Merge branches 'metronomefb', 'pxa-cm2xx', 'pxa-gumstix', 'pxa-misc', 'pxa-mitac...
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *,
149 size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file *filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166 * alloc_tty_struct - allocate a tty object
167 *
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
170 *
171 * Locking: none
172 */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 static void tty_buffer_free_all(struct tty_struct *);
180
181 /**
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
184 *
185 * Free the write buffers, tty queue and tty memory itself.
186 *
187 * Locking: none. Must be called after tty is definitely unused
188 */
189
190 static inline void free_tty_struct(struct tty_struct *tty)
191 {
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
194 kfree(tty);
195 }
196
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
198
199 /**
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
203 *
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
206 *
207 * Locking: none
208 */
209
210 char *tty_name(struct tty_struct *tty, char *buf)
211 {
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
214 else
215 strcpy(buf, tty->name);
216 return buf;
217 }
218
219 EXPORT_SYMBOL(tty_name);
220
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222 const char *routine)
223 {
224 #ifdef TTY_PARANOIA_CHECK
225 if (!tty) {
226 printk(KERN_WARNING
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
230 }
231 if (tty->magic != TTY_MAGIC) {
232 printk(KERN_WARNING
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
235 return 1;
236 }
237 #endif
238 return 0;
239 }
240
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
242 {
243 #ifdef CHECK_TTY_COUNT
244 struct list_head *p;
245 int count = 0;
246
247 file_list_lock();
248 list_for_each(p, &tty->tty_files) {
249 count++;
250 }
251 file_list_unlock();
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
255 count++;
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
260 return count;
261 }
262 #endif
263 return 0;
264 }
265
266 /*
267 * Tty buffer allocation management
268 */
269
270 /**
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
273 *
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
276 *
277 * Locking: none
278 */
279
280 static void tty_buffer_free_all(struct tty_struct *tty)
281 {
282 struct tty_buffer *thead;
283 while ((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
285 kfree(thead);
286 }
287 while ((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
289 kfree(thead);
290 }
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
293 }
294
295 /**
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
298 *
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
301 *
302 * Locking: none
303 */
304
305 static void tty_buffer_init(struct tty_struct *tty)
306 {
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
312 }
313
314 /**
315 * tty_buffer_alloc - allocate a tty buffer
316 * @tty: tty device
317 * @size: desired size (characters)
318 *
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
321 * per device queue
322 *
323 * Locking: Caller must hold tty->buf.lock
324 */
325
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
327 {
328 struct tty_buffer *p;
329
330 if (tty->buf.memory_used + size > 65536)
331 return NULL;
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333 if (p == NULL)
334 return NULL;
335 p->used = 0;
336 p->size = size;
337 p->next = NULL;
338 p->commit = 0;
339 p->read = 0;
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
343 return p;
344 }
345
346 /**
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
350 *
351 * Free a tty buffer, or add it to the free list according to our
352 * internal strategy
353 *
354 * Locking: Caller must hold tty->buf.lock
355 */
356
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
358 {
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
362
363 if (b->size >= 512)
364 kfree(b);
365 else {
366 b->next = tty->buf.free;
367 tty->buf.free = b;
368 }
369 }
370
371 /**
372 * __tty_buffer_flush - flush full tty buffers
373 * @tty: tty to flush
374 *
375 * flush all the buffers containing receive data. Caller must
376 * hold the buffer lock and must have ensured no parallel flush to
377 * ldisc is running.
378 *
379 * Locking: Caller must hold tty->buf.lock
380 */
381
382 static void __tty_buffer_flush(struct tty_struct *tty)
383 {
384 struct tty_buffer *thead;
385
386 while ((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
389 }
390 tty->buf.tail = NULL;
391 }
392
393 /**
394 * tty_buffer_flush - flush full tty buffers
395 * @tty: tty to flush
396 *
397 * flush all the buffers containing receive data. If the buffer is
398 * being processed by flush_to_ldisc then we defer the processing
399 * to that function
400 *
401 * Locking: none
402 */
403
404 static void tty_buffer_flush(struct tty_struct *tty)
405 {
406 unsigned long flags;
407 spin_lock_irqsave(&tty->buf.lock, flags);
408
409 /* If the data is being pushed to the tty layer then we can't
410 process it here. Instead set a flag and the flush_to_ldisc
411 path will process the flush request before it exits */
412 if (test_bit(TTY_FLUSHING, &tty->flags)) {
413 set_bit(TTY_FLUSHPENDING, &tty->flags);
414 spin_unlock_irqrestore(&tty->buf.lock, flags);
415 wait_event(tty->read_wait,
416 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
417 return;
418 } else
419 __tty_buffer_flush(tty);
420 spin_unlock_irqrestore(&tty->buf.lock, flags);
421 }
422
423 /**
424 * tty_buffer_find - find a free tty buffer
425 * @tty: tty owning the buffer
426 * @size: characters wanted
427 *
428 * Locate an existing suitable tty buffer or if we are lacking one then
429 * allocate a new one. We round our buffers off in 256 character chunks
430 * to get better allocation behaviour.
431 *
432 * Locking: Caller must hold tty->buf.lock
433 */
434
435 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
436 {
437 struct tty_buffer **tbh = &tty->buf.free;
438 while ((*tbh) != NULL) {
439 struct tty_buffer *t = *tbh;
440 if (t->size >= size) {
441 *tbh = t->next;
442 t->next = NULL;
443 t->used = 0;
444 t->commit = 0;
445 t->read = 0;
446 tty->buf.memory_used += t->size;
447 return t;
448 }
449 tbh = &((*tbh)->next);
450 }
451 /* Round the buffer size out */
452 size = (size + 0xFF) & ~0xFF;
453 return tty_buffer_alloc(tty, size);
454 /* Should possibly check if this fails for the largest buffer we
455 have queued and recycle that ? */
456 }
457
458 /**
459 * tty_buffer_request_room - grow tty buffer if needed
460 * @tty: tty structure
461 * @size: size desired
462 *
463 * Make at least size bytes of linear space available for the tty
464 * buffer. If we fail return the size we managed to find.
465 *
466 * Locking: Takes tty->buf.lock
467 */
468 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
469 {
470 struct tty_buffer *b, *n;
471 int left;
472 unsigned long flags;
473
474 spin_lock_irqsave(&tty->buf.lock, flags);
475
476 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
477 remove this conditional if its worth it. This would be invisible
478 to the callers */
479 if ((b = tty->buf.tail) != NULL)
480 left = b->size - b->used;
481 else
482 left = 0;
483
484 if (left < size) {
485 /* This is the slow path - looking for new buffers to use */
486 if ((n = tty_buffer_find(tty, size)) != NULL) {
487 if (b != NULL) {
488 b->next = n;
489 b->commit = b->used;
490 } else
491 tty->buf.head = n;
492 tty->buf.tail = n;
493 } else
494 size = left;
495 }
496
497 spin_unlock_irqrestore(&tty->buf.lock, flags);
498 return size;
499 }
500 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
501
502 /**
503 * tty_insert_flip_string - Add characters to the tty buffer
504 * @tty: tty structure
505 * @chars: characters
506 * @size: size
507 *
508 * Queue a series of bytes to the tty buffering. All the characters
509 * passed are marked as without error. Returns the number added.
