Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159 * alloc_tty_struct - allocate a tty object
160 *
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
163 *
164 * Locking: none
165 */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
175 *
176 * Free the write buffers, tty queue and tty memory itself.
177 *
178 * Locking: none. Must be called after tty is definitely unused
179 */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
194 *
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
197 *
198 * Locking: none
199 */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
221 }
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
227 }
228 #endif
229 return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
237
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
241 }
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
252 }
253 #endif
254 return 0;
255 }
256
257 /**
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
261 *
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
264 *
265 * Locking: caller must hold tty_mutex
266 */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270 struct tty_driver *p;
271
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
278 }
279 return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
288 *
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
292 */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str, *stp;
299
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
305
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
308
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 stp = str;
315 if (*stp == ',')
316 stp++;
317 if (*stp == '\0')
318 stp = NULL;
319
320 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322 res = tty_driver_kref_get(p);
323 *line = tty_line;
324 break;
325 }
326 }
327 mutex_unlock(&tty_mutex);
328
329 return res;
330 }
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
333
334 /**
335 * tty_check_change - check for POSIX terminal changes
336 * @tty: tty to check
337 *
338 * If we try to write to, or set the state of, a terminal and we're
339 * not in the foreground, send a SIGTTOU. If the signal is blocked or
340 * ignored, go ahead and perform the operation. (POSIX 7.2)
341 *
342 * Locking: ctrl_lock
343 */
344
345 int tty_check_change(struct tty_struct *tty)
346 {
347 unsigned long flags;
348 int ret = 0;
349
350 if (current->signal->tty != tty)
351 return 0;
352
353 spin_lock_irqsave(&tty->ctrl_lock, flags);
354
355 if (!tty->pgrp) {
356 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357 goto out_unlock;
358 }
359 if (task_pgrp(current) == tty->pgrp)
360 goto out_unlock;
361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362 if (is_ignored(SIGTTOU))
363 goto out;
364 if (is_current_pgrp_orphaned()) {
365 ret = -EIO;
366 goto out;
367 }
368 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369 set_thread_flag(TIF_SIGPENDING);
370 ret = -ERESTARTSYS;
371 out:
372 return ret;
373 out_unlock:
374 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375 return ret;
376 }
377
378 EXPORT_SYMBOL(tty_check_change);
379
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381 size_t count, loff_t *ppos)
382 {
383 return 0;
384 }
385
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387 size_t count, loff_t *ppos)
388 {
389 return -EIO;
390 }
391
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 {
395 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
396 }
397
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399 unsigned long arg)
400 {
401 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
402 }
403
404 static long hung_up_tty_compat_ioctl(struct file *file,
405 unsigned int cmd, unsigned long arg)
406 {
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static const struct file_operations tty_fops = {
411 .llseek = no_llseek,
412 .read = tty_read,
413 .write = tty_write,
414 .poll = tty_poll,
415 .unlocked_ioctl = tty_ioctl,
416 .compat_ioctl = tty_compat_ioctl,
417 .open = tty_open,
418 .release = tty_release,
419 .fasync = tty_fasync,
420 };
421
422 static const struct file_operations console_fops = {
423 .llseek = no_llseek,
424 .read = tty_read,
425 .write = redirected_tty_write,
426 .poll = tty_poll,
427 .unlocked_ioctl = tty_ioctl,
428 .compat_ioctl = tty_compat_ioctl,
429 .open = tty_open,
430 .release = tty_release,
431 .fasync = tty_fasync,
432 };
433
434 static const struct file_operations hung_up_tty_fops = {
435 .llseek = no_llseek,
436 .read = hung_up_tty_read,
437 .write = hung_up_tty_write,
438 .poll = hung_up_tty_poll,
439 .unlocked_ioctl = hung_up_tty_ioctl,
440 .compat_ioctl = hung_up_tty_compat_ioctl,
441 .release = tty_release,
442 };
443
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
446
447 /**
448 * tty_wakeup - request more data
449 * @tty: terminal
450 *
451 * Internal and external helper for wakeups of tty. This function
452 * informs the line discipline if present that the driver is ready
453 * to receive more output data.
454 */
455
456 void tty_wakeup(struct tty_struct *tty)
457 {
458 struct tty_ldisc *ld;
459
460 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461 ld = tty_ldisc_ref(tty);
462 if (ld) {
463 if (ld->ops->write_wakeup)
464 ld->ops->write_wakeup(tty);
465 tty_ldisc_deref(ld);
466 }
467 }
468 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
469 }
470
471 EXPORT_SYMBOL_GPL(tty_wakeup);
472
473 /**
474 * do_tty_hangup - actual handler for hangup events
475 * @work: tty device
476 *
477 * This can be called by the "eventd" kernel thread. That is process
478 * synchronous but doesn't hold any locks, so we need to make sure we
479 * have the appropriate locks for what we're doing.
480 *
481 * The hangup event clears any pending redirections onto the hung up
482 * device. It ensures future writes will error and it does the needed
483 * line discipline hangup and signal delivery. The tty object itself
484 * remains intact.
485 *
486 * Locking:
487 * BKL
488 * redirect lock for undoing redirection
489 * file list lock for manipulating list of ttys
490 * tty_ldisc_lock from called functions
491 * termios_mutex resetting termios data
492 * tasklist_lock to walk task list for hangup event
493 * ->siglock to protect ->signal/->sighand
494 */
495 static void do_tty_hangup(struct work_struct *work)
496 {
497 struct tty_struct *tty =
498 container_of(work, struct tty_struct, hangup_work);
499 struct file *cons_filp = NULL;
500 struct file *filp, *f = NULL;
501 struct task_struct *p;
502 int closecount = 0, n;
503 unsigned long flags;
504 int refs = 0;
505
506 if (!tty)
507 return;
508
509 /* inuse_filps is protected by the single kernel lock */
510 lock_kernel();
511
512 spin_lock(&redirect_lock);
513 if (redirect && redirect->private_data == tty) {
514 f = redirect;
515 redirect = NULL;
516 }
517 spin_unlock(&redirect_lock);
518
519 check_tty_count(tty, "do_tty_hangup");
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
530 }
531 file_list_unlock();
532
533 tty_ldisc_hangup(tty);
534
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
544 }
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
548 }
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
558 }
559 read_unlock(&tasklist_lock);
560
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
572
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
576
577 /*
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
582 */
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
589 /*
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
594 */
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
600 }
601
602 /**
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
605 *
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
608 */
609
610 void tty_hangup(struct tty_struct *tty)
611 {
612 #ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615 #endif
616 schedule_work(&tty->hangup_work);
617 }
618
619 EXPORT_SYMBOL(tty_hangup);
620
621 /**
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
624 *
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
628 */
629
630 void tty_vhangup(struct tty_struct *tty)
631 {
632 #ifdef TTY_DEBUG_HANGUP
633 char buf[64];
634
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636 #endif
637 do_tty_hangup(&tty->hangup_work);
638 }
639
640 EXPORT_SYMBOL(tty_vhangup);
641
642 /**
643 * tty_vhangup_self - process vhangup for own ctty
644 *
645 * Perform a vhangup on the current controlling tty
646 */
647
648 void tty_vhangup_self(void)
649 {
650 struct tty_struct *tty;
651
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
656 }
657 }
658
659 /**
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
662 *
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
665 */
666
667 int tty_hung_up_p(struct file *filp)
668 {
669 return (filp->f_op == &hung_up_tty_fops);
670 }
671
672 EXPORT_SYMBOL(tty_hung_up_p);
673
674 static void session_clear_tty(struct pid *session)
675 {
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
680 }
681
682 /**
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
685 *
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
688 *
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
694 *
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
697 *
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
704 */
705
706 void disassociate_ctty(int on_exit)
707 {
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
710
711
712 tty = get_current_tty();
713 if (tty) {
714 tty_pgrp = get_pid(tty->pgrp);
715 lock_kernel();
716 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
717 tty_vhangup(tty);
718 unlock_kernel();
719 tty_kref_put(tty);
720 } else if (on_exit) {
721 struct pid *old_pgrp;
722 spin_lock_irq(&current->sighand->siglock);
723 old_pgrp = current->signal->tty_old_pgrp;
724 current->signal->tty_old_pgrp = NULL;
725 spin_unlock_irq(&current->sighand->siglock);
726 if (old_pgrp) {
727 kill_pgrp(old_pgrp, SIGHUP, on_exit);
728 kill_pgrp(old_pgrp, SIGCONT, on_exit);
729 put_pid(old_pgrp);
730 }
731 return;
732 }
733 if (tty_pgrp) {
734 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
735 if (!on_exit)
736 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
737 put_pid(tty_pgrp);
738 }
739
740 spin_lock_irq(&current->sighand->siglock);
741 put_pid(current->signal->tty_old_pgrp);
742 current->signal->tty_old_pgrp = NULL;
743 spin_unlock_irq(&current->sighand->siglock);
744
745 tty = get_current_tty();
746 if (tty) {
747 unsigned long flags;
748 spin_lock_irqsave(&tty->ctrl_lock, flags);
749 put_pid(tty->session);
750 put_pid(tty->pgrp);
751 tty->session = NULL;
752 tty->pgrp = NULL;
753 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
754 tty_kref_put(tty);
755 } else {
756 #ifdef TTY_DEBUG_HANGUP
757 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
758 " = NULL", tty);
759 #endif
760 }
761
762 /* Now clear signal->tty under the lock */
763 read_lock(&tasklist_lock);
764 session_clear_tty(task_session(current));
765 read_unlock(&tasklist_lock);
766 }
767
768 /**
769 *
770 * no_tty - Ensure the current process does not have a controlling tty
771 */
772 void no_tty(void)
773 {
774 struct task_struct *tsk = current;
775 lock_kernel();
776 if (tsk->signal->leader)
777 disassociate_ctty(0);
778 unlock_kernel();
779 proc_clear_tty(tsk);
780 }
781
782
783 /**
784 * stop_tty - propagate flow control
785 * @tty: tty to stop
786 *
787 * Perform flow control to the driver. For PTY/TTY pairs we
788 * must also propagate the TIOCKPKT status. May be called
789 * on an already stopped device and will not re-call the driver
790 * method.
791 *
792 * This functionality is used by both the line disciplines for
793 * halting incoming flow and by the driver. It may therefore be
794 * called from any context, may be under the tty atomic_write_lock
795 * but not always.
