7053d6333692d7bd8fcd112a4dfc8bac783ccbc0
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159 * alloc_tty_struct - allocate a tty object
160 *
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
163 *
164 * Locking: none
165 */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
175 *
176 * Free the write buffers, tty queue and tty memory itself.
177 *
178 * Locking: none. Must be called after tty is definitely unused
179 */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
194 *
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
197 *
198 * Locking: none
199 */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
221 }
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
227 }
228 #endif
229 return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
237
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
241 }
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
252 }
253 #endif
254 return 0;
255 }
256
257 /**
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
261 *
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
264 *
265 * Locking: caller must hold tty_mutex
266 */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270 struct tty_driver *p;
271
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
278 }
279 return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
288 *
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
292 */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str;
299
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
305
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
308
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 if (*str == ',')
315 str++;
316 if (*str == '\0')
317 str = NULL;
318
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
324 }
325 }
326 mutex_unlock(&tty_mutex);
327
328 return res;
329 }
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
332
333 /**
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
336 *
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
340 *
341 * Locking: ctrl_lock
342 */
343
344 int tty_check_change(struct tty_struct *tty)
345 {
346 unsigned long flags;
347 int ret = 0;
348
349 if (current->signal->tty != tty)
350 return 0;
351
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
357 }
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
366 }
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370 out:
371 return ret;
372 out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
375 }
376
377 EXPORT_SYMBOL(tty_check_change);
378
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
381 {
382 return 0;
383 }
384
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
387 {
388 return -EIO;
389 }
390
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393 {
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395 }
396
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
399 {
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401 }
402
403 static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
405 {
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407 }
408
409 static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
419 };
420
421 static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
431 };
432
433 static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
441 };
442
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
445
446 /**
447 * tty_wakeup - request more data
448 * @tty: terminal
449 *
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
453 */
454
455 void tty_wakeup(struct tty_struct *tty)
456 {
457 struct tty_ldisc *ld;
458
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
465 }
466 }
467 wake_up_interruptible(&tty->write_wait);
468 }
469
470 EXPORT_SYMBOL_GPL(tty_wakeup);
471
472 /**
473 * tty_ldisc_flush - flush line discipline queue
474 * @tty: tty
475 *
476 * Flush the line discipline queue (if any) for this tty. If there
477 * is no line discipline active this is a no-op.
478 */
479
480 void tty_ldisc_flush(struct tty_struct *tty)
481 {
482 struct tty_ldisc *ld = tty_ldisc_ref(tty);
483 if (ld) {
484 if (ld->ops->flush_buffer)
485 ld->ops->flush_buffer(tty);
486 tty_ldisc_deref(ld);
487 }
488 tty_buffer_flush(tty);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
492
493 /**
494 * tty_reset_termios - reset terminal state
495 * @tty: tty to reset
496 *
497 * Restore a terminal to the driver default state
498 */
499
500 static void tty_reset_termios(struct tty_struct *tty)
501 {
502 mutex_lock(&tty->termios_mutex);
503 *tty->termios = tty->driver->init_termios;
504 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
505 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
506 mutex_unlock(&tty->termios_mutex);
507 }
508
509 /**
510 * do_tty_hangup - actual handler for hangup events
511 * @work: tty device
512 *
513 * This can be called by the "eventd" kernel thread. That is process
514 * synchronous but doesn't hold any locks, so we need to make sure we
515 * have the appropriate locks for what we're doing.
516 *
517 * The hangup event clears any pending redirections onto the hung up
518 * device. It ensures future writes will error and it does the needed
519 * line discipline hangup and signal delivery. The tty object itself
520 * remains intact.
521 *
522 * Locking:
523 * BKL
524 * redirect lock for undoing redirection
525 * file list lock for manipulating list of ttys
526 * tty_ldisc_lock from called functions
527 * termios_mutex resetting termios data
528 * tasklist_lock to walk task list for hangup event
529 * ->siglock to protect ->signal/->sighand
530 */
531 static void do_tty_hangup(struct work_struct *work)
532 {
533 struct tty_struct *tty =
534 container_of(work, struct tty_struct, hangup_work);
535 struct file *cons_filp = NULL;
536 struct file *filp, *f = NULL;
537 struct task_struct *p;
538 struct tty_ldisc *ld;
539 int closecount = 0, n;
540 unsigned long flags;
541 int refs = 0;
542
543 if (!tty)
544 return;
545
546 /* inuse_filps is protected by the single kernel lock */
547 lock_kernel();
548
549 spin_lock(&redirect_lock);
550 if (redirect && redirect->private_data == tty) {
551 f = redirect;
552 redirect = NULL;
553 }
554 spin_unlock(&redirect_lock);
555
556 check_tty_count(tty, "do_tty_hangup");
557 file_list_lock();
558 /* This breaks for file handles being sent over AF_UNIX sockets ? */
559 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
560 if (filp->f_op->write == redirected_tty_write)
561 cons_filp = filp;
562 if (filp->f_op->write != tty_write)
563 continue;
564 closecount++;
565 tty_fasync(-1, filp, 0); /* can't block */
566 filp->f_op = &hung_up_tty_fops;
567 }
568 file_list_unlock();
569 /*
570 * FIXME! What are the locking issues here? This may me overdoing
571 * things... This question is especially important now that we've
572 * removed the irqlock.
573 */
574 ld = tty_ldisc_ref(tty);
575 if (ld != NULL) {
576 /* We may have no line discipline at this point */
577 if (ld->ops->flush_buffer)
578 ld->ops->flush_buffer(tty);
579 tty_driver_flush_buffer(tty);
580 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
581 ld->ops->write_wakeup)
582 ld->ops->write_wakeup(tty);
583 if (ld->ops->hangup)
584 ld->ops->hangup(tty);
585 }
586 /*
587 * FIXME: Once we trust the LDISC code better we can wait here for
588 * ldisc completion and fix the driver call race
589 */
590 wake_up_interruptible(&tty->write_wait);
591 wake_up_interruptible(&tty->read_wait);
592 /*
593 * Shutdown the current line discipline, and reset it to
594 * N_TTY.
595 */
596 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
597 tty_reset_termios(tty);
598 /* Defer ldisc switch */
599 /* tty_deferred_ldisc_switch(N_TTY);
600
601 This should get done automatically when the port closes and
602 tty_release is called */
603
604 read_lock(&tasklist_lock);
605 if (tty->session) {
606 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
607 spin_lock_irq(&p->sighand->siglock);
608 if (p->signal->tty == tty) {
609 p->signal->tty = NULL;
610 /* We defer the dereferences outside fo
611 the tasklist lock */
612 refs++;
613 }
614 if (!p->signal->leader) {
615 spin_unlock_irq(&p->sighand->siglock);
616 continue;
617 }
618 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
619 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
620 put_pid(p->signal->tty_old_pgrp); /* A noop */
621 spin_lock_irqsave(&tty->ctrl_lock, flags);
622 if (tty->pgrp)
623 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
624 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
625 spin_unlock_irq(&p->sighand->siglock);
626 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
627 }
628 read_unlock(&tasklist_lock);
629
630 spin_lock_irqsave(&tty->ctrl_lock, flags);
631 tty->flags = 0;
632 put_pid(tty->session);
633 put_pid(tty->pgrp);
634 tty->session = NULL;
635 tty->pgrp = NULL;
636 tty->ctrl_status = 0;
637 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
638
639 /* Account for the p->signal references we killed */
640 while (refs--)
641 tty_kref_put(tty);
642
643 /*
644 * If one of the devices matches a console pointer, we
645 * cannot just call hangup() because that will cause
646 * tty->count and state->count to go out of sync.
647 * So we just call close() the right number of times.
648 */
649 if (cons_filp) {
650 if (tty->ops->close)
651 for (n = 0; n < closecount; n++)
652 tty->ops->close(tty, cons_filp);
653 } else if (tty->ops->hangup)
654 (tty->ops->hangup)(tty);
655 /*
656 * We don't want to have driver/ldisc interactions beyond
657 * the ones we did here. The driver layer expects no
658 * calls after ->hangup() from the ldisc side. However we
659 * can't yet guarantee all that.
660 */
661 set_bit(TTY_HUPPED, &tty->flags);
662 if (ld) {
663 tty_ldisc_enable(tty);
664 tty_ldisc_deref(ld);
665 }
666 unlock_kernel();
667 if (f)
668 fput(f);
669 }
670
671 /**
672 * tty_hangup - trigger a hangup event
673 * @tty: tty to hangup
674 *
675 * A carrier loss (virtual or otherwise) has occurred on this like
676 * schedule a hangup sequence to run after this event.
677 */
678
679 void tty_hangup(struct tty_struct *tty)
680 {
681 #ifdef TTY_DEBUG_HANGUP
682 char buf[64];
683 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
684 #endif
685 schedule_work(&tty->hangup_work);
686 }
687
688 EXPORT_SYMBOL(tty_hangup);
689
690 /**
691 * tty_vhangup - process vhangup
692 * @tty: tty to hangup
693 *
694 * The user has asked via system call for the terminal to be hung up.
695 * We do this synchronously so that when the syscall returns the process
696 * is complete. That guarantee is necessary for security reasons.
697 */
698
699 void tty_vhangup(struct tty_struct *tty)
700 {
701 #ifdef TTY_DEBUG_HANGUP
702 char buf[64];
703
704 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
705 #endif
706 do_tty_hangup(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_vhangup);
710
711 /**
712 * tty_vhangup_self - process vhangup for own ctty
713 *
714 * Perform a vhangup on the current controlling tty
715 */
716
717 void tty_vhangup_self(void)
718 {
719 struct tty_struct *tty;
720
721 tty = get_current_tty();
722 if (tty) {
723 tty_vhangup(tty);
724 tty_kref_put(tty);
725 }
726 }
727
728 /**
729 * tty_hung_up_p - was tty hung up
730 * @filp: file pointer of tty
731 *
732 * Return true if the tty has been subject to a vhangup or a carrier
733 * loss
734 */
735
736 int tty_hung_up_p(struct file *filp)
737 {
738 return (filp->f_op == &hung_up_tty_fops);
739 }
740
741 EXPORT_SYMBOL(tty_hung_up_p);
742
743 static void session_clear_tty(struct pid *session)
744 {
745 struct task_struct *p;
746 do_each_pid_task(session, PIDTYPE_SID, p) {
747 proc_clear_tty(p);
748 } while_each_pid_task(session, PIDTYPE_SID, p);
749 }
750
751 /**
752 * disassociate_ctty - disconnect controlling tty
753 * @on_exit: true if exiting so need to "hang up" the session
754 *
755 * This function is typically called only by the session leader, when
756 * it wants to disassociate itself from its controlling tty.
