pgrp);
808 }
809
810 spin_lock_irq(&current->sighand->siglock);
811 put_pid(current->signal->tty_old_pgrp);
812 current->signal->tty_old_pgrp = NULL;
813 spin_unlock_irq(&current->sighand->siglock);
814
815 tty = get_current_tty();
816 if (tty) {
817 unsigned long flags;
818 spin_lock_irqsave(&tty->ctrl_lock, flags);
819 put_pid(tty->session);
820 put_pid(tty->pgrp);
821 tty->session = NULL;
822 tty->pgrp = NULL;
823 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
824 tty_kref_put(tty);
825 } else {
826 #ifdef TTY_DEBUG_HANGUP
827 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
828 " = NULL", tty);
829 #endif
830 }
831
832 /* Now clear signal->tty under the lock */
833 read_lock(&tasklist_lock);
834 session_clear_tty(task_session(current));
835 read_unlock(&tasklist_lock);
836 }
837
838 /**
839 *
840 * no_tty - Ensure the current process does not have a controlling tty
841 */
842 void no_tty(void)
843 {
844 struct task_struct *tsk = current;
845 lock_kernel();
846 if (tsk->signal->leader)
847 disassociate_ctty(0);
848 unlock_kernel();
849 proc_clear_tty(tsk);
850 }
851
852
853 /**
854 * stop_tty - propagate flow control
855 * @tty: tty to stop
856 *
857 * Perform flow control to the driver. For PTY/TTY pairs we
858 * must also propagate the TIOCKPKT status. May be called
859 * on an already stopped device and will not re-call the driver
860 * method.
861 *
862 * This functionality is used by both the line disciplines for
863 * halting incoming flow and by the driver. It may therefore be
864 * called from any context, may be under the tty atomic_write_lock
865 * but not always.
866 *
867 * Locking:
868 * Uses the tty control lock internally
869 */
870
871 void stop_tty(struct tty_struct *tty)
872 {
873 unsigned long flags;
874 spin_lock_irqsave(&tty->ctrl_lock, flags);
875 if (tty->stopped) {
876 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877 return;
878 }
879 tty->stopped = 1;
880 if (tty->link && tty->link->packet) {
881 tty->ctrl_status &= ~TIOCPKT_START;
882 tty->ctrl_status |= TIOCPKT_STOP;
883 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
884 }
885 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
886 if (tty->ops->stop)
887 (tty->ops->stop)(tty);
888 }
889
890 EXPORT_SYMBOL(stop_tty);
891
892 /**
893 * start_tty - propagate flow control
894 * @tty: tty to start
895 *
896 * Start a tty that has been stopped if at all possible. Perform
897 * any necessary wakeups and propagate the TIOCPKT status. If this
898 * is the tty was previous stopped and is being started then the
899 * driver start method is invoked and the line discipline woken.
900 *
901 * Locking:
902 * ctrl_lock
903 */
904
905 void start_tty(struct tty_struct *tty)
906 {
907 unsigned long flags;
908 spin_lock_irqsave(&tty->ctrl_lock, flags);
909 if (!tty->stopped || tty->flow_stopped) {
910 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
911 return;
912 }
913 tty->stopped = 0;
914 if (tty->link && tty->link->packet) {
915 tty->ctrl_status &= ~TIOCPKT_STOP;
916 tty->ctrl_status |= TIOCPKT_START;
917 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
918 }
919 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
920 if (tty->ops->start)
921 (tty->ops->start)(tty);
922 /* If we have a running line discipline it may need kicking */
923 tty_wakeup(tty);
924 }
925
926 EXPORT_SYMBOL(start_tty);
927
928 /**
929 * tty_read - read method for tty device files
930 * @file: pointer to tty file
931 * @buf: user buffer
932 * @count: size of user buffer
933 * @ppos: unused
934 *
935 * Perform the read system call function on this terminal device. Checks
936 * for hung up devices before calling the line discipline method.
937 *
938 * Locking:
939 * Locks the line discipline internally while needed. Multiple
940 * read calls may be outstanding in parallel.
941 */
942
943 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
944 loff_t *ppos)
945 {
946 int i;
947 struct tty_struct *tty;
948 struct inode *inode;
949 struct tty_ldisc *ld;
950
951 tty = (struct tty_struct *)file->private_data;
952 inode = file->f_path.dentry->d_inode;
953 if (tty_paranoia_check(tty, inode, "tty_read"))
954 return -EIO;
955 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
956 return -EIO;
957
958 /* We want to wait for the line discipline to sort out in this
959 situation */
960 ld = tty_ldisc_ref_wait(tty);
961 if (ld->ops->read)
962 i = (ld->ops->read)(tty, file, buf, count);
963 else
964 i = -EIO;
965 tty_ldisc_deref(ld);
966 if (i > 0)
967 inode->i_atime = current_fs_time(inode->i_sb);
968 return i;
969 }
970
971 void tty_write_unlock(struct tty_struct *tty)
972 {
973 mutex_unlock(&tty->atomic_write_lock);
974 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
975 }
976
977 int tty_write_lock(struct tty_struct *tty, int ndelay)
978 {
979 if (!mutex_trylock(&tty->atomic_write_lock)) {
980 if (ndelay)
981 return -EAGAIN;
982 if (mutex_lock_interruptible(&tty->atomic_write_lock))
983 return -ERESTARTSYS;
984 }
985 return 0;
986 }
987
988 /*
989 * Split writes up in sane blocksizes to avoid
990 * denial-of-service type attacks
991 */
992 static inline ssize_t do_tty_write(
993 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
994 struct tty_struct *tty,
995 struct file *file,
996 const char __user *buf,
997 size_t count)
998 {
999 ssize_t ret, written = 0;
1000 unsigned int chunk;
1001
1002 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1003 if (ret < 0)
1004 return ret;
1005
1006 /*
1007 * We chunk up writes into a temporary buffer. This
1008 * simplifies low-level drivers immensely, since they
1009 * don't have locking issues and user mode accesses.
1010 *
1011 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1012 * big chunk-size..
1013 *
1014 * The default chunk-size is 2kB, because the NTTY
1015 * layer has problems with bigger chunks. It will
1016 * claim to be able to handle more characters than
1017 * it actually does.
1018 *
1019 * FIXME: This can probably go away now except that 64K chunks
1020 * are too likely to fail unless switched to vmalloc...
1021 */
1022 chunk = 2048;
1023 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1024 chunk = 65536;
1025 if (count < chunk)
1026 chunk = count;
1027
1028 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1029 if (tty->write_cnt < chunk) {
1030 unsigned char *buf_chunk;
1031
1032 if (chunk < 1024)
1033 chunk = 1024;
1034
1035 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1036 if (!buf_chunk) {
1037 ret = -ENOMEM;
1038 goto out;
1039 }
1040 kfree(tty->write_buf);
1041 tty->write_cnt = chunk;
1042 tty->write_buf = buf_chunk;
1043 }
1044
1045 /* Do the write .. */
1046 for (;;) {
1047 size_t size = count;
1048 if (size > chunk)
1049 size = chunk;
1050 ret = -EFAULT;
1051 if (copy_from_user(tty->write_buf, buf, size))
1052 break;
1053 ret = write(tty, file, tty->write_buf, size);
1054 if (ret <= 0)
1055 break;
1056 written += ret;
1057 buf += ret;
1058 count -= ret;
1059 if (!count)
1060 break;
1061 ret = -ERESTARTSYS;
1062 if (signal_pending(current))
1063 break;
1064 cond_resched();
1065 }
1066 if (written) {
1067 struct inode *inode = file->f_path.dentry->d_inode;
1068 inode->i_mtime = current_fs_time(inode->i_sb);
1069 ret = written;
1070 }
1071 out:
1072 tty_write_unlock(tty);
1073 return ret;
1074 }
1075
1076 /**
1077 * tty_write_message - write a message to a certain tty, not just the console.
1078 * @tty: the destination tty_struct
1079 * @msg: the message to write
1080 *
1081 * This is used for messages that need to be redirected to a specific tty.
1082 * We don't put it into the syslog queue right now maybe in the future if
1083 * really needed.
1084 *
1085 * We must still hold the BKL and test the CLOSING flag for the moment.
1086 */
1087
1088 void tty_write_message(struct tty_struct *tty, char *msg)
1089 {
1090 lock_kernel();
1091 if (tty) {
1092 mutex_lock(&tty->atomic_write_lock);
1093 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1094 tty->ops->write(tty, msg, strlen(msg));
1095 tty_write_unlock(tty);
1096 }
1097 unlock_kernel();
1098 return;
1099 }
1100
1101
1102 /**
1103 * tty_write - write method for tty device file
1104 * @file: tty file pointer
1105 * @buf: user data to write
1106 * @count: bytes to write
1107 * @ppos: unused
1108 *
1109 * Write data to a tty device via the line discipline.
1110 *
1111 * Locking:
1112 * Locks the line discipline as required
1113 * Writes to the tty driver are serialized by the atomic_write_lock
1114 * and are then processed in chunks to the device. The line discipline
1115 * write method will not be invoked in parallel for each device.