796 *
797 * Locking:
798 * Uses the tty control lock internally
799 */
800
801 void stop_tty(struct tty_struct *tty)
802 {
803 unsigned long flags;
804 spin_lock_irqsave(&tty->ctrl_lock, flags);
805 if (tty->stopped) {
806 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
807 return;
808 }
809 tty->stopped = 1;
810 if (tty->link && tty->link->packet) {
811 tty->ctrl_status &= ~TIOCPKT_START;
812 tty->ctrl_status |= TIOCPKT_STOP;
813 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
814 }
815 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
816 if (tty->ops->stop)
817 (tty->ops->stop)(tty);
818 }
819
820 EXPORT_SYMBOL(stop_tty);
821
822 /**
823 * start_tty - propagate flow control
824 * @tty: tty to start
825 *
826 * Start a tty that has been stopped if at all possible. Perform
827 * any necessary wakeups and propagate the TIOCPKT status. If this
828 * is the tty was previous stopped and is being started then the
829 * driver start method is invoked and the line discipline woken.
830 *
831 * Locking:
832 * ctrl_lock
833 */
834
835 void start_tty(struct tty_struct *tty)
836 {
837 unsigned long flags;
838 spin_lock_irqsave(&tty->ctrl_lock, flags);
839 if (!tty->stopped || tty->flow_stopped) {
840 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841 return;
842 }
843 tty->stopped = 0;
844 if (tty->link && tty->link->packet) {
845 tty->ctrl_status &= ~TIOCPKT_STOP;
846 tty->ctrl_status |= TIOCPKT_START;
847 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
848 }
849 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
850 if (tty->ops->start)
851 (tty->ops->start)(tty);
852 /* If we have a running line discipline it may need kicking */
853 tty_wakeup(tty);
854 }
855
856 EXPORT_SYMBOL(start_tty);
857
858 /**
859 * tty_read - read method for tty device files
860 * @file: pointer to tty file
861 * @buf: user buffer
862 * @count: size of user buffer
863 * @ppos: unused
864 *
865 * Perform the read system call function on this terminal device. Checks
866 * for hung up devices before calling the line discipline method.
867 *
868 * Locking:
869 * Locks the line discipline internally while needed. Multiple
870 * read calls may be outstanding in parallel.
871 */
872
873 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
874 loff_t *ppos)
875 {
876 int i;
877 struct tty_struct *tty;
878 struct inode *inode;
879 struct tty_ldisc *ld;
880
881 tty = (struct tty_struct *)file->private_data;
882 inode = file->f_path.dentry->d_inode;
883 if (tty_paranoia_check(tty, inode, "tty_read"))
884 return -EIO;
885 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
886 return -EIO;
887
888 /* We want to wait for the line discipline to sort out in this
889 situation */
890 ld = tty_ldisc_ref_wait(tty);
891 if (ld->ops->read)
892 i = (ld->ops->read)(tty, file, buf, count);
893 else
894 i = -EIO;
895 tty_ldisc_deref(ld);
896 if (i > 0)
897 inode->i_atime = current_fs_time(inode->i_sb);
898 return i;
899 }
900
901 void tty_write_unlock(struct tty_struct *tty)
902 {
903 mutex_unlock(&tty->atomic_write_lock);
904 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
905 }
906
907 int tty_write_lock(struct tty_struct *tty, int ndelay)
908 {
909 if (!mutex_trylock(&tty->atomic_write_lock)) {
910 if (ndelay)
911 return -EAGAIN;
912 if (mutex_lock_interruptible(&tty->atomic_write_lock))
913 return -ERESTARTSYS;
914 }
915 return 0;
916 }
917
918 /*
919 * Split writes up in sane blocksizes to avoid
920 * denial-of-service type attacks
921 */
922 static inline ssize_t do_tty_write(
923 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
924 struct tty_struct *tty,
925 struct file *file,
926 const char __user *buf,
927 size_t count)
928 {
929 ssize_t ret, written = 0;
930 unsigned int chunk;
931
932 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
933 if (ret < 0)
934 return ret;
935
936 /*
937 * We chunk up writes into a temporary buffer. This
938 * simplifies low-level drivers immensely, since they
939 * don't have locking issues and user mode accesses.
940 *
941 * But if TTY_NO_WRITE_SPLIT is set, we should use a
942 * big chunk-size..
943 *
944 * The default chunk-size is 2kB, because the NTTY
945 * layer has problems with bigger chunks. It will
946 * claim to be able to handle more characters than
947 * it actually does.
948 *
949 * FIXME: This can probably go away now except that 64K chunks
950 * are too likely to fail unless switched to vmalloc...
951 */
952 chunk = 2048;
953 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
954 chunk = 65536;
955 if (count < chunk)
956 chunk = count;
957
958 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
959 if (tty->write_cnt < chunk) {
960 unsigned char *buf_chunk;
961
962 if (chunk < 1024)
963 chunk = 1024;
964
965 buf_chunk = kmalloc(chunk, GFP_KERNEL);
966 if (!buf_chunk) {
967 ret = -ENOMEM;
968 goto out;
969 }
970 kfree(tty->write_buf);
971 tty->write_cnt = chunk;
972 tty->write_buf = buf_chunk;
973 }
974
975 /* Do the write .. */
976 for (;;) {
977 size_t size = count;
978 if (size > chunk)
979 size = chunk;
980 ret = -EFAULT;
981 if (copy_from_user(tty->write_buf, buf, size))
982 break;
983 ret = write(tty, file, tty->write_buf, size);
984 if (ret <= 0)
985 break;
986 written += ret;
987 buf += ret;
988 count -= ret;
989 if (!count)
990 break;
991 ret = -ERESTARTSYS;
992 if (signal_pending(current))
993 break;
994 cond_resched();
995 }
996 if (written) {
997 struct inode *inode = file->f_path.dentry->d_inode;
998 inode->i_mtime = current_fs_time(inode->i_sb);
999 ret = written;
1000 }
1001 out:
1002 tty_write_unlock(tty);
1003 return ret;
1004 }
1005
1006 /**
1007 * tty_write_message - write a message to a certain tty, not just the console.
1008 * @tty: the destination tty_struct
1009 * @msg: the message to write
1010 *
1011 * This is used for messages that need to be redirected to a specific tty.
1012 * We don't put it into the syslog queue right now maybe in the future if
1013 * really needed.
1014 *
1015 * We must still hold the BKL and test the CLOSING flag for the moment.
1016 */
1017
1018 void tty_write_message(struct tty_struct *tty, char *msg)
1019 {
1020 lock_kernel();
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1024 tty->ops->write(tty, msg, strlen(msg));
1025 tty_write_unlock(tty);
1026 }
1027 unlock_kernel();
1028 return;
1029 }
1030
1031
1032 /**
1033 * tty_write - write method for tty device file
1034 * @file: tty file pointer
1035 * @buf: user data to write
1036 * @count: bytes to write
1037 * @ppos: unused
1038 *
1039 * Write data to a tty device via the line discipline.
1040 *
1041 * Locking:
1042 * Locks the line discipline as required
1043 * Writes to the tty driver are serialized by the atomic_write_lock
1044 * and are then processed in chunks to the device. The line discipline
1045 * write method will not be invoked in parallel for each device.
1046 */
1047
1048 static ssize_t tty_write(struct file *file, const char __user *buf,
1049 size_t count, loff_t *ppos)
1050 {
1051 struct tty_struct *tty;
1052 struct inode *inode = file->f_path.dentry->d_inode;
1053 ssize_t ret;
1054 struct tty_ldisc *ld;
1055
1056 tty = (struct tty_struct *)file->private_data;
1057 if (tty_paranoia_check(tty, inode, "tty_write"))
1058 return -EIO;
1059 if (!tty || !tty->ops->write ||
1060 (test_bit(TTY_IO_ERROR, &tty->flags)))
1061 return -EIO;
1062 /* Short term debug to catch buggy drivers */
1063 if (tty->ops->write_room == NULL)
1064 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1065 tty->driver->name);
1066 ld = tty_ldisc_ref_wait(tty);
1067 if (!ld->ops->write)
1068 ret = -EIO;
1069 else
1070 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1071 tty_ldisc_deref(ld);
1072 return ret;
1073 }
1074
1075 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1076 size_t count, loff_t *ppos)
1077 {
1078 struct file *p = NULL;
1079
1080 spin_lock(&redirect_lock);
1081 if (redirect) {
1082 get_file(redirect);
1083 p = redirect;
1084 }
1085 spin_unlock(&redirect_lock);
1086
1087 if (p) {
1088 ssize_t res;
1089 res = vfs_write(p, buf, count, &p->f_pos);
1090 fput(p);
1091 return res;
1092 }
1093 return tty_write(file, buf, count, ppos);
1094 }
1095
1096 static char ptychar[] = "pqrstuvwxyzabcde";
1097
1098 /**
1099 * pty_line_name - generate name for a pty
1100 * @driver: the tty driver in use
1101 * @index: the minor number
1102 * @p: output buffer of at least 6 bytes
1103 *
1104 * Generate a name from a driver reference and write it to the output
1105 * buffer.
1106 *
1107 * Locking: None
1108 */
1109 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1110 {
1111 int i = index + driver->name_base;
1112 /* ->name is initialized to "ttyp", but "tty" is expected */
1113 sprintf(p, "%s%c%x",
1114 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1115 ptychar[i >> 4 & 0xf], i & 0xf);
1116 }
1117
1118 /**
1119 * tty_line_name - generate name for a tty
1120 * @driver: the tty driver in use
1121 * @index: the minor number
1122 * @p: output buffer of at least 7 bytes
1123 *
1124 * Generate a name from a driver reference and write it to the output
1125 * buffer.
1126 *
1127 * Locking: None
1128 */
1129 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1130 {
1131 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1132 }
1133
1134 /**
1135 * tty_driver_lookup_tty() - find an existing tty, if any
1136 * @driver: the driver for the tty
1137 * @idx: the minor number
1138 *
1139 * Return the tty, if found or ERR_PTR() otherwise.