757 *
758 * It performs the following functions:
759 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
760 * (2) Clears the tty from being controlling the session
761 * (3) Clears the controlling tty for all processes in the
762 * session group.
763 *
764 * The argument on_exit is set to 1 if called when a process is
765 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
766 *
767 * Locking:
768 * BKL is taken for hysterical raisins
769 * tty_mutex is taken to protect tty
770 * ->siglock is taken to protect ->signal/->sighand
771 * tasklist_lock is taken to walk process list for sessions
772 * ->siglock is taken to protect ->signal/->sighand
773 */
774
775 void disassociate_ctty(int on_exit)
776 {
777 struct tty_struct *tty;
778 struct pid *tty_pgrp = NULL;
779
780
781 tty = get_current_tty();
782 if (tty) {
783 tty_pgrp = get_pid(tty->pgrp);
784 lock_kernel();
785 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
786 tty_vhangup(tty);
787 unlock_kernel();
788 tty_kref_put(tty);
789 } else if (on_exit) {
790 struct pid *old_pgrp;
791 spin_lock_irq(&current->sighand->siglock);
792 old_pgrp = current->signal->tty_old_pgrp;
793 current->signal->tty_old_pgrp = NULL;
794 spin_unlock_irq(&current->sighand->siglock);
795 if (old_pgrp) {
796 kill_pgrp(old_pgrp, SIGHUP, on_exit);
797 kill_pgrp(old_pgrp, SIGCONT, on_exit);
798 put_pid(old_pgrp);
799 }
800 return;
801 }
802 if (tty_pgrp) {
803 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
804 if (!on_exit)
805 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
806 put_pid(tty_pgrp);
807 }
808
809 spin_lock_irq(&current->sighand->siglock);
810 put_pid(current->signal->tty_old_pgrp);
811 current->signal->tty_old_pgrp = NULL;
812 spin_unlock_irq(&current->sighand->siglock);
813
814 tty = get_current_tty();
815 if (tty) {
816 unsigned long flags;
817 spin_lock_irqsave(&tty->ctrl_lock, flags);
818 put_pid(tty->session);
819 put_pid(tty->pgrp);
820 tty->session = NULL;
821 tty->pgrp = NULL;
822 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
823 tty_kref_put(tty);
824 } else {
825 #ifdef TTY_DEBUG_HANGUP
826 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
827 " = NULL", tty);
828 #endif
829 }
830
831 /* Now clear signal->tty under the lock */
832 read_lock(&tasklist_lock);
833 session_clear_tty(task_session(current));
834 read_unlock(&tasklist_lock);
835 }
836
837 /**
838 *
839 * no_tty - Ensure the current process does not have a controlling tty
840 */
841 void no_tty(void)
842 {
843 struct task_struct *tsk = current;
844 lock_kernel();
845 if (tsk->signal->leader)
846 disassociate_ctty(0);
847 unlock_kernel();
848 proc_clear_tty(tsk);
849 }
850
851
852 /**
853 * stop_tty - propagate flow control
854 * @tty: tty to stop
855 *
856 * Perform flow control to the driver. For PTY/TTY pairs we
857 * must also propagate the TIOCKPKT status. May be called
858 * on an already stopped device and will not re-call the driver
859 * method.
860 *
861 * This functionality is used by both the line disciplines for
862 * halting incoming flow and by the driver. It may therefore be
863 * called from any context, may be under the tty atomic_write_lock
864 * but not always.
865 *
866 * Locking:
867 * Uses the tty control lock internally
868 */
869
870 void stop_tty(struct tty_struct *tty)
871 {
872 unsigned long flags;
873 spin_lock_irqsave(&tty->ctrl_lock, flags);
874 if (tty->stopped) {
875 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
876 return;
877 }
878 tty->stopped = 1;
879 if (tty->link && tty->link->packet) {
880 tty->ctrl_status &= ~TIOCPKT_START;
881 tty->ctrl_status |= TIOCPKT_STOP;
882 wake_up_interruptible(&tty->link->read_wait);
883 }
884 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
885 if (tty->ops->stop)
886 (tty->ops->stop)(tty);
887 }
888
889 EXPORT_SYMBOL(stop_tty);
890
891 /**
892 * start_tty - propagate flow control
893 * @tty: tty to start
894 *
895 * Start a tty that has been stopped if at all possible. Perform
896 * any necessary wakeups and propagate the TIOCPKT status. If this
897 * is the tty was previous stopped and is being started then the
898 * driver start method is invoked and the line discipline woken.
899 *
900 * Locking:
901 * ctrl_lock
902 */
903
904 void start_tty(struct tty_struct *tty)
905 {
906 unsigned long flags;
907 spin_lock_irqsave(&tty->ctrl_lock, flags);
908 if (!tty->stopped || tty->flow_stopped) {
909 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
910 return;
911 }
912 tty->stopped = 0;
913 if (tty->link && tty->link->packet) {
914 tty->ctrl_status &= ~TIOCPKT_STOP;
915 tty->ctrl_status |= TIOCPKT_START;
916 wake_up_interruptible(&tty->link->read_wait);
917 }
918 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919 if (tty->ops->start)
920 (tty->ops->start)(tty);
921 /* If we have a running line discipline it may need kicking */
922 tty_wakeup(tty);
923 }
924
925 EXPORT_SYMBOL(start_tty);
926
927 /**
928 * tty_read - read method for tty device files
929 * @file: pointer to tty file
930 * @buf: user buffer
931 * @count: size of user buffer
932 * @ppos: unused
933 *
934 * Perform the read system call function on this terminal device. Checks
935 * for hung up devices before calling the line discipline method.
936 *
937 * Locking:
938 * Locks the line discipline internally while needed. Multiple
939 * read calls may be outstanding in parallel.
940 */
941
942 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
943 loff_t *ppos)
944 {
945 int i;
946 struct tty_struct *tty;
947 struct inode *inode;
948 struct tty_ldisc *ld;
949
950 tty = (struct tty_struct *)file->private_data;
951 inode = file->f_path.dentry->d_inode;
952 if (tty_paranoia_check(tty, inode, "tty_read"))
953 return -EIO;
954 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
955 return -EIO;
956
957 /* We want to wait for the line discipline to sort out in this
958 situation */
959 ld = tty_ldisc_ref_wait(tty);
960 if (ld->ops->read)
961 i = (ld->ops->read)(tty, file, buf, count);
962 else
963 i = -EIO;
964 tty_ldisc_deref(ld);
965 if (i > 0)
966 inode->i_atime = current_fs_time(inode->i_sb);
967 return i;
968 }
969
970 void tty_write_unlock(struct tty_struct *tty)
971 {
972 mutex_unlock(&tty->atomic_write_lock);
973 wake_up_interruptible(&tty->write_wait);
974 }
975
976 int tty_write_lock(struct tty_struct *tty, int ndelay)
977 {
978 if (!mutex_trylock(&tty->atomic_write_lock)) {
979 if (ndelay)
980 return -EAGAIN;
981 if (mutex_lock_interruptible(&tty->atomic_write_lock))
982 return -ERESTARTSYS;
983 }
984 return 0;
985 }
986
987 /*
988 * Split writes up in sane blocksizes to avoid
989 * denial-of-service type attacks
990 */
991 static inline ssize_t do_tty_write(
992 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
993 struct tty_struct *tty,
994 struct file *file,
995 const char __user *buf,
996 size_t count)
997 {
998 ssize_t ret, written = 0;
999 unsigned int chunk;
1000
1001 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1002 if (ret < 0)
1003 return ret;
1004
1005 /*
1006 * We chunk up writes into a temporary buffer. This
1007 * simplifies low-level drivers immensely, since they
1008 * don't have locking issues and user mode accesses.
1009 *
1010 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1011 * big chunk-size..
1012 *
1013 * The default chunk-size is 2kB, because the NTTY
1014 * layer has problems with bigger chunks. It will
1015 * claim to be able to handle more characters than
1016 * it actually does.
1017 *
1018 * FIXME: This can probably go away now except that 64K chunks
1019 * are too likely to fail unless switched to vmalloc...
1020 */
1021 chunk = 2048;
1022 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1023 chunk = 65536;
1024 if (count < chunk)
1025 chunk = count;
1026
1027 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1028 if (tty->write_cnt < chunk) {
1029 unsigned char *buf_chunk;
1030
1031 if (chunk < 1024)
1032 chunk = 1024;
1033
1034 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1035 if (!buf_chunk) {
1036 ret = -ENOMEM;
1037 goto out;
1038 }
1039 kfree(tty->write_buf);
1040 tty->write_cnt = chunk;
1041 tty->write_buf = buf_chunk;
1042 }
1043
1044 /* Do the write .. */
1045 for (;;) {
1046 size_t size = count;
1047 if (size > chunk)
1048 size = chunk;
1049 ret = -EFAULT;
1050 if (copy_from_user(tty->write_buf, buf, size))
1051 break;
1052 ret = write(tty, file, tty->write_buf, size);
1053 if (ret <= 0)
1054 break;
1055 written += ret;
1056 buf += ret;
1057 count -= ret;
1058 if (!count)
1059 break;
1060 ret = -ERESTARTSYS;
1061 if (signal_pending(current))
1062 break;
1063 cond_resched();
1064 }
1065 if (written) {
1066 struct inode *inode = file->f_path.dentry->d_inode;
1067 inode->i_mtime = current_fs_time(inode->i_sb);
1068 ret = written;
1069 }
1070 out:
1071 tty_write_unlock(tty);
1072 return ret;
1073 }
1074
1075 /**
1076 * tty_write_message - write a message to a certain tty, not just the console.
1077 * @tty: the destination tty_struct
1078 * @msg: the message to write
1079 *
1080 * This is used for messages that need to be redirected to a specific tty.
1081 * We don't put it into the syslog queue right now maybe in the future if
1082 * really needed.
1083 *
1084 * We must still hold the BKL and test the CLOSING flag for the moment.
1085 */
1086
1087 void tty_write_message(struct tty_struct *tty, char *msg)
1088 {
1089 lock_kernel();
1090 if (tty) {
1091 mutex_lock(&tty->atomic_write_lock);
1092 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1093 tty->ops->write(tty, msg, strlen(msg));
1094 tty_write_unlock(tty);
1095 }
1096 unlock_kernel();
1097 return;
1098 }
1099
1100
1101 /**
1102 * tty_write - write method for tty device file
1103 * @file: tty file pointer
1104 * @buf: user data to write
1105 * @count: bytes to write
1106 * @ppos: unused
1107 *
1108 * Write data to a tty device via the line discipline.