510 *
511 * Locking: Called functions may take tty->buf.lock
512 */
513
514 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
515 size_t size)
516 {
517 int copied = 0;
518 do {
519 int space = tty_buffer_request_room(tty, size - copied);
520 struct tty_buffer *tb = tty->buf.tail;
521 /* If there is no space then tb may be NULL */
522 if (unlikely(space == 0))
523 break;
524 memcpy(tb->char_buf_ptr + tb->used, chars, space);
525 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
526 tb->used += space;
527 copied += space;
528 chars += space;
529 /* There is a small chance that we need to split the data over
530 several buffers. If this is the case we must loop */
531 } while (unlikely(size > copied));
532 return copied;
533 }
534 EXPORT_SYMBOL(tty_insert_flip_string);
535
536 /**
537 * tty_insert_flip_string_flags - Add characters to the tty buffer
538 * @tty: tty structure
539 * @chars: characters
540 * @flags: flag bytes
541 * @size: size
542 *
543 * Queue a series of bytes to the tty buffering. For each character
544 * the flags array indicates the status of the character. Returns the
545 * number added.
546 *
547 * Locking: Called functions may take tty->buf.lock
548 */
549
550 int tty_insert_flip_string_flags(struct tty_struct *tty,
551 const unsigned char *chars, const char *flags, size_t size)
552 {
553 int copied = 0;
554 do {
555 int space = tty_buffer_request_room(tty, size - copied);
556 struct tty_buffer *tb = tty->buf.tail;
557 /* If there is no space then tb may be NULL */
558 if (unlikely(space == 0))
559 break;
560 memcpy(tb->char_buf_ptr + tb->used, chars, space);
561 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
562 tb->used += space;
563 copied += space;
564 chars += space;
565 flags += space;
566 /* There is a small chance that we need to split the data over
567 several buffers. If this is the case we must loop */
568 } while (unlikely(size > copied));
569 return copied;
570 }
571 EXPORT_SYMBOL(tty_insert_flip_string_flags);
572
573 /**
574 * tty_schedule_flip - push characters to ldisc
575 * @tty: tty to push from
576 *
577 * Takes any pending buffers and transfers their ownership to the
578 * ldisc side of the queue. It then schedules those characters for
579 * processing by the line discipline.
580 *
581 * Locking: Takes tty->buf.lock
582 */
583
584 void tty_schedule_flip(struct tty_struct *tty)
585 {
586 unsigned long flags;
587 spin_lock_irqsave(&tty->buf.lock, flags);
588 if (tty->buf.tail != NULL)
589 tty->buf.tail->commit = tty->buf.tail->used;
590 spin_unlock_irqrestore(&tty->buf.lock, flags);
591 schedule_delayed_work(&tty->buf.work, 1);
592 }
593 EXPORT_SYMBOL(tty_schedule_flip);
594
595 /**
596 * tty_prepare_flip_string - make room for characters
597 * @tty: tty
598 * @chars: return pointer for character write area
599 * @size: desired size
600 *
601 * Prepare a block of space in the buffer for data. Returns the length
602 * available and buffer pointer to the space which is now allocated and
603 * accounted for as ready for normal characters. This is used for drivers
604 * that need their own block copy routines into the buffer. There is no
605 * guarantee the buffer is a DMA target!
606 *
607 * Locking: May call functions taking tty->buf.lock
608 */
609
610 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars,
611 size_t size)
612 {
613 int space = tty_buffer_request_room(tty, size);
614 if (likely(space)) {
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
618 tb->used += space;
619 }
620 return space;
621 }
622
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
624
625 /**
626 * tty_prepare_flip_string_flags - make room for characters
627 * @tty: tty
628 * @chars: return pointer for character write area
629 * @flags: return pointer for status flag write area
630 * @size: desired size
631 *
632 * Prepare a block of space in the buffer for data. Returns the length
633 * available and buffer pointer to the space which is now allocated and
634 * accounted for as ready for characters. This is used for drivers
635 * that need their own block copy routines into the buffer. There is no
636 * guarantee the buffer is a DMA target!
637 *
638 * Locking: May call functions taking tty->buf.lock
639 */
640
641 int tty_prepare_flip_string_flags(struct tty_struct *tty,
642 unsigned char **chars, char **flags, size_t size)
643 {
644 int space = tty_buffer_request_room(tty, size);
645 if (likely(space)) {
646 struct tty_buffer *tb = tty->buf.tail;
647 *chars = tb->char_buf_ptr + tb->used;
648 *flags = tb->flag_buf_ptr + tb->used;
649 tb->used += space;
650 }
651 return space;
652 }
653
654 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
655
656
657
658 /**
659 * get_tty_driver - find device of a tty
660 * @dev_t: device identifier
661 * @index: returns the index of the tty
662 *
663 * This routine returns a tty driver structure, given a device number
664 * and also passes back the index number.
665 *
666 * Locking: caller must hold tty_mutex
667 */
668
669 static struct tty_driver *get_tty_driver(dev_t device, int *index)
670 {
671 struct tty_driver *p;
672
673 list_for_each_entry(p, &tty_drivers, tty_drivers) {
674 dev_t base = MKDEV(p->major, p->minor_start);
675 if (device < base || device >= base + p->num)
676 continue;
677 *index = device - base;
678 return p;
679 }
680 return NULL;
681 }
682
683 #ifdef CONFIG_CONSOLE_POLL
684
685 /**
686 * tty_find_polling_driver - find device of a polled tty
687 * @name: name string to match
688 * @line: pointer to resulting tty line nr
689 *
690 * This routine returns a tty driver structure, given a name
691 * and the condition that the tty driver is capable of polled
692 * operation.
693 */
694 struct tty_driver *tty_find_polling_driver(char *name, int *line)
695 {
696 struct tty_driver *p, *res = NULL;
697 int tty_line = 0;
698 char *str;
699
700 mutex_lock(&tty_mutex);
701 /* Search through the tty devices to look for a match */
702 list_for_each_entry(p, &tty_drivers, tty_drivers) {
703 str = name + strlen(p->name);
704 tty_line = simple_strtoul(str, &str, 10);
705 if (*str == ',')
706 str++;
707 if (*str == '\0')
708 str = NULL;
709
710 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
711 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
712 res = p;
713 *line = tty_line;
714 break;
715 }
716 }
717 mutex_unlock(&tty_mutex);
718
719 return res;
720 }
721 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
722 #endif
723
724 /**
725 * tty_check_change - check for POSIX terminal changes
726 * @tty: tty to check
727 *
728 * If we try to write to, or set the state of, a terminal and we're
729 * not in the foreground, send a SIGTTOU. If the signal is blocked or
730 * ignored, go ahead and perform the operation. (POSIX 7.2)
731 *
732 * Locking: ctrl_lock
733 */
734
735 int tty_check_change(struct tty_struct *tty)
736 {
737 unsigned long flags;
738 int ret = 0;
739
740 if (current->signal->tty != tty)
741 return 0;
742
743 spin_lock_irqsave(&tty->ctrl_lock, flags);
744
745 if (!tty->pgrp) {
746 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
747 goto out_unlock;
748 }
749 if (task_pgrp(current) == tty->pgrp)
750 goto out_unlock;
751 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
752 if (is_ignored(SIGTTOU))
753 goto out;
754 if (is_current_pgrp_orphaned()) {
755 ret = -EIO;
756 goto out;
757 }
758 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
759 set_thread_flag(TIF_SIGPENDING);
760 ret = -ERESTARTSYS;
761 out:
762 return ret;
763 out_unlock:
764 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
765 return ret;
766 }
767
768 EXPORT_SYMBOL(tty_check_change);
769
770 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
771 size_t count, loff_t *ppos)
772 {
773 return 0;
774 }
775
776 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
777 size_t count, loff_t *ppos)
778 {
779 return -EIO;
780 }
781
782 /* No kernel lock held - none needed ;) */
783 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
784 {
785 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
786 }
787
788 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
789 unsigned long arg)
790 {
791 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
792 }
793
794 static long hung_up_tty_compat_ioctl(struct file *file,
795 unsigned int cmd, unsigned long arg)
796 {
797 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
798 }
799
800 static const struct file_operations tty_fops = {
801 .llseek = no_llseek,
802 .read = tty_read,
803 .write = tty_write,
804 .poll = tty_poll,
805 .unlocked_ioctl = tty_ioctl,
806 .compat_ioctl = tty_compat_ioctl,
807 .open = tty_open,
808 .release = tty_release,
809 .fasync = tty_fasync,
810 };
811
812 #ifdef CONFIG_UNIX98_PTYS
813 static const struct file_operations ptmx_fops = {
814 .llseek = no_llseek,
815 .read = tty_read,
816 .write = tty_write,
817 .poll = tty_poll,
818 .unlocked_ioctl = tty_ioctl,
819 .compat_ioctl = tty_compat_ioctl,
820 .open = ptmx_open,
821 .release = tty_release,
822 .fasync = tty_fasync,
823 };
824 #endif
825
826 static const struct file_operations console_fops = {
827 .llseek = no_llseek,
828 .read = tty_read,
829 .write = redirected_tty_write,
830 .poll = tty_poll,
831 .unlocked_ioctl = tty_ioctl,
832 .compat_ioctl = tty_compat_ioctl,
833 .open = tty_open,
834 .release = tty_release,
835 .fasync = tty_fasync,
836 };
837
838 static const struct file_operations hung_up_tty_fops = {
839 .llseek = no_llseek,
840 .read = hung_up_tty_read,
841 .write = hung_up_tty_write,
842 .poll = hung_up_tty_poll,
843 .unlocked_ioctl = hung_up_tty_ioctl,
844 .compat_ioctl = hung_up_tty_compat_ioctl,
845 .release = tty_release,
846 };
847
848 static DEFINE_SPINLOCK(redirect_lock);
849 static struct file *redirect;
850
851 /**
852 * tty_wakeup - request more data
853 * @tty: terminal
854 *
855 * Internal and external helper for wakeups of tty. This function
856 * informs the line discipline if present that the driver is ready
857 * to receive more output data.