1140 *
1141 * Locking: tty_mutex must be held. If tty is found, the mutex must
1142 * be held until the 'fast-open' is also done. Will change once we
1143 * have refcounting in the driver and per driver locking
1144 */
1145 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1146 struct inode *inode, int idx)
1147 {
1148 struct tty_struct *tty;
1149
1150 if (driver->ops->lookup)
1151 return driver->ops->lookup(driver, inode, idx);
1152
1153 tty = driver->ttys[idx];
1154 return tty;
1155 }
1156
1157 /**
1158 * tty_init_termios - helper for termios setup
1159 * @tty: the tty to set up
1160 *
1161 * Initialise the termios structures for this tty. Thus runs under
1162 * the tty_mutex currently so we can be relaxed about ordering.
1163 */
1164
1165 int tty_init_termios(struct tty_struct *tty)
1166 {
1167 struct ktermios *tp;
1168 int idx = tty->index;
1169
1170 tp = tty->driver->termios[idx];
1171 if (tp == NULL) {
1172 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1173 if (tp == NULL)
1174 return -ENOMEM;
1175 memcpy(tp, &tty->driver->init_termios,
1176 sizeof(struct ktermios));
1177 tty->driver->termios[idx] = tp;
1178 }
1179 tty->termios = tp;
1180 tty->termios_locked = tp + 1;
1181
1182 /* Compatibility until drivers always set this */
1183 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1184 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1185 return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(tty_init_termios);
1188
1189 /**
1190 * tty_driver_install_tty() - install a tty entry in the driver
1191 * @driver: the driver for the tty
1192 * @tty: the tty
1193 *
1194 * Install a tty object into the driver tables. The tty->index field
1195 * will be set by the time this is called. This method is responsible
1196 * for ensuring any need additional structures are allocated and
1197 * configured.
1198 *
1199 * Locking: tty_mutex for now
1200 */
1201 static int tty_driver_install_tty(struct tty_driver *driver,
1202 struct tty_struct *tty)
1203 {
1204 int idx = tty->index;
1205
1206 if (driver->ops->install)
1207 return driver->ops->install(driver, tty);
1208
1209 if (tty_init_termios(tty) == 0) {
1210 tty_driver_kref_get(driver);
1211 tty->count++;
1212 driver->ttys[idx] = tty;
1213 return 0;
1214 }
1215 return -ENOMEM;
1216 }
1217
1218 /**
1219 * tty_driver_remove_tty() - remove a tty from the driver tables
1220 * @driver: the driver for the tty
1221 * @idx: the minor number
1222 *
1223 * Remvoe a tty object from the driver tables. The tty->index field
1224 * will be set by the time this is called.
1225 *
1226 * Locking: tty_mutex for now
1227 */
1228 static void tty_driver_remove_tty(struct tty_driver *driver,
1229 struct tty_struct *tty)
1230 {
1231 if (driver->ops->remove)
1232 driver->ops->remove(driver, tty);
1233 else
1234 driver->ttys[tty->index] = NULL;
1235 }
1236
1237 /*
1238 * tty_reopen() - fast re-open of an open tty
1239 * @tty - the tty to open
1240 *
1241 * Return 0 on success, -errno on error.
1242 *
1243 * Locking: tty_mutex must be held from the time the tty was found
1244 * till this open completes.
1245 */
1246 static int tty_reopen(struct tty_struct *tty)
1247 {
1248 struct tty_driver *driver = tty->driver;
1249
1250 if (test_bit(TTY_CLOSING, &tty->flags))
1251 return -EIO;
1252
1253 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1254 driver->subtype == PTY_TYPE_MASTER) {
1255 /*
1256 * special case for PTY masters: only one open permitted,
1257 * and the slave side open count is incremented as well.
1258 */
1259 if (tty->count)
1260 return -EIO;
1261
1262 tty->link->count++;
1263 }
1264 tty->count++;
1265 tty->driver = driver; /* N.B. why do this every time?? */
1266
1267 mutex_lock(&tty->ldisc_mutex);
1268 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1269 mutex_unlock(&tty->ldisc_mutex);
1270
1271 return 0;
1272 }
1273
1274 /**
1275 * tty_init_dev - initialise a tty device
1276 * @driver: tty driver we are opening a device on
1277 * @idx: device index
1278 * @ret_tty: returned tty structure
1279 * @first_ok: ok to open a new device (used by ptmx)
1280 *
1281 * Prepare a tty device. This may not be a "new" clean device but
1282 * could also be an active device. The pty drivers require special
1283 * handling because of this.
1284 *
1285 * Locking:
1286 * The function is called under the tty_mutex, which
1287 * protects us from the tty struct or driver itself going away.
1288 *
1289 * On exit the tty device has the line discipline attached and
1290 * a reference count of 1. If a pair was created for pty/tty use
1291 * and the other was a pty master then it too has a reference count of 1.
1292 *
1293 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1294 * failed open. The new code protects the open with a mutex, so it's
1295 * really quite straightforward. The mutex locking can probably be
1296 * relaxed for the (most common) case of reopening a tty.
1297 */
1298
1299 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1300 int first_ok)
1301 {
1302 struct tty_struct *tty;
1303 int retval;
1304
1305 /* Check if pty master is being opened multiple times */
1306 if (driver->subtype == PTY_TYPE_MASTER &&
1307 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1308 return ERR_PTR(-EIO);
1309
1310 /*
1311 * First time open is complex, especially for PTY devices.
1312 * This code guarantees that either everything succeeds and the
1313 * TTY is ready for operation, or else the table slots are vacated
1314 * and the allocated memory released. (Except that the termios
1315 * and locked termios may be retained.)
1316 */
1317
1318 if (!try_module_get(driver->owner))
1319 return ERR_PTR(-ENODEV);
1320
1321 tty = alloc_tty_struct();
1322 if (!tty)
1323 goto fail_no_mem;
1324 initialize_tty_struct(tty, driver, idx);
1325
1326 retval = tty_driver_install_tty(driver, tty);
1327 if (retval < 0) {
1328 free_tty_struct(tty);
1329 module_put(driver->owner);
1330 return ERR_PTR(retval);
1331 }
1332
1333 /*
1334 * Structures all installed ... call the ldisc open routines.
1335 * If we fail here just call release_tty to clean up. No need
1336 * to decrement the use counts, as release_tty doesn't care.
1337 */
1338
1339 retval = tty_ldisc_setup(tty, tty->link);
1340 if (retval)
1341 goto release_mem_out;
1342 return tty;
1343
1344 fail_no_mem:
1345 module_put(driver->owner);
1346 return ERR_PTR(-ENOMEM);
1347
1348 /* call the tty release_tty routine to clean out this slot */
1349 release_mem_out:
1350 if (printk_ratelimit())
1351 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1352 "clearing slot %d\n", idx);
1353 release_tty(tty, idx);
1354 return ERR_PTR(retval);
1355 }
1356
1357 void tty_free_termios(struct tty_struct *tty)
1358 {
1359 struct ktermios *tp;
1360 int idx = tty->index;
1361 /* Kill this flag and push into drivers for locking etc */
1362 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1363 /* FIXME: Locking on ->termios array */
1364 tp = tty->termios;
1365 tty->driver->termios[idx] = NULL;
1366 kfree(tp);
1367 }
1368 }
1369 EXPORT_SYMBOL(tty_free_termios);
1370
1371 void tty_shutdown(struct tty_struct *tty)
1372 {
1373 tty_driver_remove_tty(tty->driver, tty);
1374 tty_free_termios(tty);
1375 }
1376 EXPORT_SYMBOL(tty_shutdown);
1377
1378 /**
1379 * release_one_tty - release tty structure memory
1380 * @kref: kref of tty we are obliterating
1381 *
1382 * Releases memory associated with a tty structure, and clears out the
1383 * driver table slots. This function is called when a device is no longer
1384 * in use. It also gets called when setup of a device fails.
1385 *
1386 * Locking:
1387 * tty_mutex - sometimes only
1388 * takes the file list lock internally when working on the list
1389 * of ttys that the driver keeps.
1390 *
1391 * This method gets called from a work queue so that the driver private
1392 * shutdown ops can sleep (needed for USB at least)
1393 */
1394 static void release_one_tty(struct work_struct *work)
1395 {
1396 struct tty_struct *tty =
1397 container_of(work, struct tty_struct, hangup_work);
1398 struct tty_driver *driver = tty->driver;
1399
1400 if (tty->ops->shutdown)
1401 tty->ops->shutdown(tty);
1402 else
1403 tty_shutdown(tty);
1404 tty->magic = 0;
1405 tty_driver_kref_put(driver);
1406 module_put(driver->owner);
1407
1408 file_list_lock();
1409 list_del_init(&tty->tty_files);
1410 file_list_unlock();
1411
1412 free_tty_struct(tty);
1413 }
1414
1415 static void queue_release_one_tty(struct kref *kref)
1416 {
1417 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1418 /* The hangup queue is now free so we can reuse it rather than
1419 waste a chunk of memory for each port */
1420 INIT_WORK(&tty->hangup_work, release_one_tty);
1421 schedule_work(&tty->hangup_work);
1422 }
1423
1424 /**
1425 * tty_kref_put - release a tty kref
1426 * @tty: tty device
1427 *
1428 * Release a reference to a tty device and if need be let the kref
1429 * layer destruct the object for us
1430 */
1431
1432 void tty_kref_put(struct tty_struct *tty)
1433 {
1434 if (tty)
1435 kref_put(&tty->kref, queue_release_one_tty);
1436 }
1437 EXPORT_SYMBOL(tty_kref_put);
1438
1439 /**
1440 * release_tty - release tty structure memory
1441 *
1442 * Release both @tty and a possible linked partner (think pty pair),
1443 * and decrement the refcount of the backing module.
1444 *
1445 * Locking:
1446 * tty_mutex - sometimes only
1447 * takes the file list lock internally when working on the list
1448 * of ttys that the driver keeps.
1449 * FIXME: should we require tty_mutex is held here ??
1450 *
1451 */
1452 static void release_tty(struct tty_struct *tty, int idx)
1453 {
1454 /* This should always be true but check for the moment */
1455 WARN_ON(tty->index != idx);
1456
1457 if (tty->link)
1458 tty_kref_put(tty->link);
1459 tty_kref_put(tty);
1460 }
1461
1462 /*
1463 * Even releasing the tty structures is a tricky business.. We have
1464 * to be very careful that the structures are all released at the
1465 * same time, as interrupts might otherwise get the wrong pointers.
1466 *
1467 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1468 * lead to double frees or releasing memory still in use.