1109 *
1110 * Locking:
1111 * Locks the line discipline as required
1112 * Writes to the tty driver are serialized by the atomic_write_lock
1113 * and are then processed in chunks to the device. The line discipline
1114 * write method will not be involked in parallel for each device
1115 * The line discipline write method is called under the big
1116 * kernel lock for historical reasons. New code should not rely on this.
1117 */
1118
1119 static ssize_t tty_write(struct file *file, const char __user *buf,
1120 size_t count, loff_t *ppos)
1121 {
1122 struct tty_struct *tty;
1123 struct inode *inode = file->f_path.dentry->d_inode;
1124 ssize_t ret;
1125 struct tty_ldisc *ld;
1126
1127 tty = (struct tty_struct *)file->private_data;
1128 if (tty_paranoia_check(tty, inode, "tty_write"))
1129 return -EIO;
1130 if (!tty || !tty->ops->write ||
1131 (test_bit(TTY_IO_ERROR, &tty->flags)))
1132 return -EIO;
1133 /* Short term debug to catch buggy drivers */
1134 if (tty->ops->write_room == NULL)
1135 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1136 tty->driver->name);
1137 ld = tty_ldisc_ref_wait(tty);
1138 if (!ld->ops->write)
1139 ret = -EIO;
1140 else
1141 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1142 tty_ldisc_deref(ld);
1143 return ret;
1144 }
1145
1146 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1147 size_t count, loff_t *ppos)
1148 {
1149 struct file *p = NULL;
1150
1151 spin_lock(&redirect_lock);
1152 if (redirect) {
1153 get_file(redirect);
1154 p = redirect;
1155 }
1156 spin_unlock(&redirect_lock);
1157
1158 if (p) {
1159 ssize_t res;
1160 res = vfs_write(p, buf, count, &p->f_pos);
1161 fput(p);
1162 return res;
1163 }
1164 return tty_write(file, buf, count, ppos);
1165 }
1166
1167 static char ptychar[] = "pqrstuvwxyzabcde";
1168
1169 /**
1170 * pty_line_name - generate name for a pty
1171 * @driver: the tty driver in use
1172 * @index: the minor number
1173 * @p: output buffer of at least 6 bytes
1174 *
1175 * Generate a name from a driver reference and write it to the output
1176 * buffer.
1177 *
1178 * Locking: None
1179 */
1180 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1181 {
1182 int i = index + driver->name_base;
1183 /* ->name is initialized to "ttyp", but "tty" is expected */
1184 sprintf(p, "%s%c%x",
1185 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1186 ptychar[i >> 4 & 0xf], i & 0xf);
1187 }
1188
1189 /**
1190 * tty_line_name - generate name for a tty
1191 * @driver: the tty driver in use
1192 * @index: the minor number
1193 * @p: output buffer of at least 7 bytes
1194 *
1195 * Generate a name from a driver reference and write it to the output
1196 * buffer.
1197 *
1198 * Locking: None
1199 */
1200 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1201 {
1202 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1203 }
1204
1205 /**
1206 * tty_driver_lookup_tty() - find an existing tty, if any
1207 * @driver: the driver for the tty
1208 * @idx: the minor number
1209 *
1210 * Return the tty, if found or ERR_PTR() otherwise.
1211 *
1212 * Locking: tty_mutex must be held. If tty is found, the mutex must
1213 * be held until the 'fast-open' is also done. Will change once we
1214 * have refcounting in the driver and per driver locking
1215 */
1216 struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1217 struct inode *inode, int idx)
1218 {
1219 struct tty_struct *tty;
1220
1221 if (driver->ops->lookup)
1222 return driver->ops->lookup(driver, inode, idx);
1223
1224 tty = driver->ttys[idx];
1225 return tty;
1226 }
1227
1228 /**
1229 * tty_init_termios - helper for termios setup
1230 * @tty: the tty to set up
1231 *
1232 * Initialise the termios structures for this tty. Thus runs under
1233 * the tty_mutex currently so we can be relaxed about ordering.
1234 */
1235
1236 int tty_init_termios(struct tty_struct *tty)
1237 {
1238 struct ktermios *tp;
1239 int idx = tty->index;
1240
1241 tp = tty->driver->termios[idx];
1242 if (tp == NULL) {
1243 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1244 if (tp == NULL)
1245 return -ENOMEM;
1246 memcpy(tp, &tty->driver->init_termios,
1247 sizeof(struct ktermios));
1248 tty->driver->termios[idx] = tp;
1249 }
1250 tty->termios = tp;
1251 tty->termios_locked = tp + 1;
1252
1253 /* Compatibility until drivers always set this */
1254 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1255 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1256 return 0;
1257 }
1258
1259 /**
1260 * tty_driver_install_tty() - install a tty entry in the driver
1261 * @driver: the driver for the tty
1262 * @tty: the tty
1263 *
1264 * Install a tty object into the driver tables. The tty->index field
1265 * will be set by the time this is called. This method is responsible
1266 * for ensuring any need additional structures are allocated and
1267 * configured.
1268 *
1269 * Locking: tty_mutex for now
1270 */
1271 static int tty_driver_install_tty(struct tty_driver *driver,
1272 struct tty_struct *tty)
1273 {
1274 int idx = tty->index;
1275
1276 if (driver->ops->install)
1277 return driver->ops->install(driver, tty);
1278
1279 if (tty_init_termios(tty) == 0) {
1280 tty_driver_kref_get(driver);
1281 tty->count++;
1282 driver->ttys[idx] = tty;
1283 return 0;
1284 }
1285 return -ENOMEM;
1286 }
1287
1288 /**
1289 * tty_driver_remove_tty() - remove a tty from the driver tables
1290 * @driver: the driver for the tty
1291 * @idx: the minor number
1292 *
1293 * Remvoe a tty object from the driver tables. The tty->index field
1294 * will be set by the time this is called.
1295 *
1296 * Locking: tty_mutex for now
1297 */
1298 static void tty_driver_remove_tty(struct tty_driver *driver,
1299 struct tty_struct *tty)
1300 {
1301 if (driver->ops->remove)
1302 driver->ops->remove(driver, tty);
1303 else
1304 driver->ttys[tty->index] = NULL;
1305 }
1306
1307 /*
1308 * tty_reopen() - fast re-open of an open tty
1309 * @tty - the tty to open
1310 *
1311 * Return 0 on success, -errno on error.
1312 *
1313 * Locking: tty_mutex must be held from the time the tty was found
1314 * till this open completes.
1315 */
1316 static int tty_reopen(struct tty_struct *tty)
1317 {
1318 struct tty_driver *driver = tty->driver;
1319
1320 if (test_bit(TTY_CLOSING, &tty->flags))
1321 return -EIO;
1322
1323 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1324 driver->subtype == PTY_TYPE_MASTER) {
1325 /*
1326 * special case for PTY masters: only one open permitted,
1327 * and the slave side open count is incremented as well.
1328 */
1329 if (tty->count)
1330 return -EIO;
1331
1332 tty->link->count++;
1333 }
1334 tty->count++;
1335 tty->driver = driver; /* N.B. why do this every time?? */
1336
1337 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1338
1339 return 0;
1340 }
1341
1342 /**
1343 * tty_init_dev - initialise a tty device
1344 * @driver: tty driver we are opening a device on
1345 * @idx: device index
1346 * @ret_tty: returned tty structure
1347 * @first_ok: ok to open a new device (used by ptmx)
1348 *
1349 * Prepare a tty device. This may not be a "new" clean device but
1350 * could also be an active device. The pty drivers require special
1351 * handling because of this.
1352 *
1353 * Locking:
1354 * The function is called under the tty_mutex, which
1355 * protects us from the tty struct or driver itself going away.
1356 *
1357 * On exit the tty device has the line discipline attached and
1358 * a reference count of 1. If a pair was created for pty/tty use
1359 * and the other was a pty master then it too has a reference count of 1.
1360 *
1361 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1362 * failed open. The new code protects the open with a mutex, so it's
1363 * really quite straightforward. The mutex locking can probably be
1364 * relaxed for the (most common) case of reopening a tty.
1365 */
1366
1367 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1368 int first_ok)
1369 {
1370 struct tty_struct *tty;
1371 int retval;
1372
1373 /* Check if pty master is being opened multiple times */
1374 if (driver->subtype == PTY_TYPE_MASTER &&
1375 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1376 return ERR_PTR(-EIO);
1377
1378 /*
1379 * First time open is complex, especially for PTY devices.
1380 * This code guarantees that either everything succeeds and the
1381 * TTY is ready for operation, or else the table slots are vacated
1382 * and the allocated memory released. (Except that the termios
1383 * and locked termios may be retained.)
1384 */
1385
1386 if (!try_module_get(driver->owner))
1387 return ERR_PTR(-ENODEV);
1388
1389 tty = alloc_tty_struct();
1390 if (!tty)
1391 goto fail_no_mem;
1392 initialize_tty_struct(tty, driver, idx);
1393
1394 retval = tty_driver_install_tty(driver, tty);
1395 if (retval < 0) {
1396 free_tty_struct(tty);
1397 module_put(driver->owner);
1398 return ERR_PTR(retval);
1399 }
1400
1401 /*
1402 * Structures all installed ... call the ldisc open routines.
1403 * If we fail here just call release_tty to clean up. No need
1404 * to decrement the use counts, as release_tty doesn't care.
1405 */
1406
1407 retval = tty_ldisc_setup(tty, tty->link);
1408 if (retval)
1409 goto release_mem_out;
1410 return tty;
1411
1412 fail_no_mem:
1413 module_put(driver->owner);
1414 return ERR_PTR(-ENOMEM);
1415
1416 /* call the tty release_tty routine to clean out this slot */
1417 release_mem_out:
1418 if (printk_ratelimit())
1419 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1420 "clearing slot %d\n", idx);
1421 release_tty(tty, idx);
1422 return ERR_PTR(retval);
1423 }
1424
1425 void tty_free_termios(struct tty_struct *tty)
1426 {
1427 struct ktermios *tp;
1428 int idx = tty->index;
1429 /* Kill this flag and push into drivers for locking etc */
1430 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1431 /* FIXME: Locking on ->termios array */
1432 tp = tty->termios;
1433 tty->driver->termios[idx] = NULL;
1434 kfree(tp);
1435 }
1436 }
1437 EXPORT_SYMBOL(tty_free_termios);
1438
1439 void tty_shutdown(struct tty_struct *tty)
1440 {
1441 tty_driver_remove_tty(tty->driver, tty);
1442 tty_free_termios(tty);
1443 }
1444 EXPORT_SYMBOL(tty_shutdown);
1445
1446 /**
1447 * release_one_tty - release tty structure memory
1448 * @kref: kref of tty we are obliterating
1449 *
1450 * Releases memory associated with a tty structure, and clears out the
1451 * driver table slots. This function is called when a device is no longer
1452 * in use. It also gets called when setup of a device fails.