1116 */
1117
1118 static ssize_t tty_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *ppos)
1120 {
1121 struct tty_struct *tty;
1122 struct inode *inode = file->f_path.dentry->d_inode;
1123 ssize_t ret;
1124 struct tty_ldisc *ld;
1125
1126 tty = (struct tty_struct *)file->private_data;
1127 if (tty_paranoia_check(tty, inode, "tty_write"))
1128 return -EIO;
1129 if (!tty || !tty->ops->write ||
1130 (test_bit(TTY_IO_ERROR, &tty->flags)))
1131 return -EIO;
1132 /* Short term debug to catch buggy drivers */
1133 if (tty->ops->write_room == NULL)
1134 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1135 tty->driver->name);
1136 ld = tty_ldisc_ref_wait(tty);
1137 if (!ld->ops->write)
1138 ret = -EIO;
1139 else
1140 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1141 tty_ldisc_deref(ld);
1142 return ret;
1143 }
1144
1145 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1146 size_t count, loff_t *ppos)
1147 {
1148 struct file *p = NULL;
1149
1150 spin_lock(&redirect_lock);
1151 if (redirect) {
1152 get_file(redirect);
1153 p = redirect;
1154 }
1155 spin_unlock(&redirect_lock);
1156
1157 if (p) {
1158 ssize_t res;
1159 res = vfs_write(p, buf, count, &p->f_pos);
1160 fput(p);
1161 return res;
1162 }
1163 return tty_write(file, buf, count, ppos);
1164 }
1165
1166 static char ptychar[] = "pqrstuvwxyzabcde";
1167
1168 /**
1169 * pty_line_name - generate name for a pty
1170 * @driver: the tty driver in use
1171 * @index: the minor number
1172 * @p: output buffer of at least 6 bytes
1173 *
1174 * Generate a name from a driver reference and write it to the output
1175 * buffer.
1176 *
1177 * Locking: None
1178 */
1179 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1180 {
1181 int i = index + driver->name_base;
1182 /* ->name is initialized to "ttyp", but "tty" is expected */
1183 sprintf(p, "%s%c%x",
1184 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1185 ptychar[i >> 4 & 0xf], i & 0xf);
1186 }
1187
1188 /**
1189 * tty_line_name - generate name for a tty
1190 * @driver: the tty driver in use
1191 * @index: the minor number
1192 * @p: output buffer of at least 7 bytes
1193 *
1194 * Generate a name from a driver reference and write it to the output
1195 * buffer.
1196 *
1197 * Locking: None
1198 */
1199 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1200 {
1201 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1202 }
1203
1204 /**
1205 * tty_driver_lookup_tty() - find an existing tty, if any
1206 * @driver: the driver for the tty
1207 * @idx: the minor number
1208 *
1209 * Return the tty, if found or ERR_PTR() otherwise.
1210 *
1211 * Locking: tty_mutex must be held. If tty is found, the mutex must
1212 * be held until the 'fast-open' is also done. Will change once we
1213 * have refcounting in the driver and per driver locking
1214 */
1215 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1216 struct inode *inode, int idx)
1217 {
1218 struct tty_struct *tty;
1219
1220 if (driver->ops->lookup)
1221 return driver->ops->lookup(driver, inode, idx);
1222
1223 tty = driver->ttys[idx];
1224 return tty;
1225 }
1226
1227 /**
1228 * tty_init_termios - helper for termios setup
1229 * @tty: the tty to set up
1230 *
1231 * Initialise the termios structures for this tty. Thus runs under
1232 * the tty_mutex currently so we can be relaxed about ordering.
1233 */
1234
1235 int tty_init_termios(struct tty_struct *tty)
1236 {
1237 struct ktermios *tp;
1238 int idx = tty->index;
1239
1240 tp = tty->driver->termios[idx];
1241 if (tp == NULL) {
1242 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1243 if (tp == NULL)
1244 return -ENOMEM;
1245 memcpy(tp, &tty->driver->init_termios,
1246 sizeof(struct ktermios));
1247 tty->driver->termios[idx] = tp;
1248 }
1249 tty->termios = tp;
1250 tty->termios_locked = tp + 1;
1251
1252 /* Compatibility until drivers always set this */
1253 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1254 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1255 return 0;
1256 }
1257
1258 /**
1259 * tty_driver_install_tty() - install a tty entry in the driver
1260 * @driver: the driver for the tty
1261 * @tty: the tty
1262 *
1263 * Install a tty object into the driver tables. The tty->index field
1264 * will be set by the time this is called. This method is responsible
1265 * for ensuring any need additional structures are allocated and
1266 * configured.
1267 *
1268 * Locking: tty_mutex for now
1269 */
1270 static int tty_driver_install_tty(struct tty_driver *driver,
1271 struct tty_struct *tty)
1272 {
1273 int idx = tty->index;
1274
1275 if (driver->ops->install)
1276 return driver->ops->install(driver, tty);
1277
1278 if (tty_init_termios(tty) == 0) {
1279 tty_driver_kref_get(driver);
1280 tty->count++;
1281 driver->ttys[idx] = tty;
1282 return 0;
1283 }
1284 return -ENOMEM;
1285 }
1286
1287 /**
1288 * tty_driver_remove_tty() - remove a tty from the driver tables
1289 * @driver: the driver for the tty
1290 * @idx: the minor number
1291 *
1292 * Remvoe a tty object from the driver tables. The tty->index field
1293 * will be set by the time this is called.
1294 *
1295 * Locking: tty_mutex for now
1296 */
1297 static void tty_driver_remove_tty(struct tty_driver *driver,
1298 struct tty_struct *tty)
1299 {
1300 if (driver->ops->remove)
1301 driver->ops->remove(driver, tty);
1302 else
1303 driver->ttys[tty->index] = NULL;
1304 }
1305
1306 /*
1307 * tty_reopen() - fast re-open of an open tty
1308 * @tty - the tty to open
1309 *
1310 * Return 0 on success, -errno on error.
1311 *
1312 * Locking: tty_mutex must be held from the time the tty was found
1313 * till this open completes.
1314 */
1315 static int tty_reopen(struct tty_struct *tty)
1316 {
1317 struct tty_driver *driver = tty->driver;
1318
1319 if (test_bit(TTY_CLOSING, &tty->flags))
1320 return -EIO;
1321
1322 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1323 driver->subtype == PTY_TYPE_MASTER) {
1324 /*
1325 * special case for PTY masters: only one open permitted,
1326 * and the slave side open count is incremented as well.
1327 */
1328 if (tty->count)
1329 return -EIO;
1330
1331 tty->link->count++;
1332 }
1333 tty->count++;
1334 tty->driver = driver; /* N.B. why do this every time?? */
1335
1336 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1337
1338 return 0;
1339 }
1340
1341 /**
1342 * tty_init_dev - initialise a tty device
1343 * @driver: tty driver we are opening a device on
1344 * @idx: device index
1345 * @ret_tty: returned tty structure
1346 * @first_ok: ok to open a new device (used by ptmx)
1347 *
1348 * Prepare a tty device. This may not be a "new" clean device but
1349 * could also be an active device. The pty drivers require special
1350 * handling because of this.
1351 *
1352 * Locking:
1353 * The function is called under the tty_mutex, which
1354 * protects us from the tty struct or driver itself going away.
1355 *
1356 * On exit the tty device has the line discipline attached and
1357 * a reference count of 1. If a pair was created for pty/tty use
1358 * and the other was a pty master then it too has a reference count of 1.
1359 *
1360 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1361 * failed open. The new code protects the open with a mutex, so it's
1362 * really quite straightforward. The mutex locking can probably be
1363 * relaxed for the (most common) case of reopening a tty.
1364 */
1365
1366 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1367 int first_ok)
1368 {
1369 struct tty_struct *tty;
1370 int retval;
1371
1372 /* Check if pty master is being opened multiple times */
1373 if (driver->subtype == PTY_TYPE_MASTER &&
1374 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1375 return ERR_PTR(-EIO);
1376
1377 /*
1378 * First time open is complex, especially for PTY devices.
1379 * This code guarantees that either everything succeeds and the
1380 * TTY is ready for operation, or else the table slots are vacated
1381 * and the allocated memory released. (Except that the termios
1382 * and locked termios may be retained.)
1383 */
1384
1385 if (!try_module_get(driver->owner))
1386 return ERR_PTR(-ENODEV);
1387
1388 tty = alloc_tty_struct();
1389 if (!tty)
1390 goto fail_no_mem;
1391 initialize_tty_struct(tty, driver, idx);
1392
1393 retval = tty_driver_install_tty(driver, tty);
1394 if (retval < 0) {
1395 free_tty_struct(tty);
1396 module_put(driver->owner);
1397 return ERR_PTR(retval);
1398 }
1399
1400 /*
1401 * Structures all installed ... call the ldisc open routines.
1402 * If we fail here just call release_tty to clean up. No need
1403 * to decrement the use counts, as release_tty doesn't care.