858 */
859
860 void tty_wakeup(struct tty_struct *tty)
861 {
862 struct tty_ldisc *ld;
863
864 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
865 ld = tty_ldisc_ref(tty);
866 if (ld) {
867 if (ld->ops->write_wakeup)
868 ld->ops->write_wakeup(tty);
869 tty_ldisc_deref(ld);
870 }
871 }
872 wake_up_interruptible(&tty->write_wait);
873 }
874
875 EXPORT_SYMBOL_GPL(tty_wakeup);
876
877 /**
878 * tty_ldisc_flush - flush line discipline queue
879 * @tty: tty
880 *
881 * Flush the line discipline queue (if any) for this tty. If there
882 * is no line discipline active this is a no-op.
883 */
884
885 void tty_ldisc_flush(struct tty_struct *tty)
886 {
887 struct tty_ldisc *ld = tty_ldisc_ref(tty);
888 if (ld) {
889 if (ld->ops->flush_buffer)
890 ld->ops->flush_buffer(tty);
891 tty_ldisc_deref(ld);
892 }
893 tty_buffer_flush(tty);
894 }
895
896 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
897
898 /**
899 * tty_reset_termios - reset terminal state
900 * @tty: tty to reset
901 *
902 * Restore a terminal to the driver default state
903 */
904
905 static void tty_reset_termios(struct tty_struct *tty)
906 {
907 mutex_lock(&tty->termios_mutex);
908 *tty->termios = tty->driver->init_termios;
909 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
910 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
911 mutex_unlock(&tty->termios_mutex);
912 }
913
914 /**
915 * do_tty_hangup - actual handler for hangup events
916 * @work: tty device
917 *
918 * This can be called by the "eventd" kernel thread. That is process
919 * synchronous but doesn't hold any locks, so we need to make sure we
920 * have the appropriate locks for what we're doing.
921 *
922 * The hangup event clears any pending redirections onto the hung up
923 * device. It ensures future writes will error and it does the needed
924 * line discipline hangup and signal delivery. The tty object itself
925 * remains intact.
926 *
927 * Locking:
928 * BKL
929 * redirect lock for undoing redirection
930 * file list lock for manipulating list of ttys
931 * tty_ldisc_lock from called functions
932 * termios_mutex resetting termios data
933 * tasklist_lock to walk task list for hangup event
934 * ->siglock to protect ->signal/->sighand
935 */
936 static void do_tty_hangup(struct work_struct *work)
937 {
938 struct tty_struct *tty =
939 container_of(work, struct tty_struct, hangup_work);
940 struct file *cons_filp = NULL;
941 struct file *filp, *f = NULL;
942 struct task_struct *p;
943 struct tty_ldisc *ld;
944 int closecount = 0, n;
945 unsigned long flags;
946
947 if (!tty)
948 return;
949
950 /* inuse_filps is protected by the single kernel lock */
951 lock_kernel();
952
953 spin_lock(&redirect_lock);
954 if (redirect && redirect->private_data == tty) {
955 f = redirect;
956 redirect = NULL;
957 }
958 spin_unlock(&redirect_lock);
959
960 check_tty_count(tty, "do_tty_hangup");
961 file_list_lock();
962 /* This breaks for file handles being sent over AF_UNIX sockets ? */
963 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
964 if (filp->f_op->write == redirected_tty_write)
965 cons_filp = filp;
966 if (filp->f_op->write != tty_write)
967 continue;
968 closecount++;
969 tty_fasync(-1, filp, 0); /* can't block */
970 filp->f_op = &hung_up_tty_fops;
971 }
972 file_list_unlock();
973 /*
974 * FIXME! What are the locking issues here? This may me overdoing
975 * things... This question is especially important now that we've
976 * removed the irqlock.
977 */
978 ld = tty_ldisc_ref(tty);
979 if (ld != NULL) {
980 /* We may have no line discipline at this point */
981 if (ld->ops->flush_buffer)
982 ld->ops->flush_buffer(tty);
983 tty_driver_flush_buffer(tty);
984 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
985 ld->ops->write_wakeup)
986 ld->ops->write_wakeup(tty);
987 if (ld->ops->hangup)
988 ld->ops->hangup(tty);
989 }
990 /*
991 * FIXME: Once we trust the LDISC code better we can wait here for
992 * ldisc completion and fix the driver call race
993 */
994 wake_up_interruptible(&tty->write_wait);
995 wake_up_interruptible(&tty->read_wait);
996 /*
997 * Shutdown the current line discipline, and reset it to
998 * N_TTY.
999 */
1000 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1001 tty_reset_termios(tty);
1002 /* Defer ldisc switch */
1003 /* tty_deferred_ldisc_switch(N_TTY);
1004
1005 This should get done automatically when the port closes and
1006 tty_release is called */
1007
1008 read_lock(&tasklist_lock);
1009 if (tty->session) {
1010 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1011 spin_lock_irq(&p->sighand->siglock);
1012 if (p->signal->tty == tty)
1013 p->signal->tty = NULL;
1014 if (!p->signal->leader) {
1015 spin_unlock_irq(&p->sighand->siglock);
1016 continue;
1017 }
1018 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1019 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1020 put_pid(p->signal->tty_old_pgrp); /* A noop */
1021 spin_lock_irqsave(&tty->ctrl_lock, flags);
1022 if (tty->pgrp)
1023 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1024 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1025 spin_unlock_irq(&p->sighand->siglock);
1026 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1027 }
1028 read_unlock(&tasklist_lock);
1029
1030 spin_lock_irqsave(&tty->ctrl_lock, flags);
1031 tty->flags = 0;
1032 put_pid(tty->session);
1033 put_pid(tty->pgrp);
1034 tty->session = NULL;
1035 tty->pgrp = NULL;
1036 tty->ctrl_status = 0;
1037 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1038
1039 /*
1040 * If one of the devices matches a console pointer, we
1041 * cannot just call hangup() because that will cause
1042 * tty->count and state->count to go out of sync.