1453 *
1454 * Locking:
1455 * tty_mutex - sometimes only
1456 * takes the file list lock internally when working on the list
1457 * of ttys that the driver keeps.
1458 */
1459 static void release_one_tty(struct kref *kref)
1460 {
1461 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1462 struct tty_driver *driver = tty->driver;
1463
1464 if (tty->ops->shutdown)
1465 tty->ops->shutdown(tty);
1466 else
1467 tty_shutdown(tty);
1468 tty->magic = 0;
1469 tty_driver_kref_put(driver);
1470 module_put(driver->owner);
1471
1472 file_list_lock();
1473 list_del_init(&tty->tty_files);
1474 file_list_unlock();
1475
1476 free_tty_struct(tty);
1477 }
1478
1479 /**
1480 * tty_kref_put - release a tty kref
1481 * @tty: tty device
1482 *
1483 * Release a reference to a tty device and if need be let the kref
1484 * layer destruct the object for us
1485 */
1486
1487 void tty_kref_put(struct tty_struct *tty)
1488 {
1489 if (tty)
1490 kref_put(&tty->kref, release_one_tty);
1491 }
1492 EXPORT_SYMBOL(tty_kref_put);
1493
1494 /**
1495 * release_tty - release tty structure memory
1496 *
1497 * Release both @tty and a possible linked partner (think pty pair),
1498 * and decrement the refcount of the backing module.
1499 *
1500 * Locking:
1501 * tty_mutex - sometimes only
1502 * takes the file list lock internally when working on the list
1503 * of ttys that the driver keeps.
1504 * FIXME: should we require tty_mutex is held here ??
1505 *
1506 */
1507 static void release_tty(struct tty_struct *tty, int idx)
1508 {
1509 /* This should always be true but check for the moment */
1510 WARN_ON(tty->index != idx);
1511
1512 if (tty->link)
1513 tty_kref_put(tty->link);
1514 tty_kref_put(tty);
1515 }
1516
1517 /*
1518 * Even releasing the tty structures is a tricky business.. We have
1519 * to be very careful that the structures are all released at the
1520 * same time, as interrupts might otherwise get the wrong pointers.
1521 *
1522 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1523 * lead to double frees or releasing memory still in use.
1524 */
1525 void tty_release_dev(struct file *filp)
1526 {
1527 struct tty_struct *tty, *o_tty;
1528 int pty_master, tty_closing, o_tty_closing, do_sleep;
1529 int devpts;
1530 int idx;
1531 char buf[64];
1532 struct inode *inode;
1533
1534 inode = filp->f_path.dentry->d_inode;
1535 tty = (struct tty_struct *)filp->private_data;
1536 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1537 return;
1538
1539 check_tty_count(tty, "tty_release_dev");
1540
1541 tty_fasync(-1, filp, 0);
1542
1543 idx = tty->index;
1544 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1545 tty->driver->subtype == PTY_TYPE_MASTER);
1546 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1547 o_tty = tty->link;
1548
1549 #ifdef TTY_PARANOIA_CHECK
1550 if (idx < 0 || idx >= tty->driver->num) {
1551 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1552 "free (%s)\n", tty->name);
1553 return;
1554 }
1555 if (!devpts) {
1556 if (tty != tty->driver->ttys[idx]) {
1557 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1558 "for (%s)\n", idx, tty->name);
1559 return;
1560 }
1561 if (tty->termios != tty->driver->termios[idx]) {
1562 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1563 "for (%s)\n",
1564 idx, tty->name);
1565 return;
1566 }
1567 }
1568 #endif
1569
1570 #ifdef TTY_DEBUG_HANGUP
1571 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1572 tty_name(tty, buf), tty->count);
1573 #endif
1574
1575 #ifdef TTY_PARANOIA_CHECK
1576 if (tty->driver->other &&
1577 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1578 if (o_tty != tty->driver->other->ttys[idx]) {
1579 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1580 "not o_tty for (%s)\n",
1581 idx, tty->name);
1582 return;
1583 }
1584 if (o_tty->termios != tty->driver->other->termios[idx]) {
1585 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1586 "not o_termios for (%s)\n",
1587 idx, tty->name);
1588 return;
1589 }
1590 if (o_tty->link != tty) {
1591 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1592 return;
1593 }
1594 }
1595 #endif
1596 if (tty->ops->close)
1597 tty->ops->close(tty, filp);
1598
1599 /*
1600 * Sanity check: if tty->count is going to zero, there shouldn't be
1601 * any waiters on tty->read_wait or tty->write_wait. We test the
1602 * wait queues and kick everyone out _before_ actually starting to
1603 * close. This ensures that we won't block while releasing the tty
1604 * structure.
1605 *
1606 * The test for the o_tty closing is necessary, since the master and
1607 * slave sides may close in any order. If the slave side closes out
1608 * first, its count will be one, since the master side holds an open.
1609 * Thus this test wouldn't be triggered at the time the slave closes,
1610 * so we do it now.
1611 *
1612 * Note that it's possible for the tty to be opened again while we're
1613 * flushing out waiters. By recalculating the closing flags before
1614 * each iteration we avoid any problems.
1615 */
1616 while (1) {
1617 /* Guard against races with tty->count changes elsewhere and
1618 opens on /dev/tty */
1619
1620 mutex_lock(&tty_mutex);
1621 tty_closing = tty->count <= 1;
1622 o_tty_closing = o_tty &&
1623 (o_tty->count <= (pty_master ? 1 : 0));
1624 do_sleep = 0;
1625
1626 if (tty_closing) {
1627 if (waitqueue_active(&tty->read_wait)) {
1628 wake_up(&tty->read_wait);
1629 do_sleep++;
1630 }
1631 if (waitqueue_active(&tty->write_wait)) {
1632 wake_up(&tty->write_wait);
1633 do_sleep++;
1634 }
1635 }
1636 if (o_tty_closing) {
1637 if (waitqueue_active(&o_tty->read_wait)) {
1638 wake_up(&o_tty->read_wait);
1639 do_sleep++;
1640 }
1641 if (waitqueue_active(&o_tty->write_wait)) {
1642 wake_up(&o_tty->write_wait);
1643 do_sleep++;
1644 }
1645 }
1646 if (!do_sleep)
1647 break;
1648
1649 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1650 "active!\n", tty_name(tty, buf));
1651 mutex_unlock(&tty_mutex);
1652 schedule();
1653 }
1654
1655 /*
1656 * The closing flags are now consistent with the open counts on
1657 * both sides, and we've completed the last operation that could
1658 * block, so it's safe to proceed with closing.
1659 */
1660 if (pty_master) {
1661 if (--o_tty->count < 0) {
1662 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1663 "(%d) for %s\n",
1664 o_tty->count, tty_name(o_tty, buf));
1665 o_tty->count = 0;
1666 }
1667 }
1668 if (--tty->count < 0) {
1669 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1670 tty->count, tty_name(tty, buf));
1671 tty->count = 0;
1672 }
1673
1674 /*
1675 * We've decremented tty->count, so we need to remove this file
1676 * descriptor off the tty->tty_files list; this serves two
1677 * purposes:
1678 * - check_tty_count sees the correct number of file descriptors
1679 * associated with this tty.
1680 * - do_tty_hangup no longer sees this file descriptor as
1681 * something that needs to be handled for hangups.
1682 */
1683 file_kill(filp);
1684 filp->private_data = NULL;
1685
1686 /*
1687 * Perform some housekeeping before deciding whether to return.
1688 *
1689 * Set the TTY_CLOSING flag if this was the last open. In the
1690 * case of a pty we may have to wait around for the other side
1691 * to close, and TTY_CLOSING makes sure we can't be reopened.
1692 */
1693 if (tty_closing)
1694 set_bit(TTY_CLOSING, &tty->flags);
1695 if (o_tty_closing)
1696 set_bit(TTY_CLOSING, &o_tty->flags);
1697
1698 /*
1699 * If _either_ side is closing, make sure there aren't any
1700 * processes that still think tty or o_tty is their controlling
1701 * tty.
1702 */
1703 if (tty_closing || o_tty_closing) {
1704 read_lock(&tasklist_lock);
1705 session_clear_tty(tty->session);
1706 if (o_tty)
1707 session_clear_tty(o_tty->session);
1708 read_unlock(&tasklist_lock);
1709 }
1710
1711 mutex_unlock(&tty_mutex);
1712
1713 /* check whether both sides are closing ... */
1714 if (!tty_closing || (o_tty && !o_tty_closing))
1715 return;
1716
1717 #ifdef TTY_DEBUG_HANGUP
1718 printk(KERN_DEBUG "freeing tty structure...");
1719 #endif
1720 /*
1721 * Ask the line discipline code to release its structures
1722 */
1723 tty_ldisc_release(tty, o_tty);
1724 /*
1725 * The release_tty function takes care of the details of clearing
1726 * the slots and preserving the termios structure.
1727 */
1728 release_tty(tty, idx);
1729
1730 /* Make this pty number available for reallocation */
1731 if (devpts)
1732 devpts_kill_index(inode, idx);
1733 }
1734
1735 /**
1736 * __tty_open - open a tty device
1737 * @inode: inode of device file
1738 * @filp: file pointer to tty
1739 *
1740 * tty_open and tty_release keep up the tty count that contains the
1741 * number of opens done on a tty. We cannot use the inode-count, as
1742 * different inodes might point to the same tty.
1743 *
1744 * Open-counting is needed for pty masters, as well as for keeping
1745 * track of serial lines: DTR is dropped when the last close happens.
1746 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1747 *
1748 * The termios state of a pty is reset on first open so that
1749 * settings don't persist across reuse.
1750 *
1751 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1752 * tty->count should protect the rest.