1404 */
1405
1406 retval = tty_ldisc_setup(tty, tty->link);
1407 if (retval)
1408 goto release_mem_out;
1409 return tty;
1410
1411 fail_no_mem:
1412 module_put(driver->owner);
1413 return ERR_PTR(-ENOMEM);
1414
1415 /* call the tty release_tty routine to clean out this slot */
1416 release_mem_out:
1417 if (printk_ratelimit())
1418 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1419 "clearing slot %d\n", idx);
1420 release_tty(tty, idx);
1421 return ERR_PTR(retval);
1422 }
1423
1424 void tty_free_termios(struct tty_struct *tty)
1425 {
1426 struct ktermios *tp;
1427 int idx = tty->index;
1428 /* Kill this flag and push into drivers for locking etc */
1429 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1430 /* FIXME: Locking on ->termios array */
1431 tp = tty->termios;
1432 tty->driver->termios[idx] = NULL;
1433 kfree(tp);
1434 }
1435 }
1436 EXPORT_SYMBOL(tty_free_termios);
1437
1438 void tty_shutdown(struct tty_struct *tty)
1439 {
1440 tty_driver_remove_tty(tty->driver, tty);
1441 tty_free_termios(tty);
1442 }
1443 EXPORT_SYMBOL(tty_shutdown);
1444
1445 /**
1446 * release_one_tty - release tty structure memory
1447 * @kref: kref of tty we are obliterating
1448 *
1449 * Releases memory associated with a tty structure, and clears out the
1450 * driver table slots. This function is called when a device is no longer
1451 * in use. It also gets called when setup of a device fails.
1452 *
1453 * Locking:
1454 * tty_mutex - sometimes only
1455 * takes the file list lock internally when working on the list
1456 * of ttys that the driver keeps.
1457 */
1458 static void release_one_tty(struct kref *kref)
1459 {
1460 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1461 struct tty_driver *driver = tty->driver;
1462
1463 if (tty->ops->shutdown)
1464 tty->ops->shutdown(tty);
1465 else
1466 tty_shutdown(tty);
1467 tty->magic = 0;
1468 tty_driver_kref_put(driver);
1469 module_put(driver->owner);
1470
1471 file_list_lock();
1472 list_del_init(&tty->tty_files);
1473 file_list_unlock();
1474
1475 free_tty_struct(tty);
1476 }
1477
1478 /**
1479 * tty_kref_put - release a tty kref
1480 * @tty: tty device
1481 *
1482 * Release a reference to a tty device and if need be let the kref
1483 * layer destruct the object for us
1484 */
1485
1486 void tty_kref_put(struct tty_struct *tty)
1487 {
1488 if (tty)
1489 kref_put(&tty->kref, release_one_tty);
1490 }
1491 EXPORT_SYMBOL(tty_kref_put);
1492
1493 /**
1494 * release_tty - release tty structure memory
1495 *
1496 * Release both @tty and a possible linked partner (think pty pair),
1497 * and decrement the refcount of the backing module.
1498 *
1499 * Locking:
1500 * tty_mutex - sometimes only
1501 * takes the file list lock internally when working on the list
1502 * of ttys that the driver keeps.
1503 * FIXME: should we require tty_mutex is held here ??
1504 *
1505 */
1506 static void release_tty(struct tty_struct *tty, int idx)
1507 {
1508 /* This should always be true but check for the moment */
1509 WARN_ON(tty->index != idx);
1510
1511 if (tty->link)
1512 tty_kref_put(tty->link);
1513 tty_kref_put(tty);
1514 }
1515
1516 /*
1517 * Even releasing the tty structures is a tricky business.. We have
1518 * to be very careful that the structures are all released at the
1519 * same time, as interrupts might otherwise get the wrong pointers.
1520 *
1521 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1522 * lead to double frees or releasing memory still in use.
1523 */
1524 void tty_release_dev(struct file *filp)
1525 {
1526 struct tty_struct *tty, *o_tty;
1527 int pty_master, tty_closing, o_tty_closing, do_sleep;
1528 int devpts;
1529 int idx;
1530 char buf[64];
1531 struct inode *inode;
1532
1533 inode = filp->f_path.dentry->d_inode;
1534 tty = (struct tty_struct *)filp->private_data;
1535 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1536 return;
1537
1538 check_tty_count(tty, "tty_release_dev");
1539
1540 tty_fasync(-1, filp, 0);
1541
1542 idx = tty->index;
1543 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1544 tty->driver->subtype == PTY_TYPE_MASTER);
1545 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1546 o_tty = tty->link;
1547
1548 #ifdef TTY_PARANOIA_CHECK
1549 if (idx < 0 || idx >= tty->driver->num) {
1550 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1551 "free (%s)\n", tty->name);
1552 return;
1553 }
1554 if (!devpts) {
1555 if (tty != tty->driver->ttys[idx]) {
1556 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1557 "for (%s)\n", idx, tty->name);
1558 return;
1559 }
1560 if (tty->termios != tty->driver->termios[idx]) {
1561 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1562 "for (%s)\n",
1563 idx, tty->name);
1564 return;
1565 }
1566 }
1567 #endif
1568
1569 #ifdef TTY_DEBUG_HANGUP
1570 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1571 tty_name(tty, buf), tty->count);
1572 #endif
1573
1574 #ifdef TTY_PARANOIA_CHECK
1575 if (tty->driver->other &&
1576 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1577 if (o_tty != tty->driver->other->ttys[idx]) {
1578 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1579 "not o_tty for (%s)\n",
1580 idx, tty->name);
1581 return;
1582 }
1583 if (o_tty->termios != tty->driver->other->termios[idx]) {
1584 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1585 "not o_termios for (%s)\n",
1586 idx, tty->name);
1587 return;
1588 }
1589 if (o_tty->link != tty) {
1590 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1591 return;
1592 }
1593 }
1594 #endif
1595 if (tty->ops->close)
1596 tty->ops->close(tty, filp);
1597
1598 /*
1599 * Sanity check: if tty->count is going to zero, there shouldn't be
1600 * any waiters on tty->read_wait or tty->write_wait. We test the
1601 * wait queues and kick everyone out _before_ actually starting to
1602 * close. This ensures that we won't block while releasing the tty
1603 * structure.
1604 *
1605 * The test for the o_tty closing is necessary, since the master and
1606 * slave sides may close in any order. If the slave side closes out
1607 * first, its count will be one, since the master side holds an open.
1608 * Thus this test wouldn't be triggered at the time the slave closes,
1609 * so we do it now.
1610 *
1611 * Note that it's possible for the tty to be opened again while we're
1612 * flushing out waiters. By recalculating the closing flags before
1613 * each iteration we avoid any problems.
1614 */
1615 while (1) {
1616 /* Guard against races with tty->count changes elsewhere and
1617 opens on /dev/tty */
1618
1619 mutex_lock(&tty_mutex);
1620 tty_closing = tty->count <= 1;
1621 o_tty_closing = o_tty &&
1622 (o_tty->count <= (pty_master ? 1 : 0));
1623 do_sleep = 0;
1624
1625 if (tty_closing) {
1626 if (waitqueue_active(&tty->read_wait)) {
1627 wake_up_poll(&tty->read_wait, POLLIN);
1628 do_sleep++;
1629 }
1630 if (waitqueue_active(&tty->write_wait)) {
1631 wake_up_poll(&tty->write_wait, POLLOUT);
1632 do_sleep++;
1633 }
1634 }
1635 if (o_tty_closing) {
1636 if (waitqueue_active(&o_tty->read_wait)) {
1637 wake_up_poll(&o_tty->read_wait, POLLIN);
1638 do_sleep++;
1639 }
1640 if (waitqueue_active(&o_tty->write_wait)) {
1641 wake_up_poll(&o_tty->write_wait, POLLOUT);
1642 do_sleep++;
1643 }
1644 }
1645 if (!do_sleep)
1646 break;
1647
1648 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1649 "active!\n", tty_name(tty, buf));
1650 mutex_unlock(&tty_mutex);
1651 schedule();
1652 }
1653
1654 /*
1655 * The closing flags are now consistent with the open counts on
1656 * both sides, and we've completed the last operation that could
1657 * block, so it's safe to proceed with closing.
1658 */
1659 if (pty_master) {
1660 if (--o_tty->count < 0) {
1661 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1662 "(%d) for %s\n",
1663 o_tty->count, tty_name(o_tty, buf));
1664 o_tty->count = 0;
1665 }
1666 }
1667 if (--tty->count < 0) {
1668 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1669 tty->count, tty_name(tty, buf));
1670 tty->count = 0;
1671 }
1672
1673 /*
1674 * We've decremented tty->count, so we need to remove this file
1675 * descriptor off the tty->tty_files list; this serves two
1676 * purposes:
1677 * - check_tty_count sees the correct number of file descriptors
1678 * associated with this tty.
1679 * - do_tty_hangup no longer sees this file descriptor as
1680 * something that needs to be handled for hangups.
1681 */
1682 file_kill(filp);
1683 filp->private_data = NULL;
1684
1685 /*
1686 * Perform some housekeeping before deciding whether to return.
1687 *
1688 * Set the TTY_CLOSING flag if this was the last open. In the
1689 * case of a pty we may have to wait around for the other side
1690 * to close, and TTY_CLOSING makes sure we can't be reopened.