1469 */
1470 void tty_release_dev(struct file *filp)
1471 {
1472 struct tty_struct *tty, *o_tty;
1473 int pty_master, tty_closing, o_tty_closing, do_sleep;
1474 int devpts;
1475 int idx;
1476 char buf[64];
1477 struct inode *inode;
1478
1479 inode = filp->f_path.dentry->d_inode;
1480 tty = (struct tty_struct *)filp->private_data;
1481 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1482 return;
1483
1484 check_tty_count(tty, "tty_release_dev");
1485
1486 tty_fasync(-1, filp, 0);
1487
1488 idx = tty->index;
1489 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1490 tty->driver->subtype == PTY_TYPE_MASTER);
1491 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1492 o_tty = tty->link;
1493
1494 #ifdef TTY_PARANOIA_CHECK
1495 if (idx < 0 || idx >= tty->driver->num) {
1496 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1497 "free (%s)\n", tty->name);
1498 return;
1499 }
1500 if (!devpts) {
1501 if (tty != tty->driver->ttys[idx]) {
1502 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1503 "for (%s)\n", idx, tty->name);
1504 return;
1505 }
1506 if (tty->termios != tty->driver->termios[idx]) {
1507 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1508 "for (%s)\n",
1509 idx, tty->name);
1510 return;
1511 }
1512 }
1513 #endif
1514
1515 #ifdef TTY_DEBUG_HANGUP
1516 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1517 tty_name(tty, buf), tty->count);
1518 #endif
1519
1520 #ifdef TTY_PARANOIA_CHECK
1521 if (tty->driver->other &&
1522 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1523 if (o_tty != tty->driver->other->ttys[idx]) {
1524 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1525 "not o_tty for (%s)\n",
1526 idx, tty->name);
1527 return;
1528 }
1529 if (o_tty->termios != tty->driver->other->termios[idx]) {
1530 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1531 "not o_termios for (%s)\n",
1532 idx, tty->name);
1533 return;
1534 }
1535 if (o_tty->link != tty) {
1536 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1537 return;
1538 }
1539 }
1540 #endif
1541 if (tty->ops->close)
1542 tty->ops->close(tty, filp);
1543
1544 /*
1545 * Sanity check: if tty->count is going to zero, there shouldn't be
1546 * any waiters on tty->read_wait or tty->write_wait. We test the
1547 * wait queues and kick everyone out _before_ actually starting to
1548 * close. This ensures that we won't block while releasing the tty
1549 * structure.
1550 *
1551 * The test for the o_tty closing is necessary, since the master and
1552 * slave sides may close in any order. If the slave side closes out
1553 * first, its count will be one, since the master side holds an open.
1554 * Thus this test wouldn't be triggered at the time the slave closes,
1555 * so we do it now.
1556 *
1557 * Note that it's possible for the tty to be opened again while we're
1558 * flushing out waiters. By recalculating the closing flags before
1559 * each iteration we avoid any problems.
1560 */
1561 while (1) {
1562 /* Guard against races with tty->count changes elsewhere and
1563 opens on /dev/tty */
1564
1565 mutex_lock(&tty_mutex);
1566 tty_closing = tty->count <= 1;
1567 o_tty_closing = o_tty &&
1568 (o_tty->count <= (pty_master ? 1 : 0));
1569 do_sleep = 0;
1570
1571 if (tty_closing) {
1572 if (waitqueue_active(&tty->read_wait)) {
1573 wake_up_poll(&tty->read_wait, POLLIN);
1574 do_sleep++;
1575 }
1576 if (waitqueue_active(&tty->write_wait)) {
1577 wake_up_poll(&tty->write_wait, POLLOUT);
1578 do_sleep++;
1579 }
1580 }
1581 if (o_tty_closing) {
1582 if (waitqueue_active(&o_tty->read_wait)) {
1583 wake_up_poll(&o_tty->read_wait, POLLIN);
1584 do_sleep++;
1585 }
1586 if (waitqueue_active(&o_tty->write_wait)) {
1587 wake_up_poll(&o_tty->write_wait, POLLOUT);
1588 do_sleep++;
1589 }
1590 }
1591 if (!do_sleep)
1592 break;
1593
1594 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1595 "active!\n", tty_name(tty, buf));
1596 mutex_unlock(&tty_mutex);
1597 schedule();
1598 }
1599
1600 /*
1601 * The closing flags are now consistent with the open counts on
1602 * both sides, and we've completed the last operation that could
1603 * block, so it's safe to proceed with closing.
1604 */
1605 if (pty_master) {
1606 if (--o_tty->count < 0) {
1607 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1608 "(%d) for %s\n",
1609 o_tty->count, tty_name(o_tty, buf));
1610 o_tty->count = 0;
1611 }
1612 }
1613 if (--tty->count < 0) {
1614 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1615 tty->count, tty_name(tty, buf));
1616 tty->count = 0;
1617 }
1618
1619 /*
1620 * We've decremented tty->count, so we need to remove this file
1621 * descriptor off the tty->tty_files list; this serves two
1622 * purposes:
1623 * - check_tty_count sees the correct number of file descriptors
1624 * associated with this tty.
1625 * - do_tty_hangup no longer sees this file descriptor as
1626 * something that needs to be handled for hangups.
1627 */
1628 file_kill(filp);
1629 filp->private_data = NULL;
1630
1631 /*
1632 * Perform some housekeeping before deciding whether to return.
1633 *
1634 * Set the TTY_CLOSING flag if this was the last open. In the
1635 * case of a pty we may have to wait around for the other side
1636 * to close, and TTY_CLOSING makes sure we can't be reopened.
1637 */
1638 if (tty_closing)
1639 set_bit(TTY_CLOSING, &tty->flags);
1640 if (o_tty_closing)
1641 set_bit(TTY_CLOSING, &o_tty->flags);
1642
1643 /*
1644 * If _either_ side is closing, make sure there aren't any
1645 * processes that still think tty or o_tty is their controlling
1646 * tty.
1647 */
1648 if (tty_closing || o_tty_closing) {
1649 read_lock(&tasklist_lock);
1650 session_clear_tty(tty->session);
1651 if (o_tty)
1652 session_clear_tty(o_tty->session);
1653 read_unlock(&tasklist_lock);
1654 }
1655
1656 mutex_unlock(&tty_mutex);
1657
1658 /* check whether both sides are closing ... */
1659 if (!tty_closing || (o_tty && !o_tty_closing))
1660 return;
1661
1662 #ifdef TTY_DEBUG_HANGUP
1663 printk(KERN_DEBUG "freeing tty structure...");
1664 #endif
1665 /*
1666 * Ask the line discipline code to release its structures
1667 */
1668 tty_ldisc_release(tty, o_tty);
1669 /*
1670 * The release_tty function takes care of the details of clearing
1671 * the slots and preserving the termios structure.
1672 */
1673 release_tty(tty, idx);
1674
1675 /* Make this pty number available for reallocation */
1676 if (devpts)
1677 devpts_kill_index(inode, idx);
1678 }
1679
1680 /**
1681 * __tty_open - open a tty device
1682 * @inode: inode of device file
1683 * @filp: file pointer to tty
1684 *
1685 * tty_open and tty_release keep up the tty count that contains the
1686 * number of opens done on a tty. We cannot use the inode-count, as
1687 * different inodes might point to the same tty.
1688 *
1689 * Open-counting is needed for pty masters, as well as for keeping
1690 * track of serial lines: DTR is dropped when the last close happens.
1691 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1692 *
1693 * The termios state of a pty is reset on first open so that
1694 * settings don't persist across reuse.
1695 *
1696 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1697 * tty->count should protect the rest.
1698 * ->siglock protects ->signal/->sighand
1699 */
1700
1701 static int __tty_open(struct inode *inode, struct file *filp)
1702 {
1703 struct tty_struct *tty = NULL;
1704 int noctty, retval;
1705 struct tty_driver *driver;
1706 int index;
1707 dev_t device = inode->i_rdev;
1708 unsigned saved_flags = filp->f_flags;
1709
1710 nonseekable_open(inode, filp);
1711
1712 retry_open:
1713 noctty = filp->f_flags & O_NOCTTY;
1714 index = -1;
1715 retval = 0;
1716
1717 mutex_lock(&tty_mutex);
1718
1719 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1720 tty = get_current_tty();
1721 if (!tty) {
1722 mutex_unlock(&tty_mutex);
1723 return -ENXIO;
1724 }
1725 driver = tty_driver_kref_get(tty->driver);
1726 index = tty->index;
1727 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1728 /* noctty = 1; */
1729 /* FIXME: Should we take a driver reference ? */
1730 tty_kref_put(tty);
1731 goto got_driver;
1732 }
1733 #ifdef CONFIG_VT
1734 if (device == MKDEV(TTY_MAJOR, 0)) {
1735 extern struct tty_driver *console_driver;
1736 driver = tty_driver_kref_get(console_driver);
1737 index = fg_console;
1738 noctty = 1;
1739 goto got_driver;
1740 }
1741 #endif
1742 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1743 struct tty_driver *console_driver = console_device(&index);
1744 if (console_driver) {
1745 driver = tty_driver_kref_get(console_driver);
1746 if (driver) {
1747 /* Don't let /dev/console block */
1748 filp->f_flags |= O_NONBLOCK;
1749 noctty = 1;
1750 goto got_driver;
1751 }
1752 }
1753 mutex_unlock(&tty_mutex);
1754 return -ENODEV;
1755 }
1756
1757 driver = get_tty_driver(device, &index);
1758 if (!driver) {
1759 mutex_unlock(&tty_mutex);
1760 return -ENODEV;
1761 }
1762 got_driver:
1763 if (!tty) {
1764 /* check whether we're reopening an existing tty */
1765 tty = tty_driver_lookup_tty(driver, inode, index);
1766
1767 if (IS_ERR(tty)) {
1768 mutex_unlock(&tty_mutex);
1769 return PTR_ERR(tty);
1770 }
1771 }
1772
1773 if (tty) {
1774 retval = tty_reopen(tty);
1775 if (retval)
1776 tty = ERR_PTR(retval);
1777 } else
1778 tty = tty_init_dev(driver, index, 0);
1779
1780 mutex_unlock(&tty_mutex);
1781 tty_driver_kref_put(driver);
1782 if (IS_ERR(tty))
1783 return PTR_ERR(tty);
1784
1785 filp->private_data = tty;
1786 file_move(filp, &tty->tty_files);
1787 check_tty_count(tty, "tty_open");
1788 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789 tty->driver->subtype == PTY_TYPE_MASTER)
1790 noctty = 1;
1791 #ifdef TTY_DEBUG_HANGUP
1792 printk(KERN_DEBUG "opening %s...", tty->name);
1793 #endif
1794 if (!retval) {
1795 if (tty->ops->open)
1796 retval = tty->ops->open(tty, filp);
1797 else
1798 retval = -ENODEV;
1799 }
1800 filp->f_flags = saved_flags;
1801
1802 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1803 !capable(CAP_SYS_ADMIN))
1804 retval = -EBUSY;
1805
1806 if (retval) {
1807 #ifdef TTY_DEBUG_HANGUP
1808 printk(KERN_DEBUG "error %d in opening %s...", retval,
1809 tty->name);
1810 #endif
1811 tty_release_dev(filp);
1812 if (retval != -ERESTARTSYS)
1813 return retval;
1814 if (signal_pending(current))
1815 return retval;
1816 schedule();
1817 /*
1818 * Need to reset f_op in case a hangup happened.