1753 * ->siglock protects ->signal/->sighand
1754 */
1755
1756 static int __tty_open(struct inode *inode, struct file *filp)
1757 {
1758 struct tty_struct *tty = NULL;
1759 int noctty, retval;
1760 struct tty_driver *driver;
1761 int index;
1762 dev_t device = inode->i_rdev;
1763 unsigned short saved_flags = filp->f_flags;
1764
1765 nonseekable_open(inode, filp);
1766
1767 retry_open:
1768 noctty = filp->f_flags & O_NOCTTY;
1769 index = -1;
1770 retval = 0;
1771
1772 mutex_lock(&tty_mutex);
1773
1774 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1775 tty = get_current_tty();
1776 if (!tty) {
1777 mutex_unlock(&tty_mutex);
1778 return -ENXIO;
1779 }
1780 driver = tty_driver_kref_get(tty->driver);
1781 index = tty->index;
1782 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1783 /* noctty = 1; */
1784 /* FIXME: Should we take a driver reference ? */
1785 tty_kref_put(tty);
1786 goto got_driver;
1787 }
1788 #ifdef CONFIG_VT
1789 if (device == MKDEV(TTY_MAJOR, 0)) {
1790 extern struct tty_driver *console_driver;
1791 driver = tty_driver_kref_get(console_driver);
1792 index = fg_console;
1793 noctty = 1;
1794 goto got_driver;
1795 }
1796 #endif
1797 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1798 driver = tty_driver_kref_get(console_device(&index));
1799 if (driver) {
1800 /* Don't let /dev/console block */
1801 filp->f_flags |= O_NONBLOCK;
1802 noctty = 1;
1803 goto got_driver;
1804 }
1805 mutex_unlock(&tty_mutex);
1806 return -ENODEV;
1807 }
1808
1809 driver = get_tty_driver(device, &index);
1810 if (!driver) {
1811 mutex_unlock(&tty_mutex);
1812 return -ENODEV;
1813 }
1814 got_driver:
1815 if (!tty) {
1816 /* check whether we're reopening an existing tty */
1817 tty = tty_driver_lookup_tty(driver, inode, index);
1818
1819 if (IS_ERR(tty))
1820 return PTR_ERR(tty);
1821 }
1822
1823 if (tty) {
1824 retval = tty_reopen(tty);
1825 if (retval)
1826 tty = ERR_PTR(retval);
1827 } else
1828 tty = tty_init_dev(driver, index, 0);
1829
1830 mutex_unlock(&tty_mutex);
1831 tty_driver_kref_put(driver);
1832 if (IS_ERR(tty))
1833 return PTR_ERR(tty);
1834
1835 filp->private_data = tty;
1836 file_move(filp, &tty->tty_files);
1837 check_tty_count(tty, "tty_open");
1838 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1839 tty->driver->subtype == PTY_TYPE_MASTER)
1840 noctty = 1;
1841 #ifdef TTY_DEBUG_HANGUP
1842 printk(KERN_DEBUG "opening %s...", tty->name);
1843 #endif
1844 if (!retval) {
1845 if (tty->ops->open)
1846 retval = tty->ops->open(tty, filp);
1847 else
1848 retval = -ENODEV;
1849 }
1850 filp->f_flags = saved_flags;
1851
1852 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1853 !capable(CAP_SYS_ADMIN))
1854 retval = -EBUSY;
1855
1856 if (retval) {
1857 #ifdef TTY_DEBUG_HANGUP
1858 printk(KERN_DEBUG "error %d in opening %s...", retval,
1859 tty->name);
1860 #endif
1861 tty_release_dev(filp);
1862 if (retval != -ERESTARTSYS)
1863 return retval;
1864 if (signal_pending(current))
1865 return retval;
1866 schedule();
1867 /*
1868 * Need to reset f_op in case a hangup happened.
1869 */
1870 if (filp->f_op == &hung_up_tty_fops)
1871 filp->f_op = &tty_fops;
1872 goto retry_open;
1873 }
1874
1875 mutex_lock(&tty_mutex);
1876 spin_lock_irq(&current->sighand->siglock);
1877 if (!noctty &&
1878 current->signal->leader &&
1879 !current->signal->tty &&
1880 tty->session == NULL)
1881 __proc_set_tty(current, tty);
1882 spin_unlock_irq(&current->sighand->siglock);
1883 mutex_unlock(&tty_mutex);
1884 return 0;
1885 }
1886
1887 /* BKL pushdown: scary code avoidance wrapper */
1888 static int tty_open(struct inode *inode, struct file *filp)
1889 {
1890 int ret;
1891
1892 lock_kernel();
1893 ret = __tty_open(inode, filp);
1894 unlock_kernel();
1895 return ret;
1896 }
1897
1898
1899
1900
1901 /**
1902 * tty_release - vfs callback for close
1903 * @inode: inode of tty
1904 * @filp: file pointer for handle to tty
1905 *
1906 * Called the last time each file handle is closed that references
1907 * this tty. There may however be several such references.
1908 *
1909 * Locking:
1910 * Takes bkl. See tty_release_dev
1911 */
1912
1913 static int tty_release(struct inode *inode, struct file *filp)
1914 {
1915 lock_kernel();
1916 tty_release_dev(filp);
1917 unlock_kernel();
1918 return 0;
1919 }
1920
1921 /**
1922 * tty_poll - check tty status
1923 * @filp: file being polled
1924 * @wait: poll wait structures to update
1925 *
1926 * Call the line discipline polling method to obtain the poll
1927 * status of the device.
1928 *
1929 * Locking: locks called line discipline but ldisc poll method
1930 * may be re-entered freely by other callers.
1931 */
1932
1933 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1934 {
1935 struct tty_struct *tty;
1936 struct tty_ldisc *ld;
1937 int ret = 0;
1938
1939 tty = (struct tty_struct *)filp->private_data;
1940 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1941 return 0;
1942
1943 ld = tty_ldisc_ref_wait(tty);
1944 if (ld->ops->poll)
1945 ret = (ld->ops->poll)(tty, filp, wait);
1946 tty_ldisc_deref(ld);
1947 return ret;
1948 }
1949
1950 static int tty_fasync(int fd, struct file *filp, int on)
1951 {
1952 struct tty_struct *tty;
1953 unsigned long flags;
1954 int retval = 0;
1955
1956 lock_kernel();
1957 tty = (struct tty_struct *)filp->private_data;
1958 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1959 goto out;
1960
1961 retval = fasync_helper(fd, filp, on, &tty->fasync);
1962 if (retval <= 0)
1963 goto out;
1964
1965 if (on) {
1966 enum pid_type type;
1967 struct pid *pid;
1968 if (!waitqueue_active(&tty->read_wait))
1969 tty->minimum_to_wake = 1;
1970 spin_lock_irqsave(&tty->ctrl_lock, flags);
1971 if (tty->pgrp) {
1972 pid = tty->pgrp;
1973 type = PIDTYPE_PGID;
1974 } else {
1975 pid = task_pid(current);
1976 type = PIDTYPE_PID;
1977 }
1978 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1979 retval = __f_setown(filp, pid, type, 0);
1980 if (retval)
1981 goto out;
1982 } else {
1983 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1984 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1985 }
1986 retval = 0;
1987 out:
1988 unlock_kernel();
1989 return retval;
1990 }
1991
1992 /**
1993 * tiocsti - fake input character
1994 * @tty: tty to fake input into
1995 * @p: pointer to character
1996 *
1997 * Fake input to a tty device. Does the necessary locking and
1998 * input management.
1999 *
2000 * FIXME: does not honour flow control ??
2001 *
2002 * Locking:
2003 * Called functions take tty_ldisc_lock
2004 * current->signal->tty check is safe without locks
2005 *
2006 * FIXME: may race normal receive processing
2007 */
2008
2009 static int tiocsti(struct tty_struct *tty, char __user *p)
2010 {
2011 char ch, mbz = 0;
2012 struct tty_ldisc *ld;
2013
2014 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2015 return -EPERM;
2016 if (get_user(ch, p))
2017 return -EFAULT;
2018 ld = tty_ldisc_ref_wait(tty);
2019 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2020 tty_ldisc_deref(ld);
2021 return 0;
2022 }
2023
2024 /**
2025 * tiocgwinsz - implement window query ioctl
2026 * @tty; tty
2027 * @arg: user buffer for result
2028 *
2029 * Copies the kernel idea of the window size into the user buffer.
2030 *
2031 * Locking: tty->termios_mutex is taken to ensure the winsize data
2032 * is consistent.
2033 */
2034
2035 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2036 {
2037 int err;
2038
2039 mutex_lock(&tty->termios_mutex);
2040 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2041 mutex_unlock(&tty->termios_mutex);
2042
2043 return err ? -EFAULT: 0;
2044 }
2045
2046 /**
2047 * tty_do_resize - resize event
2048 * @tty: tty being resized
2049 * @real_tty: real tty (not the same as tty if using a pty/tty pair)
2050 * @rows: rows (character)
2051 * @cols: cols (character)
2052 *
2053 * Update the termios variables and send the neccessary signals to
2054 * peform a terminal resize correctly
2055 */
2056
2057 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2058 struct winsize *ws)
2059 {
2060 struct pid *pgrp, *rpgrp;
2061 unsigned long flags;
2062
2063 /* For a PTY we need to lock the tty side */
2064 mutex_lock(&real_tty->termios_mutex);
2065 if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2066 goto done;
2067 /* Get the PID values and reference them so we can
2068 avoid holding the tty ctrl lock while sending signals */
2069 spin_lock_irqsave(&tty->ctrl_lock, flags);
2070 pgrp = get_pid(tty->pgrp);
2071 rpgrp = get_pid(real_tty->pgrp);
2072 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2073
2074 if (pgrp)
2075 kill_pgrp(pgrp, SIGWINCH, 1);
2076 if (rpgrp != pgrp && rpgrp)
2077 kill_pgrp(rpgrp, SIGWINCH, 1);
2078
2079 put_pid(pgrp);
2080 put_pid(rpgrp);
2081
2082 tty->winsize = *ws;
2083 real_tty->winsize = *ws;
2084 done:
2085 mutex_unlock(&real_tty->termios_mutex);
2086 return 0;
2087 }
2088
2089 /**
2090 * tiocswinsz - implement window size set ioctl
2091 * @tty; tty
2092 * @arg: user buffer for result
2093 *
2094 * Copies the user idea of the window size to the kernel. Traditionally
2095 * this is just advisory information but for the Linux console it
2096 * actually has driver level meaning and triggers a VC resize.
2097 *
2098 * Locking:
2099 * Driver dependant. The default do_resize method takes the
2100 * tty termios mutex and ctrl_lock. The console takes its own lock
2101 * then calls into the default method.
