fc662e4ce58aebd0f4995c2b880b417549b294fe
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106
107 #undef TTY_DEBUG_HANGUP
108
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
111
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
121 };
122
123 EXPORT_SYMBOL(tty_std_termios);
124
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
128
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
130
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
135
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
154 static int tty_fasync(int fd, struct file * filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 static struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 static void tty_buffer_free_all(struct tty_struct *);
174
175 /**
176 * free_tty_struct - free a disused tty
177 * @tty: tty struct to free
178 *
179 * Free the write buffers, tty queue and tty memory itself.
180 *
181 * Locking: none. Must be called after tty is definitely unused
182 */
183
184 static inline void free_tty_struct(struct tty_struct *tty)
185 {
186 kfree(tty->write_buf);
187 tty_buffer_free_all(tty);
188 kfree(tty);
189 }
190
191 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
192
193 /**
194 * tty_name - return tty naming
195 * @tty: tty structure
196 * @buf: buffer for output
197 *
198 * Convert a tty structure into a name. The name reflects the kernel
199 * naming policy and if udev is in use may not reflect user space
200 *
201 * Locking: none
202 */
203
204 char *tty_name(struct tty_struct *tty, char *buf)
205 {
206 if (!tty) /* Hmm. NULL pointer. That's fun. */
207 strcpy(buf, "NULL tty");
208 else
209 strcpy(buf, tty->name);
210 return buf;
211 }
212
213 EXPORT_SYMBOL(tty_name);
214
215 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
216 const char *routine)
217 {
218 #ifdef TTY_PARANOIA_CHECK
219 if (!tty) {
220 printk(KERN_WARNING
221 "null TTY for (%d:%d) in %s\n",
222 imajor(inode), iminor(inode), routine);
223 return 1;
224 }
225 if (tty->magic != TTY_MAGIC) {
226 printk(KERN_WARNING
227 "bad magic number for tty struct (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
230 }
231 #endif
232 return 0;
233 }
234
235 static int check_tty_count(struct tty_struct *tty, const char *routine)
236 {
237 #ifdef CHECK_TTY_COUNT
238 struct list_head *p;
239 int count = 0;
240
241 file_list_lock();
242 list_for_each(p, &tty->tty_files) {
243 count++;
244 }
245 file_list_unlock();
246 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
247 tty->driver->subtype == PTY_TYPE_SLAVE &&
248 tty->link && tty->link->count)
249 count++;
250 if (tty->count != count) {
251 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
252 "!= #fd's(%d) in %s\n",
253 tty->name, tty->count, count, routine);
254 return count;
255 }
256 #endif
257 return 0;
258 }
259
260 /*
261 * Tty buffer allocation management
262 */
263
264 /**
265 * tty_buffer_free_all - free buffers used by a tty
266 * @tty: tty to free from
267 *
268 * Remove all the buffers pending on a tty whether queued with data
269 * or in the free ring. Must be called when the tty is no longer in use
270 *
271 * Locking: none
272 */
273
274 static void tty_buffer_free_all(struct tty_struct *tty)
275 {
276 struct tty_buffer *thead;
277 while((thead = tty->buf.head) != NULL) {
278 tty->buf.head = thead->next;
279 kfree(thead);
280 }
281 while((thead = tty->buf.free) != NULL) {
282 tty->buf.free = thead->next;
283 kfree(thead);
284 }
285 tty->buf.tail = NULL;
286 tty->buf.memory_used = 0;
287 }
288
289 /**
290 * tty_buffer_init - prepare a tty buffer structure
291 * @tty: tty to initialise
292 *
293 * Set up the initial state of the buffer management for a tty device.
294 * Must be called before the other tty buffer functions are used.
295 *
296 * Locking: none
297 */
298
299 static void tty_buffer_init(struct tty_struct *tty)
300 {
301 spin_lock_init(&tty->buf.lock);
302 tty->buf.head = NULL;
303 tty->buf.tail = NULL;
304 tty->buf.free = NULL;
305 tty->buf.memory_used = 0;
306 }
307
308 /**
309 * tty_buffer_alloc - allocate a tty buffer
310 * @tty: tty device
311 * @size: desired size (characters)
312 *
313 * Allocate a new tty buffer to hold the desired number of characters.
314 * Return NULL if out of memory or the allocation would exceed the
315 * per device queue
316 *
317 * Locking: Caller must hold tty->buf.lock
318 */
319
320 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
321 {
322 struct tty_buffer *p;
323
324 if (tty->buf.memory_used + size > 65536)
325 return NULL;
326 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
327 if(p == NULL)
328 return NULL;
329 p->used = 0;
330 p->size = size;
331 p->next = NULL;
332 p->commit = 0;
333 p->read = 0;
334 p->char_buf_ptr = (char *)(p->data);
335 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
336 tty->buf.memory_used += size;
337 return p;
338 }
339
340 /**
341 * tty_buffer_free - free a tty buffer
342 * @tty: tty owning the buffer
343 * @b: the buffer to free
344 *
345 * Free a tty buffer, or add it to the free list according to our
346 * internal strategy
347 *
348 * Locking: Caller must hold tty->buf.lock
349 */
350
351 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
352 {
353 /* Dumb strategy for now - should keep some stats */
354 tty->buf.memory_used -= b->size;
355 WARN_ON(tty->buf.memory_used < 0);
356
357 if(b->size >= 512)
358 kfree(b);
359 else {
360 b->next = tty->buf.free;
361 tty->buf.free = b;
362 }
363 }
364
365 /**
366 * tty_buffer_find - find a free tty buffer
367 * @tty: tty owning the buffer
368 * @size: characters wanted
369 *
370 * Locate an existing suitable tty buffer or if we are lacking one then
371 * allocate a new one. We round our buffers off in 256 character chunks
372 * to get better allocation behaviour.
373 *
374 * Locking: Caller must hold tty->buf.lock
375 */
376
377 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
378 {
379 struct tty_buffer **tbh = &tty->buf.free;
380 while((*tbh) != NULL) {
381 struct tty_buffer *t = *tbh;
382 if(t->size >= size) {
383 *tbh = t->next;
384 t->next = NULL;
385 t->used = 0;
386 t->commit = 0;
387 t->read = 0;
388 tty->buf.memory_used += t->size;
389 return t;
390 }
391 tbh = &((*tbh)->next);
392 }
393 /* Round the buffer size out */
394 size = (size + 0xFF) & ~ 0xFF;
395 return tty_buffer_alloc(tty, size);
396 /* Should possibly check if this fails for the largest buffer we
397 have queued and recycle that ? */
398 }
399
400 /**
401 * tty_buffer_request_room - grow tty buffer if needed
402 * @tty: tty structure
403 * @size: size desired
404 *
405 * Make at least size bytes of linear space available for the tty
406 * buffer. If we fail return the size we managed to find.
407 *
408 * Locking: Takes tty->buf.lock
409 */
410 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
411 {
412 struct tty_buffer *b, *n;
413 int left;
414 unsigned long flags;
415
416 spin_lock_irqsave(&tty->buf.lock, flags);
417
418 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
419 remove this conditional if its worth it. This would be invisible
420 to the callers */
421 if ((b = tty->buf.tail) != NULL)
422 left = b->size - b->used;
423 else
424 left = 0;
425
426 if (left < size) {
427 /* This is the slow path - looking for new buffers to use */
428 if ((n = tty_buffer_find(tty, size)) != NULL) {
429 if (b != NULL) {
430 b->next = n;
431 b->commit = b->used;
432 } else
433 tty->buf.head = n;
434 tty->buf.tail = n;
435 } else
436 size = left;
437 }
438
439 spin_unlock_irqrestore(&tty->buf.lock, flags);
440 return size;
441 }
442 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
443
444 /**
445 * tty_insert_flip_string - Add characters to the tty buffer
446 * @tty: tty structure
447 * @chars: characters
448 * @size: size
449 *
450 * Queue a series of bytes to the tty buffering. All the characters
451 * passed are marked as without error. Returns the number added.
452 *
453 * Locking: Called functions may take tty->buf.lock
454 */
455
456 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
457 size_t size)
458 {
459 int copied = 0;
460 do {
461 int space = tty_buffer_request_room(tty, size - copied);
462 struct tty_buffer *tb = tty->buf.tail;
463 /* If there is no space then tb may be NULL */
464 if(unlikely(space == 0))
465 break;
466 memcpy(tb->char_buf_ptr + tb->used, chars, space);
467 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
468 tb->used += space;
469 copied += space;
470 chars += space;
471 /* There is a small chance that we need to split the data over
472 several buffers. If this is the case we must loop */
473 } while (unlikely(size > copied));
474 return copied;
475 }
476 EXPORT_SYMBOL(tty_insert_flip_string);
477
478 /**
479 * tty_insert_flip_string_flags - Add characters to the tty buffer
480 * @tty: tty structure
481 * @chars: characters
482 * @flags: flag bytes
483 * @size: size
484 *
485 * Queue a series of bytes to the tty buffering. For each character
486 * the flags array indicates the status of the character. Returns the
487 * number added.
488 *
489 * Locking: Called functions may take tty->buf.lock
490 */
491
492 int tty_insert_flip_string_flags(struct tty_struct *tty,
493 const unsigned char *chars, const char *flags, size_t size)
494 {
495 int copied = 0;
496 do {
497 int space = tty_buffer_request_room(tty, size - copied);
498 struct tty_buffer *tb = tty->buf.tail;
499 /* If there is no space then tb may be NULL */
500 if(unlikely(space == 0))
501 break;
502 memcpy(tb->char_buf_ptr + tb->used, chars, space);
503 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
504 tb->used += space;
505 copied += space;
506 chars += space;
507 flags += space;
508 /* There is a small chance that we need to split the data over
509 several buffers. If this is the case we must loop */
510 } while (unlikely(size > copied));
511 return copied;
512 }
513 EXPORT_SYMBOL(tty_insert_flip_string_flags);
514
515 /**
516 * tty_schedule_flip - push characters to ldisc
517 * @tty: tty to push from
518 *
519 * Takes any pending buffers and transfers their ownership to the
520 * ldisc side of the queue. It then schedules those characters for
521 * processing by the line discipline.
522 *
523 * Locking: Takes tty->buf.lock
524 */
525
526 void tty_schedule_flip(struct tty_struct *tty)
527 {
528 unsigned long flags;
529 spin_lock_irqsave(&tty->buf.lock, flags);
530 if (tty->buf.tail != NULL)
531 tty->buf.tail->commit = tty->buf.tail->used;
532 spin_unlock_irqrestore(&tty->buf.lock, flags);
533 schedule_delayed_work(&tty->buf.work, 1);
534 }
535 EXPORT_SYMBOL(tty_schedule_flip);
536
537 /**
538 * tty_prepare_flip_string - make room for characters
539 * @tty: tty
540 * @chars: return pointer for character write area
541 * @size: desired size
542 *
543 * Prepare a block of space in the buffer for data. Returns the length
544 * available and buffer pointer to the space which is now allocated and
545 * accounted for as ready for normal characters. This is used for drivers
546 * that need their own block copy routines into the buffer. There is no
547 * guarantee the buffer is a DMA target!
548 *
549 * Locking: May call functions taking tty->buf.lock
550 */
551
552 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
553 {
554 int space = tty_buffer_request_room(tty, size);
555 if (likely(space)) {
556 struct tty_buffer *tb = tty->buf.tail;
557 *chars = tb->char_buf_ptr + tb->used;
558 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
559 tb->used += space;
560 }
561 return space;
562 }
563
564 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
565
566 /**
567 * tty_prepare_flip_string_flags - make room for characters
568 * @tty: tty
569 * @chars: return pointer for character write area
570 * @flags: return pointer for status flag write area
571 * @size: desired size
572 *
573 * Prepare a block of space in the buffer for data. Returns the length
574 * available and buffer pointer to the space which is now allocated and
575 * accounted for as ready for characters. This is used for drivers
576 * that need their own block copy routines into the buffer. There is no
577 * guarantee the buffer is a DMA target!
578 *
579 * Locking: May call functions taking tty->buf.lock
580 */
581
582 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
583 {
584 int space = tty_buffer_request_room(tty, size);
585 if (likely(space)) {
586 struct tty_buffer *tb = tty->buf.tail;
587 *chars = tb->char_buf_ptr + tb->used;
588 *flags = tb->flag_buf_ptr + tb->used;
589 tb->used += space;
590 }
591 return space;
592 }
593
594 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
595
596
597
598 /**
599 * tty_set_termios_ldisc - set ldisc field
600 * @tty: tty structure
601 * @num: line discipline number
602 *
603 * This is probably overkill for real world processors but
604 * they are not on hot paths so a little discipline won't do
605 * any harm.
606 *
607 * Locking: takes termios_mutex
608 */
609
610 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
611 {
612 mutex_lock(&tty->termios_mutex);
613 tty->termios->c_line = num;
614 mutex_unlock(&tty->termios_mutex);
615 }
616
617 /*
618 * This guards the refcounted line discipline lists. The lock
619 * must be taken with irqs off because there are hangup path
620 * callers who will do ldisc lookups and cannot sleep.
621 */
622
623 static DEFINE_SPINLOCK(tty_ldisc_lock);
624 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
625 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
626
627 /**
628 * tty_register_ldisc - install a line discipline
629 * @disc: ldisc number
630 * @new_ldisc: pointer to the ldisc object
631 *
632 * Installs a new line discipline into the kernel. The discipline
633 * is set up as unreferenced and then made available to the kernel
634 * from this point onwards.
635 *
636 * Locking:
637 * takes tty_ldisc_lock to guard against ldisc races
638 */
639
640 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
641 {
642 unsigned long flags;
643 int ret = 0;
644
645 if (disc < N_TTY || disc >= NR_LDISCS)
646 return -EINVAL;
647
648 spin_lock_irqsave(&tty_ldisc_lock, flags);
649 tty_ldiscs[disc] = *new_ldisc;
650 tty_ldiscs[disc].num = disc;
651 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
652 tty_ldiscs[disc].refcount = 0;
653 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
654
655 return ret;
656 }
657 EXPORT_SYMBOL(tty_register_ldisc);
658
659 /**
660 * tty_unregister_ldisc - unload a line discipline
661 * @disc: ldisc number
662 * @new_ldisc: pointer to the ldisc object
663 *
664 * Remove a line discipline from the kernel providing it is not
665 * currently in use.