1691 */
1692 if (tty_closing)
1693 set_bit(TTY_CLOSING, &tty->flags);
1694 if (o_tty_closing)
1695 set_bit(TTY_CLOSING, &o_tty->flags);
1696
1697 /*
1698 * If _either_ side is closing, make sure there aren't any
1699 * processes that still think tty or o_tty is their controlling
1700 * tty.
1701 */
1702 if (tty_closing || o_tty_closing) {
1703 read_lock(&tasklist_lock);
1704 session_clear_tty(tty->session);
1705 if (o_tty)
1706 session_clear_tty(o_tty->session);
1707 read_unlock(&tasklist_lock);
1708 }
1709
1710 mutex_unlock(&tty_mutex);
1711
1712 /* check whether both sides are closing ... */
1713 if (!tty_closing || (o_tty && !o_tty_closing))
1714 return;
1715
1716 #ifdef TTY_DEBUG_HANGUP
1717 printk(KERN_DEBUG "freeing tty structure...");
1718 #endif
1719 /*
1720 * Ask the line discipline code to release its structures
1721 */
1722 tty_ldisc_release(tty, o_tty);
1723 /*
1724 * The release_tty function takes care of the details of clearing
1725 * the slots and preserving the termios structure.
1726 */
1727 release_tty(tty, idx);
1728
1729 /* Make this pty number available for reallocation */
1730 if (devpts)
1731 devpts_kill_index(inode, idx);
1732 }
1733
1734 /**
1735 * __tty_open - open a tty device
1736 * @inode: inode of device file
1737 * @filp: file pointer to tty
1738 *
1739 * tty_open and tty_release keep up the tty count that contains the
1740 * number of opens done on a tty. We cannot use the inode-count, as
1741 * different inodes might point to the same tty.
1742 *
1743 * Open-counting is needed for pty masters, as well as for keeping
1744 * track of serial lines: DTR is dropped when the last close happens.
1745 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1746 *
1747 * The termios state of a pty is reset on first open so that
1748 * settings don't persist across reuse.
1749 *
1750 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1751 * tty->count should protect the rest.
1752 * ->siglock protects ->signal/->sighand
1753 */
1754
1755 static int __tty_open(struct inode *inode, struct file *filp)
1756 {
1757 struct tty_struct *tty = NULL;
1758 int noctty, retval;
1759 struct tty_driver *driver;
1760 int index;
1761 dev_t device = inode->i_rdev;
1762 unsigned saved_flags = filp->f_flags;
1763
1764 nonseekable_open(inode, filp);
1765
1766 retry_open:
1767 noctty = filp->f_flags & O_NOCTTY;
1768 index = -1;
1769 retval = 0;
1770
1771 mutex_lock(&tty_mutex);
1772
1773 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1774 tty = get_current_tty();
1775 if (!tty) {
1776 mutex_unlock(&tty_mutex);
1777 return -ENXIO;
1778 }
1779 driver = tty_driver_kref_get(tty->driver);
1780 index = tty->index;
1781 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1782 /* noctty = 1; */
1783 /* FIXME: Should we take a driver reference ? */
1784 tty_kref_put(tty);
1785 goto got_driver;
1786 }
1787 #ifdef CONFIG_VT
1788 if (device == MKDEV(TTY_MAJOR, 0)) {
1789 extern struct tty_driver *console_driver;
1790 driver = tty_driver_kref_get(console_driver);
1791 index = fg_console;
1792 noctty = 1;
1793 goto got_driver;
1794 }
1795 #endif
1796 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1797 struct tty_driver *console_driver = console_device(&index);
1798 if (console_driver) {
1799 driver = tty_driver_kref_get(console_driver);
1800 if (driver) {
1801 /* Don't let /dev/console block */
1802 filp->f_flags |= O_NONBLOCK;
1803 noctty = 1;
1804 goto got_driver;
1805 }
1806 }
1807 mutex_unlock(&tty_mutex);
1808 return -ENODEV;
1809 }
1810
1811 driver = get_tty_driver(device, &index);
1812 if (!driver) {
1813 mutex_unlock(&tty_mutex);
1814 return -ENODEV;
1815 }
1816 got_driver:
1817 if (!tty) {
1818 /* check whether we're reopening an existing tty */
1819 tty = tty_driver_lookup_tty(driver, inode, index);
1820
1821 if (IS_ERR(tty)) {
1822 mutex_unlock(&tty_mutex);
1823 return PTR_ERR(tty);
1824 }
1825 }
1826
1827 if (tty) {
1828 retval = tty_reopen(tty);
1829 if (retval)
1830 tty = ERR_PTR(retval);
1831 } else
1832 tty = tty_init_dev(driver, index, 0);
1833
1834 mutex_unlock(&tty_mutex);
1835 tty_driver_kref_put(driver);
1836 if (IS_ERR(tty))
1837 return PTR_ERR(tty);
1838
1839 filp->private_data = tty;
1840 file_move(filp, &tty->tty_files);
1841 check_tty_count(tty, "tty_open");
1842 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1843 tty->driver->subtype == PTY_TYPE_MASTER)
1844 noctty = 1;
1845 #ifdef TTY_DEBUG_HANGUP
1846 printk(KERN_DEBUG "opening %s...", tty->name);
1847 #endif
1848 if (!retval) {
1849 if (tty->ops->open)
1850 retval = tty->ops->open(tty, filp);
1851 else
1852 retval = -ENODEV;
1853 }
1854 filp->f_flags = saved_flags;
1855
1856 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1857 !capable(CAP_SYS_ADMIN))
1858 retval = -EBUSY;
1859
1860 if (retval) {
1861 #ifdef TTY_DEBUG_HANGUP
1862 printk(KERN_DEBUG "error %d in opening %s...", retval,
1863 tty->name);
1864 #endif
1865 tty_release_dev(filp);
1866 if (retval != -ERESTARTSYS)
1867 return retval;
1868 if (signal_pending(current))
1869 return retval;
1870 schedule();
1871 /*
1872 * Need to reset f_op in case a hangup happened.
1873 */
1874 if (filp->f_op == &hung_up_tty_fops)
1875 filp->f_op = &tty_fops;
1876 goto retry_open;
1877 }
1878
1879 mutex_lock(&tty_mutex);
1880 spin_lock_irq(&current->sighand->siglock);
1881 if (!noctty &&
1882 current->signal->leader &&
1883 !current->signal->tty &&
1884 tty->session == NULL)
1885 __proc_set_tty(current, tty);
1886 spin_unlock_irq(&current->sighand->siglock);
1887 mutex_unlock(&tty_mutex);
1888 return 0;
1889 }
1890
1891 /* BKL pushdown: scary code avoidance wrapper */
1892 static int tty_open(struct inode *inode, struct file *filp)
1893 {
1894 int ret;
1895
1896 lock_kernel();
1897 ret = __tty_open(inode, filp);
1898 unlock_kernel();
1899 return ret;
1900 }
1901
1902
1903
1904
1905 /**
1906 * tty_release - vfs callback for close
1907 * @inode: inode of tty
1908 * @filp: file pointer for handle to tty
1909 *
1910 * Called the last time each file handle is closed that references
1911 * this tty. There may however be several such references.
1912 *
1913 * Locking:
1914 * Takes bkl. See tty_release_dev
1915 */
1916
1917 static int tty_release(struct inode *inode, struct file *filp)
1918 {
1919 lock_kernel();
1920 tty_release_dev(filp);
1921 unlock_kernel();
1922 return 0;
1923 }
1924
1925 /**
1926 * tty_poll - check tty status
1927 * @filp: file being polled
1928 * @wait: poll wait structures to update
1929 *
1930 * Call the line discipline polling method to obtain the poll
1931 * status of the device.
1932 *
1933 * Locking: locks called line discipline but ldisc poll method
1934 * may be re-entered freely by other callers.
1935 */
1936
1937 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1938 {
1939 struct tty_struct *tty;
1940 struct tty_ldisc *ld;
1941 int ret = 0;
1942
1943 tty = (struct tty_struct *)filp->private_data;
1944 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1945 return 0;
1946
1947 ld = tty_ldisc_ref_wait(tty);
1948 if (ld->ops->poll)
1949 ret = (ld->ops->poll)(tty, filp, wait);
1950 tty_ldisc_deref(ld);
1951 return ret;
1952 }
1953
1954 static int tty_fasync(int fd, struct file *filp, int on)
1955 {
1956 struct tty_struct *tty;
1957 unsigned long flags;
1958 int retval = 0;
1959
1960 lock_kernel();
1961 tty = (struct tty_struct *)filp->private_data;
1962 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1963 goto out;
1964
1965 retval = fasync_helper(fd, filp, on, &tty->fasync);
1966 if (retval <= 0)
1967 goto out;
1968
1969 if (on) {
1970 enum pid_type type;
1971 struct pid *pid;
1972 if (!waitqueue_active(&tty->read_wait))
1973 tty->minimum_to_wake = 1;
1974 spin_lock_irqsave(&tty->ctrl_lock, flags);
1975 if (tty->pgrp) {
1976 pid = tty->pgrp;
1977 type = PIDTYPE_PGID;
1978 } else {
1979 pid = task_pid(current);
1980 type = PIDTYPE_PID;
1981 }
1982 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1983 retval = __f_setown(filp, pid, type, 0);
1984 if (retval)
1985 goto out;
1986 } else {
1987 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1988 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1989 }
1990 retval = 0;
1991 out:
1992 unlock_kernel();
1993 return retval;
1994 }
1995
1996 /**
1997 * tiocsti - fake input character
1998 * @tty: tty to fake input into
1999 * @p: pointer to character
2000 *
2001 * Fake input to a tty device. Does the necessary locking and
2002 * input management.