2102 */
2103
2104 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2105 struct winsize __user *arg)
2106 {
2107 struct winsize tmp_ws;
2108 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2109 return -EFAULT;
2110
2111 if (tty->ops->resize)
2112 return tty->ops->resize(tty, real_tty, &tmp_ws);
2113 else
2114 return tty_do_resize(tty, real_tty, &tmp_ws);
2115 }
2116
2117 /**
2118 * tioccons - allow admin to move logical console
2119 * @file: the file to become console
2120 *
2121 * Allow the adminstrator to move the redirected console device
2122 *
2123 * Locking: uses redirect_lock to guard the redirect information
2124 */
2125
2126 static int tioccons(struct file *file)
2127 {
2128 if (!capable(CAP_SYS_ADMIN))
2129 return -EPERM;
2130 if (file->f_op->write == redirected_tty_write) {
2131 struct file *f;
2132 spin_lock(&redirect_lock);
2133 f = redirect;
2134 redirect = NULL;
2135 spin_unlock(&redirect_lock);
2136 if (f)
2137 fput(f);
2138 return 0;
2139 }
2140 spin_lock(&redirect_lock);
2141 if (redirect) {
2142 spin_unlock(&redirect_lock);
2143 return -EBUSY;
2144 }
2145 get_file(file);
2146 redirect = file;
2147 spin_unlock(&redirect_lock);
2148 return 0;
2149 }
2150
2151 /**
2152 * fionbio - non blocking ioctl
2153 * @file: file to set blocking value
2154 * @p: user parameter
2155 *
2156 * Historical tty interfaces had a blocking control ioctl before
2157 * the generic functionality existed. This piece of history is preserved
2158 * in the expected tty API of posix OS's.
2159 *
2160 * Locking: none, the open fle handle ensures it won't go away.
2161 */
2162
2163 static int fionbio(struct file *file, int __user *p)
2164 {
2165 int nonblock;
2166
2167 if (get_user(nonblock, p))
2168 return -EFAULT;
2169
2170 /* file->f_flags is still BKL protected in the fs layer - vomit */
2171 lock_kernel();
2172 if (nonblock)
2173 file->f_flags |= O_NONBLOCK;
2174 else
2175 file->f_flags &= ~O_NONBLOCK;
2176 unlock_kernel();
2177 return 0;
2178 }
2179
2180 /**
2181 * tiocsctty - set controlling tty
2182 * @tty: tty structure
2183 * @arg: user argument
2184 *
2185 * This ioctl is used to manage job control. It permits a session
2186 * leader to set this tty as the controlling tty for the session.
2187 *
2188 * Locking:
2189 * Takes tty_mutex() to protect tty instance
2190 * Takes tasklist_lock internally to walk sessions
2191 * Takes ->siglock() when updating signal->tty
2192 */
2193
2194 static int tiocsctty(struct tty_struct *tty, int arg)
2195 {
2196 int ret = 0;
2197 if (current->signal->leader && (task_session(current) == tty->session))
2198 return ret;
2199
2200 mutex_lock(&tty_mutex);
2201 /*
2202 * The process must be a session leader and
2203 * not have a controlling tty already.
2204 */
2205 if (!current->signal->leader || current->signal->tty) {
2206 ret = -EPERM;
2207 goto unlock;
2208 }
2209
2210 if (tty->session) {
2211 /*
2212 * This tty is already the controlling
2213 * tty for another session group!
2214 */
2215 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2216 /*
2217 * Steal it away
2218 */
2219 read_lock(&tasklist_lock);
2220 session_clear_tty(tty->session);
2221 read_unlock(&tasklist_lock);
2222 } else {
2223 ret = -EPERM;
2224 goto unlock;
2225 }
2226 }
2227 proc_set_tty(current, tty);
2228 unlock:
2229 mutex_unlock(&tty_mutex);
2230 return ret;
2231 }
2232
2233 /**
2234 * tty_get_pgrp - return a ref counted pgrp pid
2235 * @tty: tty to read
2236 *
2237 * Returns a refcounted instance of the pid struct for the process
2238 * group controlling the tty.
2239 */
2240
2241 struct pid *tty_get_pgrp(struct tty_struct *tty)
2242 {
2243 unsigned long flags;
2244 struct pid *pgrp;
2245
2246 spin_lock_irqsave(&tty->ctrl_lock, flags);
2247 pgrp = get_pid(tty->pgrp);
2248 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2249
2250 return pgrp;
2251 }
2252 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2253
2254 /**
2255 * tiocgpgrp - get process group
2256 * @tty: tty passed by user
2257 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2258 * @p: returned pid
2259 *
2260 * Obtain the process group of the tty. If there is no process group
2261 * return an error.
2262 *
2263 * Locking: none. Reference to current->signal->tty is safe.
2264 */
2265
2266 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2267 {
2268 struct pid *pid;
2269 int ret;
2270 /*
2271 * (tty == real_tty) is a cheap way of
2272 * testing if the tty is NOT a master pty.
2273 */
2274 if (tty == real_tty && current->signal->tty != real_tty)
2275 return -ENOTTY;
2276 pid = tty_get_pgrp(real_tty);
2277 ret = put_user(pid_vnr(pid), p);
2278 put_pid(pid);
2279 return ret;
2280 }
2281
2282 /**
2283 * tiocspgrp - attempt to set process group
2284 * @tty: tty passed by user
2285 * @real_tty: tty side device matching tty passed by user
2286 * @p: pid pointer
2287 *
2288 * Set the process group of the tty to the session passed. Only
2289 * permitted where the tty session is our session.
2290 *
2291 * Locking: RCU, ctrl lock
2292 */
2293
2294 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2295 {
2296 struct pid *pgrp;
2297 pid_t pgrp_nr;
2298 int retval = tty_check_change(real_tty);
2299 unsigned long flags;
2300
2301 if (retval == -EIO)
2302 return -ENOTTY;
2303 if (retval)
2304 return retval;
2305 if (!current->signal->tty ||
2306 (current->signal->tty != real_tty) ||
2307 (real_tty->session != task_session(current)))
2308 return -ENOTTY;
2309 if (get_user(pgrp_nr, p))
2310 return -EFAULT;
2311 if (pgrp_nr < 0)
2312 return -EINVAL;
2313 rcu_read_lock();
2314 pgrp = find_vpid(pgrp_nr);
2315 retval = -ESRCH;
2316 if (!pgrp)
2317 goto out_unlock;
2318 retval = -EPERM;
2319 if (session_of_pgrp(pgrp) != task_session(current))
2320 goto out_unlock;
2321 retval = 0;
2322 spin_lock_irqsave(&tty->ctrl_lock, flags);
2323 put_pid(real_tty->pgrp);
2324 real_tty->pgrp = get_pid(pgrp);
2325 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2326 out_unlock:
2327 rcu_read_unlock();
2328 return retval;
2329 }
2330
2331 /**
2332 * tiocgsid - get session id
2333 * @tty: tty passed by user
2334 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2335 * @p: pointer to returned session id
2336 *
2337 * Obtain the session id of the tty. If there is no session
2338 * return an error.
2339 *
2340 * Locking: none. Reference to current->signal->tty is safe.
2341 */
2342
2343 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2344 {
2345 /*
2346 * (tty == real_tty) is a cheap way of
2347 * testing if the tty is NOT a master pty.
2348 */
2349 if (tty == real_tty && current->signal->tty != real_tty)
2350 return -ENOTTY;
2351 if (!real_tty->session)
2352 return -ENOTTY;
2353 return put_user(pid_vnr(real_tty->session), p);
2354 }
2355
2356 /**
2357 * tiocsetd - set line discipline
2358 * @tty: tty device
2359 * @p: pointer to user data
2360 *
2361 * Set the line discipline according to user request.
2362 *
2363 * Locking: see tty_set_ldisc, this function is just a helper
2364 */
2365
2366 static int tiocsetd(struct tty_struct *tty, int __user *p)
2367 {
2368 int ldisc;
2369 int ret;
2370
2371 if (get_user(ldisc, p))
2372 return -EFAULT;
2373
2374 lock_kernel();
2375 ret = tty_set_ldisc(tty, ldisc);
2376 unlock_kernel();
2377
2378 return ret;
2379 }
2380
2381 /**
2382 * send_break - performed time break
2383 * @tty: device to break on
2384 * @duration: timeout in mS
2385 *
2386 * Perform a timed break on hardware that lacks its own driver level
2387 * timed break functionality.
2388 *
2389 * Locking:
2390 * atomic_write_lock serializes
2391 *
2392 */
2393
2394 static int send_break(struct tty_struct *tty, unsigned int duration)
2395 {
2396 int retval;
2397
2398 if (tty->ops->break_ctl == NULL)
2399 return 0;
2400
2401 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2402 retval = tty->ops->break_ctl(tty, duration);
2403 else {
2404 /* Do the work ourselves */
2405 if (tty_write_lock(tty, 0) < 0)
2406 return -EINTR;
2407 retval = tty->ops->break_ctl(tty, -1);
2408 if (retval)
2409 goto out;
2410 if (!signal_pending(current))
2411 msleep_interruptible(duration);
2412 retval = tty->ops->break_ctl(tty, 0);
2413 out:
2414 tty_write_unlock(tty);
2415 if (signal_pending(current))
2416 retval = -EINTR;
2417 }
2418 return retval;
2419 }
2420
2421 /**
2422 * tty_tiocmget - get modem status
2423 * @tty: tty device
2424 * @file: user file pointer
2425 * @p: pointer to result
2426 *
2427 * Obtain the modem status bits from the tty driver if the feature
2428 * is supported. Return -EINVAL if it is not available.
2429 *
2430 * Locking: none (up to the driver)
2431 */
2432
2433 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2434 {
2435 int retval = -EINVAL;
2436
2437 if (tty->ops->tiocmget) {
2438 retval = tty->ops->tiocmget(tty, file);
2439
2440 if (retval >= 0)
2441 retval = put_user(retval, p);
2442 }
2443 return retval;
2444 }
2445
2446 /**
2447 * tty_tiocmset - set modem status
2448 * @tty: tty device
2449 * @file: user file pointer
2450 * @cmd: command - clear bits, set bits or set all
2451 * @p: pointer to desired bits
2452 *
2453 * Set the modem status bits from the tty driver if the feature
2454 * is supported. Return -EINVAL if it is not available.
2455 *
2456 * Locking: none (up to the driver)
2457 */
2458
2459 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2460 unsigned __user *p)
2461 {
2462 int retval;
2463 unsigned int set, clear, val;
2464
2465 if (tty->ops->tiocmset == NULL)
2466 return -EINVAL;
2467
2468 retval = get_user(val, p);
2469 if (retval)
2470 return retval;
2471 set = clear = 0;
2472 switch (cmd) {
2473 case TIOCMBIS:
2474 set = val;
2475 break;
2476 case TIOCMBIC:
2477 clear = val;
2478 break;
2479 case TIOCMSET:
2480 set = val;
2481 clear = ~val;
2482 break;
2483 }
2484 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2485 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2486 return tty->ops->tiocmset(tty, file, set, clear);
2487 }
2488
2489 /*
2490 * Split this up, as gcc can choke on it otherwise..