666 *
667 * Locking:
668 * takes tty_ldisc_lock to guard against ldisc races
669 */
670
671 int tty_unregister_ldisc(int disc)
672 {
673 unsigned long flags;
674 int ret = 0;
675
676 if (disc < N_TTY || disc >= NR_LDISCS)
677 return -EINVAL;
678
679 spin_lock_irqsave(&tty_ldisc_lock, flags);
680 if (tty_ldiscs[disc].refcount)
681 ret = -EBUSY;
682 else
683 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
684 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
685
686 return ret;
687 }
688 EXPORT_SYMBOL(tty_unregister_ldisc);
689
690 /**
691 * tty_ldisc_get - take a reference to an ldisc
692 * @disc: ldisc number
693 *
694 * Takes a reference to a line discipline. Deals with refcounts and
695 * module locking counts. Returns NULL if the discipline is not available.
696 * Returns a pointer to the discipline and bumps the ref count if it is
697 * available
698 *
699 * Locking:
700 * takes tty_ldisc_lock to guard against ldisc races
701 */
702
703 struct tty_ldisc *tty_ldisc_get(int disc)
704 {
705 unsigned long flags;
706 struct tty_ldisc *ld;
707
708 if (disc < N_TTY || disc >= NR_LDISCS)
709 return NULL;
710
711 spin_lock_irqsave(&tty_ldisc_lock, flags);
712
713 ld = &tty_ldiscs[disc];
714 /* Check the entry is defined */
715 if(ld->flags & LDISC_FLAG_DEFINED)
716 {
717 /* If the module is being unloaded we can't use it */
718 if (!try_module_get(ld->owner))
719 ld = NULL;
720 else /* lock it */
721 ld->refcount++;
722 }
723 else
724 ld = NULL;
725 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
726 return ld;
727 }
728
729 EXPORT_SYMBOL_GPL(tty_ldisc_get);
730
731 /**
732 * tty_ldisc_put - drop ldisc reference
733 * @disc: ldisc number
734 *
735 * Drop a reference to a line discipline. Manage refcounts and
736 * module usage counts
737 *
738 * Locking:
739 * takes tty_ldisc_lock to guard against ldisc races
740 */
741
742 void tty_ldisc_put(int disc)
743 {
744 struct tty_ldisc *ld;
745 unsigned long flags;
746
747 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
748
749 spin_lock_irqsave(&tty_ldisc_lock, flags);
750 ld = &tty_ldiscs[disc];
751 BUG_ON(ld->refcount == 0);
752 ld->refcount--;
753 module_put(ld->owner);
754 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
755 }
756
757 EXPORT_SYMBOL_GPL(tty_ldisc_put);
758
759 /**
760 * tty_ldisc_assign - set ldisc on a tty
761 * @tty: tty to assign
762 * @ld: line discipline
763 *
764 * Install an instance of a line discipline into a tty structure. The
765 * ldisc must have a reference count above zero to ensure it remains/
766 * The tty instance refcount starts at zero.
767 *
768 * Locking:
769 * Caller must hold references
770 */
771
772 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
773 {
774 tty->ldisc = *ld;
775 tty->ldisc.refcount = 0;
776 }
777
778 /**
779 * tty_ldisc_try - internal helper
780 * @tty: the tty
781 *
782 * Make a single attempt to grab and bump the refcount on
783 * the tty ldisc. Return 0 on failure or 1 on success. This is
784 * used to implement both the waiting and non waiting versions
785 * of tty_ldisc_ref
786 *
787 * Locking: takes tty_ldisc_lock
788 */
789
790 static int tty_ldisc_try(struct tty_struct *tty)
791 {
792 unsigned long flags;
793 struct tty_ldisc *ld;
794 int ret = 0;
795
796 spin_lock_irqsave(&tty_ldisc_lock, flags);
797 ld = &tty->ldisc;
798 if(test_bit(TTY_LDISC, &tty->flags))
799 {
800 ld->refcount++;
801 ret = 1;
802 }
803 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
804 return ret;
805 }
806
807 /**
808 * tty_ldisc_ref_wait - wait for the tty ldisc
809 * @tty: tty device
810 *
811 * Dereference the line discipline for the terminal and take a
812 * reference to it. If the line discipline is in flux then
813 * wait patiently until it changes.
814 *
815 * Note: Must not be called from an IRQ/timer context. The caller
816 * must also be careful not to hold other locks that will deadlock
817 * against a discipline change, such as an existing ldisc reference
818 * (which we check for)
819 *
820 * Locking: call functions take tty_ldisc_lock
821 */
822
823 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
824 {
825 /* wait_event is a macro */
826 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
827 if(tty->ldisc.refcount == 0)
828 printk(KERN_ERR "tty_ldisc_ref_wait\n");
829 return &tty->ldisc;
830 }
831
832 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
833
834 /**
835 * tty_ldisc_ref - get the tty ldisc
836 * @tty: tty device
837 *
838 * Dereference the line discipline for the terminal and take a
839 * reference to it. If the line discipline is in flux then
840 * return NULL. Can be called from IRQ and timer functions.
841 *
842 * Locking: called functions take tty_ldisc_lock
843 */
844
845 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
846 {
847 if(tty_ldisc_try(tty))
848 return &tty->ldisc;
849 return NULL;
850 }
851
852 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
853
854 /**
855 * tty_ldisc_deref - free a tty ldisc reference
856 * @ld: reference to free up
857 *
858 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
859 * be called in IRQ context.
860 *
861 * Locking: takes tty_ldisc_lock
862 */
863
864 void tty_ldisc_deref(struct tty_ldisc *ld)
865 {
866 unsigned long flags;
867
868 BUG_ON(ld == NULL);
869
870 spin_lock_irqsave(&tty_ldisc_lock, flags);
871 if(ld->refcount == 0)
872 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
873 else
874 ld->refcount--;
875 if(ld->refcount == 0)
876 wake_up(&tty_ldisc_wait);
877 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
878 }
879
880 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
881
882 /**
883 * tty_ldisc_enable - allow ldisc use
884 * @tty: terminal to activate ldisc on
885 *
886 * Set the TTY_LDISC flag when the line discipline can be called
887 * again. Do neccessary wakeups for existing sleepers.
888 *
889 * Note: nobody should set this bit except via this function. Clearing
890 * directly is allowed.
891 */
892
893 static void tty_ldisc_enable(struct tty_struct *tty)
894 {
895 set_bit(TTY_LDISC, &tty->flags);
896 wake_up(&tty_ldisc_wait);
897 }
898
899 /**
900 * tty_set_ldisc - set line discipline
901 * @tty: the terminal to set
902 * @ldisc: the line discipline
903 *
904 * Set the discipline of a tty line. Must be called from a process
905 * context.
906 *
907 * Locking: takes tty_ldisc_lock.
908 * called functions take termios_mutex
909 */
910
911 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
912 {
913 int retval = 0;
914 struct tty_ldisc o_ldisc;
915 char buf[64];
916 int work;
917 unsigned long flags;
918 struct tty_ldisc *ld;
919 struct tty_struct *o_tty;
920
921 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
922 return -EINVAL;
923
924 restart:
925
926 ld = tty_ldisc_get(ldisc);
927 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
928 /* Cyrus Durgin <cider@speakeasy.org> */
929 if (ld == NULL) {
930 request_module("tty-ldisc-%d", ldisc);
931 ld = tty_ldisc_get(ldisc);
932 }
933 if (ld == NULL)
934 return -EINVAL;
935
936 /*
937 * Problem: What do we do if this blocks ?
938 */
939
940 tty_wait_until_sent(tty, 0);
941
942 if (tty->ldisc.num == ldisc) {
943 tty_ldisc_put(ldisc);
944 return 0;
945 }
946
947 /*
948 * No more input please, we are switching. The new ldisc
949 * will update this value in the ldisc open function
950 */
951
952 tty->receive_room = 0;
953
954 o_ldisc = tty->ldisc;
955 o_tty = tty->link;
956
957 /*
958 * Make sure we don't change while someone holds a
959 * reference to the line discipline. The TTY_LDISC bit
960 * prevents anyone taking a reference once it is clear.
961 * We need the lock to avoid racing reference takers.
962 */
963
964 spin_lock_irqsave(&tty_ldisc_lock, flags);
965 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
966 if(tty->ldisc.refcount) {
967 /* Free the new ldisc we grabbed. Must drop the lock
968 first. */
969 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
970 tty_ldisc_put(ldisc);
971 /*
972 * There are several reasons we may be busy, including
973 * random momentary I/O traffic. We must therefore
974 * retry. We could distinguish between blocking ops
975 * and retries if we made tty_ldisc_wait() smarter. That
976 * is up for discussion.
977 */
978 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
979 return -ERESTARTSYS;
980 goto restart;
981 }
982 if(o_tty && o_tty->ldisc.refcount) {
983 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
984 tty_ldisc_put(ldisc);
985 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
986 return -ERESTARTSYS;
987 goto restart;
988 }
989 }
990
991 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
992
993 if (!test_bit(TTY_LDISC, &tty->flags)) {
994 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
995 tty_ldisc_put(ldisc);
996 ld = tty_ldisc_ref_wait(tty);
997 tty_ldisc_deref(ld);
998 goto restart;
999 }
1000
1001 clear_bit(TTY_LDISC, &tty->flags);
1002 if (o_tty)
1003 clear_bit(TTY_LDISC, &o_tty->flags);
1004 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1005
1006 /*
1007 * From this point on we know nobody has an ldisc
1008 * usage reference, nor can they obtain one until
1009 * we say so later on.
1010 */
1011
1012 work = cancel_delayed_work(&tty->buf.work);
1013 /*
1014 * Wait for ->hangup_work and ->buf.work handlers to terminate
1015 */
1016
1017 flush_scheduled_work();
1018 /* Shutdown the current discipline. */
1019 if (tty->ldisc.close)
1020 (tty->ldisc.close)(tty);
1021
1022 /* Now set up the new line discipline. */
1023 tty_ldisc_assign(tty, ld);
1024 tty_set_termios_ldisc(tty, ldisc);
1025 if (tty->ldisc.open)
1026 retval = (tty->ldisc.open)(tty);
1027 if (retval < 0) {
1028 tty_ldisc_put(ldisc);
1029 /* There is an outstanding reference here so this is safe */
1030 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1031 tty_set_termios_ldisc(tty, tty->ldisc.num);
1032 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1033 tty_ldisc_put(o_ldisc.num);
1034 /* This driver is always present */
1035 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1036 tty_set_termios_ldisc(tty, N_TTY);
1037 if (tty->ldisc.open) {
1038 int r = tty->ldisc.open(tty);
1039
1040 if (r < 0)
1041 panic("Couldn't open N_TTY ldisc for "
1042 "%s --- error %d.",
1043 tty_name(tty, buf), r);
1044 }
1045 }
1046 }
1047 /* At this point we hold a reference to the new ldisc and a
1048 a reference to the old ldisc. If we ended up flipping back
1049 to the existing ldisc we have two references to it */
1050
1051 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1052 tty->driver->set_ldisc(tty);
1053
1054 tty_ldisc_put(o_ldisc.num);
1055
1056 /*
1057 * Allow ldisc referencing to occur as soon as the driver
1058 * ldisc callback completes.
1059 */
1060
1061 tty_ldisc_enable(tty);
1062 if (o_tty)
1063 tty_ldisc_enable(o_tty);
1064
1065 /* Restart it in case no characters kick it off. Safe if
1066 already running */
1067 if (work)
1068 schedule_delayed_work(&tty->buf.work, 1);
1069 return retval;
1070 }
1071
1072 /**
1073 * get_tty_driver - find device of a tty
1074 * @dev_t: device identifier
1075 * @index: returns the index of the tty
1076 *
1077 * This routine returns a tty driver structure, given a device number
1078 * and also passes back the index number.
1079 *
1080 * Locking: caller must hold tty_mutex
1081 */
1082
1083 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1084 {
1085 struct tty_driver *p;
1086
1087 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1088 dev_t base = MKDEV(p->major, p->minor_start);
1089 if (device < base || device >= base + p->num)
1090 continue;
1091 *index = device - base;
1092 return p;
1093 }
1094 return NULL;
1095 }
1096
1097 /**
1098 * tty_check_change - check for POSIX terminal changes
1099 * @tty: tty to check
1100 *
1101 * If we try to write to, or set the state of, a terminal and we're
1102 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1103 * ignored, go ahead and perform the operation. (POSIX 7.2)
1104 *
1105 * Locking: none
1106 */
1107
1108 int tty_check_change(struct tty_struct * tty)
1109 {
1110 if (current->signal->tty != tty)
1111 return 0;
1112 if (!tty->pgrp) {
1113 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1114 return 0;
1115 }
1116 if (task_pgrp(current) == tty->pgrp)
1117 return 0;
1118 if (is_ignored(SIGTTOU))
1119 return 0;
1120 if (is_current_pgrp_orphaned())
1121 return -EIO;
1122 (void) kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1123 return -ERESTARTSYS;
1124 }
1125
1126 EXPORT_SYMBOL(tty_check_change);
1127
1128 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1129 size_t count, loff_t *ppos)
1130 {
1131 return 0;
1132 }
1133
1134 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1135 size_t count, loff_t *ppos)
1136 {
1137 return -EIO;
1138 }
1139
1140 /* No kernel lock held - none needed ;) */
1141 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1142 {
1143 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1144 }
1145
1146 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1147 unsigned int cmd, unsigned long arg)
1148 {
1149 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1150 }
1151
1152 static const struct file_operations tty_fops = {
1153 .llseek = no_llseek,
1154 .read = tty_read,
1155 .write = tty_write,
1156 .poll = tty_poll,
1157 .ioctl = tty_ioctl,
1158 .open = tty_open,
1159 .release = tty_release,
1160 .fasync = tty_fasync,
1161 };
1162
1163 #ifdef CONFIG_UNIX98_PTYS
1164 static const struct file_operations ptmx_fops = {
1165 .llseek = no_llseek,
1166 .read = tty_read,
1167 .write = tty_write,
1168 .poll = tty_poll,
1169 .ioctl = tty_ioctl,
1170 .open = ptmx_open,
1171 .release = tty_release,
1172 .fasync = tty_fasync,
1173 };
1174 #endif
1175
1176 static const struct file_operations console_fops = {
1177 .llseek = no_llseek,
1178 .read = tty_read,
1179 .write = redirected_tty_write,
1180 .poll = tty_poll,
1181 .ioctl = tty_ioctl,
1182 .open = tty_open,
1183 .release = tty_release,
1184 .fasync = tty_fasync,
1185 };
1186
1187 static const struct file_operations hung_up_tty_fops = {
1188 .llseek = no_llseek,
1189 .read = hung_up_tty_read,
1190 .write = hung_up_tty_write,
1191 .poll = hung_up_tty_poll,
1192 .ioctl = hung_up_tty_ioctl,
1193 .release = tty_release,
1194 };
1195
1196 static DEFINE_SPINLOCK(redirect_lock);
1197 static struct file *redirect;
1198
1199 /**
1200 * tty_wakeup - request more data
1201 * @tty: terminal
1202 *
1203 * Internal and external helper for wakeups of tty. This function
1204 * informs the line discipline if present that the driver is ready
1205 * to receive more output data.