1043 * So we just call close() the right number of times.
1044 */
1045 if (cons_filp) {
1046 if (tty->ops->close)
1047 for (n = 0; n < closecount; n++)
1048 tty->ops->close(tty, cons_filp);
1049 } else if (tty->ops->hangup)
1050 (tty->ops->hangup)(tty);
1051 /*
1052 * We don't want to have driver/ldisc interactions beyond
1053 * the ones we did here. The driver layer expects no
1054 * calls after ->hangup() from the ldisc side. However we
1055 * can't yet guarantee all that.
1056 */
1057 set_bit(TTY_HUPPED, &tty->flags);
1058 if (ld) {
1059 tty_ldisc_enable(tty);
1060 tty_ldisc_deref(ld);
1061 }
1062 unlock_kernel();
1063 if (f)
1064 fput(f);
1065 }
1066
1067 /**
1068 * tty_hangup - trigger a hangup event
1069 * @tty: tty to hangup
1070 *
1071 * A carrier loss (virtual or otherwise) has occurred on this like
1072 * schedule a hangup sequence to run after this event.
1073 */
1074
1075 void tty_hangup(struct tty_struct *tty)
1076 {
1077 #ifdef TTY_DEBUG_HANGUP
1078 char buf[64];
1079 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1080 #endif
1081 schedule_work(&tty->hangup_work);
1082 }
1083
1084 EXPORT_SYMBOL(tty_hangup);
1085
1086 /**
1087 * tty_vhangup - process vhangup
1088 * @tty: tty to hangup
1089 *
1090 * The user has asked via system call for the terminal to be hung up.
1091 * We do this synchronously so that when the syscall returns the process
1092 * is complete. That guarantee is necessary for security reasons.
1093 */
1094
1095 void tty_vhangup(struct tty_struct *tty)
1096 {
1097 #ifdef TTY_DEBUG_HANGUP
1098 char buf[64];
1099
1100 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1101 #endif
1102 do_tty_hangup(&tty->hangup_work);
1103 }
1104
1105 EXPORT_SYMBOL(tty_vhangup);
1106
1107 /**
1108 * tty_hung_up_p - was tty hung up
1109 * @filp: file pointer of tty
1110 *
1111 * Return true if the tty has been subject to a vhangup or a carrier
1112 * loss
1113 */
1114
1115 int tty_hung_up_p(struct file *filp)
1116 {
1117 return (filp->f_op == &hung_up_tty_fops);
1118 }
1119
1120 EXPORT_SYMBOL(tty_hung_up_p);
1121
1122 static void session_clear_tty(struct pid *session)
1123 {
1124 struct task_struct *p;
1125 do_each_pid_task(session, PIDTYPE_SID, p) {
1126 proc_clear_tty(p);
1127 } while_each_pid_task(session, PIDTYPE_SID, p);
1128 }
1129
1130 /**
1131 * disassociate_ctty - disconnect controlling tty
1132 * @on_exit: true if exiting so need to "hang up" the session
1133 *
1134 * This function is typically called only by the session leader, when
1135 * it wants to disassociate itself from its controlling tty.
1136 *
1137 * It performs the following functions:
1138 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1139 * (2) Clears the tty from being controlling the session
1140 * (3) Clears the controlling tty for all processes in the
1141 * session group.
1142 *
1143 * The argument on_exit is set to 1 if called when a process is
1144 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1145 *
1146 * Locking:
1147 * BKL is taken for hysterical raisins
1148 * tty_mutex is taken to protect tty
1149 * ->siglock is taken to protect ->signal/->sighand
1150 * tasklist_lock is taken to walk process list for sessions
1151 * ->siglock is taken to protect ->signal/->sighand
1152 */
1153
1154 void disassociate_ctty(int on_exit)
1155 {
1156 struct tty_struct *tty;
1157 struct pid *tty_pgrp = NULL;
1158
1159
1160 mutex_lock(&tty_mutex);
1161 tty = get_current_tty();
1162 if (tty) {
1163 tty_pgrp = get_pid(tty->pgrp);
1164 lock_kernel();
1165 mutex_unlock(&tty_mutex);
1166 /* XXX: here we race, there is nothing protecting tty */
1167 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1168 tty_vhangup(tty);
1169 unlock_kernel();
1170 } else if (on_exit) {
1171 struct pid *old_pgrp;
1172 spin_lock_irq(&current->sighand->siglock);
1173 old_pgrp = current->signal->tty_old_pgrp;
1174 current->signal->tty_old_pgrp = NULL;
1175 spin_unlock_irq(&current->sighand->siglock);
1176 if (old_pgrp) {
1177 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1178 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1179 put_pid(old_pgrp);
1180 }
1181 mutex_unlock(&tty_mutex);
1182 return;
1183 }
1184 if (tty_pgrp) {
1185 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1186 if (!on_exit)
1187 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1188 put_pid(tty_pgrp);
1189 }
1190
1191 spin_lock_irq(&current->sighand->siglock);
1192 put_pid(current->signal->tty_old_pgrp);
1193 current->signal->tty_old_pgrp = NULL;
1194 spin_unlock_irq(&current->sighand->siglock);
1195
1196 mutex_lock(&tty_mutex);
1197 /* It is possible that do_tty_hangup has free'd this tty */
1198 tty = get_current_tty();
1199 if (tty) {
1200 unsigned long flags;
1201 spin_lock_irqsave(&tty->ctrl_lock, flags);
1202 put_pid(tty->session);
1203 put_pid(tty->pgrp);
1204 tty->session = NULL;
1205 tty->pgrp = NULL;
1206 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1207 } else {
1208 #ifdef TTY_DEBUG_HANGUP
1209 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1210 " = NULL", tty);
1211 #endif
1212 }
1213 mutex_unlock(&tty_mutex);
1214
1215 /* Now clear signal->tty under the lock */
1216 read_lock(&tasklist_lock);
1217 session_clear_tty(task_session(current));
1218 read_unlock(&tasklist_lock);
1219 }
1220
1221 /**
1222 *
1223 * no_tty - Ensure the current process does not have a controlling tty
1224 */
1225 void no_tty(void)
1226 {
1227 struct task_struct *tsk = current;
1228 lock_kernel();
1229 if (tsk->signal->leader)
1230 disassociate_ctty(0);
1231 unlock_kernel();
1232 proc_clear_tty(tsk);
1233 }
1234
1235
1236 /**
1237 * stop_tty - propagate flow control
1238 * @tty: tty to stop
1239 *
1240 * Perform flow control to the driver. For PTY/TTY pairs we
1241 * must also propagate the TIOCKPKT status. May be called
1242 * on an already stopped device and will not re-call the driver
1243 * method.
1244 *
1245 * This functionality is used by both the line disciplines for
1246 * halting incoming flow and by the driver. It may therefore be
1247 * called from any context, may be under the tty atomic_write_lock
1248 * but not always.