1819 */
1820 if (filp->f_op == &hung_up_tty_fops)
1821 filp->f_op = &tty_fops;
1822 goto retry_open;
1823 }
1824
1825 mutex_lock(&tty_mutex);
1826 spin_lock_irq(&current->sighand->siglock);
1827 if (!noctty &&
1828 current->signal->leader &&
1829 !current->signal->tty &&
1830 tty->session == NULL)
1831 __proc_set_tty(current, tty);
1832 spin_unlock_irq(&current->sighand->siglock);
1833 mutex_unlock(&tty_mutex);
1834 return 0;
1835 }
1836
1837 /* BKL pushdown: scary code avoidance wrapper */
1838 static int tty_open(struct inode *inode, struct file *filp)
1839 {
1840 int ret;
1841
1842 lock_kernel();
1843 ret = __tty_open(inode, filp);
1844 unlock_kernel();
1845 return ret;
1846 }
1847
1848
1849
1850
1851 /**
1852 * tty_release - vfs callback for close
1853 * @inode: inode of tty
1854 * @filp: file pointer for handle to tty
1855 *
1856 * Called the last time each file handle is closed that references
1857 * this tty. There may however be several such references.
1858 *
1859 * Locking:
1860 * Takes bkl. See tty_release_dev
1861 */
1862
1863 static int tty_release(struct inode *inode, struct file *filp)
1864 {
1865 lock_kernel();
1866 tty_release_dev(filp);
1867 unlock_kernel();
1868 return 0;
1869 }
1870
1871 /**
1872 * tty_poll - check tty status
1873 * @filp: file being polled
1874 * @wait: poll wait structures to update
1875 *
1876 * Call the line discipline polling method to obtain the poll
1877 * status of the device.
1878 *
1879 * Locking: locks called line discipline but ldisc poll method
1880 * may be re-entered freely by other callers.
1881 */
1882
1883 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1884 {
1885 struct tty_struct *tty;
1886 struct tty_ldisc *ld;
1887 int ret = 0;
1888
1889 tty = (struct tty_struct *)filp->private_data;
1890 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1891 return 0;
1892
1893 ld = tty_ldisc_ref_wait(tty);
1894 if (ld->ops->poll)
1895 ret = (ld->ops->poll)(tty, filp, wait);
1896 tty_ldisc_deref(ld);
1897 return ret;
1898 }
1899
1900 static int tty_fasync(int fd, struct file *filp, int on)
1901 {
1902 struct tty_struct *tty;
1903 unsigned long flags;
1904 int retval = 0;
1905
1906 lock_kernel();
1907 tty = (struct tty_struct *)filp->private_data;
1908 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1909 goto out;
1910
1911 retval = fasync_helper(fd, filp, on, &tty->fasync);
1912 if (retval <= 0)
1913 goto out;
1914
1915 if (on) {
1916 enum pid_type type;
1917 struct pid *pid;
1918 if (!waitqueue_active(&tty->read_wait))
1919 tty->minimum_to_wake = 1;
1920 spin_lock_irqsave(&tty->ctrl_lock, flags);
1921 if (tty->pgrp) {
1922 pid = tty->pgrp;
1923 type = PIDTYPE_PGID;
1924 } else {
1925 pid = task_pid(current);
1926 type = PIDTYPE_PID;
1927 }
1928 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1929 retval = __f_setown(filp, pid, type, 0);
1930 if (retval)
1931 goto out;
1932 } else {
1933 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1934 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1935 }
1936 retval = 0;
1937 out:
1938 unlock_kernel();
1939 return retval;
1940 }
1941
1942 /**
1943 * tiocsti - fake input character
1944 * @tty: tty to fake input into
1945 * @p: pointer to character
1946 *
1947 * Fake input to a tty device. Does the necessary locking and
1948 * input management.
1949 *
1950 * FIXME: does not honour flow control ??
1951 *
1952 * Locking:
1953 * Called functions take tty_ldisc_lock
1954 * current->signal->tty check is safe without locks
1955 *
1956 * FIXME: may race normal receive processing
1957 */
1958
1959 static int tiocsti(struct tty_struct *tty, char __user *p)
1960 {
1961 char ch, mbz = 0;
1962 struct tty_ldisc *ld;
1963
1964 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1965 return -EPERM;
1966 if (get_user(ch, p))
1967 return -EFAULT;
1968 tty_audit_tiocsti(tty, ch);
1969 ld = tty_ldisc_ref_wait(tty);
1970 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1971 tty_ldisc_deref(ld);
1972 return 0;
1973 }
1974
1975 /**
1976 * tiocgwinsz - implement window query ioctl
1977 * @tty; tty
1978 * @arg: user buffer for result
1979 *
1980 * Copies the kernel idea of the window size into the user buffer.
1981 *
1982 * Locking: tty->termios_mutex is taken to ensure the winsize data
1983 * is consistent.
1984 */
1985
1986 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1987 {
1988 int err;
1989
1990 mutex_lock(&tty->termios_mutex);
1991 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1992 mutex_unlock(&tty->termios_mutex);
1993
1994 return err ? -EFAULT: 0;
1995 }
1996
1997 /**
1998 * tty_do_resize - resize event
1999 * @tty: tty being resized
2000 * @rows: rows (character)
2001 * @cols: cols (character)
2002 *
2003 * Update the termios variables and send the neccessary signals to
2004 * peform a terminal resize correctly
2005 */
2006
2007 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2008 {
2009 struct pid *pgrp;
2010 unsigned long flags;
2011
2012 /* Lock the tty */
2013 mutex_lock(&tty->termios_mutex);
2014 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2015 goto done;
2016 /* Get the PID values and reference them so we can
2017 avoid holding the tty ctrl lock while sending signals */
2018 spin_lock_irqsave(&tty->ctrl_lock, flags);
2019 pgrp = get_pid(tty->pgrp);
2020 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2021
2022 if (pgrp)
2023 kill_pgrp(pgrp, SIGWINCH, 1);
2024 put_pid(pgrp);
2025
2026 tty->winsize = *ws;
2027 done:
2028 mutex_unlock(&tty->termios_mutex);
2029 return 0;
2030 }
2031
2032 /**
2033 * tiocswinsz - implement window size set ioctl
2034 * @tty; tty side of tty
2035 * @arg: user buffer for result
2036 *
2037 * Copies the user idea of the window size to the kernel. Traditionally
2038 * this is just advisory information but for the Linux console it
2039 * actually has driver level meaning and triggers a VC resize.
2040 *
2041 * Locking:
2042 * Driver dependant. The default do_resize method takes the
2043 * tty termios mutex and ctrl_lock. The console takes its own lock
2044 * then calls into the default method.
2045 */
2046
2047 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2048 {
2049 struct winsize tmp_ws;
2050 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2051 return -EFAULT;
2052
2053 if (tty->ops->resize)
2054 return tty->ops->resize(tty, &tmp_ws);
2055 else
2056 return tty_do_resize(tty, &tmp_ws);
2057 }
2058
2059 /**
2060 * tioccons - allow admin to move logical console
2061 * @file: the file to become console
2062 *
2063 * Allow the adminstrator to move the redirected console device
2064 *
2065 * Locking: uses redirect_lock to guard the redirect information
2066 */
2067
2068 static int tioccons(struct file *file)
2069 {
2070 if (!capable(CAP_SYS_ADMIN))
2071 return -EPERM;
2072 if (file->f_op->write == redirected_tty_write) {
2073 struct file *f;
2074 spin_lock(&redirect_lock);
2075 f = redirect;
2076 redirect = NULL;
2077 spin_unlock(&redirect_lock);
2078 if (f)
2079 fput(f);
2080 return 0;
2081 }
2082 spin_lock(&redirect_lock);
2083 if (redirect) {
2084 spin_unlock(&redirect_lock);
2085 return -EBUSY;
2086 }
2087 get_file(file);
2088 redirect = file;
2089 spin_unlock(&redirect_lock);
2090 return 0;
2091 }
2092
2093 /**
2094 * fionbio - non blocking ioctl
2095 * @file: file to set blocking value
2096 * @p: user parameter
2097 *
2098 * Historical tty interfaces had a blocking control ioctl before
2099 * the generic functionality existed. This piece of history is preserved
2100 * in the expected tty API of posix OS's.
2101 *
2102 * Locking: none, the open file handle ensures it won't go away.
2103 */
2104
2105 static int fionbio(struct file *file, int __user *p)
2106 {
2107 int nonblock;
2108
2109 if (get_user(nonblock, p))
2110 return -EFAULT;
2111
2112 spin_lock(&file->f_lock);
2113 if (nonblock)
2114 file->f_flags |= O_NONBLOCK;
2115 else
2116 file->f_flags &= ~O_NONBLOCK;
2117 spin_unlock(&file->f_lock);
2118 return 0;
2119 }
2120
2121 /**
2122 * tiocsctty - set controlling tty
2123 * @tty: tty structure
2124 * @arg: user argument
2125 *
2126 * This ioctl is used to manage job control. It permits a session
2127 * leader to set this tty as the controlling tty for the session.