1206 */
1207
1208 void tty_wakeup(struct tty_struct *tty)
1209 {
1210 struct tty_ldisc *ld;
1211
1212 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1213 ld = tty_ldisc_ref(tty);
1214 if(ld) {
1215 if(ld->write_wakeup)
1216 ld->write_wakeup(tty);
1217 tty_ldisc_deref(ld);
1218 }
1219 }
1220 wake_up_interruptible(&tty->write_wait);
1221 }
1222
1223 EXPORT_SYMBOL_GPL(tty_wakeup);
1224
1225 /**
1226 * tty_ldisc_flush - flush line discipline queue
1227 * @tty: tty
1228 *
1229 * Flush the line discipline queue (if any) for this tty. If there
1230 * is no line discipline active this is a no-op.
1231 */
1232
1233 void tty_ldisc_flush(struct tty_struct *tty)
1234 {
1235 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1236 if(ld) {
1237 if(ld->flush_buffer)
1238 ld->flush_buffer(tty);
1239 tty_ldisc_deref(ld);
1240 }
1241 }
1242
1243 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1244
1245 /**
1246 * tty_reset_termios - reset terminal state
1247 * @tty: tty to reset
1248 *
1249 * Restore a terminal to the driver default state
1250 */
1251
1252 static void tty_reset_termios(struct tty_struct *tty)
1253 {
1254 mutex_lock(&tty->termios_mutex);
1255 *tty->termios = tty->driver->init_termios;
1256 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1257 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1258 mutex_unlock(&tty->termios_mutex);
1259 }
1260
1261 /**
1262 * do_tty_hangup - actual handler for hangup events
1263 * @work: tty device
1264 *
1265 * This can be called by the "eventd" kernel thread. That is process
1266 * synchronous but doesn't hold any locks, so we need to make sure we
1267 * have the appropriate locks for what we're doing.
1268 *
1269 * The hangup event clears any pending redirections onto the hung up
1270 * device. It ensures future writes will error and it does the needed
1271 * line discipline hangup and signal delivery. The tty object itself
1272 * remains intact.
1273 *
1274 * Locking:
1275 * BKL
1276 * redirect lock for undoing redirection
1277 * file list lock for manipulating list of ttys
1278 * tty_ldisc_lock from called functions
1279 * termios_mutex resetting termios data
1280 * tasklist_lock to walk task list for hangup event
1281 * ->siglock to protect ->signal/->sighand
1282 */
1283 static void do_tty_hangup(struct work_struct *work)
1284 {
1285 struct tty_struct *tty =
1286 container_of(work, struct tty_struct, hangup_work);
1287 struct file * cons_filp = NULL;
1288 struct file *filp, *f = NULL;
1289 struct task_struct *p;
1290 struct tty_ldisc *ld;
1291 int closecount = 0, n;
1292
1293 if (!tty)
1294 return;
1295
1296 /* inuse_filps is protected by the single kernel lock */
1297 lock_kernel();
1298
1299 spin_lock(&redirect_lock);
1300 if (redirect && redirect->private_data == tty) {
1301 f = redirect;
1302 redirect = NULL;
1303 }
1304 spin_unlock(&redirect_lock);
1305
1306 check_tty_count(tty, "do_tty_hangup");
1307 file_list_lock();
1308 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1309 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1310 if (filp->f_op->write == redirected_tty_write)
1311 cons_filp = filp;
1312 if (filp->f_op->write != tty_write)
1313 continue;
1314 closecount++;
1315 tty_fasync(-1, filp, 0); /* can't block */
1316 filp->f_op = &hung_up_tty_fops;
1317 }
1318 file_list_unlock();
1319
1320 /* FIXME! What are the locking issues here? This may me overdoing things..
1321 * this question is especially important now that we've removed the irqlock. */
1322
1323 ld = tty_ldisc_ref(tty);
1324 if(ld != NULL) /* We may have no line discipline at this point */
1325 {
1326 if (ld->flush_buffer)
1327 ld->flush_buffer(tty);
1328 if (tty->driver->flush_buffer)
1329 tty->driver->flush_buffer(tty);
1330 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1331 ld->write_wakeup)
1332 ld->write_wakeup(tty);
1333 if (ld->hangup)
1334 ld->hangup(tty);
1335 }
1336
1337 /* FIXME: Once we trust the LDISC code better we can wait here for
1338 ldisc completion and fix the driver call race */
1339
1340 wake_up_interruptible(&tty->write_wait);
1341 wake_up_interruptible(&tty->read_wait);
1342
1343 /*
1344 * Shutdown the current line discipline, and reset it to
1345 * N_TTY.
1346 */
1347 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1348 tty_reset_termios(tty);
1349
1350 /* Defer ldisc switch */
1351 /* tty_deferred_ldisc_switch(N_TTY);
1352
1353 This should get done automatically when the port closes and
1354 tty_release is called */
1355
1356 read_lock(&tasklist_lock);
1357 if (tty->session) {
1358 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1359 spin_lock_irq(&p->sighand->siglock);
1360 if (p->signal->tty == tty)
1361 p->signal->tty = NULL;
1362 if (!p->signal->leader) {
1363 spin_unlock_irq(&p->sighand->siglock);
1364 continue;
1365 }
1366 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1367 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1368 put_pid(p->signal->tty_old_pgrp); /* A noop */
1369 if (tty->pgrp)
1370 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1371 spin_unlock_irq(&p->sighand->siglock);
1372 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1373 }
1374 read_unlock(&tasklist_lock);
1375
1376 tty->flags = 0;
1377 put_pid(tty->session);
1378 put_pid(tty->pgrp);
1379 tty->session = NULL;
1380 tty->pgrp = NULL;
1381 tty->ctrl_status = 0;
1382 /*
1383 * If one of the devices matches a console pointer, we
1384 * cannot just call hangup() because that will cause
1385 * tty->count and state->count to go out of sync.
1386 * So we just call close() the right number of times.
1387 */
1388 if (cons_filp) {
1389 if (tty->driver->close)
1390 for (n = 0; n < closecount; n++)
1391 tty->driver->close(tty, cons_filp);
1392 } else if (tty->driver->hangup)
1393 (tty->driver->hangup)(tty);
1394
1395 /* We don't want to have driver/ldisc interactions beyond
1396 the ones we did here. The driver layer expects no
1397 calls after ->hangup() from the ldisc side. However we
1398 can't yet guarantee all that */
1399
1400 set_bit(TTY_HUPPED, &tty->flags);
1401 if (ld) {
1402 tty_ldisc_enable(tty);
1403 tty_ldisc_deref(ld);
1404 }
1405 unlock_kernel();
1406 if (f)
1407 fput(f);
1408 }
1409
1410 /**
1411 * tty_hangup - trigger a hangup event
1412 * @tty: tty to hangup
1413 *
1414 * A carrier loss (virtual or otherwise) has occurred on this like
1415 * schedule a hangup sequence to run after this event.
1416 */
1417
1418 void tty_hangup(struct tty_struct * tty)
1419 {
1420 #ifdef TTY_DEBUG_HANGUP
1421 char buf[64];
1422
1423 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1424 #endif
1425 schedule_work(&tty->hangup_work);
1426 }
1427
1428 EXPORT_SYMBOL(tty_hangup);
1429
1430 /**
1431 * tty_vhangup - process vhangup
1432 * @tty: tty to hangup
1433 *
1434 * The user has asked via system call for the terminal to be hung up.
1435 * We do this synchronously so that when the syscall returns the process
1436 * is complete. That guarantee is neccessary for security reasons.
1437 */
1438
1439 void tty_vhangup(struct tty_struct * tty)
1440 {
1441 #ifdef TTY_DEBUG_HANGUP
1442 char buf[64];
1443
1444 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1445 #endif
1446 do_tty_hangup(&tty->hangup_work);
1447 }
1448 EXPORT_SYMBOL(tty_vhangup);
1449
1450 /**
1451 * tty_hung_up_p - was tty hung up
1452 * @filp: file pointer of tty
1453 *
1454 * Return true if the tty has been subject to a vhangup or a carrier
1455 * loss
1456 */
1457
1458 int tty_hung_up_p(struct file * filp)
1459 {
1460 return (filp->f_op == &hung_up_tty_fops);
1461 }
1462
1463 EXPORT_SYMBOL(tty_hung_up_p);
1464
1465 static void session_clear_tty(struct pid *session)
1466 {
1467 struct task_struct *p;
1468 do_each_pid_task(session, PIDTYPE_SID, p) {
1469 proc_clear_tty(p);
1470 } while_each_pid_task(session, PIDTYPE_SID, p);
1471 }
1472
1473 /**
1474 * disassociate_ctty - disconnect controlling tty
1475 * @on_exit: true if exiting so need to "hang up" the session
1476 *
1477 * This function is typically called only by the session leader, when
1478 * it wants to disassociate itself from its controlling tty.
1479 *
1480 * It performs the following functions:
1481 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1482 * (2) Clears the tty from being controlling the session
1483 * (3) Clears the controlling tty for all processes in the
1484 * session group.
1485 *
1486 * The argument on_exit is set to 1 if called when a process is
1487 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1488 *
1489 * Locking:
1490 * BKL is taken for hysterical raisins
1491 * tty_mutex is taken to protect tty
1492 * ->siglock is taken to protect ->signal/->sighand
1493 * tasklist_lock is taken to walk process list for sessions
1494 * ->siglock is taken to protect ->signal/->sighand
1495 */
1496
1497 void disassociate_ctty(int on_exit)
1498 {
1499 struct tty_struct *tty;
1500 struct pid *tty_pgrp = NULL;
1501
1502 lock_kernel();
1503
1504 mutex_lock(&tty_mutex);
1505 tty = get_current_tty();
1506 if (tty) {
1507 tty_pgrp = get_pid(tty->pgrp);
1508 mutex_unlock(&tty_mutex);
1509 /* XXX: here we race, there is nothing protecting tty */
1510 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1511 tty_vhangup(tty);
1512 } else if (on_exit) {
1513 struct pid *old_pgrp;
1514 spin_lock_irq(&current->sighand->siglock);
1515 old_pgrp = current->signal->tty_old_pgrp;
1516 current->signal->tty_old_pgrp = NULL;
1517 spin_unlock_irq(&current->sighand->siglock);
1518 if (old_pgrp) {
1519 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1520 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1521 put_pid(old_pgrp);
1522 }
1523 mutex_unlock(&tty_mutex);
1524 unlock_kernel();
1525 return;
1526 }
1527 if (tty_pgrp) {
1528 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1529 if (!on_exit)
1530 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1531 put_pid(tty_pgrp);
1532 }
1533
1534 spin_lock_irq(&current->sighand->siglock);
1535 put_pid(current->signal->tty_old_pgrp);
1536 current->signal->tty_old_pgrp = NULL;
1537 spin_unlock_irq(&current->sighand->siglock);
1538
1539 mutex_lock(&tty_mutex);
1540 /* It is possible that do_tty_hangup has free'd this tty */
1541 tty = get_current_tty();
1542 if (tty) {
1543 put_pid(tty->session);
1544 put_pid(tty->pgrp);
1545 tty->session = NULL;
1546 tty->pgrp = NULL;
1547 } else {
1548 #ifdef TTY_DEBUG_HANGUP
1549 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1550 " = NULL", tty);
1551 #endif
1552 }
1553 mutex_unlock(&tty_mutex);
1554
1555 /* Now clear signal->tty under the lock */
1556 read_lock(&tasklist_lock);
1557 session_clear_tty(task_session(current));
1558 read_unlock(&tasklist_lock);
1559 unlock_kernel();
1560 }
1561
1562 /**
1563 *
1564 * no_tty - Ensure the current process does not have a controlling tty
1565 */
1566 void no_tty(void)
1567 {
1568 struct task_struct *tsk = current;
1569 if (tsk->signal->leader)
1570 disassociate_ctty(0);
1571 proc_clear_tty(tsk);
1572 }
1573
1574
1575 /**
1576 * stop_tty - propagate flow control
1577 * @tty: tty to stop
1578 *
1579 * Perform flow control to the driver. For PTY/TTY pairs we
1580 * must also propagate the TIOCKPKT status. May be called
1581 * on an already stopped device and will not re-call the driver
1582 * method.
1583 *
1584 * This functionality is used by both the line disciplines for
1585 * halting incoming flow and by the driver. It may therefore be
1586 * called from any context, may be under the tty atomic_write_lock
1587 * but not always.
1588 *
1589 * Locking:
1590 * Broken. Relies on BKL which is unsafe here.
1591 */
1592
1593 void stop_tty(struct tty_struct *tty)
1594 {
1595 if (tty->stopped)
1596 return;
1597 tty->stopped = 1;
1598 if (tty->link && tty->link->packet) {
1599 tty->ctrl_status &= ~TIOCPKT_START;
1600 tty->ctrl_status |= TIOCPKT_STOP;
1601 wake_up_interruptible(&tty->link->read_wait);
1602 }
1603 if (tty->driver->stop)
1604 (tty->driver->stop)(tty);
1605 }
1606
1607 EXPORT_SYMBOL(stop_tty);
1608
1609 /**
1610 * start_tty - propagate flow control
1611 * @tty: tty to start
1612 *
1613 * Start a tty that has been stopped if at all possible. Perform
1614 * any neccessary wakeups and propagate the TIOCPKT status. If this
1615 * is the tty was previous stopped and is being started then the
1616 * driver start method is invoked and the line discipline woken.
1617 *
1618 * Locking:
1619 * Broken. Relies on BKL which is unsafe here.