2003 *
2004 * FIXME: does not honour flow control ??
2005 *
2006 * Locking:
2007 * Called functions take tty_ldisc_lock
2008 * current->signal->tty check is safe without locks
2009 *
2010 * FIXME: may race normal receive processing
2011 */
2012
2013 static int tiocsti(struct tty_struct *tty, char __user *p)
2014 {
2015 char ch, mbz = 0;
2016 struct tty_ldisc *ld;
2017
2018 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2019 return -EPERM;
2020 if (get_user(ch, p))
2021 return -EFAULT;
2022 tty_audit_tiocsti(tty, ch);
2023 ld = tty_ldisc_ref_wait(tty);
2024 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2025 tty_ldisc_deref(ld);
2026 return 0;
2027 }
2028
2029 /**
2030 * tiocgwinsz - implement window query ioctl
2031 * @tty; tty
2032 * @arg: user buffer for result
2033 *
2034 * Copies the kernel idea of the window size into the user buffer.
2035 *
2036 * Locking: tty->termios_mutex is taken to ensure the winsize data
2037 * is consistent.
2038 */
2039
2040 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2041 {
2042 int err;
2043
2044 mutex_lock(&tty->termios_mutex);
2045 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2046 mutex_unlock(&tty->termios_mutex);
2047
2048 return err ? -EFAULT: 0;
2049 }
2050
2051 /**
2052 * tty_do_resize - resize event
2053 * @tty: tty being resized
2054 * @rows: rows (character)
2055 * @cols: cols (character)
2056 *
2057 * Update the termios variables and send the neccessary signals to
2058 * peform a terminal resize correctly
2059 */
2060
2061 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2062 {
2063 struct pid *pgrp;
2064 unsigned long flags;
2065
2066 /* Lock the tty */
2067 mutex_lock(&tty->termios_mutex);
2068 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2069 goto done;
2070 /* Get the PID values and reference them so we can
2071 avoid holding the tty ctrl lock while sending signals */
2072 spin_lock_irqsave(&tty->ctrl_lock, flags);
2073 pgrp = get_pid(tty->pgrp);
2074 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2075
2076 if (pgrp)
2077 kill_pgrp(pgrp, SIGWINCH, 1);
2078 put_pid(pgrp);
2079
2080 tty->winsize = *ws;
2081 done:
2082 mutex_unlock(&tty->termios_mutex);
2083 return 0;
2084 }
2085
2086 /**
2087 * tiocswinsz - implement window size set ioctl
2088 * @tty; tty side of tty
2089 * @arg: user buffer for result
2090 *
2091 * Copies the user idea of the window size to the kernel. Traditionally
2092 * this is just advisory information but for the Linux console it
2093 * actually has driver level meaning and triggers a VC resize.
2094 *
2095 * Locking:
2096 * Driver dependant. The default do_resize method takes the
2097 * tty termios mutex and ctrl_lock. The console takes its own lock
2098 * then calls into the default method.
2099 */
2100
2101 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2102 {
2103 struct winsize tmp_ws;
2104 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2105 return -EFAULT;
2106
2107 if (tty->ops->resize)
2108 return tty->ops->resize(tty, &tmp_ws);
2109 else
2110 return tty_do_resize(tty, &tmp_ws);
2111 }
2112
2113 /**
2114 * tioccons - allow admin to move logical console
2115 * @file: the file to become console
2116 *
2117 * Allow the adminstrator to move the redirected console device
2118 *
2119 * Locking: uses redirect_lock to guard the redirect information
2120 */
2121
2122 static int tioccons(struct file *file)
2123 {
2124 if (!capable(CAP_SYS_ADMIN))
2125 return -EPERM;
2126 if (file->f_op->write == redirected_tty_write) {
2127 struct file *f;
2128 spin_lock(&redirect_lock);
2129 f = redirect;
2130 redirect = NULL;
2131 spin_unlock(&redirect_lock);
2132 if (f)
2133 fput(f);
2134 return 0;
2135 }
2136 spin_lock(&redirect_lock);
2137 if (redirect) {
2138 spin_unlock(&redirect_lock);
2139 return -EBUSY;
2140 }
2141 get_file(file);
2142 redirect = file;
2143 spin_unlock(&redirect_lock);
2144 return 0;
2145 }
2146
2147 /**
2148 * fionbio - non blocking ioctl
2149 * @file: file to set blocking value
2150 * @p: user parameter
2151 *
2152 * Historical tty interfaces had a blocking control ioctl before
2153 * the generic functionality existed. This piece of history is preserved
2154 * in the expected tty API of posix OS's.
2155 *
2156 * Locking: none, the open fle handle ensures it won't go away.
2157 */
2158
2159 static int fionbio(struct file *file, int __user *p)
2160 {
2161 int nonblock;
2162
2163 if (get_user(nonblock, p))
2164 return -EFAULT;
2165
2166 spin_lock(&file->f_lock);
2167 if (nonblock)
2168 file->f_flags |= O_NONBLOCK;
2169 else
2170 file->f_flags &= ~O_NONBLOCK;
2171 spin_unlock(&file->f_lock);
2172 return 0;
2173 }
2174
2175 /**
2176 * tiocsctty - set controlling tty
2177 * @tty: tty structure
2178 * @arg: user argument
2179 *
2180 * This ioctl is used to manage job control. It permits a session
2181 * leader to set this tty as the controlling tty for the session.
2182 *
2183 * Locking:
2184 * Takes tty_mutex() to protect tty instance
2185 * Takes tasklist_lock internally to walk sessions
2186 * Takes ->siglock() when updating signal->tty
2187 */
2188
2189 static int tiocsctty(struct tty_struct *tty, int arg)
2190 {
2191 int ret = 0;
2192 if (current->signal->leader && (task_session(current) == tty->session))
2193 return ret;
2194
2195 mutex_lock(&tty_mutex);
2196 /*
2197 * The process must be a session leader and
2198 * not have a controlling tty already.
2199 */
2200 if (!current->signal->leader || current->signal->tty) {
2201 ret = -EPERM;
2202 goto unlock;
2203 }
2204
2205 if (tty->session) {
2206 /*
2207 * This tty is already the controlling
2208 * tty for another session group!
2209 */
2210 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2211 /*
2212 * Steal it away
2213 */
2214 read_lock(&tasklist_lock);
2215 session_clear_tty(tty->session);
2216 read_unlock(&tasklist_lock);
2217 } else {
2218 ret = -EPERM;
2219 goto unlock;
2220 }
2221 }
2222 proc_set_tty(current, tty);
2223 unlock:
2224 mutex_unlock(&tty_mutex);
2225 return ret;
2226 }
2227
2228 /**
2229 * tty_get_pgrp - return a ref counted pgrp pid
2230 * @tty: tty to read
2231 *
2232 * Returns a refcounted instance of the pid struct for the process
2233 * group controlling the tty.
2234 */
2235
2236 struct pid *tty_get_pgrp(struct tty_struct *tty)
2237 {
2238 unsigned long flags;
2239 struct pid *pgrp;
2240
2241 spin_lock_irqsave(&tty->ctrl_lock, flags);
2242 pgrp = get_pid(tty->pgrp);
2243 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2244
2245 return pgrp;
2246 }
2247 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2248
2249 /**
2250 * tiocgpgrp - get process group
2251 * @tty: tty passed by user
2252 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2253 * @p: returned pid
2254 *
2255 * Obtain the process group of the tty. If there is no process group
2256 * return an error.
2257 *
2258 * Locking: none. Reference to current->signal->tty is safe.
2259 */
2260
2261 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2262 {
2263 struct pid *pid;
2264 int ret;
2265 /*
2266 * (tty == real_tty) is a cheap way of
2267 * testing if the tty is NOT a master pty.
2268 */
2269 if (tty == real_tty && current->signal->tty != real_tty)
2270 return -ENOTTY;
2271 pid = tty_get_pgrp(real_tty);
2272 ret = put_user(pid_vnr(pid), p);
2273 put_pid(pid);
2274 return ret;
2275 }
2276
2277 /**
2278 * tiocspgrp - attempt to set process group
2279 * @tty: tty passed by user
2280 * @real_tty: tty side device matching tty passed by user
2281 * @p: pid pointer
2282 *
2283 * Set the process group of the tty to the session passed. Only
2284 * permitted where the tty session is our session.