1249 *
1250 * Locking:
1251 * Uses the tty control lock internally
1252 */
1253
1254 void stop_tty(struct tty_struct *tty)
1255 {
1256 unsigned long flags;
1257 spin_lock_irqsave(&tty->ctrl_lock, flags);
1258 if (tty->stopped) {
1259 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1260 return;
1261 }
1262 tty->stopped = 1;
1263 if (tty->link && tty->link->packet) {
1264 tty->ctrl_status &= ~TIOCPKT_START;
1265 tty->ctrl_status |= TIOCPKT_STOP;
1266 wake_up_interruptible(&tty->link->read_wait);
1267 }
1268 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1269 if (tty->ops->stop)
1270 (tty->ops->stop)(tty);
1271 }
1272
1273 EXPORT_SYMBOL(stop_tty);
1274
1275 /**
1276 * start_tty - propagate flow control
1277 * @tty: tty to start
1278 *
1279 * Start a tty that has been stopped if at all possible. Perform
1280 * any necessary wakeups and propagate the TIOCPKT status. If this
1281 * is the tty was previous stopped and is being started then the
1282 * driver start method is invoked and the line discipline woken.
1283 *
1284 * Locking:
1285 * ctrl_lock
1286 */
1287
1288 void start_tty(struct tty_struct *tty)
1289 {
1290 unsigned long flags;
1291 spin_lock_irqsave(&tty->ctrl_lock, flags);
1292 if (!tty->stopped || tty->flow_stopped) {
1293 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1294 return;
1295 }
1296 tty->stopped = 0;
1297 if (tty->link && tty->link->packet) {
1298 tty->ctrl_status &= ~TIOCPKT_STOP;
1299 tty->ctrl_status |= TIOCPKT_START;
1300 wake_up_interruptible(&tty->link->read_wait);
1301 }
1302 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1303 if (tty->ops->start)
1304 (tty->ops->start)(tty);
1305 /* If we have a running line discipline it may need kicking */
1306 tty_wakeup(tty);
1307 }
1308
1309 EXPORT_SYMBOL(start_tty);
1310
1311 /**
1312 * tty_read - read method for tty device files
1313 * @file: pointer to tty file
1314 * @buf: user buffer
1315 * @count: size of user buffer
1316 * @ppos: unused
1317 *
1318 * Perform the read system call function on this terminal device. Checks
1319 * for hung up devices before calling the line discipline method.
1320 *
1321 * Locking:
1322 * Locks the line discipline internally while needed. Multiple
1323 * read calls may be outstanding in parallel.
1324 */
1325
1326 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1327 loff_t *ppos)
1328 {
1329 int i;
1330 struct tty_struct *tty;
1331 struct inode *inode;
1332 struct tty_ldisc *ld;
1333
1334 tty = (struct tty_struct *)file->private_data;
1335 inode = file->f_path.dentry->d_inode;
1336 if (tty_paranoia_check(tty, inode, "tty_read"))
1337 return -EIO;
1338 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1339 return -EIO;
1340
1341 /* We want to wait for the line discipline to sort out in this
1342 situation */
1343 ld = tty_ldisc_ref_wait(tty);
1344 if (ld->ops->read)
1345 i = (ld->ops->read)(tty, file, buf, count);
1346 else
1347 i = -EIO;
1348 tty_ldisc_deref(ld);
1349 if (i > 0)
1350 inode->i_atime = current_fs_time(inode->i_sb);
1351 return i;
1352 }
1353
1354 void tty_write_unlock(struct tty_struct *tty)
1355 {
1356 mutex_unlock(&tty->atomic_write_lock);
1357 wake_up_interruptible(&tty->write_wait);
1358 }
1359
1360 int tty_write_lock(struct tty_struct *tty, int ndelay)
1361 {
1362 if (!mutex_trylock(&tty->atomic_write_lock)) {
1363 if (ndelay)
1364 return -EAGAIN;
1365 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1366 return -ERESTARTSYS;
1367 }
1368 return 0;
1369 }
1370
1371 /*
1372 * Split writes up in sane blocksizes to avoid
1373 * denial-of-service type attacks
1374 */
1375 static inline ssize_t do_tty_write(
1376 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1377 struct tty_struct *tty,
1378 struct file *file,
1379 const char __user *buf,
1380 size_t count)
1381 {
1382 ssize_t ret, written = 0;
1383 unsigned int chunk;
1384
1385 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1386 if (ret < 0)
1387 return ret;
1388
1389 /*
1390 * We chunk up writes into a temporary buffer. This
1391 * simplifies low-level drivers immensely, since they
1392 * don't have locking issues and user mode accesses.
1393 *
1394 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1395 * big chunk-size..
1396 *
1397 * The default chunk-size is 2kB, because the NTTY
1398 * layer has problems with bigger chunks. It will
1399 * claim to be able to handle more characters than
1400 * it actually does.
1401 *
1402 * FIXME: This can probably go away now except that 64K chunks
1403 * are too likely to fail unless switched to vmalloc...
1404 */
1405 chunk = 2048;
1406 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1407 chunk = 65536;
1408 if (count < chunk)
1409 chunk = count;
1410
1411 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1412 if (tty->write_cnt < chunk) {
1413 unsigned char *buf;
1414
1415 if (chunk < 1024)
1416 chunk = 1024;
1417
1418 buf = kmalloc(chunk, GFP_KERNEL);
1419 if (!buf) {
1420 ret = -ENOMEM;
1421 goto out;
1422 }
1423 kfree(tty->write_buf);
1424 tty->write_cnt = chunk;
1425 tty->write_buf = buf;
1426 }
1427
1428 /* Do the write .. */
1429 for (;;) {
1430 size_t size = count;
1431 if (size > chunk)
1432 size = chunk;
1433 ret = -EFAULT;
1434 if (copy_from_user(tty->write_buf, buf, size))
1435 break;
1436 ret = write(tty, file, tty->write_buf, size);
1437 if (ret <= 0)
1438 break;
1439 written += ret;
1440 buf += ret;
1441 count -= ret;
1442 if (!count)
1443 break;
1444 ret = -ERESTARTSYS;
1445 if (signal_pending(current))
1446 break;
1447 cond_resched();
1448 }
1449 if (written) {
1450 struct inode *inode = file->f_path.dentry->d_inode;
1451 inode->i_mtime = current_fs_time(inode->i_sb);
1452 ret = written;
1453 }
1454 out:
1455 tty_write_unlock(tty);
1456 return ret;
1457 }
1458
1459
1460 /**
1461 * tty_write - write method for tty device file
1462 * @file: tty file pointer
1463 * @buf: user data to write
1464 * @count: bytes to write
1465 * @ppos: unused
1466 *
1467 * Write data to a tty device via the line discipline.
1468 *
1469 * Locking:
1470 * Locks the line discipline as required
1471 * Writes to the tty driver are serialized by the atomic_write_lock
1472 * and are then processed in chunks to the device. The line discipline
1473 * write method will not be involked in parallel for each device
1474 * The line discipline write method is called under the big
1475 * kernel lock for historical reasons. New code should not rely on this.