1620 */
1621
1622 void start_tty(struct tty_struct *tty)
1623 {
1624 if (!tty->stopped || tty->flow_stopped)
1625 return;
1626 tty->stopped = 0;
1627 if (tty->link && tty->link->packet) {
1628 tty->ctrl_status &= ~TIOCPKT_STOP;
1629 tty->ctrl_status |= TIOCPKT_START;
1630 wake_up_interruptible(&tty->link->read_wait);
1631 }
1632 if (tty->driver->start)
1633 (tty->driver->start)(tty);
1634
1635 /* If we have a running line discipline it may need kicking */
1636 tty_wakeup(tty);
1637 }
1638
1639 EXPORT_SYMBOL(start_tty);
1640
1641 /**
1642 * tty_read - read method for tty device files
1643 * @file: pointer to tty file
1644 * @buf: user buffer
1645 * @count: size of user buffer
1646 * @ppos: unused
1647 *
1648 * Perform the read system call function on this terminal device. Checks
1649 * for hung up devices before calling the line discipline method.
1650 *
1651 * Locking:
1652 * Locks the line discipline internally while needed
1653 * For historical reasons the line discipline read method is
1654 * invoked under the BKL. This will go away in time so do not rely on it
1655 * in new code. Multiple read calls may be outstanding in parallel.
1656 */
1657
1658 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1659 loff_t *ppos)
1660 {
1661 int i;
1662 struct tty_struct * tty;
1663 struct inode *inode;
1664 struct tty_ldisc *ld;
1665
1666 tty = (struct tty_struct *)file->private_data;
1667 inode = file->f_path.dentry->d_inode;
1668 if (tty_paranoia_check(tty, inode, "tty_read"))
1669 return -EIO;
1670 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1671 return -EIO;
1672
1673 /* We want to wait for the line discipline to sort out in this
1674 situation */
1675 ld = tty_ldisc_ref_wait(tty);
1676 lock_kernel();
1677 if (ld->read)
1678 i = (ld->read)(tty,file,buf,count);
1679 else
1680 i = -EIO;
1681 tty_ldisc_deref(ld);
1682 unlock_kernel();
1683 if (i > 0)
1684 inode->i_atime = current_fs_time(inode->i_sb);
1685 return i;
1686 }
1687
1688 /*
1689 * Split writes up in sane blocksizes to avoid
1690 * denial-of-service type attacks
1691 */
1692 static inline ssize_t do_tty_write(
1693 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1694 struct tty_struct *tty,
1695 struct file *file,
1696 const char __user *buf,
1697 size_t count)
1698 {
1699 ssize_t ret = 0, written = 0;
1700 unsigned int chunk;
1701
1702 /* FIXME: O_NDELAY ... */
1703 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1704 return -ERESTARTSYS;
1705 }
1706
1707 /*
1708 * We chunk up writes into a temporary buffer. This
1709 * simplifies low-level drivers immensely, since they
1710 * don't have locking issues and user mode accesses.
1711 *
1712 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1713 * big chunk-size..
1714 *
1715 * The default chunk-size is 2kB, because the NTTY
1716 * layer has problems with bigger chunks. It will
1717 * claim to be able to handle more characters than
1718 * it actually does.
1719 *
1720 * FIXME: This can probably go away now except that 64K chunks
1721 * are too likely to fail unless switched to vmalloc...
1722 */
1723 chunk = 2048;
1724 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1725 chunk = 65536;
1726 if (count < chunk)
1727 chunk = count;
1728
1729 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1730 if (tty->write_cnt < chunk) {
1731 unsigned char *buf;
1732
1733 if (chunk < 1024)
1734 chunk = 1024;
1735
1736 buf = kmalloc(chunk, GFP_KERNEL);
1737 if (!buf) {
1738 mutex_unlock(&tty->atomic_write_lock);
1739 return -ENOMEM;
1740 }
1741 kfree(tty->write_buf);
1742 tty->write_cnt = chunk;
1743 tty->write_buf = buf;
1744 }
1745
1746 /* Do the write .. */
1747 for (;;) {
1748 size_t size = count;
1749 if (size > chunk)
1750 size = chunk;
1751 ret = -EFAULT;
1752 if (copy_from_user(tty->write_buf, buf, size))
1753 break;
1754 lock_kernel();
1755 ret = write(tty, file, tty->write_buf, size);
1756 unlock_kernel();
1757 if (ret <= 0)
1758 break;
1759 written += ret;
1760 buf += ret;
1761 count -= ret;
1762 if (!count)
1763 break;
1764 ret = -ERESTARTSYS;
1765 if (signal_pending(current))
1766 break;
1767 cond_resched();
1768 }
1769 if (written) {
1770 struct inode *inode = file->f_path.dentry->d_inode;
1771 inode->i_mtime = current_fs_time(inode->i_sb);
1772 ret = written;
1773 }
1774 mutex_unlock(&tty->atomic_write_lock);
1775 return ret;
1776 }
1777
1778
1779 /**
1780 * tty_write - write method for tty device file
1781 * @file: tty file pointer
1782 * @buf: user data to write
1783 * @count: bytes to write
1784 * @ppos: unused
1785 *
1786 * Write data to a tty device via the line discipline.
1787 *
1788 * Locking:
1789 * Locks the line discipline as required
1790 * Writes to the tty driver are serialized by the atomic_write_lock
1791 * and are then processed in chunks to the device. The line discipline
1792 * write method will not be involked in parallel for each device
1793 * The line discipline write method is called under the big
1794 * kernel lock for historical reasons. New code should not rely on this.
1795 */
1796
1797 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1798 loff_t *ppos)
1799 {
1800 struct tty_struct * tty;
1801 struct inode *inode = file->f_path.dentry->d_inode;
1802 ssize_t ret;
1803 struct tty_ldisc *ld;
1804
1805 tty = (struct tty_struct *)file->private_data;
1806 if (tty_paranoia_check(tty, inode, "tty_write"))
1807 return -EIO;
1808 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1809 return -EIO;
1810
1811 ld = tty_ldisc_ref_wait(tty);
1812 if (!ld->write)
1813 ret = -EIO;
1814 else
1815 ret = do_tty_write(ld->write, tty, file, buf, count);
1816 tty_ldisc_deref(ld);
1817 return ret;
1818 }
1819
1820 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1821 loff_t *ppos)
1822 {
1823 struct file *p = NULL;
1824
1825 spin_lock(&redirect_lock);
1826 if (redirect) {
1827 get_file(redirect);
1828 p = redirect;
1829 }
1830 spin_unlock(&redirect_lock);
1831
1832 if (p) {
1833 ssize_t res;
1834 res = vfs_write(p, buf, count, &p->f_pos);
1835 fput(p);
1836 return res;
1837 }
1838
1839 return tty_write(file, buf, count, ppos);
1840 }
1841
1842 static char ptychar[] = "pqrstuvwxyzabcde";
1843
1844 /**
1845 * pty_line_name - generate name for a pty
1846 * @driver: the tty driver in use
1847 * @index: the minor number
1848 * @p: output buffer of at least 6 bytes
1849 *
1850 * Generate a name from a driver reference and write it to the output
1851 * buffer.
1852 *
1853 * Locking: None
1854 */
1855 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1856 {
1857 int i = index + driver->name_base;
1858 /* ->name is initialized to "ttyp", but "tty" is expected */
1859 sprintf(p, "%s%c%x",
1860 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1861 ptychar[i >> 4 & 0xf], i & 0xf);
1862 }
1863
1864 /**
1865 * pty_line_name - generate name for a tty
1866 * @driver: the tty driver in use
1867 * @index: the minor number
1868 * @p: output buffer of at least 7 bytes
1869 *
1870 * Generate a name from a driver reference and write it to the output
1871 * buffer.
1872 *
1873 * Locking: None
1874 */
1875 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1876 {
1877 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1878 }
1879
1880 /**
1881 * init_dev - initialise a tty device
1882 * @driver: tty driver we are opening a device on
1883 * @idx: device index
1884 * @tty: returned tty structure
1885 *
1886 * Prepare a tty device. This may not be a "new" clean device but
1887 * could also be an active device. The pty drivers require special
1888 * handling because of this.
1889 *
1890 * Locking:
1891 * The function is called under the tty_mutex, which
1892 * protects us from the tty struct or driver itself going away.
1893 *
1894 * On exit the tty device has the line discipline attached and
1895 * a reference count of 1. If a pair was created for pty/tty use
1896 * and the other was a pty master then it too has a reference count of 1.
1897 *
1898 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1899 * failed open. The new code protects the open with a mutex, so it's
1900 * really quite straightforward. The mutex locking can probably be
1901 * relaxed for the (most common) case of reopening a tty.
1902 */
1903
1904 static int init_dev(struct tty_driver *driver, int idx,
1905 struct tty_struct **ret_tty)
1906 {
1907 struct tty_struct *tty, *o_tty;
1908 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1909 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1910 int retval = 0;
1911
1912 /* check whether we're reopening an existing tty */
1913 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1914 tty = devpts_get_tty(idx);
1915 /*
1916 * If we don't have a tty here on a slave open, it's because
1917 * the master already started the close process and there's
1918 * no relation between devpts file and tty anymore.
1919 */
1920 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1921 retval = -EIO;
1922 goto end_init;
1923 }
1924 /*
1925 * It's safe from now on because init_dev() is called with
1926 * tty_mutex held and release_dev() won't change tty->count
1927 * or tty->flags without having to grab tty_mutex
1928 */
1929 if (tty && driver->subtype == PTY_TYPE_MASTER)
1930 tty = tty->link;
1931 } else {
1932 tty = driver->ttys[idx];
1933 }
1934 if (tty) goto fast_track;
1935
1936 /*
1937 * First time open is complex, especially for PTY devices.
1938 * This code guarantees that either everything succeeds and the
1939 * TTY is ready for operation, or else the table slots are vacated
1940 * and the allocated memory released. (Except that the termios
1941 * and locked termios may be retained.)
1942 */
1943
1944 if (!try_module_get(driver->owner)) {
1945 retval = -ENODEV;
1946 goto end_init;
1947 }
1948
1949 o_tty = NULL;
1950 tp = o_tp = NULL;
1951 ltp = o_ltp = NULL;
1952
1953 tty = alloc_tty_struct();
1954 if(!tty)
1955 goto fail_no_mem;
1956 initialize_tty_struct(tty);
1957 tty->driver = driver;
1958 tty->index = idx;
1959 tty_line_name(driver, idx, tty->name);
1960
1961 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1962 tp_loc = &tty->termios;
1963 ltp_loc = &tty->termios_locked;
1964 } else {
1965 tp_loc = &driver->termios[idx];
1966 ltp_loc = &driver->termios_locked[idx];
1967 }
1968
1969 if (!*tp_loc) {
1970 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1971 GFP_KERNEL);
1972 if (!tp)
1973 goto free_mem_out;
1974 *tp = driver->init_termios;
1975 }
1976
1977 if (!*ltp_loc) {
1978 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1979 GFP_KERNEL);
1980 if (!ltp)
1981 goto free_mem_out;
1982 memset(ltp, 0, sizeof(struct ktermios));
1983 }
1984
1985 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1986 o_tty = alloc_tty_struct();
1987 if (!o_tty)
1988 goto free_mem_out;
1989 initialize_tty_struct(o_tty);
1990 o_tty->driver = driver->other;
1991 o_tty->index = idx;
1992 tty_line_name(driver->other, idx, o_tty->name);
1993
1994 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1995 o_tp_loc = &o_tty->termios;
1996 o_ltp_loc = &o_tty->termios_locked;
1997 } else {
1998 o_tp_loc = &driver->other->termios[idx];
1999 o_ltp_loc = &driver->other->termios_locked[idx];
2000 }
2001
2002 if (!*o_tp_loc) {
2003 o_tp = (struct ktermios *)
2004 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2005 if (!o_tp)
2006 goto free_mem_out;
2007 *o_tp = driver->other->init_termios;
2008 }
2009
2010 if (!*o_ltp_loc) {
2011 o_ltp = (struct ktermios *)
2012 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2013 if (!o_ltp)
2014 goto free_mem_out;
2015 memset(o_ltp, 0, sizeof(struct ktermios));
2016 }
2017
2018 /*
2019 * Everything allocated ... set up the o_tty structure.
2020 */
2021 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2022 driver->other->ttys[idx] = o_tty;
2023 }
2024 if (!*o_tp_loc)
2025 *o_tp_loc = o_tp;
2026 if (!*o_ltp_loc)
2027 *o_ltp_loc = o_ltp;
2028 o_tty->termios = *o_tp_loc;
2029 o_tty->termios_locked = *o_ltp_loc;
2030 driver->other->refcount++;
2031 if (driver->subtype == PTY_TYPE_MASTER)
2032 o_tty->count++;
2033
2034 /* Establish the links in both directions */
2035 tty->link = o_tty;
2036 o_tty->link = tty;
2037 }
2038
2039 /*
2040 * All structures have been allocated, so now we install them.
2041 * Failures after this point use release_tty to clean up, so
2042 * there's no need to null out the local pointers.
2043 */
2044 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2045 driver->ttys[idx] = tty;
2046 }
2047
2048 if (!*tp_loc)
2049 *tp_loc = tp;
2050 if (!*ltp_loc)
2051 *ltp_loc = ltp;
2052 tty->termios = *tp_loc;
2053 tty->termios_locked = *ltp_loc;
2054 /* Compatibility until drivers always set this */
2055 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2056 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2057 driver->refcount++;
2058 tty->count++;
2059
2060 /*
2061 * Structures all installed ... call the ldisc open routines.
2062 * If we fail here just call release_tty to clean up. No need
2063 * to decrement the use counts, as release_tty doesn't care.
2064 */
2065
2066 if (tty->ldisc.open) {
2067 retval = (tty->ldisc.open)(tty);
2068 if (retval)
2069 goto release_mem_out;
2070 }
2071 if (o_tty && o_tty->ldisc.open) {
2072 retval = (o_tty->ldisc.open)(o_tty);
2073 if (retval) {
2074 if (tty->ldisc.close)
2075 (tty->ldisc.close)(tty);
2076 goto release_mem_out;
2077 }
2078 tty_ldisc_enable(o_tty);
2079 }
2080 tty_ldisc_enable(tty);
2081 goto success;
2082
2083 /*
2084 * This fast open can be used if the tty is already open.
2085 * No memory is allocated, and the only failures are from
2086 * attempting to open a closing tty or attempting multiple
2087 * opens on a pty master.
2088 */
2089 fast_track:
2090 if (test_bit(TTY_CLOSING, &tty->flags)) {
2091 retval = -EIO;
2092 goto end_init;
2093 }
2094 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2095 driver->subtype == PTY_TYPE_MASTER) {
2096 /*
2097 * special case for PTY masters: only one open permitted,
2098 * and the slave side open count is incremented as well.