2285 *
2286 * Locking: RCU, ctrl lock
2287 */
2288
2289 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2290 {
2291 struct pid *pgrp;
2292 pid_t pgrp_nr;
2293 int retval = tty_check_change(real_tty);
2294 unsigned long flags;
2295
2296 if (retval == -EIO)
2297 return -ENOTTY;
2298 if (retval)
2299 return retval;
2300 if (!current->signal->tty ||
2301 (current->signal->tty != real_tty) ||
2302 (real_tty->session != task_session(current)))
2303 return -ENOTTY;
2304 if (get_user(pgrp_nr, p))
2305 return -EFAULT;
2306 if (pgrp_nr < 0)
2307 return -EINVAL;
2308 rcu_read_lock();
2309 pgrp = find_vpid(pgrp_nr);
2310 retval = -ESRCH;
2311 if (!pgrp)
2312 goto out_unlock;
2313 retval = -EPERM;
2314 if (session_of_pgrp(pgrp) != task_session(current))
2315 goto out_unlock;
2316 retval = 0;
2317 spin_lock_irqsave(&tty->ctrl_lock, flags);
2318 put_pid(real_tty->pgrp);
2319 real_tty->pgrp = get_pid(pgrp);
2320 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2321 out_unlock:
2322 rcu_read_unlock();
2323 return retval;
2324 }
2325
2326 /**
2327 * tiocgsid - get session id
2328 * @tty: tty passed by user
2329 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2330 * @p: pointer to returned session id
2331 *
2332 * Obtain the session id of the tty. If there is no session
2333 * return an error.
2334 *
2335 * Locking: none. Reference to current->signal->tty is safe.
2336 */
2337
2338 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2339 {
2340 /*
2341 * (tty == real_tty) is a cheap way of
2342 * testing if the tty is NOT a master pty.
2343 */
2344 if (tty == real_tty && current->signal->tty != real_tty)
2345 return -ENOTTY;
2346 if (!real_tty->session)
2347 return -ENOTTY;
2348 return put_user(pid_vnr(real_tty->session), p);
2349 }
2350
2351 /**
2352 * tiocsetd - set line discipline
2353 * @tty: tty device
2354 * @p: pointer to user data
2355 *
2356 * Set the line discipline according to user request.
2357 *
2358 * Locking: see tty_set_ldisc, this function is just a helper
2359 */
2360
2361 static int tiocsetd(struct tty_struct *tty, int __user *p)
2362 {
2363 int ldisc;
2364 int ret;
2365
2366 if (get_user(ldisc, p))
2367 return -EFAULT;
2368
2369 lock_kernel();
2370 ret = tty_set_ldisc(tty, ldisc);
2371 unlock_kernel();
2372
2373 return ret;
2374 }
2375
2376 /**
2377 * send_break - performed time break
2378 * @tty: device to break on
2379 * @duration: timeout in mS
2380 *
2381 * Perform a timed break on hardware that lacks its own driver level
2382 * timed break functionality.
2383 *
2384 * Locking:
2385 * atomic_write_lock serializes
2386 *
2387 */
2388
2389 static int send_break(struct tty_struct *tty, unsigned int duration)
2390 {
2391 int retval;
2392
2393 if (tty->ops->break_ctl == NULL)
2394 return 0;
2395
2396 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2397 retval = tty->ops->break_ctl(tty, duration);
2398 else {
2399 /* Do the work ourselves */
2400 if (tty_write_lock(tty, 0) < 0)
2401 return -EINTR;
2402 retval = tty->ops->break_ctl(tty, -1);
2403 if (retval)
2404 goto out;
2405 if (!signal_pending(current))
2406 msleep_interruptible(duration);
2407 retval = tty->ops->break_ctl(tty, 0);
2408 out:
2409 tty_write_unlock(tty);
2410 if (signal_pending(current))
2411 retval = -EINTR;
2412 }
2413 return retval;
2414 }
2415
2416 /**
2417 * tty_tiocmget - get modem status
2418 * @tty: tty device
2419 * @file: user file pointer
2420 * @p: pointer to result
2421 *
2422 * Obtain the modem status bits from the tty driver if the feature
2423 * is supported. Return -EINVAL if it is not available.
2424 *
2425 * Locking: none (up to the driver)
2426 */
2427
2428 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2429 {
2430 int retval = -EINVAL;
2431
2432 if (tty->ops->tiocmget) {
2433 retval = tty->ops->tiocmget(tty, file);
2434
2435 if (retval >= 0)
2436 retval = put_user(retval, p);
2437 }
2438 return retval;
2439 }
2440
2441 /**
2442 * tty_tiocmset - set modem status
2443 * @tty: tty device
2444 * @file: user file pointer
2445 * @cmd: command - clear bits, set bits or set all
2446 * @p: pointer to desired bits
2447 *
2448 * Set the modem status bits from the tty driver if the feature
2449 * is supported. Return -EINVAL if it is not available.
2450 *
2451 * Locking: none (up to the driver)
2452 */
2453
2454 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2455 unsigned __user *p)
2456 {
2457 int retval;
2458 unsigned int set, clear, val;
2459
2460 if (tty->ops->tiocmset == NULL)
2461 return -EINVAL;
2462
2463 retval = get_user(val, p);
2464 if (retval)
2465 return retval;
2466 set = clear = 0;
2467 switch (cmd) {
2468 case TIOCMBIS:
2469 set = val;
2470 break;
2471 case TIOCMBIC:
2472 clear = val;
2473 break;
2474 case TIOCMSET:
2475 set = val;
2476 clear = ~val;
2477 break;
2478 }
2479 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2480 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2481 return tty->ops->tiocmset(tty, file, set, clear);
2482 }
2483
2484 /*
2485 * Split this up, as gcc can choke on it otherwise..
2486 */
2487 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2488 {
2489 struct tty_struct *tty, *real_tty;
2490 void __user *p = (void __user *)arg;
2491 int retval;
2492 struct tty_ldisc *ld;
2493 struct inode *inode = file->f_dentry->d_inode;
2494
2495 tty = (struct tty_struct *)file->private_data;
2496 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2497 return -EINVAL;
2498
2499 real_tty = tty;
2500 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2501 tty->driver->subtype == PTY_TYPE_MASTER)
2502 real_tty = tty->link;
2503
2504
2505 /*
2506 * Factor out some common prep work
2507 */
2508 switch (cmd) {
2509 case TIOCSETD:
2510 case TIOCSBRK:
2511 case TIOCCBRK:
2512 case TCSBRK:
2513 case TCSBRKP:
2514 retval = tty_check_change(tty);
2515 if (retval)
2516 return retval;
2517 if (cmd != TIOCCBRK) {
2518 tty_wait_until_sent(tty, 0);
2519 if (signal_pending(current))
2520 return -EINTR;
2521 }
2522 break;
2523 }
2524
2525 /*
2526 * Now do the stuff.
2527 */
2528 switch (cmd) {
2529 case TIOCSTI:
2530 return tiocsti(tty, p);
2531 case TIOCGWINSZ:
2532 return tiocgwinsz(real_tty, p);
2533 case TIOCSWINSZ:
2534 return tiocswinsz(real_tty, p);
2535 case TIOCCONS:
2536 return real_tty != tty ? -EINVAL : tioccons(file);
2537 case FIONBIO:
2538 return fionbio(file, p);
2539 case TIOCEXCL:
2540 set_bit(TTY_EXCLUSIVE, &tty->flags);
2541 return 0;
2542 case TIOCNXCL:
2543 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2544 return 0;
2545 case TIOCNOTTY:
2546 if (current->signal->tty != tty)
2547 return -ENOTTY;
2548 no_tty();
2549 return 0;
2550 case TIOCSCTTY:
2551 return tiocsctty(tty, arg);
2552 case TIOCGPGRP:
2553 return tiocgpgrp(tty, real_tty, p);
2554 case TIOCSPGRP:
2555 return tiocspgrp(tty, real_tty, p);
2556 case TIOCGSID:
2557 return tiocgsid(tty, real_tty, p);
2558 case TIOCGETD:
2559 return put_user(tty->ldisc.ops->num, (int __user *)p);
2560 case TIOCSETD:
2561 return tiocsetd(tty, p);
2562 /*
2563 * Break handling
2564 */
2565 case TIOCSBRK: /* Turn break on, unconditionally */
2566 if (tty->ops->break_ctl)
2567 return tty->ops->break_ctl(tty, -1);
2568 return 0;
2569 case TIOCCBRK: /* Turn break off, unconditionally */
2570 if (tty->ops->break_ctl)
2571 return tty->ops->break_ctl(tty, 0);
2572 return 0;
2573 case TCSBRK: /* SVID version: non-zero arg --> no break */
2574 /* non-zero arg means wait for all output data
2575 * to be sent (performed above) but don't send break.
2576 * This is used by the tcdrain() termios function.