2128 *
2129 * Locking:
2130 * Takes tty_mutex() to protect tty instance
2131 * Takes tasklist_lock internally to walk sessions
2132 * Takes ->siglock() when updating signal->tty
2133 */
2134
2135 static int tiocsctty(struct tty_struct *tty, int arg)
2136 {
2137 int ret = 0;
2138 if (current->signal->leader && (task_session(current) == tty->session))
2139 return ret;
2140
2141 mutex_lock(&tty_mutex);
2142 /*
2143 * The process must be a session leader and
2144 * not have a controlling tty already.
2145 */
2146 if (!current->signal->leader || current->signal->tty) {
2147 ret = -EPERM;
2148 goto unlock;
2149 }
2150
2151 if (tty->session) {
2152 /*
2153 * This tty is already the controlling
2154 * tty for another session group!
2155 */
2156 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2157 /*
2158 * Steal it away
2159 */
2160 read_lock(&tasklist_lock);
2161 session_clear_tty(tty->session);
2162 read_unlock(&tasklist_lock);
2163 } else {
2164 ret = -EPERM;
2165 goto unlock;
2166 }
2167 }
2168 proc_set_tty(current, tty);
2169 unlock:
2170 mutex_unlock(&tty_mutex);
2171 return ret;
2172 }
2173
2174 /**
2175 * tty_get_pgrp - return a ref counted pgrp pid
2176 * @tty: tty to read
2177 *
2178 * Returns a refcounted instance of the pid struct for the process
2179 * group controlling the tty.
2180 */
2181
2182 struct pid *tty_get_pgrp(struct tty_struct *tty)
2183 {
2184 unsigned long flags;
2185 struct pid *pgrp;
2186
2187 spin_lock_irqsave(&tty->ctrl_lock, flags);
2188 pgrp = get_pid(tty->pgrp);
2189 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2190
2191 return pgrp;
2192 }
2193 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2194
2195 /**
2196 * tiocgpgrp - get process group
2197 * @tty: tty passed by user
2198 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2199 * @p: returned pid
2200 *
2201 * Obtain the process group of the tty. If there is no process group
2202 * return an error.
2203 *
2204 * Locking: none. Reference to current->signal->tty is safe.
2205 */
2206
2207 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2208 {
2209 struct pid *pid;
2210 int ret;
2211 /*
2212 * (tty == real_tty) is a cheap way of
2213 * testing if the tty is NOT a master pty.
2214 */
2215 if (tty == real_tty && current->signal->tty != real_tty)
2216 return -ENOTTY;
2217 pid = tty_get_pgrp(real_tty);
2218 ret = put_user(pid_vnr(pid), p);
2219 put_pid(pid);
2220 return ret;
2221 }
2222
2223 /**
2224 * tiocspgrp - attempt to set process group
2225 * @tty: tty passed by user
2226 * @real_tty: tty side device matching tty passed by user
2227 * @p: pid pointer
2228 *
2229 * Set the process group of the tty to the session passed. Only
2230 * permitted where the tty session is our session.
2231 *
2232 * Locking: RCU, ctrl lock
2233 */
2234
2235 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2236 {
2237 struct pid *pgrp;
2238 pid_t pgrp_nr;
2239 int retval = tty_check_change(real_tty);
2240 unsigned long flags;
2241
2242 if (retval == -EIO)
2243 return -ENOTTY;
2244 if (retval)
2245 return retval;
2246 if (!current->signal->tty ||
2247 (current->signal->tty != real_tty) ||
2248 (real_tty->session != task_session(current)))
2249 return -ENOTTY;
2250 if (get_user(pgrp_nr, p))
2251 return -EFAULT;
2252 if (pgrp_nr < 0)
2253 return -EINVAL;
2254 rcu_read_lock();
2255 pgrp = find_vpid(pgrp_nr);
2256 retval = -ESRCH;
2257 if (!pgrp)
2258 goto out_unlock;
2259 retval = -EPERM;
2260 if (session_of_pgrp(pgrp) != task_session(current))
2261 goto out_unlock;
2262 retval = 0;
2263 spin_lock_irqsave(&tty->ctrl_lock, flags);
2264 put_pid(real_tty->pgrp);
2265 real_tty->pgrp = get_pid(pgrp);
2266 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2267 out_unlock:
2268 rcu_read_unlock();
2269 return retval;
2270 }
2271
2272 /**
2273 * tiocgsid - get session id
2274 * @tty: tty passed by user
2275 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2276 * @p: pointer to returned session id
2277 *
2278 * Obtain the session id of the tty. If there is no session
2279 * return an error.
2280 *
2281 * Locking: none. Reference to current->signal->tty is safe.
2282 */
2283
2284 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2285 {
2286 /*
2287 * (tty == real_tty) is a cheap way of
2288 * testing if the tty is NOT a master pty.
2289 */
2290 if (tty == real_tty && current->signal->tty != real_tty)
2291 return -ENOTTY;
2292 if (!real_tty->session)
2293 return -ENOTTY;
2294 return put_user(pid_vnr(real_tty->session), p);
2295 }
2296
2297 /**
2298 * tiocsetd - set line discipline
2299 * @tty: tty device
2300 * @p: pointer to user data
2301 *
2302 * Set the line discipline according to user request.
2303 *
2304 * Locking: see tty_set_ldisc, this function is just a helper
2305 */
2306
2307 static int tiocsetd(struct tty_struct *tty, int __user *p)
2308 {
2309 int ldisc;
2310 int ret;
2311
2312 if (get_user(ldisc, p))
2313 return -EFAULT;
2314
2315 lock_kernel();
2316 ret = tty_set_ldisc(tty, ldisc);
2317 unlock_kernel();
2318
2319 return ret;
2320 }
2321
2322 /**
2323 * send_break - performed time break
2324 * @tty: device to break on
2325 * @duration: timeout in mS
2326 *
2327 * Perform a timed break on hardware that lacks its own driver level
2328 * timed break functionality.
2329 *
2330 * Locking:
2331 * atomic_write_lock serializes
2332 *
2333 */
2334
2335 static int send_break(struct tty_struct *tty, unsigned int duration)
2336 {
2337 int retval;
2338
2339 if (tty->ops->break_ctl == NULL)
2340 return 0;
2341
2342 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2343 retval = tty->ops->break_ctl(tty, duration);
2344 else {
2345 /* Do the work ourselves */
2346 if (tty_write_lock(tty, 0) < 0)
2347 return -EINTR;
2348 retval = tty->ops->break_ctl(tty, -1);
2349 if (retval)
2350 goto out;
2351 if (!signal_pending(current))
2352 msleep_interruptible(duration);
2353 retval = tty->ops->break_ctl(tty, 0);
2354 out:
2355 tty_write_unlock(tty);
2356 if (signal_pending(current))
2357 retval = -EINTR;
2358 }
2359 return retval;
2360 }
2361
2362 /**
2363 * tty_tiocmget - get modem status
2364 * @tty: tty device
2365 * @file: user file pointer
2366 * @p: pointer to result
2367 *
2368 * Obtain the modem status bits from the tty driver if the feature
2369 * is supported. Return -EINVAL if it is not available.
2370 *
2371 * Locking: none (up to the driver)
2372 */
2373
2374 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2375 {
2376 int retval = -EINVAL;
2377
2378 if (tty->ops->tiocmget) {
2379 retval = tty->ops->tiocmget(tty, file);
2380
2381 if (retval >= 0)
2382 retval = put_user(retval, p);
2383 }
2384 return retval;
2385 }
2386
2387 /**
2388 * tty_tiocmset - set modem status
2389 * @tty: tty device
2390 * @file: user file pointer
2391 * @cmd: command - clear bits, set bits or set all
2392 * @p: pointer to desired bits
2393 *
2394 * Set the modem status bits from the tty driver if the feature
2395 * is supported. Return -EINVAL if it is not available.
2396 *
2397 * Locking: none (up to the driver)
2398 */
2399
2400 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2401 unsigned __user *p)
2402 {
2403 int retval;
2404 unsigned int set, clear, val;
2405
2406 if (tty->ops->tiocmset == NULL)
2407 return -EINVAL;
2408
2409 retval = get_user(val, p);
2410 if (retval)
2411 return retval;
2412 set = clear = 0;
2413 switch (cmd) {
2414 case TIOCMBIS:
2415 set = val;
2416 break;
2417 case TIOCMBIC:
2418 clear = val;
2419 break;
2420 case TIOCMSET:
2421 set = val;
2422 clear = ~val;
2423 break;
2424 }
2425 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2426 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2427 return tty->ops->tiocmset(tty, file, set, clear);
2428 }
2429
2430 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2431 {
2432 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2433 tty->driver->subtype == PTY_TYPE_MASTER)
2434 tty = tty->link;
2435 return tty;
2436 }
2437 EXPORT_SYMBOL(tty_pair_get_tty);
2438
2439 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2440 {
2441 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2442 tty->driver->subtype == PTY_TYPE_MASTER)
2443 return tty;
2444 return tty->link;
2445 }
2446 EXPORT_SYMBOL(tty_pair_get_pty);
2447
2448 /*
2449 * Split this up, as gcc can choke on it otherwise..
2450 */
2451 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2452 {
2453 struct tty_struct *tty, *real_tty;
2454 void __user *p = (void __user *)arg;
2455 int retval;
2456 struct tty_ldisc *ld;
2457 struct inode *inode = file->f_dentry->d_inode;
2458
2459 tty = (struct tty_struct *)file->private_data;
2460 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2461 return -EINVAL;
2462
2463 real_tty = tty_pair_get_tty(tty);
2464
2465 /*
2466 * Factor out some common prep work
2467 */
2468 switch (cmd) {
2469 case TIOCSETD:
2470 case TIOCSBRK:
2471 case TIOCCBRK:
2472 case TCSBRK:
2473 case TCSBRKP:
2474 retval = tty_check_change(tty);
2475 if (retval)
2476 return retval;
2477 if (cmd != TIOCCBRK) {
2478 tty_wait_until_sent(tty, 0);
2479 if (signal_pending(current))
2480 return -EINTR;
2481 }
2482 break;
2483 }
2484
2485 /*
2486 * Now do the stuff.