2099 */
2100 if (tty->count) {
2101 retval = -EIO;
2102 goto end_init;
2103 }
2104 tty->link->count++;
2105 }
2106 tty->count++;
2107 tty->driver = driver; /* N.B. why do this every time?? */
2108
2109 /* FIXME */
2110 if(!test_bit(TTY_LDISC, &tty->flags))
2111 printk(KERN_ERR "init_dev but no ldisc\n");
2112 success:
2113 *ret_tty = tty;
2114
2115 /* All paths come through here to release the mutex */
2116 end_init:
2117 return retval;
2118
2119 /* Release locally allocated memory ... nothing placed in slots */
2120 free_mem_out:
2121 kfree(o_tp);
2122 if (o_tty)
2123 free_tty_struct(o_tty);
2124 kfree(ltp);
2125 kfree(tp);
2126 free_tty_struct(tty);
2127
2128 fail_no_mem:
2129 module_put(driver->owner);
2130 retval = -ENOMEM;
2131 goto end_init;
2132
2133 /* call the tty release_tty routine to clean out this slot */
2134 release_mem_out:
2135 if (printk_ratelimit())
2136 printk(KERN_INFO "init_dev: ldisc open failed, "
2137 "clearing slot %d\n", idx);
2138 release_tty(tty, idx);
2139 goto end_init;
2140 }
2141
2142 /**
2143 * release_one_tty - release tty structure memory
2144 *
2145 * Releases memory associated with a tty structure, and clears out the
2146 * driver table slots. This function is called when a device is no longer
2147 * in use. It also gets called when setup of a device fails.
2148 *
2149 * Locking:
2150 * tty_mutex - sometimes only
2151 * takes the file list lock internally when working on the list
2152 * of ttys that the driver keeps.
2153 * FIXME: should we require tty_mutex is held here ??
2154 */
2155 static void release_one_tty(struct tty_struct *tty, int idx)
2156 {
2157 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2158 struct ktermios *tp;
2159
2160 if (!devpts)
2161 tty->driver->ttys[idx] = NULL;
2162
2163 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2164 tp = tty->termios;
2165 if (!devpts)
2166 tty->driver->termios[idx] = NULL;
2167 kfree(tp);
2168
2169 tp = tty->termios_locked;
2170 if (!devpts)
2171 tty->driver->termios_locked[idx] = NULL;
2172 kfree(tp);
2173 }
2174
2175
2176 tty->magic = 0;
2177 tty->driver->refcount--;
2178
2179 file_list_lock();
2180 list_del_init(&tty->tty_files);
2181 file_list_unlock();
2182
2183 free_tty_struct(tty);
2184 }
2185
2186 /**
2187 * release_tty - release tty structure memory
2188 *
2189 * Release both @tty and a possible linked partner (think pty pair),
2190 * and decrement the refcount of the backing module.
2191 *
2192 * Locking:
2193 * tty_mutex - sometimes only
2194 * takes the file list lock internally when working on the list
2195 * of ttys that the driver keeps.
2196 * FIXME: should we require tty_mutex is held here ??
2197 */
2198 static void release_tty(struct tty_struct *tty, int idx)
2199 {
2200 struct tty_driver *driver = tty->driver;
2201
2202 if (tty->link)
2203 release_one_tty(tty->link, idx);
2204 release_one_tty(tty, idx);
2205 module_put(driver->owner);
2206 }
2207
2208 /*
2209 * Even releasing the tty structures is a tricky business.. We have
2210 * to be very careful that the structures are all released at the
2211 * same time, as interrupts might otherwise get the wrong pointers.
2212 *
2213 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2214 * lead to double frees or releasing memory still in use.
2215 */
2216 static void release_dev(struct file * filp)
2217 {
2218 struct tty_struct *tty, *o_tty;
2219 int pty_master, tty_closing, o_tty_closing, do_sleep;
2220 int devpts;
2221 int idx;
2222 char buf[64];
2223 unsigned long flags;
2224
2225 tty = (struct tty_struct *)filp->private_data;
2226 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2227 return;
2228
2229 check_tty_count(tty, "release_dev");
2230
2231 tty_fasync(-1, filp, 0);
2232
2233 idx = tty->index;
2234 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2235 tty->driver->subtype == PTY_TYPE_MASTER);
2236 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2237 o_tty = tty->link;
2238
2239 #ifdef TTY_PARANOIA_CHECK
2240 if (idx < 0 || idx >= tty->driver->num) {
2241 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2242 "free (%s)\n", tty->name);
2243 return;
2244 }
2245 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2246 if (tty != tty->driver->ttys[idx]) {
2247 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2248 "for (%s)\n", idx, tty->name);
2249 return;
2250 }
2251 if (tty->termios != tty->driver->termios[idx]) {
2252 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2253 "for (%s)\n",
2254 idx, tty->name);
2255 return;
2256 }
2257 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2258 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2259 "termios_locked for (%s)\n",
2260 idx, tty->name);
2261 return;
2262 }
2263 }
2264 #endif
2265
2266 #ifdef TTY_DEBUG_HANGUP
2267 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2268 tty_name(tty, buf), tty->count);
2269 #endif
2270
2271 #ifdef TTY_PARANOIA_CHECK
2272 if (tty->driver->other &&
2273 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2274 if (o_tty != tty->driver->other->ttys[idx]) {
2275 printk(KERN_DEBUG "release_dev: other->table[%d] "
2276 "not o_tty for (%s)\n",
2277 idx, tty->name);
2278 return;
2279 }
2280 if (o_tty->termios != tty->driver->other->termios[idx]) {
2281 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2282 "not o_termios for (%s)\n",
2283 idx, tty->name);
2284 return;
2285 }
2286 if (o_tty->termios_locked !=
2287 tty->driver->other->termios_locked[idx]) {
2288 printk(KERN_DEBUG "release_dev: other->termios_locked["
2289 "%d] not o_termios_locked for (%s)\n",
2290 idx, tty->name);
2291 return;
2292 }
2293 if (o_tty->link != tty) {
2294 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2295 return;
2296 }
2297 }
2298 #endif
2299 if (tty->driver->close)
2300 tty->driver->close(tty, filp);
2301
2302 /*
2303 * Sanity check: if tty->count is going to zero, there shouldn't be
2304 * any waiters on tty->read_wait or tty->write_wait. We test the
2305 * wait queues and kick everyone out _before_ actually starting to
2306 * close. This ensures that we won't block while releasing the tty
2307 * structure.
2308 *
2309 * The test for the o_tty closing is necessary, since the master and
2310 * slave sides may close in any order. If the slave side closes out
2311 * first, its count will be one, since the master side holds an open.
2312 * Thus this test wouldn't be triggered at the time the slave closes,
2313 * so we do it now.
2314 *
2315 * Note that it's possible for the tty to be opened again while we're
2316 * flushing out waiters. By recalculating the closing flags before
2317 * each iteration we avoid any problems.
2318 */
2319 while (1) {
2320 /* Guard against races with tty->count changes elsewhere and
2321 opens on /dev/tty */
2322
2323 mutex_lock(&tty_mutex);
2324 tty_closing = tty->count <= 1;
2325 o_tty_closing = o_tty &&
2326 (o_tty->count <= (pty_master ? 1 : 0));
2327 do_sleep = 0;
2328
2329 if (tty_closing) {
2330 if (waitqueue_active(&tty->read_wait)) {
2331 wake_up(&tty->read_wait);
2332 do_sleep++;
2333 }
2334 if (waitqueue_active(&tty->write_wait)) {
2335 wake_up(&tty->write_wait);
2336 do_sleep++;
2337 }
2338 }
2339 if (o_tty_closing) {
2340 if (waitqueue_active(&o_tty->read_wait)) {
2341 wake_up(&o_tty->read_wait);
2342 do_sleep++;
2343 }
2344 if (waitqueue_active(&o_tty->write_wait)) {
2345 wake_up(&o_tty->write_wait);
2346 do_sleep++;
2347 }
2348 }
2349 if (!do_sleep)
2350 break;
2351
2352 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2353 "active!\n", tty_name(tty, buf));
2354 mutex_unlock(&tty_mutex);
2355 schedule();
2356 }
2357
2358 /*
2359 * The closing flags are now consistent with the open counts on
2360 * both sides, and we've completed the last operation that could
2361 * block, so it's safe to proceed with closing.
2362 */
2363 if (pty_master) {
2364 if (--o_tty->count < 0) {
2365 printk(KERN_WARNING "release_dev: bad pty slave count "
2366 "(%d) for %s\n",
2367 o_tty->count, tty_name(o_tty, buf));
2368 o_tty->count = 0;
2369 }
2370 }
2371 if (--tty->count < 0) {
2372 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2373 tty->count, tty_name(tty, buf));
2374 tty->count = 0;
2375 }
2376
2377 /*
2378 * We've decremented tty->count, so we need to remove this file
2379 * descriptor off the tty->tty_files list; this serves two
2380 * purposes:
2381 * - check_tty_count sees the correct number of file descriptors
2382 * associated with this tty.
2383 * - do_tty_hangup no longer sees this file descriptor as
2384 * something that needs to be handled for hangups.
2385 */
2386 file_kill(filp);
2387 filp->private_data = NULL;
2388
2389 /*
2390 * Perform some housekeeping before deciding whether to return.
2391 *
2392 * Set the TTY_CLOSING flag if this was the last open. In the
2393 * case of a pty we may have to wait around for the other side
2394 * to close, and TTY_CLOSING makes sure we can't be reopened.
2395 */
2396 if(tty_closing)
2397 set_bit(TTY_CLOSING, &tty->flags);
2398 if(o_tty_closing)
2399 set_bit(TTY_CLOSING, &o_tty->flags);
2400
2401 /*
2402 * If _either_ side is closing, make sure there aren't any
2403 * processes that still think tty or o_tty is their controlling
2404 * tty.
2405 */
2406 if (tty_closing || o_tty_closing) {
2407 read_lock(&tasklist_lock);
2408 session_clear_tty(tty->session);
2409 if (o_tty)
2410 session_clear_tty(o_tty->session);
2411 read_unlock(&tasklist_lock);
2412 }
2413
2414 mutex_unlock(&tty_mutex);
2415
2416 /* check whether both sides are closing ... */
2417 if (!tty_closing || (o_tty && !o_tty_closing))
2418 return;
2419
2420 #ifdef TTY_DEBUG_HANGUP
2421 printk(KERN_DEBUG "freeing tty structure...");
2422 #endif
2423 /*
2424 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2425 * kill any delayed work. As this is the final close it does not
2426 * race with the set_ldisc code path.
2427 */
2428 clear_bit(TTY_LDISC, &tty->flags);
2429 cancel_delayed_work(&tty->buf.work);
2430
2431 /*
2432 * Wait for ->hangup_work and ->buf.work handlers to terminate
2433 */
2434
2435 flush_scheduled_work();
2436
2437 /*
2438 * Wait for any short term users (we know they are just driver
2439 * side waiters as the file is closing so user count on the file
2440 * side is zero.
2441 */
2442 spin_lock_irqsave(&tty_ldisc_lock, flags);
2443 while(tty->ldisc.refcount)
2444 {
2445 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2446 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2447 spin_lock_irqsave(&tty_ldisc_lock, flags);
2448 }
2449 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2450 /*
2451 * Shutdown the current line discipline, and reset it to N_TTY.
2452 * N.B. why reset ldisc when we're releasing the memory??
2453 *
2454 * FIXME: this MUST get fixed for the new reflocking
2455 */
2456 if (tty->ldisc.close)
2457 (tty->ldisc.close)(tty);
2458 tty_ldisc_put(tty->ldisc.num);
2459
2460 /*
2461 * Switch the line discipline back
2462 */
2463 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2464 tty_set_termios_ldisc(tty,N_TTY);
2465 if (o_tty) {
2466 /* FIXME: could o_tty be in setldisc here ? */
2467 clear_bit(TTY_LDISC, &o_tty->flags);
2468 if (o_tty->ldisc.close)
2469 (o_tty->ldisc.close)(o_tty);
2470 tty_ldisc_put(o_tty->ldisc.num);
2471 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2472 tty_set_termios_ldisc(o_tty,N_TTY);
2473 }
2474 /*
2475 * The release_tty function takes care of the details of clearing
2476 * the slots and preserving the termios structure.
2477 */
2478 release_tty(tty, idx);
2479
2480 #ifdef CONFIG_UNIX98_PTYS
2481 /* Make this pty number available for reallocation */
2482 if (devpts) {
2483 down(&allocated_ptys_lock);
2484 idr_remove(&allocated_ptys, idx);
2485 up(&allocated_ptys_lock);
2486 }
2487 #endif
2488
2489 }
2490
2491 /**
2492 * tty_open - open a tty device
2493 * @inode: inode of device file
2494 * @filp: file pointer to tty
2495 *
2496 * tty_open and tty_release keep up the tty count that contains the
2497 * number of opens done on a tty. We cannot use the inode-count, as
2498 * different inodes might point to the same tty.
2499 *
2500 * Open-counting is needed for pty masters, as well as for keeping
2501 * track of serial lines: DTR is dropped when the last close happens.
2502 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2503 *
2504 * The termios state of a pty is reset on first open so that
2505 * settings don't persist across reuse.
2506 *
2507 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2508 * tty->count should protect the rest.