2577 */
2578 if (!arg)
2579 return send_break(tty, 250);
2580 return 0;
2581 case TCSBRKP: /* support for POSIX tcsendbreak() */
2582 return send_break(tty, arg ? arg*100 : 250);
2583
2584 case TIOCMGET:
2585 return tty_tiocmget(tty, file, p);
2586 case TIOCMSET:
2587 case TIOCMBIC:
2588 case TIOCMBIS:
2589 return tty_tiocmset(tty, file, cmd, p);
2590 case TCFLSH:
2591 switch (arg) {
2592 case TCIFLUSH:
2593 case TCIOFLUSH:
2594 /* flush tty buffer and allow ldisc to process ioctl */
2595 tty_buffer_flush(tty);
2596 break;
2597 }
2598 break;
2599 }
2600 if (tty->ops->ioctl) {
2601 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2602 if (retval != -ENOIOCTLCMD)
2603 return retval;
2604 }
2605 ld = tty_ldisc_ref_wait(tty);
2606 retval = -EINVAL;
2607 if (ld->ops->ioctl) {
2608 retval = ld->ops->ioctl(tty, file, cmd, arg);
2609 if (retval == -ENOIOCTLCMD)
2610 retval = -EINVAL;
2611 }
2612 tty_ldisc_deref(ld);
2613 return retval;
2614 }
2615
2616 #ifdef CONFIG_COMPAT
2617 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2618 unsigned long arg)
2619 {
2620 struct inode *inode = file->f_dentry->d_inode;
2621 struct tty_struct *tty = file->private_data;
2622 struct tty_ldisc *ld;
2623 int retval = -ENOIOCTLCMD;
2624
2625 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2626 return -EINVAL;
2627
2628 if (tty->ops->compat_ioctl) {
2629 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2630 if (retval != -ENOIOCTLCMD)
2631 return retval;
2632 }
2633
2634 ld = tty_ldisc_ref_wait(tty);
2635 if (ld->ops->compat_ioctl)
2636 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2637 tty_ldisc_deref(ld);
2638
2639 return retval;
2640 }
2641 #endif
2642
2643 /*
2644 * This implements the "Secure Attention Key" --- the idea is to
2645 * prevent trojan horses by killing all processes associated with this
2646 * tty when the user hits the "Secure Attention Key". Required for
2647 * super-paranoid applications --- see the Orange Book for more details.
2648 *
2649 * This code could be nicer; ideally it should send a HUP, wait a few
2650 * seconds, then send a INT, and then a KILL signal. But you then
2651 * have to coordinate with the init process, since all processes associated
2652 * with the current tty must be dead before the new getty is allowed
2653 * to spawn.
2654 *
2655 * Now, if it would be correct ;-/ The current code has a nasty hole -
2656 * it doesn't catch files in flight. We may send the descriptor to ourselves
2657 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2658 *
2659 * Nasty bug: do_SAK is being called in interrupt context. This can
2660 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2661 */
2662 void __do_SAK(struct tty_struct *tty)
2663 {
2664 #ifdef TTY_SOFT_SAK
2665 tty_hangup(tty);
2666 #else
2667 struct task_struct *g, *p;
2668 struct pid *session;
2669 int i;
2670 struct file *filp;
2671 struct fdtable *fdt;
2672
2673 if (!tty)
2674 return;
2675 session = tty->session;
2676
2677 tty_ldisc_flush(tty);
2678
2679 tty_driver_flush_buffer(tty);
2680
2681 read_lock(&tasklist_lock);
2682 /* Kill the entire session */
2683 do_each_pid_task(session, PIDTYPE_SID, p) {
2684 printk(KERN_NOTICE "SAK: killed process %d"
2685 " (%s): task_session(p)==tty->session\n",
2686 task_pid_nr(p), p->comm);
2687 send_sig(SIGKILL, p, 1);
2688 } while_each_pid_task(session, PIDTYPE_SID, p);
2689 /* Now kill any processes that happen to have the
2690 * tty open.
2691 */
2692 do_each_thread(g, p) {
2693 if (p->signal->tty == tty) {
2694 printk(KERN_NOTICE "SAK: killed process %d"
2695 " (%s): task_session(p)==tty->session\n",
2696 task_pid_nr(p), p->comm);
2697 send_sig(SIGKILL, p, 1);
2698 continue;
2699 }
2700 task_lock(p);
2701 if (p->files) {
2702 /*
2703 * We don't take a ref to the file, so we must
2704 * hold ->file_lock instead.
2705 */
2706 spin_lock(&p->files->file_lock);
2707 fdt = files_fdtable(p->files);
2708 for (i = 0; i < fdt->max_fds; i++) {
2709 filp = fcheck_files(p->files, i);
2710 if (!filp)
2711 continue;
2712 if (filp->f_op->read == tty_read &&
2713 filp->private_data == tty) {
2714 printk(KERN_NOTICE "SAK: killed process %d"
2715 " (%s): fd#%d opened to the tty\n",
2716 task_pid_nr(p), p->comm, i);
2717 force_sig(SIGKILL, p);
2718 break;
2719 }
2720 }
2721 spin_unlock(&p->files->file_lock);
2722 }
2723 task_unlock(p);
2724 } while_each_thread(g, p);
2725 read_unlock(&tasklist_lock);
2726 #endif
2727 }
2728
2729 static void do_SAK_work(struct work_struct *work)
2730 {
2731 struct tty_struct *tty =
2732 container_of(work, struct tty_struct, SAK_work);
2733 __do_SAK(tty);
2734 }
2735
2736 /*
2737 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2738 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2739 * the values which we write to it will be identical to the values which it
2740 * already has. --akpm
2741 */
2742 void do_SAK(struct tty_struct *tty)
2743 {
2744 if (!tty)
2745 return;
2746 schedule_work(&tty->SAK_work);
2747 }
2748
2749 EXPORT_SYMBOL(do_SAK);
2750
2751 /**
2752 * initialize_tty_struct
2753 * @tty: tty to initialize
2754 *
2755 * This subroutine initializes a tty structure that has been newly
2756 * allocated.
2757 *
2758 * Locking: none - tty in question must not be exposed at this point
2759 */
2760
2761 void initialize_tty_struct(struct tty_struct *tty,
2762 struct tty_driver *driver, int idx)
2763 {
2764 memset(tty, 0, sizeof(struct tty_struct));
2765 kref_init(&tty->kref);
2766 tty->magic = TTY_MAGIC;
2767 tty_ldisc_init(tty);
2768 tty->session = NULL;
2769 tty->pgrp = NULL;
2770 tty->overrun_time = jiffies;
2771 tty->buf.head = tty->buf.tail = NULL;
2772 tty_buffer_init(tty);
2773 mutex_init(&tty->termios_mutex);
2774 init_waitqueue_head(&tty->write_wait);
2775 init_waitqueue_head(&tty->read_wait);
2776 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2777 mutex_init(&tty->atomic_read_lock);
2778 mutex_init(&tty->atomic_write_lock);
2779 mutex_init(&tty->output_lock);
2780 mutex_init(&tty->echo_lock);
2781 spin_lock_init(&tty->read_lock);
2782 spin_lock_init(&tty->ctrl_lock);
2783 INIT_LIST_HEAD(&tty->tty_files);
2784 INIT_WORK(&tty->SAK_work, do_SAK_work);
2785
2786 tty->driver = driver;
2787 tty->ops = driver->ops;
2788 tty->index = idx;
2789 tty_line_name(driver, idx, tty->name);
2790 }
2791
2792 /**
2793 * tty_put_char - write one character to a tty
2794 * @tty: tty
2795 * @ch: character
2796 *
2797 * Write one byte to the tty using the provided put_char method
2798 * if present. Returns the number of characters successfully output.
2799 *
2800 * Note: the specific put_char operation in the driver layer may go
2801 * away soon. Don't call it directly, use this method
2802 */
2803
2804 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2805 {
2806 if (tty->ops->put_char)
2807 return tty->ops->put_char(tty, ch);
2808 return tty->ops->write(tty, &ch, 1);
2809 }
2810 EXPORT_SYMBOL_GPL(tty_put_char);
2811
2812 struct class *tty_class;
2813
2814 /**
2815 * tty_register_device - register a tty device
2816 * @driver: the tty driver that describes the tty device
2817 * @index: the index in the tty driver for this tty device
2818 * @device: a struct device that is associated with this tty device.
2819 * This field is optional, if there is no known struct device
2820 * for this tty device it can be set to NULL safely.
2821 *
2822 * Returns a pointer to the struct device for this tty device
2823 * (or ERR_PTR(-EFOO) on error).
2824 *
2825 * This call is required to be made to register an individual tty device
2826 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2827 * that bit is not set, this function should not be called by a tty
2828 * driver.
2829 *
2830 * Locking: ??
2831 */
2832
2833 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2834 struct device *device)
2835 {
2836 char name[64];
2837 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2838
2839 if (index >= driver->num) {
2840 printk(KERN_ERR "Attempt to register invalid tty line number "
2841 " (%d).\n", index);
2842 return ERR_PTR(-EINVAL);
2843 }
2844
2845 if (driver->type == TTY_DRIVER_TYPE_PTY)
2846 pty_line_name(driver, index, name);
2847 else
2848 tty_line_name(driver, index, name);
2849
2850 return device_create(tty_class, device, dev, NULL, name);
2851 }
2852 EXPORT_SYMBOL(tty_register_device);
2853
2854 /**
2855 * tty_unregister_device - unregister a tty device
2856 * @driver: the tty driver that describes the tty device
2857 * @index: the index in the tty driver for this tty device
2858 *
2859 * If a tty device is registered with a call to tty_register_device() then
2860 * this function must be called when the tty device is gone.