2491 */
2492 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2493 {
2494 struct tty_struct *tty, *real_tty;
2495 void __user *p = (void __user *)arg;
2496 int retval;
2497 struct tty_ldisc *ld;
2498 struct inode *inode = file->f_dentry->d_inode;
2499
2500 tty = (struct tty_struct *)file->private_data;
2501 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2502 return -EINVAL;
2503
2504 real_tty = tty;
2505 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2506 tty->driver->subtype == PTY_TYPE_MASTER)
2507 real_tty = tty->link;
2508
2509
2510 /*
2511 * Factor out some common prep work
2512 */
2513 switch (cmd) {
2514 case TIOCSETD:
2515 case TIOCSBRK:
2516 case TIOCCBRK:
2517 case TCSBRK:
2518 case TCSBRKP:
2519 retval = tty_check_change(tty);
2520 if (retval)
2521 return retval;
2522 if (cmd != TIOCCBRK) {
2523 tty_wait_until_sent(tty, 0);
2524 if (signal_pending(current))
2525 return -EINTR;
2526 }
2527 break;
2528 }
2529
2530 /*
2531 * Now do the stuff.
2532 */
2533 switch (cmd) {
2534 case TIOCSTI:
2535 return tiocsti(tty, p);
2536 case TIOCGWINSZ:
2537 return tiocgwinsz(real_tty, p);
2538 case TIOCSWINSZ:
2539 return tiocswinsz(tty, real_tty, p);
2540 case TIOCCONS:
2541 return real_tty != tty ? -EINVAL : tioccons(file);
2542 case FIONBIO:
2543 return fionbio(file, p);
2544 case TIOCEXCL:
2545 set_bit(TTY_EXCLUSIVE, &tty->flags);
2546 return 0;
2547 case TIOCNXCL:
2548 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2549 return 0;
2550 case TIOCNOTTY:
2551 if (current->signal->tty != tty)
2552 return -ENOTTY;
2553 no_tty();
2554 return 0;
2555 case TIOCSCTTY:
2556 return tiocsctty(tty, arg);
2557 case TIOCGPGRP:
2558 return tiocgpgrp(tty, real_tty, p);
2559 case TIOCSPGRP:
2560 return tiocspgrp(tty, real_tty, p);
2561 case TIOCGSID:
2562 return tiocgsid(tty, real_tty, p);
2563 case TIOCGETD:
2564 return put_user(tty->ldisc.ops->num, (int __user *)p);
2565 case TIOCSETD:
2566 return tiocsetd(tty, p);
2567 /*
2568 * Break handling
2569 */
2570 case TIOCSBRK: /* Turn break on, unconditionally */
2571 if (tty->ops->break_ctl)
2572 return tty->ops->break_ctl(tty, -1);
2573 return 0;
2574 case TIOCCBRK: /* Turn break off, unconditionally */
2575 if (tty->ops->break_ctl)
2576 return tty->ops->break_ctl(tty, 0);
2577 return 0;
2578 case TCSBRK: /* SVID version: non-zero arg --> no break */
2579 /* non-zero arg means wait for all output data
2580 * to be sent (performed above) but don't send break.
2581 * This is used by the tcdrain() termios function.
2582 */
2583 if (!arg)
2584 return send_break(tty, 250);
2585 return 0;
2586 case TCSBRKP: /* support for POSIX tcsendbreak() */
2587 return send_break(tty, arg ? arg*100 : 250);
2588
2589 case TIOCMGET:
2590 return tty_tiocmget(tty, file, p);
2591 case TIOCMSET:
2592 case TIOCMBIC:
2593 case TIOCMBIS:
2594 return tty_tiocmset(tty, file, cmd, p);
2595 case TCFLSH:
2596 switch (arg) {
2597 case TCIFLUSH:
2598 case TCIOFLUSH:
2599 /* flush tty buffer and allow ldisc to process ioctl */
2600 tty_buffer_flush(tty);
2601 break;
2602 }
2603 break;
2604 }
2605 if (tty->ops->ioctl) {
2606 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2607 if (retval != -ENOIOCTLCMD)
2608 return retval;
2609 }
2610 ld = tty_ldisc_ref_wait(tty);
2611 retval = -EINVAL;
2612 if (ld->ops->ioctl) {
2613 retval = ld->ops->ioctl(tty, file, cmd, arg);
2614 if (retval == -ENOIOCTLCMD)
2615 retval = -EINVAL;
2616 }
2617 tty_ldisc_deref(ld);
2618 return retval;
2619 }
2620
2621 #ifdef CONFIG_COMPAT
2622 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2623 unsigned long arg)
2624 {
2625 struct inode *inode = file->f_dentry->d_inode;
2626 struct tty_struct *tty = file->private_data;
2627 struct tty_ldisc *ld;
2628 int retval = -ENOIOCTLCMD;
2629
2630 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2631 return -EINVAL;
2632
2633 if (tty->ops->compat_ioctl) {
2634 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2635 if (retval != -ENOIOCTLCMD)
2636 return retval;
2637 }
2638
2639 ld = tty_ldisc_ref_wait(tty);
2640 if (ld->ops->compat_ioctl)
2641 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2642 tty_ldisc_deref(ld);
2643
2644 return retval;
2645 }
2646 #endif
2647
2648 /*
2649 * This implements the "Secure Attention Key" --- the idea is to
2650 * prevent trojan horses by killing all processes associated with this
2651 * tty when the user hits the "Secure Attention Key". Required for
2652 * super-paranoid applications --- see the Orange Book for more details.
2653 *
2654 * This code could be nicer; ideally it should send a HUP, wait a few
2655 * seconds, then send a INT, and then a KILL signal. But you then
2656 * have to coordinate with the init process, since all processes associated
2657 * with the current tty must be dead before the new getty is allowed
2658 * to spawn.
2659 *
2660 * Now, if it would be correct ;-/ The current code has a nasty hole -
2661 * it doesn't catch files in flight. We may send the descriptor to ourselves
2662 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2663 *
2664 * Nasty bug: do_SAK is being called in interrupt context. This can
2665 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2666 */
2667 void __do_SAK(struct tty_struct *tty)
2668 {
2669 #ifdef TTY_SOFT_SAK
2670 tty_hangup(tty);
2671 #else
2672 struct task_struct *g, *p;
2673 struct pid *session;
2674 int i;
2675 struct file *filp;
2676 struct fdtable *fdt;
2677
2678 if (!tty)
2679 return;
2680 session = tty->session;
2681
2682 tty_ldisc_flush(tty);
2683
2684 tty_driver_flush_buffer(tty);
2685
2686 read_lock(&tasklist_lock);
2687 /* Kill the entire session */
2688 do_each_pid_task(session, PIDTYPE_SID, p) {
2689 printk(KERN_NOTICE "SAK: killed process %d"
2690 " (%s): task_session_nr(p)==tty->session\n",
2691 task_pid_nr(p), p->comm);
2692 send_sig(SIGKILL, p, 1);
2693 } while_each_pid_task(session, PIDTYPE_SID, p);
2694 /* Now kill any processes that happen to have the
2695 * tty open.
2696 */
2697 do_each_thread(g, p) {
2698 if (p->signal->tty == tty) {
2699 printk(KERN_NOTICE "SAK: killed process %d"
2700 " (%s): task_session_nr(p)==tty->session\n",
2701 task_pid_nr(p), p->comm);
2702 send_sig(SIGKILL, p, 1);
2703 continue;
2704 }
2705 task_lock(p);
2706 if (p->files) {
2707 /*
2708 * We don't take a ref to the file, so we must
2709 * hold ->file_lock instead.
2710 */
2711 spin_lock(&p->files->file_lock);
2712 fdt = files_fdtable(p->files);
2713 for (i = 0; i < fdt->max_fds; i++) {
2714 filp = fcheck_files(p->files, i);
2715 if (!filp)
2716 continue;
2717 if (filp->f_op->read == tty_read &&
2718 filp->private_data == tty) {
2719 printk(KERN_NOTICE "SAK: killed process %d"
2720 " (%s): fd#%d opened to the tty\n",
2721 task_pid_nr(p), p->comm, i);
2722 force_sig(SIGKILL, p);
2723 break;
2724 }
2725 }
2726 spin_unlock(&p->files->file_lock);
2727 }
2728 task_unlock(p);
2729 } while_each_thread(g, p);
2730 read_unlock(&tasklist_lock);
2731 #endif
2732 }
2733
2734 static void do_SAK_work(struct work_struct *work)
2735 {
2736 struct tty_struct *tty =
2737 container_of(work, struct tty_struct, SAK_work);
2738 __do_SAK(tty);
2739 }
2740
2741 /*
2742 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2743 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2744 * the values which we write to it will be identical to the values which it
2745 * already has. --akpm
2746 */
2747 void do_SAK(struct tty_struct *tty)
2748 {
2749 if (!tty)
2750 return;
2751 schedule_work(&tty->SAK_work);
2752 }
2753
2754 EXPORT_SYMBOL(do_SAK);
2755
2756 /**
2757 * initialize_tty_struct
2758 * @tty: tty to initialize
2759 *
2760 * This subroutine initializes a tty structure that has been newly
2761 * allocated.
2762 *
2763 * Locking: none - tty in question must not be exposed at this point
2764 */
2765
2766 void initialize_tty_struct(struct tty_struct *tty,
2767 struct tty_driver *driver, int idx)
2768 {
2769 memset(tty, 0, sizeof(struct tty_struct));
2770 kref_init(&tty->kref);
2771 tty->magic = TTY_MAGIC;
2772 tty_ldisc_init(tty);
2773 tty->session = NULL;
2774 tty->pgrp = NULL;
2775 tty->overrun_time = jiffies;
2776 tty->buf.head = tty->buf.tail = NULL;
2777 tty_buffer_init(tty);
2778 mutex_init(&tty->termios_mutex);
2779 init_waitqueue_head(&tty->write_wait);
2780 init_waitqueue_head(&tty->read_wait);
2781 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2782 mutex_init(&tty->atomic_read_lock);
2783 mutex_init(&tty->atomic_write_lock);
2784 spin_lock_init(&tty->read_lock);
2785 spin_lock_init(&tty->ctrl_lock);
2786 INIT_LIST_HEAD(&tty->tty_files);
2787 INIT_WORK(&tty->SAK_work, do_SAK_work);
2788
2789 tty->driver = driver;
2790 tty->ops = driver->ops;
2791 tty->index = idx;
2792 tty_line_name(driver, idx, tty->name);
2793 }
2794
2795 /**
2796 * tty_put_char - write one character to a tty
2797 * @tty: tty
2798 * @ch: character
2799 *
2800 * Write one byte to the tty using the provided put_char method
2801 * if present. Returns the number of characters successfully output.