2509 * ->siglock protects ->signal/->sighand
2510 */
2511
2512 static int tty_open(struct inode * inode, struct file * filp)
2513 {
2514 struct tty_struct *tty;
2515 int noctty, retval;
2516 struct tty_driver *driver;
2517 int index;
2518 dev_t device = inode->i_rdev;
2519 unsigned short saved_flags = filp->f_flags;
2520
2521 nonseekable_open(inode, filp);
2522
2523 retry_open:
2524 noctty = filp->f_flags & O_NOCTTY;
2525 index = -1;
2526 retval = 0;
2527
2528 mutex_lock(&tty_mutex);
2529
2530 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2531 tty = get_current_tty();
2532 if (!tty) {
2533 mutex_unlock(&tty_mutex);
2534 return -ENXIO;
2535 }
2536 driver = tty->driver;
2537 index = tty->index;
2538 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2539 /* noctty = 1; */
2540 goto got_driver;
2541 }
2542 #ifdef CONFIG_VT
2543 if (device == MKDEV(TTY_MAJOR,0)) {
2544 extern struct tty_driver *console_driver;
2545 driver = console_driver;
2546 index = fg_console;
2547 noctty = 1;
2548 goto got_driver;
2549 }
2550 #endif
2551 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2552 driver = console_device(&index);
2553 if (driver) {
2554 /* Don't let /dev/console block */
2555 filp->f_flags |= O_NONBLOCK;
2556 noctty = 1;
2557 goto got_driver;
2558 }
2559 mutex_unlock(&tty_mutex);
2560 return -ENODEV;
2561 }
2562
2563 driver = get_tty_driver(device, &index);
2564 if (!driver) {
2565 mutex_unlock(&tty_mutex);
2566 return -ENODEV;
2567 }
2568 got_driver:
2569 retval = init_dev(driver, index, &tty);
2570 mutex_unlock(&tty_mutex);
2571 if (retval)
2572 return retval;
2573
2574 filp->private_data = tty;
2575 file_move(filp, &tty->tty_files);
2576 check_tty_count(tty, "tty_open");
2577 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2578 tty->driver->subtype == PTY_TYPE_MASTER)
2579 noctty = 1;
2580 #ifdef TTY_DEBUG_HANGUP
2581 printk(KERN_DEBUG "opening %s...", tty->name);
2582 #endif
2583 if (!retval) {
2584 if (tty->driver->open)
2585 retval = tty->driver->open(tty, filp);
2586 else
2587 retval = -ENODEV;
2588 }
2589 filp->f_flags = saved_flags;
2590
2591 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2592 retval = -EBUSY;
2593
2594 if (retval) {
2595 #ifdef TTY_DEBUG_HANGUP
2596 printk(KERN_DEBUG "error %d in opening %s...", retval,
2597 tty->name);
2598 #endif
2599 release_dev(filp);
2600 if (retval != -ERESTARTSYS)
2601 return retval;
2602 if (signal_pending(current))
2603 return retval;
2604 schedule();
2605 /*
2606 * Need to reset f_op in case a hangup happened.
2607 */
2608 if (filp->f_op == &hung_up_tty_fops)
2609 filp->f_op = &tty_fops;
2610 goto retry_open;
2611 }
2612
2613 mutex_lock(&tty_mutex);
2614 spin_lock_irq(&current->sighand->siglock);
2615 if (!noctty &&
2616 current->signal->leader &&
2617 !current->signal->tty &&
2618 tty->session == NULL)
2619 __proc_set_tty(current, tty);
2620 spin_unlock_irq(&current->sighand->siglock);
2621 mutex_unlock(&tty_mutex);
2622 return 0;
2623 }
2624
2625 #ifdef CONFIG_UNIX98_PTYS
2626 /**
2627 * ptmx_open - open a unix 98 pty master
2628 * @inode: inode of device file
2629 * @filp: file pointer to tty
2630 *
2631 * Allocate a unix98 pty master device from the ptmx driver.
2632 *
2633 * Locking: tty_mutex protects theinit_dev work. tty->count should
2634 protect the rest.
2635 * allocated_ptys_lock handles the list of free pty numbers
2636 */
2637
2638 static int ptmx_open(struct inode * inode, struct file * filp)
2639 {
2640 struct tty_struct *tty;
2641 int retval;
2642 int index;
2643 int idr_ret;
2644
2645 nonseekable_open(inode, filp);
2646
2647 /* find a device that is not in use. */
2648 down(&allocated_ptys_lock);
2649 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2650 up(&allocated_ptys_lock);
2651 return -ENOMEM;
2652 }
2653 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2654 if (idr_ret < 0) {
2655 up(&allocated_ptys_lock);
2656 if (idr_ret == -EAGAIN)
2657 return -ENOMEM;
2658 return -EIO;
2659 }
2660 if (index >= pty_limit) {
2661 idr_remove(&allocated_ptys, index);
2662 up(&allocated_ptys_lock);
2663 return -EIO;
2664 }
2665 up(&allocated_ptys_lock);
2666
2667 mutex_lock(&tty_mutex);
2668 retval = init_dev(ptm_driver, index, &tty);
2669 mutex_unlock(&tty_mutex);
2670
2671 if (retval)
2672 goto out;
2673
2674 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2675 filp->private_data = tty;
2676 file_move(filp, &tty->tty_files);
2677
2678 retval = -ENOMEM;
2679 if (devpts_pty_new(tty->link))
2680 goto out1;
2681
2682 check_tty_count(tty, "tty_open");
2683 retval = ptm_driver->open(tty, filp);
2684 if (!retval)
2685 return 0;
2686 out1:
2687 release_dev(filp);
2688 return retval;
2689 out:
2690 down(&allocated_ptys_lock);
2691 idr_remove(&allocated_ptys, index);
2692 up(&allocated_ptys_lock);
2693 return retval;
2694 }
2695 #endif
2696
2697 /**
2698 * tty_release - vfs callback for close
2699 * @inode: inode of tty
2700 * @filp: file pointer for handle to tty
2701 *
2702 * Called the last time each file handle is closed that references
2703 * this tty. There may however be several such references.
2704 *
2705 * Locking:
2706 * Takes bkl. See release_dev
2707 */
2708
2709 static int tty_release(struct inode * inode, struct file * filp)
2710 {
2711 lock_kernel();
2712 release_dev(filp);
2713 unlock_kernel();
2714 return 0;
2715 }
2716
2717 /**
2718 * tty_poll - check tty status
2719 * @filp: file being polled
2720 * @wait: poll wait structures to update
2721 *
2722 * Call the line discipline polling method to obtain the poll
2723 * status of the device.
2724 *
2725 * Locking: locks called line discipline but ldisc poll method
2726 * may be re-entered freely by other callers.
2727 */
2728
2729 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2730 {
2731 struct tty_struct * tty;
2732 struct tty_ldisc *ld;
2733 int ret = 0;
2734
2735 tty = (struct tty_struct *)filp->private_data;
2736 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2737 return 0;
2738
2739 ld = tty_ldisc_ref_wait(tty);
2740 if (ld->poll)
2741 ret = (ld->poll)(tty, filp, wait);
2742 tty_ldisc_deref(ld);
2743 return ret;
2744 }
2745
2746 static int tty_fasync(int fd, struct file * filp, int on)
2747 {
2748 struct tty_struct * tty;
2749 int retval;
2750
2751 tty = (struct tty_struct *)filp->private_data;
2752 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2753 return 0;
2754
2755 retval = fasync_helper(fd, filp, on, &tty->fasync);
2756 if (retval <= 0)
2757 return retval;
2758
2759 if (on) {
2760 enum pid_type type;
2761 struct pid *pid;
2762 if (!waitqueue_active(&tty->read_wait))
2763 tty->minimum_to_wake = 1;
2764 if (tty->pgrp) {
2765 pid = tty->pgrp;
2766 type = PIDTYPE_PGID;
2767 } else {
2768 pid = task_pid(current);
2769 type = PIDTYPE_PID;
2770 }
2771 retval = __f_setown(filp, pid, type, 0);
2772 if (retval)
2773 return retval;
2774 } else {
2775 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2776 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2777 }
2778 return 0;
2779 }
2780
2781 /**
2782 * tiocsti - fake input character
2783 * @tty: tty to fake input into
2784 * @p: pointer to character
2785 *
2786 * Fake input to a tty device. Does the neccessary locking and
2787 * input management.
2788 *
2789 * FIXME: does not honour flow control ??
2790 *
2791 * Locking:
2792 * Called functions take tty_ldisc_lock
2793 * current->signal->tty check is safe without locks
2794 *
2795 * FIXME: may race normal receive processing
2796 */
2797
2798 static int tiocsti(struct tty_struct *tty, char __user *p)
2799 {
2800 char ch, mbz = 0;
2801 struct tty_ldisc *ld;
2802
2803 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2804 return -EPERM;
2805 if (get_user(ch, p))
2806 return -EFAULT;
2807 ld = tty_ldisc_ref_wait(tty);
2808 ld->receive_buf(tty, &ch, &mbz, 1);
2809 tty_ldisc_deref(ld);
2810 return 0;
2811 }
2812
2813 /**
2814 * tiocgwinsz - implement window query ioctl
2815 * @tty; tty
2816 * @arg: user buffer for result
2817 *
2818 * Copies the kernel idea of the window size into the user buffer.
2819 *
2820 * Locking: tty->termios_mutex is taken to ensure the winsize data
2821 * is consistent.
2822 */
2823
2824 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2825 {
2826 int err;
2827
2828 mutex_lock(&tty->termios_mutex);
2829 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2830 mutex_unlock(&tty->termios_mutex);
2831
2832 return err ? -EFAULT: 0;
2833 }
2834
2835 /**
2836 * tiocswinsz - implement window size set ioctl
2837 * @tty; tty
2838 * @arg: user buffer for result
2839 *
2840 * Copies the user idea of the window size to the kernel. Traditionally
2841 * this is just advisory information but for the Linux console it
2842 * actually has driver level meaning and triggers a VC resize.
2843 *
2844 * Locking:
2845 * Called function use the console_sem is used to ensure we do
2846 * not try and resize the console twice at once.
2847 * The tty->termios_mutex is used to ensure we don't double
2848 * resize and get confused. Lock order - tty->termios_mutex before
2849 * console sem
2850 */
2851
2852 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2853 struct winsize __user * arg)
2854 {
2855 struct winsize tmp_ws;
2856
2857 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2858 return -EFAULT;
2859
2860 mutex_lock(&tty->termios_mutex);
2861 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2862 goto done;
2863
2864 #ifdef CONFIG_VT
2865 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2866 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2867 tmp_ws.ws_row)) {
2868 mutex_unlock(&tty->termios_mutex);
2869 return -ENXIO;
2870 }
2871 }
2872 #endif
2873 if (tty->pgrp)
2874 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2875 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2876 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2877 tty->winsize = tmp_ws;
2878 real_tty->winsize = tmp_ws;
2879 done:
2880 mutex_unlock(&tty->termios_mutex);
2881 return 0;
2882 }
2883
2884 /**
2885 * tioccons - allow admin to move logical console
2886 * @file: the file to become console
2887 *
2888 * Allow the adminstrator to move the redirected console device
2889 *
2890 * Locking: uses redirect_lock to guard the redirect information
2891 */
2892
2893 static int tioccons(struct file *file)
2894 {
2895 if (!capable(CAP_SYS_ADMIN))
2896 return -EPERM;
2897 if (file->f_op->write == redirected_tty_write) {
2898 struct file *f;
2899 spin_lock(&redirect_lock);
2900 f = redirect;
2901 redirect = NULL;
2902 spin_unlock(&redirect_lock);
2903 if (f)
2904 fput(f);
2905 return 0;
2906 }
2907 spin_lock(&redirect_lock);
2908 if (redirect) {
2909 spin_unlock(&redirect_lock);
2910 return -EBUSY;
2911 }
2912 get_file(file);
2913 redirect = file;
2914 spin_unlock(&redirect_lock);
2915 return 0;
2916 }
2917
2918 /**
2919 * fionbio - non blocking ioctl
2920 * @file: file to set blocking value
2921 * @p: user parameter
2922 *
2923 * Historical tty interfaces had a blocking control ioctl before
2924 * the generic functionality existed. This piece of history is preserved
2925 * in the expected tty API of posix OS's.
2926 *
2927 * Locking: none, the open fle handle ensures it won't go away.
2928 */
2929
2930 static int fionbio(struct file *file, int __user *p)
2931 {
2932 int nonblock;
2933
2934 if (get_user(nonblock, p))
2935 return -EFAULT;
2936
2937 if (nonblock)
2938 file->f_flags |= O_NONBLOCK;
2939 else
2940 file->f_flags &= ~O_NONBLOCK;
2941 return 0;
2942 }
2943
2944 /**
2945 * tiocsctty - set controlling tty
2946 * @tty: tty structure
2947 * @arg: user argument
2948 *
2949 * This ioctl is used to manage job control. It permits a session
2950 * leader to set this tty as the controlling tty for the session.
2951 *
2952 * Locking:
2953 * Takes tty_mutex() to protect tty instance
2954 * Takes tasklist_lock internally to walk sessions
2955 * Takes ->siglock() when updating signal->tty
2956 */
2957
2958 static int tiocsctty(struct tty_struct *tty, int arg)
2959 {
2960 int ret = 0;
2961 if (current->signal->leader && (task_session(current) == tty->session))
2962 return ret;
2963
2964 mutex_lock(&tty_mutex);
2965 /*
2966 * The process must be a session leader and
2967 * not have a controlling tty already.
2968 */
2969 if (!current->signal->leader || current->signal->tty) {
2970 ret = -EPERM;
2971 goto unlock;
2972 }
2973
2974 if (tty->session) {
2975 /*
2976 * This tty is already the controlling
2977 * tty for another session group!
2978 */
2979 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2980 /*
2981 * Steal it away
2982 */
2983 read_lock(&tasklist_lock);
2984 session_clear_tty(tty->session);
2985 read_unlock(&tasklist_lock);
2986 } else {
2987 ret = -EPERM;
2988 goto unlock;
2989 }
2990 }
2991 proc_set_tty(current, tty);
2992 unlock:
2993 mutex_unlock(&tty_mutex);
2994 return ret;
2995 }
2996
2997 /**
2998 * tiocgpgrp - get process group
2999 * @tty: tty passed by user
3000 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3001 * @p: returned pid
3002 *
3003 * Obtain the process group of the tty. If there is no process group
3004 * return an error.
3005 *
3006 * Locking: none. Reference to current->signal->tty is safe.
3007 */
3008
3009 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3010 {
3011 /*
3012 * (tty == real_tty) is a cheap way of
3013 * testing if the tty is NOT a master pty.
3014 */
3015 if (tty == real_tty && current->signal->tty != real_tty)
3016 return -ENOTTY;
3017 return put_user(pid_nr(real_tty->pgrp), p);
3018 }
3019
3020 /**
3021 * tiocspgrp - attempt to set process group
3022 * @tty: tty passed by user
3023 * @real_tty: tty side device matching tty passed by user
3024 * @p: pid pointer
3025 *
3026 * Set the process group of the tty to the session passed. Only
3027 * permitted where the tty session is our session.
3028 *
3029 * Locking: None
3030 */
3031
3032 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3033 {
3034 struct pid *pgrp;
3035 pid_t pgrp_nr;
3036 int retval = tty_check_change(real_tty);
3037
3038 if (retval == -EIO)
3039 return -ENOTTY;
3040 if (retval)
3041 return retval;
3042 if (!current->signal->tty ||
3043 (current->signal->tty != real_tty) ||
3044 (real_tty->session != task_session(current)))
3045 return -ENOTTY;
3046 if (get_user(pgrp_nr, p))
3047 return -EFAULT;
3048 if (pgrp_nr < 0)
3049 return -EINVAL;
3050 rcu_read_lock();
3051 pgrp = find_pid(pgrp_nr);
3052 retval = -ESRCH;
3053 if (!pgrp)
3054 goto out_unlock;
3055 retval = -EPERM;
3056 if (session_of_pgrp(pgrp) != task_session(current))
3057 goto out_unlock;
3058 retval = 0;
3059 put_pid(real_tty->pgrp);
3060 real_tty->pgrp = get_pid(pgrp);
3061 out_unlock:
3062 rcu_read_unlock();
3063 return retval;
3064 }
3065
3066 /**
3067 * tiocgsid - get session id
3068 * @tty: tty passed by user
3069 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3070 * @p: pointer to returned session id
3071 *
3072 * Obtain the session id of the tty. If there is no session
3073 * return an error.