1476 */
1477
1478 static ssize_t tty_write(struct file *file, const char __user *buf,
1479 size_t count, loff_t *ppos)
1480 {
1481 struct tty_struct *tty;
1482 struct inode *inode = file->f_path.dentry->d_inode;
1483 ssize_t ret;
1484 struct tty_ldisc *ld;
1485
1486 tty = (struct tty_struct *)file->private_data;
1487 if (tty_paranoia_check(tty, inode, "tty_write"))
1488 return -EIO;
1489 if (!tty || !tty->ops->write ||
1490 (test_bit(TTY_IO_ERROR, &tty->flags)))
1491 return -EIO;
1492 /* Short term debug to catch buggy drivers */
1493 if (tty->ops->write_room == NULL)
1494 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1495 tty->driver->name);
1496 ld = tty_ldisc_ref_wait(tty);
1497 if (!ld->ops->write)
1498 ret = -EIO;
1499 else
1500 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1501 tty_ldisc_deref(ld);
1502 return ret;
1503 }
1504
1505 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1506 size_t count, loff_t *ppos)
1507 {
1508 struct file *p = NULL;
1509
1510 spin_lock(&redirect_lock);
1511 if (redirect) {
1512 get_file(redirect);
1513 p = redirect;
1514 }
1515 spin_unlock(&redirect_lock);
1516
1517 if (p) {
1518 ssize_t res;
1519 res = vfs_write(p, buf, count, &p->f_pos);
1520 fput(p);
1521 return res;
1522 }
1523 return tty_write(file, buf, count, ppos);
1524 }
1525
1526 void tty_port_init(struct tty_port *port)
1527 {
1528 memset(port, 0, sizeof(*port));
1529 init_waitqueue_head(&port->open_wait);
1530 init_waitqueue_head(&port->close_wait);
1531 mutex_init(&port->mutex);
1532 port->close_delay = (50 * HZ) / 100;
1533 port->closing_wait = (3000 * HZ) / 100;
1534 }
1535 EXPORT_SYMBOL(tty_port_init);
1536
1537 int tty_port_alloc_xmit_buf(struct tty_port *port)
1538 {
1539 /* We may sleep in get_zeroed_page() */
1540 mutex_lock(&port->mutex);
1541 if (port->xmit_buf == NULL)
1542 port->xmit_buf = (unsigned char *)get_zeroed_page(GFP_KERNEL);
1543 mutex_unlock(&port->mutex);
1544 if (port->xmit_buf == NULL)
1545 return -ENOMEM;
1546 return 0;
1547 }
1548 EXPORT_SYMBOL(tty_port_alloc_xmit_buf);
1549
1550 void tty_port_free_xmit_buf(struct tty_port *port)
1551 {
1552 mutex_lock(&port->mutex);
1553 if (port->xmit_buf != NULL) {
1554 free_page((unsigned long)port->xmit_buf);
1555 port->xmit_buf = NULL;
1556 }
1557 mutex_unlock(&port->mutex);
1558 }
1559 EXPORT_SYMBOL(tty_port_free_xmit_buf);
1560
1561
1562 static char ptychar[] = "pqrstuvwxyzabcde";
1563
1564 /**
1565 * pty_line_name - generate name for a pty
1566 * @driver: the tty driver in use
1567 * @index: the minor number
1568 * @p: output buffer of at least 6 bytes
1569 *
1570 * Generate a name from a driver reference and write it to the output
1571 * buffer.
1572 *
1573 * Locking: None
1574 */
1575 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1576 {
1577 int i = index + driver->name_base;
1578 /* ->name is initialized to "ttyp", but "tty" is expected */
1579 sprintf(p, "%s%c%x",
1580 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1581 ptychar[i >> 4 & 0xf], i & 0xf);
1582 }
1583
1584 /**
1585 * pty_line_name - generate name for a tty
1586 * @driver: the tty driver in use
1587 * @index: the minor number
1588 * @p: output buffer of at least 7 bytes
1589 *
1590 * Generate a name from a driver reference and write it to the output
1591 * buffer.
1592 *
1593 * Locking: None
1594 */
1595 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1596 {
1597 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1598 }
1599
1600 /**
1601 * init_dev - initialise a tty device
1602 * @driver: tty driver we are opening a device on
1603 * @idx: device index
1604 * @tty: returned tty structure
1605 *
1606 * Prepare a tty device. This may not be a "new" clean device but
1607 * could also be an active device. The pty drivers require special
1608 * handling because of this.
1609 *
1610 * Locking:
1611 * The function is called under the tty_mutex, which
1612 * protects us from the tty struct or driver itself going away.
1613 *
1614 * On exit the tty device has the line discipline attached and
1615 * a reference count of 1. If a pair was created for pty/tty use
1616 * and the other was a pty master then it too has a reference count of 1.
1617 *
1618 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1619 * failed open. The new code protects the open with a mutex, so it's
1620 * really quite straightforward. The mutex locking can probably be
1621 * relaxed for the (most common) case of reopening a tty.
1622 */
1623
1624 static int init_dev(struct tty_driver *driver, int idx,
1625 struct tty_struct **ret_tty)
1626 {
1627 struct tty_struct *tty, *o_tty;
1628 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1629 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1630 int retval = 0;
1631
1632 /* check whether we're reopening an existing tty */
1633 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1634 tty = devpts_get_tty(idx);
1635 /*
1636 * If we don't have a tty here on a slave open, it's because
1637 * the master already started the close process and there's
1638 * no relation between devpts file and tty anymore.
1639 */
1640 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1641 retval = -EIO;
1642 goto end_init;
1643 }
1644 /*
1645 * It's safe from now on because init_dev() is called with
1646 * tty_mutex held and release_dev() won't change tty->count
1647 * or tty->flags without having to grab tty_mutex
1648 */
1649 if (tty && driver->subtype == PTY_TYPE_MASTER)
1650 tty = tty->link;
1651 } else {
1652 tty = driver->ttys[idx];
1653 }
1654 if (tty) goto fast_track;
1655
1656 /*
1657 * First time open is complex, especially for PTY devices.
1658 * This code guarantees that either everything succeeds and the
1659 * TTY is ready for operation, or else the table slots are vacated
1660 * and the allocated memory released. (Except that the termios
1661 * and locked termios may be retained.)
1662 */
1663
1664 if (!try_module_get(driver->owner)) {
1665 retval = -ENODEV;
1666 goto end_init;
1667 }
1668
1669 o_tty = NULL;
1670 tp = o_tp = NULL;
1671 ltp = o_ltp = NULL;
1672
1673 tty = alloc_tty_struct();
1674 if (!tty)
1675 goto fail_no_mem;
1676 initialize_tty_struct(tty);
1677 tty->driver = driver;
1678 tty->ops = driver->ops;
1679 tty->index = idx;
1680 tty_line_name(driver, idx, tty->name);
1681
1682 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1683 tp_loc = &tty->termios;
1684 ltp_loc = &tty->termios_locked;
1685 } else {
1686 tp_loc = &driver->termios[idx];
1687 ltp_loc = &driver->termios_locked[idx];
1688 }
1689
1690 if (!*tp_loc) {
1691 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1692 if (!tp)
1693 goto free_mem_out;
1694 *tp = driver->init_termios;
1695 }
1696
1697 if (!*ltp_loc) {
1698 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1699 if (!ltp)
1700 goto free_mem_out;
1701 }
1702
1703 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1704 o_tty = alloc_tty_struct();
1705 if (!o_tty)
1706 goto free_mem_out;
1707 initialize_tty_struct(o_tty);
1708 o_tty->driver = driver->other;
1709 o_tty->ops = driver->ops;
1710 o_tty->index = idx;
1711 tty_line_name(driver->other, idx, o_tty->name);
1712
1713 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1714 o_tp_loc = &o_tty->termios;
1715 o_ltp_loc = &o_tty->termios_locked;
1716 } else {
1717 o_tp_loc = &driver->other->termios[idx];
1718 o_ltp_loc = &driver->other->termios_locked[idx];
1719 }
1720
1721 if (!*o_tp_loc) {
1722 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1723 if (!o_tp)
1724 goto free_mem_out;
1725 *o_tp = driver->other->init_termios;
1726 }
1727
1728 if (!*o_ltp_loc) {
1729 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1730 if (!o_ltp)
1731 goto free_mem_out;
1732 }
1733
1734 /*
1735 * Everything allocated ... set up the o_tty structure.