2487 */
2488 switch (cmd) {
2489 case TIOCSTI:
2490 return tiocsti(tty, p);
2491 case TIOCGWINSZ:
2492 return tiocgwinsz(real_tty, p);
2493 case TIOCSWINSZ:
2494 return tiocswinsz(real_tty, p);
2495 case TIOCCONS:
2496 return real_tty != tty ? -EINVAL : tioccons(file);
2497 case FIONBIO:
2498 return fionbio(file, p);
2499 case TIOCEXCL:
2500 set_bit(TTY_EXCLUSIVE, &tty->flags);
2501 return 0;
2502 case TIOCNXCL:
2503 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2504 return 0;
2505 case TIOCNOTTY:
2506 if (current->signal->tty != tty)
2507 return -ENOTTY;
2508 no_tty();
2509 return 0;
2510 case TIOCSCTTY:
2511 return tiocsctty(tty, arg);
2512 case TIOCGPGRP:
2513 return tiocgpgrp(tty, real_tty, p);
2514 case TIOCSPGRP:
2515 return tiocspgrp(tty, real_tty, p);
2516 case TIOCGSID:
2517 return tiocgsid(tty, real_tty, p);
2518 case TIOCGETD:
2519 return put_user(tty->ldisc->ops->num, (int __user *)p);
2520 case TIOCSETD:
2521 return tiocsetd(tty, p);
2522 /*
2523 * Break handling
2524 */
2525 case TIOCSBRK: /* Turn break on, unconditionally */
2526 if (tty->ops->break_ctl)
2527 return tty->ops->break_ctl(tty, -1);
2528 return 0;
2529 case TIOCCBRK: /* Turn break off, unconditionally */
2530 if (tty->ops->break_ctl)
2531 return tty->ops->break_ctl(tty, 0);
2532 return 0;
2533 case TCSBRK: /* SVID version: non-zero arg --> no break */
2534 /* non-zero arg means wait for all output data
2535 * to be sent (performed above) but don't send break.
2536 * This is used by the tcdrain() termios function.
2537 */
2538 if (!arg)
2539 return send_break(tty, 250);
2540 return 0;
2541 case TCSBRKP: /* support for POSIX tcsendbreak() */
2542 return send_break(tty, arg ? arg*100 : 250);
2543
2544 case TIOCMGET:
2545 return tty_tiocmget(tty, file, p);
2546 case TIOCMSET:
2547 case TIOCMBIC:
2548 case TIOCMBIS:
2549 return tty_tiocmset(tty, file, cmd, p);
2550 case TCFLSH:
2551 switch (arg) {
2552 case TCIFLUSH:
2553 case TCIOFLUSH:
2554 /* flush tty buffer and allow ldisc to process ioctl */
2555 tty_buffer_flush(tty);
2556 break;
2557 }
2558 break;
2559 }
2560 if (tty->ops->ioctl) {
2561 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2562 if (retval != -ENOIOCTLCMD)
2563 return retval;
2564 }
2565 ld = tty_ldisc_ref_wait(tty);
2566 retval = -EINVAL;
2567 if (ld->ops->ioctl) {
2568 retval = ld->ops->ioctl(tty, file, cmd, arg);
2569 if (retval == -ENOIOCTLCMD)
2570 retval = -EINVAL;
2571 }
2572 tty_ldisc_deref(ld);
2573 return retval;
2574 }
2575
2576 #ifdef CONFIG_COMPAT
2577 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2578 unsigned long arg)
2579 {
2580 struct inode *inode = file->f_dentry->d_inode;
2581 struct tty_struct *tty = file->private_data;
2582 struct tty_ldisc *ld;
2583 int retval = -ENOIOCTLCMD;
2584
2585 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2586 return -EINVAL;
2587
2588 if (tty->ops->compat_ioctl) {
2589 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2590 if (retval != -ENOIOCTLCMD)
2591 return retval;
2592 }
2593
2594 ld = tty_ldisc_ref_wait(tty);
2595 if (ld->ops->compat_ioctl)
2596 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2597 tty_ldisc_deref(ld);
2598
2599 return retval;
2600 }
2601 #endif
2602
2603 /*
2604 * This implements the "Secure Attention Key" --- the idea is to
2605 * prevent trojan horses by killing all processes associated with this
2606 * tty when the user hits the "Secure Attention Key". Required for
2607 * super-paranoid applications --- see the Orange Book for more details.
2608 *
2609 * This code could be nicer; ideally it should send a HUP, wait a few
2610 * seconds, then send a INT, and then a KILL signal. But you then
2611 * have to coordinate with the init process, since all processes associated
2612 * with the current tty must be dead before the new getty is allowed
2613 * to spawn.
2614 *
2615 * Now, if it would be correct ;-/ The current code has a nasty hole -
2616 * it doesn't catch files in flight. We may send the descriptor to ourselves
2617 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2618 *
2619 * Nasty bug: do_SAK is being called in interrupt context. This can
2620 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2621 */
2622 void __do_SAK(struct tty_struct *tty)
2623 {
2624 #ifdef TTY_SOFT_SAK
2625 tty_hangup(tty);
2626 #else
2627 struct task_struct *g, *p;
2628 struct pid *session;
2629 int i;
2630 struct file *filp;
2631 struct fdtable *fdt;
2632
2633 if (!tty)
2634 return;
2635 session = tty->session;
2636
2637 tty_ldisc_flush(tty);
2638
2639 tty_driver_flush_buffer(tty);
2640
2641 read_lock(&tasklist_lock);
2642 /* Kill the entire session */
2643 do_each_pid_task(session, PIDTYPE_SID, p) {
2644 printk(KERN_NOTICE "SAK: killed process %d"
2645 " (%s): task_session(p)==tty->session\n",
2646 task_pid_nr(p), p->comm);
2647 send_sig(SIGKILL, p, 1);
2648 } while_each_pid_task(session, PIDTYPE_SID, p);
2649 /* Now kill any processes that happen to have the
2650 * tty open.
2651 */
2652 do_each_thread(g, p) {
2653 if (p->signal->tty == tty) {
2654 printk(KERN_NOTICE "SAK: killed process %d"
2655 " (%s): task_session(p)==tty->session\n",
2656 task_pid_nr(p), p->comm);
2657 send_sig(SIGKILL, p, 1);
2658 continue;
2659 }
2660 task_lock(p);
2661 if (p->files) {
2662 /*
2663 * We don't take a ref to the file, so we must
2664 * hold ->file_lock instead.
2665 */
2666 spin_lock(&p->files->file_lock);
2667 fdt = files_fdtable(p->files);
2668 for (i = 0; i < fdt->max_fds; i++) {
2669 filp = fcheck_files(p->files, i);
2670 if (!filp)
2671 continue;
2672 if (filp->f_op->read == tty_read &&
2673 filp->private_data == tty) {
2674 printk(KERN_NOTICE "SAK: killed process %d"
2675 " (%s): fd#%d opened to the tty\n",
2676 task_pid_nr(p), p->comm, i);
2677 force_sig(SIGKILL, p);
2678 break;
2679 }
2680 }
2681 spin_unlock(&p->files->file_lock);
2682 }
2683 task_unlock(p);
2684 } while_each_thread(g, p);
2685 read_unlock(&tasklist_lock);
2686 #endif
2687 }
2688
2689 static void do_SAK_work(struct work_struct *work)
2690 {
2691 struct tty_struct *tty =
2692 container_of(work, struct tty_struct, SAK_work);
2693 __do_SAK(tty);
2694 }
2695
2696 /*
2697 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2698 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2699 * the values which we write to it will be identical to the values which it
2700 * already has. --akpm
2701 */
2702 void do_SAK(struct tty_struct *tty)
2703 {
2704 if (!tty)
2705 return;
2706 schedule_work(&tty->SAK_work);
2707 }
2708
2709 EXPORT_SYMBOL(do_SAK);
2710
2711 /**
2712 * initialize_tty_struct
2713 * @tty: tty to initialize
2714 *
2715 * This subroutine initializes a tty structure that has been newly
2716 * allocated.
2717 *
2718 * Locking: none - tty in question must not be exposed at this point
2719 */
2720
2721 void initialize_tty_struct(struct tty_struct *tty,
2722 struct tty_driver *driver, int idx)
2723 {
2724 memset(tty, 0, sizeof(struct tty_struct));
2725 kref_init(&tty->kref);
2726 tty->magic = TTY_MAGIC;
2727 tty_ldisc_init(tty);
2728 tty->session = NULL;
2729 tty->pgrp = NULL;
2730 tty->overrun_time = jiffies;
2731 tty->buf.head = tty->buf.tail = NULL;
2732 tty_buffer_init(tty);
2733 mutex_init(&tty->termios_mutex);
2734 mutex_init(&tty->ldisc_mutex);
2735 init_waitqueue_head(&tty->write_wait);
2736 init_waitqueue_head(&tty->read_wait);
2737 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2738 mutex_init(&tty->atomic_read_lock);
2739 mutex_init(&tty->atomic_write_lock);
2740 mutex_init(&tty->output_lock);
2741 mutex_init(&tty->echo_lock);
2742 spin_lock_init(&tty->read_lock);
2743 spin_lock_init(&tty->ctrl_lock);
2744 INIT_LIST_HEAD(&tty->tty_files);
2745 INIT_WORK(&tty->SAK_work, do_SAK_work);
2746
2747 tty->driver = driver;
2748 tty->ops = driver->ops;
2749 tty->index = idx;
2750 tty_line_name(driver, idx, tty->name);
2751 }
2752
2753 /**
2754 * tty_put_char - write one character to a tty
2755 * @tty: tty
2756 * @ch: character
2757 *
2758 * Write one byte to the tty using the provided put_char method
2759 * if present. Returns the number of characters successfully output.
2760 *
2761 * Note: the specific put_char operation in the driver layer may go
2762 * away soon. Don't call it directly, use this method
2763 */
2764
2765 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2766 {
2767 if (tty->ops->put_char)
2768 return tty->ops->put_char(tty, ch);
2769 return tty->ops->write(tty, &ch, 1);
2770 }
2771 EXPORT_SYMBOL_GPL(tty_put_char);
2772
2773 struct class *tty_class;
2774
2775 /**
2776 * tty_register_device - register a tty device
2777 * @driver: the tty driver that describes the tty device
2778 * @index: the index in the tty driver for this tty device
2779 * @device: a struct device that is associated with this tty device.
2780 * This field is optional, if there is no known struct device
2781 * for this tty device it can be set to NULL safely.
2782 *
2783 * Returns a pointer to the struct device for this tty device
2784 * (or ERR_PTR(-EFOO) on error).