3074 *
3075 * Locking: none. Reference to current->signal->tty is safe.
3076 */
3077
3078 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3079 {
3080 /*
3081 * (tty == real_tty) is a cheap way of
3082 * testing if the tty is NOT a master pty.
3083 */
3084 if (tty == real_tty && current->signal->tty != real_tty)
3085 return -ENOTTY;
3086 if (!real_tty->session)
3087 return -ENOTTY;
3088 return put_user(pid_nr(real_tty->session), p);
3089 }
3090
3091 /**
3092 * tiocsetd - set line discipline
3093 * @tty: tty device
3094 * @p: pointer to user data
3095 *
3096 * Set the line discipline according to user request.
3097 *
3098 * Locking: see tty_set_ldisc, this function is just a helper
3099 */
3100
3101 static int tiocsetd(struct tty_struct *tty, int __user *p)
3102 {
3103 int ldisc;
3104
3105 if (get_user(ldisc, p))
3106 return -EFAULT;
3107 return tty_set_ldisc(tty, ldisc);
3108 }
3109
3110 /**
3111 * send_break - performed time break
3112 * @tty: device to break on
3113 * @duration: timeout in mS
3114 *
3115 * Perform a timed break on hardware that lacks its own driver level
3116 * timed break functionality.
3117 *
3118 * Locking:
3119 * atomic_write_lock serializes
3120 *
3121 */
3122
3123 static int send_break(struct tty_struct *tty, unsigned int duration)
3124 {
3125 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3126 return -EINTR;
3127 tty->driver->break_ctl(tty, -1);
3128 if (!signal_pending(current)) {
3129 msleep_interruptible(duration);
3130 }
3131 tty->driver->break_ctl(tty, 0);
3132 mutex_unlock(&tty->atomic_write_lock);
3133 if (signal_pending(current))
3134 return -EINTR;
3135 return 0;
3136 }
3137
3138 /**
3139 * tiocmget - get modem status
3140 * @tty: tty device
3141 * @file: user file pointer
3142 * @p: pointer to result
3143 *
3144 * Obtain the modem status bits from the tty driver if the feature
3145 * is supported. Return -EINVAL if it is not available.
3146 *
3147 * Locking: none (up to the driver)
3148 */
3149
3150 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3151 {
3152 int retval = -EINVAL;
3153
3154 if (tty->driver->tiocmget) {
3155 retval = tty->driver->tiocmget(tty, file);
3156
3157 if (retval >= 0)
3158 retval = put_user(retval, p);
3159 }
3160 return retval;
3161 }
3162
3163 /**
3164 * tiocmset - set modem status
3165 * @tty: tty device
3166 * @file: user file pointer
3167 * @cmd: command - clear bits, set bits or set all
3168 * @p: pointer to desired bits
3169 *
3170 * Set the modem status bits from the tty driver if the feature
3171 * is supported. Return -EINVAL if it is not available.
3172 *
3173 * Locking: none (up to the driver)
3174 */
3175
3176 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3177 unsigned __user *p)
3178 {
3179 int retval = -EINVAL;
3180
3181 if (tty->driver->tiocmset) {
3182 unsigned int set, clear, val;
3183
3184 retval = get_user(val, p);
3185 if (retval)
3186 return retval;
3187
3188 set = clear = 0;
3189 switch (cmd) {
3190 case TIOCMBIS:
3191 set = val;
3192 break;
3193 case TIOCMBIC:
3194 clear = val;
3195 break;
3196 case TIOCMSET:
3197 set = val;
3198 clear = ~val;
3199 break;
3200 }
3201
3202 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3203 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3204
3205 retval = tty->driver->tiocmset(tty, file, set, clear);
3206 }
3207 return retval;
3208 }
3209
3210 /*
3211 * Split this up, as gcc can choke on it otherwise..
3212 */
3213 int tty_ioctl(struct inode * inode, struct file * file,
3214 unsigned int cmd, unsigned long arg)
3215 {
3216 struct tty_struct *tty, *real_tty;
3217 void __user *p = (void __user *)arg;
3218 int retval;
3219 struct tty_ldisc *ld;
3220
3221 tty = (struct tty_struct *)file->private_data;
3222 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3223 return -EINVAL;
3224
3225 /* CHECKME: is this safe as one end closes ? */
3226
3227 real_tty = tty;
3228 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3229 tty->driver->subtype == PTY_TYPE_MASTER)
3230 real_tty = tty->link;
3231
3232 /*
3233 * Break handling by driver
3234 */
3235 if (!tty->driver->break_ctl) {
3236 switch(cmd) {
3237 case TIOCSBRK:
3238 case TIOCCBRK:
3239 if (tty->driver->ioctl)
3240 return tty->driver->ioctl(tty, file, cmd, arg);
3241 return -EINVAL;
3242
3243 /* These two ioctl's always return success; even if */
3244 /* the driver doesn't support them. */
3245 case TCSBRK:
3246 case TCSBRKP:
3247 if (!tty->driver->ioctl)
3248 return 0;
3249 retval = tty->driver->ioctl(tty, file, cmd, arg);
3250 if (retval == -ENOIOCTLCMD)
3251 retval = 0;
3252 return retval;
3253 }
3254 }
3255
3256 /*
3257 * Factor out some common prep work
3258 */
3259 switch (cmd) {
3260 case TIOCSETD:
3261 case TIOCSBRK:
3262 case TIOCCBRK:
3263 case TCSBRK:
3264 case TCSBRKP:
3265 retval = tty_check_change(tty);
3266 if (retval)
3267 return retval;
3268 if (cmd != TIOCCBRK) {
3269 tty_wait_until_sent(tty, 0);
3270 if (signal_pending(current))
3271 return -EINTR;
3272 }
3273 break;
3274 }
3275
3276 switch (cmd) {
3277 case TIOCSTI:
3278 return tiocsti(tty, p);
3279 case TIOCGWINSZ:
3280 return tiocgwinsz(tty, p);
3281 case TIOCSWINSZ:
3282 return tiocswinsz(tty, real_tty, p);
3283 case TIOCCONS:
3284 return real_tty!=tty ? -EINVAL : tioccons(file);
3285 case FIONBIO:
3286 return fionbio(file, p);
3287 case TIOCEXCL:
3288 set_bit(TTY_EXCLUSIVE, &tty->flags);
3289 return 0;
3290 case TIOCNXCL:
3291 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3292 return 0;
3293 case TIOCNOTTY:
3294 if (current->signal->tty != tty)
3295 return -ENOTTY;
3296 no_tty();
3297 return 0;
3298 case TIOCSCTTY:
3299 return tiocsctty(tty, arg);
3300 case TIOCGPGRP:
3301 return tiocgpgrp(tty, real_tty, p);
3302 case TIOCSPGRP:
3303 return tiocspgrp(tty, real_tty, p);
3304 case TIOCGSID:
3305 return tiocgsid(tty, real_tty, p);
3306 case TIOCGETD:
3307 /* FIXME: check this is ok */
3308 return put_user(tty->ldisc.num, (int __user *)p);
3309 case TIOCSETD:
3310 return tiocsetd(tty, p);
3311 #ifdef CONFIG_VT
3312 case TIOCLINUX:
3313 return tioclinux(tty, arg);
3314 #endif
3315 /*
3316 * Break handling
3317 */
3318 case TIOCSBRK: /* Turn break on, unconditionally */
3319 tty->driver->break_ctl(tty, -1);
3320 return 0;
3321
3322 case TIOCCBRK: /* Turn break off, unconditionally */
3323 tty->driver->break_ctl(tty, 0);
3324 return 0;
3325 case TCSBRK: /* SVID version: non-zero arg --> no break */
3326 /* non-zero arg means wait for all output data
3327 * to be sent (performed above) but don't send break.
3328 * This is used by the tcdrain() termios function.
3329 */
3330 if (!arg)
3331 return send_break(tty, 250);
3332 return 0;
3333 case TCSBRKP: /* support for POSIX tcsendbreak() */
3334 return send_break(tty, arg ? arg*100 : 250);
3335
3336 case TIOCMGET:
3337 return tty_tiocmget(tty, file, p);
3338
3339 case TIOCMSET:
3340 case TIOCMBIC:
3341 case TIOCMBIS:
3342 return tty_tiocmset(tty, file, cmd, p);
3343 }
3344 if (tty->driver->ioctl) {
3345 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3346 if (retval != -ENOIOCTLCMD)
3347 return retval;
3348 }
3349 ld = tty_ldisc_ref_wait(tty);
3350 retval = -EINVAL;
3351 if (ld->ioctl) {
3352 retval = ld->ioctl(tty, file, cmd, arg);
3353 if (retval == -ENOIOCTLCMD)
3354 retval = -EINVAL;
3355 }
3356 tty_ldisc_deref(ld);
3357 return retval;
3358 }
3359
3360
3361 /*
3362 * This implements the "Secure Attention Key" --- the idea is to
3363 * prevent trojan horses by killing all processes associated with this
3364 * tty when the user hits the "Secure Attention Key". Required for
3365 * super-paranoid applications --- see the Orange Book for more details.
3366 *
3367 * This code could be nicer; ideally it should send a HUP, wait a few
3368 * seconds, then send a INT, and then a KILL signal. But you then
3369 * have to coordinate with the init process, since all processes associated
3370 * with the current tty must be dead before the new getty is allowed
3371 * to spawn.
3372 *
3373 * Now, if it would be correct ;-/ The current code has a nasty hole -
3374 * it doesn't catch files in flight. We may send the descriptor to ourselves
3375 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3376 *
3377 * Nasty bug: do_SAK is being called in interrupt context. This can
3378 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3379 */
3380 void __do_SAK(struct tty_struct *tty)
3381 {
3382 #ifdef TTY_SOFT_SAK
3383 tty_hangup(tty);
3384 #else
3385 struct task_struct *g, *p;
3386 struct pid *session;
3387 int i;
3388 struct file *filp;
3389 struct fdtable *fdt;
3390
3391 if (!tty)
3392 return;
3393 session = tty->session;
3394
3395 tty_ldisc_flush(tty);
3396
3397 if (tty->driver->flush_buffer)
3398 tty->driver->flush_buffer(tty);
3399
3400 read_lock(&tasklist_lock);
3401 /* Kill the entire session */
3402 do_each_pid_task(session, PIDTYPE_SID, p) {
3403 printk(KERN_NOTICE "SAK: killed process %d"
3404 " (%s): process_session(p)==tty->session\n",
3405 p->pid, p->comm);
3406 send_sig(SIGKILL, p, 1);
3407 } while_each_pid_task(session, PIDTYPE_SID, p);
3408 /* Now kill any processes that happen to have the
3409 * tty open.
3410 */
3411 do_each_thread(g, p) {
3412 if (p->signal->tty == tty) {
3413 printk(KERN_NOTICE "SAK: killed process %d"
3414 " (%s): process_session(p)==tty->session\n",
3415 p->pid, p->comm);
3416 send_sig(SIGKILL, p, 1);
3417 continue;
3418 }
3419 task_lock(p);
3420 if (p->files) {
3421 /*
3422 * We don't take a ref to the file, so we must
3423 * hold ->file_lock instead.
3424 */
3425 spin_lock(&p->files->file_lock);
3426 fdt = files_fdtable(p->files);
3427 for (i=0; i < fdt->max_fds; i++) {
3428 filp = fcheck_files(p->files, i);
3429 if (!filp)
3430 continue;
3431 if (filp->f_op->read == tty_read &&
3432 filp->private_data == tty) {
3433 printk(KERN_NOTICE "SAK: killed process %d"
3434 " (%s): fd#%d opened to the tty\n",
3435 p->pid, p->comm, i);
3436 force_sig(SIGKILL, p);
3437 break;
3438 }
3439 }
3440 spin_unlock(&p->files->file_lock);
3441 }
3442 task_unlock(p);
3443 } while_each_thread(g, p);
3444 read_unlock(&tasklist_lock);
3445 #endif
3446 }
3447
3448 static void do_SAK_work(struct work_struct *work)
3449 {
3450 struct tty_struct *tty =
3451 container_of(work, struct tty_struct, SAK_work);
3452 __do_SAK(tty);
3453 }
3454
3455 /*
3456 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3457 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3458 * the values which we write to it will be identical to the values which it
3459 * already has. --akpm
3460 */
3461 void do_SAK(struct tty_struct *tty)
3462 {
3463 if (!tty)
3464 return;
3465 schedule_work(&tty->SAK_work);
3466 }
3467
3468 EXPORT_SYMBOL(do_SAK);
3469
3470 /**
3471 * flush_to_ldisc
3472 * @work: tty structure passed from work queue.
3473 *
3474 * This routine is called out of the software interrupt to flush data
3475 * from the buffer chain to the line discipline.
3476 *
3477 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3478 * while invoking the line discipline receive_buf method. The
3479 * receive_buf method is single threaded for each tty instance.
3480 */
3481
3482 static void flush_to_ldisc(struct work_struct *work)
3483 {
3484 struct tty_struct *tty =
3485 container_of(work, struct tty_struct, buf.work.work);
3486 unsigned long flags;
3487 struct tty_ldisc *disc;
3488 struct tty_buffer *tbuf, *head;
3489 char *char_buf;
3490 unsigned char *flag_buf;
3491
3492 disc = tty_ldisc_ref(tty);
3493 if (disc == NULL) /* !TTY_LDISC */
3494 return;
3495
3496 spin_lock_irqsave(&tty->buf.lock, flags);
3497 head = tty->buf.head;
3498 if (head != NULL) {
3499 tty->buf.head = NULL;
3500 for (;;) {
3501 int count = head->commit - head->read;
3502 if (!count) {
3503 if (head->next == NULL)
3504 break;
3505 tbuf = head;
3506 head = head->next;
3507 tty_buffer_free(tty, tbuf);
3508 continue;
3509 }
3510 if (!tty->receive_room) {
3511 schedule_delayed_work(&tty->buf.work, 1);
3512 break;
3513 }
3514 if (count > tty->receive_room)
3515 count = tty->receive_room;
3516 char_buf = head->char_buf_ptr + head->read;
3517 flag_buf = head->flag_buf_ptr + head->read;
3518 head->read += count;
3519 spin_unlock_irqrestore(&tty->buf.lock, flags);
3520 disc->receive_buf(tty, char_buf, flag_buf, count);
3521 spin_lock_irqsave(&tty->buf.lock, flags);
3522 }
3523 tty->buf.head = head;
3524 }
3525 spin_unlock_irqrestore(&tty->buf.lock, flags);
3526
3527 tty_ldisc_deref(disc);
3528 }
3529
3530 /**
3531 * tty_flip_buffer_push - terminal
3532 * @tty: tty to push
3533 *
3534 * Queue a push of the terminal flip buffers to the line discipline. This
3535 * function must not be called from IRQ context if tty->low_latency is set.