1736 */
1737 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1738 driver->other->ttys[idx] = o_tty;
1739 if (!*o_tp_loc)
1740 *o_tp_loc = o_tp;
1741 if (!*o_ltp_loc)
1742 *o_ltp_loc = o_ltp;
1743 o_tty->termios = *o_tp_loc;
1744 o_tty->termios_locked = *o_ltp_loc;
1745 driver->other->refcount++;
1746 if (driver->subtype == PTY_TYPE_MASTER)
1747 o_tty->count++;
1748
1749 /* Establish the links in both directions */
1750 tty->link = o_tty;
1751 o_tty->link = tty;
1752 }
1753
1754 /*
1755 * All structures have been allocated, so now we install them.
1756 * Failures after this point use release_tty to clean up, so
1757 * there's no need to null out the local pointers.
1758 */
1759 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
1760 driver->ttys[idx] = tty;
1761
1762 if (!*tp_loc)
1763 *tp_loc = tp;
1764 if (!*ltp_loc)
1765 *ltp_loc = ltp;
1766 tty->termios = *tp_loc;
1767 tty->termios_locked = *ltp_loc;
1768 /* Compatibility until drivers always set this */
1769 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1770 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1771 driver->refcount++;
1772 tty->count++;
1773
1774 /*
1775 * Structures all installed ... call the ldisc open routines.
1776 * If we fail here just call release_tty to clean up. No need
1777 * to decrement the use counts, as release_tty doesn't care.
1778 */
1779
1780 retval = tty_ldisc_setup(tty, o_tty);
1781
1782 if (retval)
1783 goto release_mem_out;
1784 goto success;
1785
1786 /*
1787 * This fast open can be used if the tty is already open.
1788 * No memory is allocated, and the only failures are from
1789 * attempting to open a closing tty or attempting multiple
1790 * opens on a pty master.
1791 */
1792 fast_track:
1793 if (test_bit(TTY_CLOSING, &tty->flags)) {
1794 retval = -EIO;
1795 goto end_init;
1796 }
1797 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1798 driver->subtype == PTY_TYPE_MASTER) {
1799 /*
1800 * special case for PTY masters: only one open permitted,
1801 * and the slave side open count is incremented as well.
1802 */
1803 if (tty->count) {
1804 retval = -EIO;
1805 goto end_init;
1806 }
1807 tty->link->count++;
1808 }
1809 tty->count++;
1810 tty->driver = driver; /* N.B. why do this every time?? */
1811
1812 /* FIXME */
1813 if (!test_bit(TTY_LDISC, &tty->flags))
1814 printk(KERN_ERR "init_dev but no ldisc\n");
1815 success:
1816 *ret_tty = tty;
1817
1818 /* All paths come through here to release the mutex */
1819 end_init:
1820 return retval;
1821
1822 /* Release locally allocated memory ... nothing placed in slots */
1823 free_mem_out:
1824 kfree(o_tp);
1825 if (o_tty)
1826 free_tty_struct(o_tty);
1827 kfree(ltp);
1828 kfree(tp);
1829 free_tty_struct(tty);
1830
1831 fail_no_mem:
1832 module_put(driver->owner);
1833 retval = -ENOMEM;
1834 goto end_init;
1835
1836 /* call the tty release_tty routine to clean out this slot */
1837 release_mem_out:
1838 if (printk_ratelimit())
1839 printk(KERN_INFO "init_dev: ldisc open failed, "
1840 "clearing slot %d\n", idx);
1841 release_tty(tty, idx);
1842 goto end_init;
1843 }
1844
1845 /**
1846 * release_one_tty - release tty structure memory
1847 *
1848 * Releases memory associated with a tty structure, and clears out the
1849 * driver table slots. This function is called when a device is no longer
1850 * in use. It also gets called when setup of a device fails.
1851 *
1852 * Locking:
1853 * tty_mutex - sometimes only
1854 * takes the file list lock internally when working on the list
1855 * of ttys that the driver keeps.
1856 * FIXME: should we require tty_mutex is held here ??
1857 */
1858 static void release_one_tty(struct tty_struct *tty, int idx)
1859 {
1860 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
1861 struct ktermios *tp;
1862
1863 if (!devpts)
1864 tty->driver->ttys[idx] = NULL;
1865
1866 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1867 tp = tty->termios;
1868 if (!devpts)
1869 tty->driver->termios[idx] = NULL;
1870 kfree(tp);
1871
1872 tp = tty->termios_locked;
1873 if (!devpts)
1874 tty->driver->termios_locked[idx] = NULL;
1875 kfree(tp);
1876 }
1877
1878
1879 tty->magic = 0;
1880 tty->driver->refcount--;
1881
1882 file_list_lock();
1883 list_del_init(&tty->tty_files);
1884 file_list_unlock();
1885
1886 free_tty_struct(tty);
1887 }
1888
1889 /**
1890 * release_tty - release tty structure memory
1891 *
1892 * Release both @tty and a possible linked partner (think pty pair),
1893 * and decrement the refcount of the backing module.
1894 *
1895 * Locking:
1896 * tty_mutex - sometimes only
1897 * takes the file list lock internally when working on the list
1898 * of ttys that the driver keeps.
1899 * FIXME: should we require tty_mutex is held here ??
1900 */
1901 static void release_tty(struct tty_struct *tty, int idx)
1902 {
1903 struct tty_driver *driver = tty->driver;
1904
1905 if (tty->link)
1906 release_one_tty(tty->link, idx);
1907 release_one_tty(tty, idx);
1908 module_put(driver->owner);
1909 }
1910
1911 /*
1912 * Even releasing the tty structures is a tricky business.. We have
1913 * to be very careful that the structures are all released at the
1914 * same time, as interrupts might otherwise get the wrong pointers.
1915 *
1916 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1917 * lead to double frees or releasing memory still in use.
1918 */
1919 static void release_dev(struct file *filp)
1920 {
1921 struct tty_struct *tty, *o_tty;
1922 int pty_master, tty_closing, o_tty_closing, do_sleep;
1923 int devpts;
1924 int idx;
1925 char buf[64];
1926
1927 tty = (struct tty_struct *)filp->private_data;
1928 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1929 "release_dev"))
1930 return;
1931
1932 check_tty_count(tty, "release_dev");
1933
1934 tty_fasync(-1, filp, 0);
1935
1936 idx = tty->index;
1937 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1938 tty->driver->subtype == PTY_TYPE_MASTER);
1939 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1940 o_tty = tty->link;
1941
1942 #ifdef TTY_PARANOIA_CHECK
1943 if (idx < 0 || idx >= tty->driver->num) {
1944 printk(KERN_DEBUG "release_dev: bad idx when trying to "
1945 "free (%s)\n", tty->name);
1946 return;
1947 }
1948 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1949 if (tty != tty->driver->ttys[idx]) {
1950 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
1951 "for (%s)\n", idx, tty->name);
1952 return;
1953 }
1954 if (tty->termios != tty->driver->termios[idx]) {
1955 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
1956 "for (%s)\n",
1957 idx, tty->name);
1958 return;
1959 }
1960 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1961 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
1962 "termios_locked for (%s)\n",
1963 idx, tty->name);
1964 return;
1965 }
1966 }
1967 #endif
1968
1969 #ifdef TTY_DEBUG_HANGUP
1970 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
1971 tty_name(tty, buf), tty->count);
1972 #endif
1973
1974 #ifdef TTY_PARANOIA_CHECK
1975 if (tty->driver->other &&
1976 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1977 if (o_tty != tty->driver->other->ttys[idx]) {
1978 printk(KERN_DEBUG "release_dev: other->table[%d] "
1979 "not o_tty for (%s)\n",
1980 idx, tty->name);
1981 return;
1982 }
1983 if (o_tty->termios != tty->driver->other->termios[idx]) {
1984 printk(KERN_DEBUG "release_dev: other->termios[%d] "
1985 "not o_termios for (%s)\n",
1986 idx, tty->name);
1987 return;
1988 }
1989 if (o_tty->termios_locked !=
1990 tty->driver->other->termios_locked[idx]) {
1991 printk(KERN_DEBUG "release_dev: other->termios_locked["
1992 "%d] not o_termios_locked for (%s)\n",
1993 idx, tty->name);
1994 return;
1995 }
1996 if (o_tty->link != tty) {
1997 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
1998 return;
1999 }
2000 }
2001 #endif
2002 if (tty->ops->close)
2003 tty->ops->close(tty, filp);
2004
2005 /*
2006 * Sanity check: if tty->count is going to zero, there shouldn't be
2007 * any waiters on tty->read_wait or tty->write_wait. We test the
2008 * wait queues and kick everyone out _before_ actually starting to
2009 * close. This ensures that we won't block while releasing the tty
2010 * structure.