2785 *
2786 * This call is required to be made to register an individual tty device
2787 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2788 * that bit is not set, this function should not be called by a tty
2789 * driver.
2790 *
2791 * Locking: ??
2792 */
2793
2794 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2795 struct device *device)
2796 {
2797 char name[64];
2798 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2799
2800 if (index >= driver->num) {
2801 printk(KERN_ERR "Attempt to register invalid tty line number "
2802 " (%d).\n", index);
2803 return ERR_PTR(-EINVAL);
2804 }
2805
2806 if (driver->type == TTY_DRIVER_TYPE_PTY)
2807 pty_line_name(driver, index, name);
2808 else
2809 tty_line_name(driver, index, name);
2810
2811 return device_create(tty_class, device, dev, NULL, name);
2812 }
2813 EXPORT_SYMBOL(tty_register_device);
2814
2815 /**
2816 * tty_unregister_device - unregister a tty device
2817 * @driver: the tty driver that describes the tty device
2818 * @index: the index in the tty driver for this tty device
2819 *
2820 * If a tty device is registered with a call to tty_register_device() then
2821 * this function must be called when the tty device is gone.
2822 *
2823 * Locking: ??
2824 */
2825
2826 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2827 {
2828 device_destroy(tty_class,
2829 MKDEV(driver->major, driver->minor_start) + index);
2830 }
2831 EXPORT_SYMBOL(tty_unregister_device);
2832
2833 struct tty_driver *alloc_tty_driver(int lines)
2834 {
2835 struct tty_driver *driver;
2836
2837 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2838 if (driver) {
2839 kref_init(&driver->kref);
2840 driver->magic = TTY_DRIVER_MAGIC;
2841 driver->num = lines;
2842 /* later we'll move allocation of tables here */
2843 }
2844 return driver;
2845 }
2846 EXPORT_SYMBOL(alloc_tty_driver);
2847
2848 static void destruct_tty_driver(struct kref *kref)
2849 {
2850 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2851 int i;
2852 struct ktermios *tp;
2853 void *p;
2854
2855 if (driver->flags & TTY_DRIVER_INSTALLED) {
2856 /*
2857 * Free the termios and termios_locked structures because
2858 * we don't want to get memory leaks when modular tty
2859 * drivers are removed from the kernel.
2860 */
2861 for (i = 0; i < driver->num; i++) {
2862 tp = driver->termios[i];
2863 if (tp) {
2864 driver->termios[i] = NULL;
2865 kfree(tp);
2866 }
2867 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2868 tty_unregister_device(driver, i);
2869 }
2870 p = driver->ttys;
2871 proc_tty_unregister_driver(driver);
2872 driver->ttys = NULL;
2873 driver->termios = NULL;
2874 kfree(p);
2875 cdev_del(&driver->cdev);
2876 }
2877 kfree(driver);
2878 }
2879
2880 void tty_driver_kref_put(struct tty_driver *driver)
2881 {
2882 kref_put(&driver->kref, destruct_tty_driver);
2883 }
2884 EXPORT_SYMBOL(tty_driver_kref_put);
2885
2886 void tty_set_operations(struct tty_driver *driver,
2887 const struct tty_operations *op)
2888 {
2889 driver->ops = op;
2890 };
2891 EXPORT_SYMBOL(tty_set_operations);
2892
2893 void put_tty_driver(struct tty_driver *d)
2894 {
2895 tty_driver_kref_put(d);
2896 }
2897 EXPORT_SYMBOL(put_tty_driver);
2898
2899 /*
2900 * Called by a tty driver to register itself.
2901 */
2902 int tty_register_driver(struct tty_driver *driver)
2903 {
2904 int error;
2905 int i;
2906 dev_t dev;
2907 void **p = NULL;
2908
2909 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2910 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2911 if (!p)
2912 return -ENOMEM;
2913 }
2914
2915 if (!driver->major) {
2916 error = alloc_chrdev_region(&dev, driver->minor_start,
2917 driver->num, driver->name);
2918 if (!error) {
2919 driver->major = MAJOR(dev);
2920 driver->minor_start = MINOR(dev);
2921 }
2922 } else {
2923 dev = MKDEV(driver->major, driver->minor_start);
2924 error = register_chrdev_region(dev, driver->num, driver->name);
2925 }
2926 if (error < 0) {
2927 kfree(p);
2928 return error;
2929 }
2930
2931 if (p) {
2932 driver->ttys = (struct tty_struct **)p;
2933 driver->termios = (struct ktermios **)(p + driver->num);
2934 } else {
2935 driver->ttys = NULL;
2936 driver->termios = NULL;
2937 }
2938
2939 cdev_init(&driver->cdev, &tty_fops);
2940 driver->cdev.owner = driver->owner;
2941 error = cdev_add(&driver->cdev, dev, driver->num);
2942 if (error) {
2943 unregister_chrdev_region(dev, driver->num);
2944 driver->ttys = NULL;
2945 driver->termios = NULL;
2946 kfree(p);
2947 return error;
2948 }
2949
2950 mutex_lock(&tty_mutex);
2951 list_add(&driver->tty_drivers, &tty_drivers);
2952 mutex_unlock(&tty_mutex);
2953
2954 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2955 for (i = 0; i < driver->num; i++)
2956 tty_register_device(driver, i, NULL);
2957 }
2958 proc_tty_register_driver(driver);
2959 driver->flags |= TTY_DRIVER_INSTALLED;
2960 return 0;
2961 }
2962
2963 EXPORT_SYMBOL(tty_register_driver);
2964
2965 /*
2966 * Called by a tty driver to unregister itself.
2967 */
2968 int tty_unregister_driver(struct tty_driver *driver)
2969 {
2970 #if 0
2971 /* FIXME */
2972 if (driver->refcount)
2973 return -EBUSY;
2974 #endif
2975 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2976 driver->num);
2977 mutex_lock(&tty_mutex);
2978 list_del(&driver->tty_drivers);
2979 mutex_unlock(&tty_mutex);
2980 return 0;
2981 }
2982
2983 EXPORT_SYMBOL(tty_unregister_driver);
2984
2985 dev_t tty_devnum(struct tty_struct *tty)
2986 {
2987 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2988 }
2989 EXPORT_SYMBOL(tty_devnum);
2990
2991 void proc_clear_tty(struct task_struct *p)
2992 {
2993 unsigned long flags;
2994 struct tty_struct *tty;
2995 spin_lock_irqsave(&p->sighand->siglock, flags);
2996 tty = p->signal->tty;
2997 p->signal->tty = NULL;
2998 spin_unlock_irqrestore(&p->sighand->siglock, flags);
2999 tty_kref_put(tty);
3000 }
3001
3002 /* Called under the sighand lock */
3003
3004 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3005 {
3006 if (tty) {
3007 unsigned long flags;
3008 /* We should not have a session or pgrp to put here but.... */
3009 spin_lock_irqsave(&tty->ctrl_lock, flags);
3010 put_pid(tty->session);
3011 put_pid(tty->pgrp);
3012 tty->pgrp = get_pid(task_pgrp(tsk));
3013 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3014 tty->session = get_pid(task_session(tsk));
3015 if (tsk->signal->tty) {
3016 printk(KERN_DEBUG "tty not NULL!!\n");
3017 tty_kref_put(tsk->signal->tty);
3018 }
3019 }
3020 put_pid(tsk->signal->tty_old_pgrp);
3021 tsk->signal->tty = tty_kref_get(tty);
3022 tsk->signal->tty_old_pgrp = NULL;
3023 }
3024
3025 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3026 {
3027 spin_lock_irq(&tsk->sighand->siglock);
3028 __proc_set_tty(tsk, tty);
3029 spin_unlock_irq(&tsk->sighand->siglock);
3030 }
3031
3032 struct tty_struct *get_current_tty(void)
3033 {
3034 struct tty_struct *tty;
3035 unsigned long flags;
3036
3037 spin_lock_irqsave(&current->sighand->siglock, flags);
3038 tty = tty_kref_get(current->signal->tty);
3039 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3040 return tty;
3041 }
3042 EXPORT_SYMBOL_GPL(get_current_tty);
3043
3044 void tty_default_fops(struct file_operations *fops)
3045 {
3046 *fops = tty_fops;
3047 }
3048
3049 /*
3050 * Initialize the console device. This is called *early*, so
3051 * we can't necessarily depend on lots of kernel help here.
3052 * Just do some early initializations, and do the complex setup
3053 * later.
3054 */
3055 void __init console_init(void)
3056 {
3057 initcall_t *call;
3058
3059 /* Setup the default TTY line discipline. */
3060 tty_ldisc_begin();
3061
3062 /*
3063 * set up the console device so that later boot sequences can
3064 * inform about problems etc..
3065 */
3066 call = __con_initcall_start;
3067 while (call < __con_initcall_end) {
3068 (*call)();
3069 call++;
3070 }
3071 }
3072
3073 static char *tty_devnode(struct device *dev, mode_t *mode)
3074 {
3075 if (!mode)
3076 return NULL;
3077 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3078 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3079 *mode = 0666;
3080 return NULL;
3081 }
3082
3083 static int __init tty_class_init(void)
3084 {
3085 tty_class = class_create(THIS_MODULE, "tty");
3086 if (IS_ERR(tty_class))
3087 return PTR_ERR(tty_class);
3088 tty_class->devnode = tty_devnode;
3089 return 0;
3090 }
3091
3092 postcore_initcall(tty_class_init);
3093
3094 /* 3/2004 jmc: why do these devices exist? */
3095
3096 static struct cdev tty_cdev, console_cdev;
3097
3098 /*
3099 * Ok, now we can initialize the rest of the tty devices and can count
3100 * on memory allocations, interrupts etc..
3101 */
3102 static int __init tty_init(void)
3103 {
3104 cdev_init(&tty_cdev, &tty_fops);
3105 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3106 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3107 panic("Couldn't register /dev/tty driver\n");
3108 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3109 "tty");
3110
3111 cdev_init(&console_cdev, &console_fops);
3112 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3113 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3114 panic("Couldn't register /dev/console driver\n");
3115 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3116 "console");
3117
3118 #ifdef CONFIG_VT
3119 vty_init(&console_fops);
3120 #endif
3121 return 0;
3122 }
3123 module_init(tty_init);
This page took 0.095969 seconds and 5 git commands to generate.