3536 *
3537 * In the event of the queue being busy for flipping the work will be
3538 * held off and retried later.
3539 *
3540 * Locking: tty buffer lock. Driver locks in low latency mode.
3541 */
3542
3543 void tty_flip_buffer_push(struct tty_struct *tty)
3544 {
3545 unsigned long flags;
3546 spin_lock_irqsave(&tty->buf.lock, flags);
3547 if (tty->buf.tail != NULL)
3548 tty->buf.tail->commit = tty->buf.tail->used;
3549 spin_unlock_irqrestore(&tty->buf.lock, flags);
3550
3551 if (tty->low_latency)
3552 flush_to_ldisc(&tty->buf.work.work);
3553 else
3554 schedule_delayed_work(&tty->buf.work, 1);
3555 }
3556
3557 EXPORT_SYMBOL(tty_flip_buffer_push);
3558
3559
3560 /**
3561 * initialize_tty_struct
3562 * @tty: tty to initialize
3563 *
3564 * This subroutine initializes a tty structure that has been newly
3565 * allocated.
3566 *
3567 * Locking: none - tty in question must not be exposed at this point
3568 */
3569
3570 static void initialize_tty_struct(struct tty_struct *tty)
3571 {
3572 memset(tty, 0, sizeof(struct tty_struct));
3573 tty->magic = TTY_MAGIC;
3574 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3575 tty->session = NULL;
3576 tty->pgrp = NULL;
3577 tty->overrun_time = jiffies;
3578 tty->buf.head = tty->buf.tail = NULL;
3579 tty_buffer_init(tty);
3580 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3581 init_MUTEX(&tty->buf.pty_sem);
3582 mutex_init(&tty->termios_mutex);
3583 init_waitqueue_head(&tty->write_wait);
3584 init_waitqueue_head(&tty->read_wait);
3585 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3586 mutex_init(&tty->atomic_read_lock);
3587 mutex_init(&tty->atomic_write_lock);
3588 spin_lock_init(&tty->read_lock);
3589 INIT_LIST_HEAD(&tty->tty_files);
3590 INIT_WORK(&tty->SAK_work, do_SAK_work);
3591 }
3592
3593 /*
3594 * The default put_char routine if the driver did not define one.
3595 */
3596
3597 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3598 {
3599 tty->driver->write(tty, &ch, 1);
3600 }
3601
3602 static struct class *tty_class;
3603
3604 /**
3605 * tty_register_device - register a tty device
3606 * @driver: the tty driver that describes the tty device
3607 * @index: the index in the tty driver for this tty device
3608 * @device: a struct device that is associated with this tty device.
3609 * This field is optional, if there is no known struct device
3610 * for this tty device it can be set to NULL safely.
3611 *
3612 * Returns a pointer to the struct device for this tty device
3613 * (or ERR_PTR(-EFOO) on error).
3614 *
3615 * This call is required to be made to register an individual tty device
3616 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3617 * that bit is not set, this function should not be called by a tty
3618 * driver.
3619 *
3620 * Locking: ??
3621 */
3622
3623 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3624 struct device *device)
3625 {
3626 char name[64];
3627 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3628
3629 if (index >= driver->num) {
3630 printk(KERN_ERR "Attempt to register invalid tty line number "
3631 " (%d).\n", index);
3632 return ERR_PTR(-EINVAL);
3633 }
3634
3635 if (driver->type == TTY_DRIVER_TYPE_PTY)
3636 pty_line_name(driver, index, name);
3637 else
3638 tty_line_name(driver, index, name);
3639
3640 return device_create(tty_class, device, dev, name);
3641 }
3642
3643 /**
3644 * tty_unregister_device - unregister a tty device
3645 * @driver: the tty driver that describes the tty device
3646 * @index: the index in the tty driver for this tty device
3647 *
3648 * If a tty device is registered with a call to tty_register_device() then
3649 * this function must be called when the tty device is gone.
3650 *
3651 * Locking: ??
3652 */
3653
3654 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3655 {
3656 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3657 }
3658
3659 EXPORT_SYMBOL(tty_register_device);
3660 EXPORT_SYMBOL(tty_unregister_device);
3661
3662 struct tty_driver *alloc_tty_driver(int lines)
3663 {
3664 struct tty_driver *driver;
3665
3666 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3667 if (driver) {
3668 memset(driver, 0, sizeof(struct tty_driver));
3669 driver->magic = TTY_DRIVER_MAGIC;
3670 driver->num = lines;
3671 /* later we'll move allocation of tables here */
3672 }
3673 return driver;
3674 }
3675
3676 void put_tty_driver(struct tty_driver *driver)
3677 {
3678 kfree(driver);
3679 }
3680
3681 void tty_set_operations(struct tty_driver *driver,
3682 const struct tty_operations *op)
3683 {
3684 driver->open = op->open;
3685 driver->close = op->close;
3686 driver->write = op->write;
3687 driver->put_char = op->put_char;
3688 driver->flush_chars = op->flush_chars;
3689 driver->write_room = op->write_room;
3690 driver->chars_in_buffer = op->chars_in_buffer;
3691 driver->ioctl = op->ioctl;
3692 driver->set_termios = op->set_termios;
3693 driver->throttle = op->throttle;
3694 driver->unthrottle = op->unthrottle;
3695 driver->stop = op->stop;
3696 driver->start = op->start;
3697 driver->hangup = op->hangup;
3698 driver->break_ctl = op->break_ctl;
3699 driver->flush_buffer = op->flush_buffer;
3700 driver->set_ldisc = op->set_ldisc;
3701 driver->wait_until_sent = op->wait_until_sent;
3702 driver->send_xchar = op->send_xchar;
3703 driver->read_proc = op->read_proc;
3704 driver->write_proc = op->write_proc;
3705 driver->tiocmget = op->tiocmget;
3706 driver->tiocmset = op->tiocmset;
3707 }
3708
3709
3710 EXPORT_SYMBOL(alloc_tty_driver);
3711 EXPORT_SYMBOL(put_tty_driver);
3712 EXPORT_SYMBOL(tty_set_operations);
3713
3714 /*
3715 * Called by a tty driver to register itself.
3716 */
3717 int tty_register_driver(struct tty_driver *driver)
3718 {
3719 int error;
3720 int i;
3721 dev_t dev;
3722 void **p = NULL;
3723
3724 if (driver->flags & TTY_DRIVER_INSTALLED)
3725 return 0;
3726
3727 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3728 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3729 if (!p)
3730 return -ENOMEM;
3731 }
3732
3733 if (!driver->major) {
3734 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3735 driver->name);
3736 if (!error) {
3737 driver->major = MAJOR(dev);
3738 driver->minor_start = MINOR(dev);
3739 }
3740 } else {
3741 dev = MKDEV(driver->major, driver->minor_start);
3742 error = register_chrdev_region(dev, driver->num, driver->name);
3743 }
3744 if (error < 0) {
3745 kfree(p);
3746 return error;
3747 }
3748
3749 if (p) {
3750 driver->ttys = (struct tty_struct **)p;
3751 driver->termios = (struct ktermios **)(p + driver->num);
3752 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3753 } else {
3754 driver->ttys = NULL;
3755 driver->termios = NULL;
3756 driver->termios_locked = NULL;
3757 }
3758
3759 cdev_init(&driver->cdev, &tty_fops);
3760 driver->cdev.owner = driver->owner;
3761 error = cdev_add(&driver->cdev, dev, driver->num);
3762 if (error) {
3763 unregister_chrdev_region(dev, driver->num);
3764 driver->ttys = NULL;
3765 driver->termios = driver->termios_locked = NULL;
3766 kfree(p);
3767 return error;
3768 }
3769
3770 if (!driver->put_char)
3771 driver->put_char = tty_default_put_char;
3772
3773 mutex_lock(&tty_mutex);
3774 list_add(&driver->tty_drivers, &tty_drivers);
3775 mutex_unlock(&tty_mutex);
3776
3777 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3778 for(i = 0; i < driver->num; i++)
3779 tty_register_device(driver, i, NULL);
3780 }
3781 proc_tty_register_driver(driver);
3782 return 0;
3783 }
3784
3785 EXPORT_SYMBOL(tty_register_driver);
3786
3787 /*
3788 * Called by a tty driver to unregister itself.
3789 */
3790 int tty_unregister_driver(struct tty_driver *driver)
3791 {
3792 int i;
3793 struct ktermios *tp;
3794 void *p;
3795
3796 if (driver->refcount)
3797 return -EBUSY;
3798
3799 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3800 driver->num);
3801 mutex_lock(&tty_mutex);
3802 list_del(&driver->tty_drivers);
3803 mutex_unlock(&tty_mutex);
3804
3805 /*
3806 * Free the termios and termios_locked structures because
3807 * we don't want to get memory leaks when modular tty
3808 * drivers are removed from the kernel.
3809 */
3810 for (i = 0; i < driver->num; i++) {
3811 tp = driver->termios[i];
3812 if (tp) {
3813 driver->termios[i] = NULL;
3814 kfree(tp);
3815 }
3816 tp = driver->termios_locked[i];
3817 if (tp) {
3818 driver->termios_locked[i] = NULL;
3819 kfree(tp);
3820 }
3821 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3822 tty_unregister_device(driver, i);
3823 }
3824 p = driver->ttys;
3825 proc_tty_unregister_driver(driver);
3826 driver->ttys = NULL;
3827 driver->termios = driver->termios_locked = NULL;
3828 kfree(p);
3829 cdev_del(&driver->cdev);
3830 return 0;
3831 }
3832 EXPORT_SYMBOL(tty_unregister_driver);
3833
3834 dev_t tty_devnum(struct tty_struct *tty)
3835 {
3836 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3837 }
3838 EXPORT_SYMBOL(tty_devnum);
3839
3840 void proc_clear_tty(struct task_struct *p)
3841 {
3842 spin_lock_irq(&p->sighand->siglock);
3843 p->signal->tty = NULL;
3844 spin_unlock_irq(&p->sighand->siglock);
3845 }
3846
3847 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3848 {
3849 if (tty) {
3850 /* We should not have a session or pgrp to here but.... */
3851 put_pid(tty->session);
3852 put_pid(tty->pgrp);
3853 tty->session = get_pid(task_session(tsk));
3854 tty->pgrp = get_pid(task_pgrp(tsk));
3855 }
3856 put_pid(tsk->signal->tty_old_pgrp);
3857 tsk->signal->tty = tty;
3858 tsk->signal->tty_old_pgrp = NULL;
3859 }
3860
3861 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3862 {
3863 spin_lock_irq(&tsk->sighand->siglock);
3864 __proc_set_tty(tsk, tty);
3865 spin_unlock_irq(&tsk->sighand->siglock);
3866 }
3867
3868 struct tty_struct *get_current_tty(void)
3869 {
3870 struct tty_struct *tty;
3871 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3872 tty = current->signal->tty;
3873 /*
3874 * session->tty can be changed/cleared from under us, make sure we
3875 * issue the load. The obtained pointer, when not NULL, is valid as
3876 * long as we hold tty_mutex.
3877 */
3878 barrier();
3879 return tty;
3880 }
3881 EXPORT_SYMBOL_GPL(get_current_tty);
3882
3883 /*
3884 * Initialize the console device. This is called *early*, so
3885 * we can't necessarily depend on lots of kernel help here.
3886 * Just do some early initializations, and do the complex setup
3887 * later.
3888 */
3889 void __init console_init(void)
3890 {
3891 initcall_t *call;
3892
3893 /* Setup the default TTY line discipline. */
3894 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3895
3896 /*
3897 * set up the console device so that later boot sequences can
3898 * inform about problems etc..
3899 */
3900 call = __con_initcall_start;
3901 while (call < __con_initcall_end) {
3902 (*call)();
3903 call++;
3904 }
3905 }
3906
3907 #ifdef CONFIG_VT
3908 extern int vty_init(void);
3909 #endif
3910
3911 static int __init tty_class_init(void)
3912 {
3913 tty_class = class_create(THIS_MODULE, "tty");
3914 if (IS_ERR(tty_class))
3915 return PTR_ERR(tty_class);
3916 return 0;
3917 }
3918
3919 postcore_initcall(tty_class_init);
3920
3921 /* 3/2004 jmc: why do these devices exist? */
3922
3923 static struct cdev tty_cdev, console_cdev;
3924 #ifdef CONFIG_UNIX98_PTYS
3925 static struct cdev ptmx_cdev;
3926 #endif
3927 #ifdef CONFIG_VT
3928 static struct cdev vc0_cdev;
3929 #endif
3930
3931 /*
3932 * Ok, now we can initialize the rest of the tty devices and can count
3933 * on memory allocations, interrupts etc..
3934 */
3935 static int __init tty_init(void)
3936 {
3937 cdev_init(&tty_cdev, &tty_fops);
3938 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3939 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3940 panic("Couldn't register /dev/tty driver\n");
3941 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3942
3943 cdev_init(&console_cdev, &console_fops);
3944 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3945 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3946 panic("Couldn't register /dev/console driver\n");
3947 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3948
3949 #ifdef CONFIG_UNIX98_PTYS
3950 cdev_init(&ptmx_cdev, &ptmx_fops);
3951 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3952 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3953 panic("Couldn't register /dev/ptmx driver\n");
3954 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3955 #endif
3956
3957 #ifdef CONFIG_VT
3958 cdev_init(&vc0_cdev, &console_fops);
3959 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3960 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3961 panic("Couldn't register /dev/tty0 driver\n");
3962 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3963
3964 vty_init();
3965 #endif
3966 return 0;
3967 }
3968 module_init(tty_init);
This page took 0.112699 seconds and 5 git commands to generate.