2861 *
2862 * Locking: ??
2863 */
2864
2865 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2866 {
2867 device_destroy(tty_class,
2868 MKDEV(driver->major, driver->minor_start) + index);
2869 }
2870 EXPORT_SYMBOL(tty_unregister_device);
2871
2872 struct tty_driver *alloc_tty_driver(int lines)
2873 {
2874 struct tty_driver *driver;
2875
2876 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2877 if (driver) {
2878 kref_init(&driver->kref);
2879 driver->magic = TTY_DRIVER_MAGIC;
2880 driver->num = lines;
2881 /* later we'll move allocation of tables here */
2882 }
2883 return driver;
2884 }
2885 EXPORT_SYMBOL(alloc_tty_driver);
2886
2887 static void destruct_tty_driver(struct kref *kref)
2888 {
2889 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2890 int i;
2891 struct ktermios *tp;
2892 void *p;
2893
2894 if (driver->flags & TTY_DRIVER_INSTALLED) {
2895 /*
2896 * Free the termios and termios_locked structures because
2897 * we don't want to get memory leaks when modular tty
2898 * drivers are removed from the kernel.
2899 */
2900 for (i = 0; i < driver->num; i++) {
2901 tp = driver->termios[i];
2902 if (tp) {
2903 driver->termios[i] = NULL;
2904 kfree(tp);
2905 }
2906 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2907 tty_unregister_device(driver, i);
2908 }
2909 p = driver->ttys;
2910 proc_tty_unregister_driver(driver);
2911 driver->ttys = NULL;
2912 driver->termios = NULL;
2913 kfree(p);
2914 cdev_del(&driver->cdev);
2915 }
2916 kfree(driver);
2917 }
2918
2919 void tty_driver_kref_put(struct tty_driver *driver)
2920 {
2921 kref_put(&driver->kref, destruct_tty_driver);
2922 }
2923 EXPORT_SYMBOL(tty_driver_kref_put);
2924
2925 void tty_set_operations(struct tty_driver *driver,
2926 const struct tty_operations *op)
2927 {
2928 driver->ops = op;
2929 };
2930 EXPORT_SYMBOL(tty_set_operations);
2931
2932 void put_tty_driver(struct tty_driver *d)
2933 {
2934 tty_driver_kref_put(d);
2935 }
2936 EXPORT_SYMBOL(put_tty_driver);
2937
2938 /*
2939 * Called by a tty driver to register itself.
2940 */
2941 int tty_register_driver(struct tty_driver *driver)
2942 {
2943 int error;
2944 int i;
2945 dev_t dev;
2946 void **p = NULL;
2947
2948 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2949 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2950 if (!p)
2951 return -ENOMEM;
2952 }
2953
2954 if (!driver->major) {
2955 error = alloc_chrdev_region(&dev, driver->minor_start,
2956 driver->num, driver->name);
2957 if (!error) {
2958 driver->major = MAJOR(dev);
2959 driver->minor_start = MINOR(dev);
2960 }
2961 } else {
2962 dev = MKDEV(driver->major, driver->minor_start);
2963 error = register_chrdev_region(dev, driver->num, driver->name);
2964 }
2965 if (error < 0) {
2966 kfree(p);
2967 return error;
2968 }
2969
2970 if (p) {
2971 driver->ttys = (struct tty_struct **)p;
2972 driver->termios = (struct ktermios **)(p + driver->num);
2973 } else {
2974 driver->ttys = NULL;
2975 driver->termios = NULL;
2976 }
2977
2978 cdev_init(&driver->cdev, &tty_fops);
2979 driver->cdev.owner = driver->owner;
2980 error = cdev_add(&driver->cdev, dev, driver->num);
2981 if (error) {
2982 unregister_chrdev_region(dev, driver->num);
2983 driver->ttys = NULL;
2984 driver->termios = NULL;
2985 kfree(p);
2986 return error;
2987 }
2988
2989 mutex_lock(&tty_mutex);
2990 list_add(&driver->tty_drivers, &tty_drivers);
2991 mutex_unlock(&tty_mutex);
2992
2993 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2994 for (i = 0; i < driver->num; i++)
2995 tty_register_device(driver, i, NULL);
2996 }
2997 proc_tty_register_driver(driver);
2998 driver->flags |= TTY_DRIVER_INSTALLED;
2999 return 0;
3000 }
3001
3002 EXPORT_SYMBOL(tty_register_driver);
3003
3004 /*
3005 * Called by a tty driver to unregister itself.
3006 */
3007 int tty_unregister_driver(struct tty_driver *driver)
3008 {
3009 #if 0
3010 /* FIXME */
3011 if (driver->refcount)
3012 return -EBUSY;
3013 #endif
3014 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3015 driver->num);
3016 mutex_lock(&tty_mutex);
3017 list_del(&driver->tty_drivers);
3018 mutex_unlock(&tty_mutex);
3019 return 0;
3020 }
3021
3022 EXPORT_SYMBOL(tty_unregister_driver);
3023
3024 dev_t tty_devnum(struct tty_struct *tty)
3025 {
3026 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3027 }
3028 EXPORT_SYMBOL(tty_devnum);
3029
3030 void proc_clear_tty(struct task_struct *p)
3031 {
3032 unsigned long flags;
3033 struct tty_struct *tty;
3034 spin_lock_irqsave(&p->sighand->siglock, flags);
3035 tty = p->signal->tty;
3036 p->signal->tty = NULL;
3037 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3038 tty_kref_put(tty);
3039 }
3040
3041 /* Called under the sighand lock */
3042
3043 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3044 {
3045 if (tty) {
3046 unsigned long flags;
3047 /* We should not have a session or pgrp to put here but.... */
3048 spin_lock_irqsave(&tty->ctrl_lock, flags);
3049 put_pid(tty->session);
3050 put_pid(tty->pgrp);
3051 tty->pgrp = get_pid(task_pgrp(tsk));
3052 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3053 tty->session = get_pid(task_session(tsk));
3054 if (tsk->signal->tty) {
3055 printk(KERN_DEBUG "tty not NULL!!\n");
3056 tty_kref_put(tsk->signal->tty);
3057 }
3058 }
3059 put_pid(tsk->signal->tty_old_pgrp);
3060 tsk->signal->tty = tty_kref_get(tty);
3061 tsk->signal->tty_old_pgrp = NULL;
3062 }
3063
3064 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3065 {
3066 spin_lock_irq(&tsk->sighand->siglock);
3067 __proc_set_tty(tsk, tty);
3068 spin_unlock_irq(&tsk->sighand->siglock);
3069 }
3070
3071 struct tty_struct *get_current_tty(void)
3072 {
3073 struct tty_struct *tty;
3074 unsigned long flags;
3075
3076 spin_lock_irqsave(&current->sighand->siglock, flags);
3077 tty = tty_kref_get(current->signal->tty);
3078 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3079 return tty;
3080 }
3081 EXPORT_SYMBOL_GPL(get_current_tty);
3082
3083 void tty_default_fops(struct file_operations *fops)
3084 {
3085 *fops = tty_fops;
3086 }
3087
3088 /*
3089 * Initialize the console device. This is called *early*, so
3090 * we can't necessarily depend on lots of kernel help here.
3091 * Just do some early initializations, and do the complex setup
3092 * later.
3093 */
3094 void __init console_init(void)
3095 {
3096 initcall_t *call;
3097
3098 /* Setup the default TTY line discipline. */
3099 tty_ldisc_begin();
3100
3101 /*
3102 * set up the console device so that later boot sequences can
3103 * inform about problems etc..
3104 */
3105 call = __con_initcall_start;
3106 while (call < __con_initcall_end) {
3107 (*call)();
3108 call++;
3109 }
3110 }
3111
3112 static int __init tty_class_init(void)
3113 {
3114 tty_class = class_create(THIS_MODULE, "tty");
3115 if (IS_ERR(tty_class))
3116 return PTR_ERR(tty_class);
3117 return 0;
3118 }
3119
3120 postcore_initcall(tty_class_init);
3121
3122 /* 3/2004 jmc: why do these devices exist? */
3123
3124 static struct cdev tty_cdev, console_cdev;
3125
3126 /*
3127 * Ok, now we can initialize the rest of the tty devices and can count
3128 * on memory allocations, interrupts etc..
3129 */
3130 static int __init tty_init(void)
3131 {
3132 cdev_init(&tty_cdev, &tty_fops);
3133 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3134 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3135 panic("Couldn't register /dev/tty driver\n");
3136 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3137 "tty");
3138
3139 cdev_init(&console_cdev, &console_fops);
3140 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3141 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3142 panic("Couldn't register /dev/console driver\n");
3143 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3144 "console");
3145
3146 #ifdef CONFIG_VT
3147 vty_init(&console_fops);
3148 #endif
3149 return 0;
3150 }
3151 module_init(tty_init);
This page took 0.106534 seconds and 4 git commands to generate.