2802 *
2803 * Note: the specific put_char operation in the driver layer may go
2804 * away soon. Don't call it directly, use this method
2805 */
2806
2807 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2808 {
2809 if (tty->ops->put_char)
2810 return tty->ops->put_char(tty, ch);
2811 return tty->ops->write(tty, &ch, 1);
2812 }
2813 EXPORT_SYMBOL_GPL(tty_put_char);
2814
2815 struct class *tty_class;
2816
2817 /**
2818 * tty_register_device - register a tty device
2819 * @driver: the tty driver that describes the tty device
2820 * @index: the index in the tty driver for this tty device
2821 * @device: a struct device that is associated with this tty device.
2822 * This field is optional, if there is no known struct device
2823 * for this tty device it can be set to NULL safely.
2824 *
2825 * Returns a pointer to the struct device for this tty device
2826 * (or ERR_PTR(-EFOO) on error).
2827 *
2828 * This call is required to be made to register an individual tty device
2829 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2830 * that bit is not set, this function should not be called by a tty
2831 * driver.
2832 *
2833 * Locking: ??
2834 */
2835
2836 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2837 struct device *device)
2838 {
2839 char name[64];
2840 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2841
2842 if (index >= driver->num) {
2843 printk(KERN_ERR "Attempt to register invalid tty line number "
2844 " (%d).\n", index);
2845 return ERR_PTR(-EINVAL);
2846 }
2847
2848 if (driver->type == TTY_DRIVER_TYPE_PTY)
2849 pty_line_name(driver, index, name);
2850 else
2851 tty_line_name(driver, index, name);
2852
2853 return device_create_drvdata(tty_class, device, dev, NULL, name);
2854 }
2855 EXPORT_SYMBOL(tty_register_device);
2856
2857 /**
2858 * tty_unregister_device - unregister a tty device
2859 * @driver: the tty driver that describes the tty device
2860 * @index: the index in the tty driver for this tty device
2861 *
2862 * If a tty device is registered with a call to tty_register_device() then
2863 * this function must be called when the tty device is gone.
2864 *
2865 * Locking: ??
2866 */
2867
2868 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2869 {
2870 device_destroy(tty_class,
2871 MKDEV(driver->major, driver->minor_start) + index);
2872 }
2873 EXPORT_SYMBOL(tty_unregister_device);
2874
2875 struct tty_driver *alloc_tty_driver(int lines)
2876 {
2877 struct tty_driver *driver;
2878
2879 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2880 if (driver) {
2881 kref_init(&driver->kref);
2882 driver->magic = TTY_DRIVER_MAGIC;
2883 driver->num = lines;
2884 /* later we'll move allocation of tables here */
2885 }
2886 return driver;
2887 }
2888 EXPORT_SYMBOL(alloc_tty_driver);
2889
2890 static void destruct_tty_driver(struct kref *kref)
2891 {
2892 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2893 int i;
2894 struct ktermios *tp;
2895 void *p;
2896
2897 if (driver->flags & TTY_DRIVER_INSTALLED) {
2898 /*
2899 * Free the termios and termios_locked structures because
2900 * we don't want to get memory leaks when modular tty
2901 * drivers are removed from the kernel.
2902 */
2903 for (i = 0; i < driver->num; i++) {
2904 tp = driver->termios[i];
2905 if (tp) {
2906 driver->termios[i] = NULL;
2907 kfree(tp);
2908 }
2909 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2910 tty_unregister_device(driver, i);
2911 }
2912 p = driver->ttys;
2913 proc_tty_unregister_driver(driver);
2914 driver->ttys = NULL;
2915 driver->termios = NULL;
2916 kfree(p);
2917 cdev_del(&driver->cdev);
2918 }
2919 kfree(driver);
2920 }
2921
2922 void tty_driver_kref_put(struct tty_driver *driver)
2923 {
2924 kref_put(&driver->kref, destruct_tty_driver);
2925 }
2926 EXPORT_SYMBOL(tty_driver_kref_put);
2927
2928 void tty_set_operations(struct tty_driver *driver,
2929 const struct tty_operations *op)
2930 {
2931 driver->ops = op;
2932 };
2933 EXPORT_SYMBOL(tty_set_operations);
2934
2935 void put_tty_driver(struct tty_driver *d)
2936 {
2937 tty_driver_kref_put(d);
2938 }
2939 EXPORT_SYMBOL(put_tty_driver);
2940
2941 /*
2942 * Called by a tty driver to register itself.
2943 */
2944 int tty_register_driver(struct tty_driver *driver)
2945 {
2946 int error;
2947 int i;
2948 dev_t dev;
2949 void **p = NULL;
2950
2951 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2952 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2953 if (!p)
2954 return -ENOMEM;
2955 }
2956
2957 if (!driver->major) {
2958 error = alloc_chrdev_region(&dev, driver->minor_start,
2959 driver->num, driver->name);
2960 if (!error) {
2961 driver->major = MAJOR(dev);
2962 driver->minor_start = MINOR(dev);
2963 }
2964 } else {
2965 dev = MKDEV(driver->major, driver->minor_start);
2966 error = register_chrdev_region(dev, driver->num, driver->name);
2967 }
2968 if (error < 0) {
2969 kfree(p);
2970 return error;
2971 }
2972
2973 if (p) {
2974 driver->ttys = (struct tty_struct **)p;
2975 driver->termios = (struct ktermios **)(p + driver->num);
2976 } else {
2977 driver->ttys = NULL;
2978 driver->termios = NULL;
2979 }
2980
2981 cdev_init(&driver->cdev, &tty_fops);
2982 driver->cdev.owner = driver->owner;
2983 error = cdev_add(&driver->cdev, dev, driver->num);
2984 if (error) {
2985 unregister_chrdev_region(dev, driver->num);
2986 driver->ttys = NULL;
2987 driver->termios = NULL;
2988 kfree(p);
2989 return error;
2990 }
2991
2992 mutex_lock(&tty_mutex);
2993 list_add(&driver->tty_drivers, &tty_drivers);
2994 mutex_unlock(&tty_mutex);
2995
2996 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2997 for (i = 0; i < driver->num; i++)
2998 tty_register_device(driver, i, NULL);
2999 }
3000 proc_tty_register_driver(driver);
3001 driver->flags |= TTY_DRIVER_INSTALLED;
3002 return 0;
3003 }
3004
3005 EXPORT_SYMBOL(tty_register_driver);
3006
3007 /*
3008 * Called by a tty driver to unregister itself.
3009 */
3010 int tty_unregister_driver(struct tty_driver *driver)
3011 {
3012 #if 0
3013 /* FIXME */
3014 if (driver->refcount)
3015 return -EBUSY;
3016 #endif
3017 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3018 driver->num);
3019 mutex_lock(&tty_mutex);
3020 list_del(&driver->tty_drivers);
3021 mutex_unlock(&tty_mutex);
3022 return 0;
3023 }
3024
3025 EXPORT_SYMBOL(tty_unregister_driver);
3026
3027 dev_t tty_devnum(struct tty_struct *tty)
3028 {
3029 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3030 }
3031 EXPORT_SYMBOL(tty_devnum);
3032
3033 void proc_clear_tty(struct task_struct *p)
3034 {
3035 struct tty_struct *tty;
3036 spin_lock_irq(&p->sighand->siglock);
3037 tty = p->signal->tty;
3038 p->signal->tty = NULL;
3039 spin_unlock_irq(&p->sighand->siglock);
3040 tty_kref_put(tty);
3041 }
3042
3043 /* Called under the sighand lock */
3044
3045 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3046 {
3047 if (tty) {
3048 unsigned long flags;
3049 /* We should not have a session or pgrp to put here but.... */
3050 spin_lock_irqsave(&tty->ctrl_lock, flags);
3051 put_pid(tty->session);
3052 put_pid(tty->pgrp);
3053 tty->pgrp = get_pid(task_pgrp(tsk));
3054 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3055 tty->session = get_pid(task_session(tsk));
3056 if (tsk->signal->tty) {
3057 printk(KERN_DEBUG "tty not NULL!!\n");
3058 tty_kref_put(tsk->signal->tty);
3059 }
3060 }
3061 put_pid(tsk->signal->tty_old_pgrp);
3062 tsk->signal->tty = tty_kref_get(tty);
3063 tsk->signal->tty_old_pgrp = NULL;
3064 }
3065
3066 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3067 {
3068 spin_lock_irq(&tsk->sighand->siglock);
3069 __proc_set_tty(tsk, tty);
3070 spin_unlock_irq(&tsk->sighand->siglock);
3071 }
3072
3073 struct tty_struct *get_current_tty(void)
3074 {
3075 struct tty_struct *tty;
3076 unsigned long flags;
3077
3078 spin_lock_irqsave(&current->sighand->siglock, flags);
3079 tty = tty_kref_get(current->signal->tty);
3080 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3081 return tty;
3082 }
3083 EXPORT_SYMBOL_GPL(get_current_tty);
3084
3085 void tty_default_fops(struct file_operations *fops)
3086 {
3087 *fops = tty_fops;
3088 }
3089
3090 /*
3091 * Initialize the console device. This is called *early*, so
3092 * we can't necessarily depend on lots of kernel help here.
3093 * Just do some early initializations, and do the complex setup
3094 * later.
3095 */
3096 void __init console_init(void)
3097 {
3098 initcall_t *call;
3099
3100 /* Setup the default TTY line discipline. */
3101 tty_ldisc_begin();
3102
3103 /*
3104 * set up the console device so that later boot sequences can
3105 * inform about problems etc..
3106 */
3107 call = __con_initcall_start;
3108 while (call < __con_initcall_end) {
3109 (*call)();
3110 call++;
3111 }
3112 }
3113
3114 static int __init tty_class_init(void)
3115 {
3116 tty_class = class_create(THIS_MODULE, "tty");
3117 if (IS_ERR(tty_class))
3118 return PTR_ERR(tty_class);
3119 return 0;
3120 }
3121
3122 postcore_initcall(tty_class_init);
3123
3124 /* 3/2004 jmc: why do these devices exist? */
3125
3126 static struct cdev tty_cdev, console_cdev;
3127
3128 /*
3129 * Ok, now we can initialize the rest of the tty devices and can count
3130 * on memory allocations, interrupts etc..
3131 */
3132 static int __init tty_init(void)
3133 {
3134 cdev_init(&tty_cdev, &tty_fops);
3135 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3136 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3137 panic("Couldn't register /dev/tty driver\n");
3138 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3139 "tty");
3140
3141 cdev_init(&console_cdev, &console_fops);
3142 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3143 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3144 panic("Couldn't register /dev/console driver\n");
3145 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3146 "console");
3147
3148 #ifdef CONFIG_VT
3149 vty_init(&console_fops);
3150 #endif
3151 return 0;
3152 }
3153 module_init(tty_init);
This page took 0.095385 seconds and 5 git commands to generate.