2011 *
2012 * The test for the o_tty closing is necessary, since the master and
2013 * slave sides may close in any order. If the slave side closes out
2014 * first, its count will be one, since the master side holds an open.
2015 * Thus this test wouldn't be triggered at the time the slave closes,
2016 * so we do it now.
2017 *
2018 * Note that it's possible for the tty to be opened again while we're
2019 * flushing out waiters. By recalculating the closing flags before
2020 * each iteration we avoid any problems.
2021 */
2022 while (1) {
2023 /* Guard against races with tty->count changes elsewhere and
2024 opens on /dev/tty */
2025
2026 mutex_lock(&tty_mutex);
2027 tty_closing = tty->count <= 1;
2028 o_tty_closing = o_tty &&
2029 (o_tty->count <= (pty_master ? 1 : 0));
2030 do_sleep = 0;
2031
2032 if (tty_closing) {
2033 if (waitqueue_active(&tty->read_wait)) {
2034 wake_up(&tty->read_wait);
2035 do_sleep++;
2036 }
2037 if (waitqueue_active(&tty->write_wait)) {
2038 wake_up(&tty->write_wait);
2039 do_sleep++;
2040 }
2041 }
2042 if (o_tty_closing) {
2043 if (waitqueue_active(&o_tty->read_wait)) {
2044 wake_up(&o_tty->read_wait);
2045 do_sleep++;
2046 }
2047 if (waitqueue_active(&o_tty->write_wait)) {
2048 wake_up(&o_tty->write_wait);
2049 do_sleep++;
2050 }
2051 }
2052 if (!do_sleep)
2053 break;
2054
2055 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2056 "active!\n", tty_name(tty, buf));
2057 mutex_unlock(&tty_mutex);
2058 schedule();
2059 }
2060
2061 /*
2062 * The closing flags are now consistent with the open counts on
2063 * both sides, and we've completed the last operation that could
2064 * block, so it's safe to proceed with closing.
2065 */
2066 if (pty_master) {
2067 if (--o_tty->count < 0) {
2068 printk(KERN_WARNING "release_dev: bad pty slave count "
2069 "(%d) for %s\n",
2070 o_tty->count, tty_name(o_tty, buf));
2071 o_tty->count = 0;
2072 }
2073 }
2074 if (--tty->count < 0) {
2075 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2076 tty->count, tty_name(tty, buf));
2077 tty->count = 0;
2078 }
2079
2080 /*
2081 * We've decremented tty->count, so we need to remove this file
2082 * descriptor off the tty->tty_files list; this serves two
2083 * purposes:
2084 * - check_tty_count sees the correct number of file descriptors
2085 * associated with this tty.
2086 * - do_tty_hangup no longer sees this file descriptor as
2087 * something that needs to be handled for hangups.
2088 */
2089 file_kill(filp);
2090 filp->private_data = NULL;
2091
2092 /*
2093 * Perform some housekeeping before deciding whether to return.
2094 *
2095 * Set the TTY_CLOSING flag if this was the last open. In the
2096 * case of a pty we may have to wait around for the other side
2097 * to close, and TTY_CLOSING makes sure we can't be reopened.
2098 */
2099 if (tty_closing)
2100 set_bit(TTY_CLOSING, &tty->flags);
2101 if (o_tty_closing)
2102 set_bit(TTY_CLOSING, &o_tty->flags);
2103
2104 /*
2105 * If _either_ side is closing, make sure there aren't any
2106 * processes that still think tty or o_tty is their controlling
2107 * tty.
2108 */
2109 if (tty_closing || o_tty_closing) {
2110 read_lock(&tasklist_lock);
2111 session_clear_tty(tty->session);
2112 if (o_tty)
2113 session_clear_tty(o_tty->session);
2114 read_unlock(&tasklist_lock);
2115 }
2116
2117 mutex_unlock(&tty_mutex);
2118
2119 /* check whether both sides are closing ... */
2120 if (!tty_closing || (o_tty && !o_tty_closing))
2121 return;
2122
2123 #ifdef TTY_DEBUG_HANGUP
2124 printk(KERN_DEBUG "freeing tty structure...");
2125 #endif
2126 /*
2127 * Ask the line discipline code to release its structures
2128 */
2129 tty_ldisc_release(tty, o_tty);
2130 /*
2131 * The release_tty function takes care of the details of clearing
2132 * the slots and preserving the termios structure.
2133 */
2134 release_tty(tty, idx);
2135
2136 /* Make this pty number available for reallocation */
2137 if (devpts)
2138 devpts_kill_index(idx);
2139 }
2140
2141 /**
2142 * tty_open - open a tty device
2143 * @inode: inode of device file
2144 * @filp: file pointer to tty
2145 *
2146 * tty_open and tty_release keep up the tty count that contains the
2147 * number of opens done on a tty. We cannot use the inode-count, as
2148 * different inodes might point to the same tty.
2149 *
2150 * Open-counting is needed for pty masters, as well as for keeping
2151 * track of serial lines: DTR is dropped when the last close happens.
2152 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2153 *
2154 * The termios state of a pty is reset on first open so that
2155 * settings don't persist across reuse.
2156 *
2157 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2158 * tty->count should protect the rest.
2159 * ->siglock protects ->signal/->sighand
2160 */
2161
2162 static int __tty_open(struct inode *inode, struct file *filp)
2163 {
2164 struct tty_struct *tty;
2165 int noctty, retval;
2166 struct tty_driver *driver;
2167 int index;
2168 dev_t device = inode->i_rdev;
2169 unsigned short saved_flags = filp->f_flags;
2170
2171 nonseekable_open(inode, filp);
2172
2173 retry_open:
2174 noctty = filp->f_flags & O_NOCTTY;
2175 index = -1;
2176 retval = 0;
2177
2178 mutex_lock(&tty_mutex);
2179
2180 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
2181 tty = get_current_tty();
2182 if (!tty) {
2183 mutex_unlock(&tty_mutex);
2184 return -ENXIO;
2185 }
2186 driver = tty->driver;
2187 index = tty->index;
2188 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2189 /* noctty = 1; */
2190 goto got_driver;
2191 }
2192 #ifdef CONFIG_VT
2193 if (device == MKDEV(TTY_MAJOR, 0)) {
2194 extern struct tty_driver *console_driver;
2195 driver = console_driver;
2196 index = fg_console;
2197 noctty = 1;
2198 goto got_driver;
2199 }
2200 #endif
2201 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
2202 driver = console_device(&index);
2203 if (driver) {
2204 /* Don't let /dev/console block */
2205 filp->f_flags |= O_NONBLOCK;
2206 noctty = 1;
2207 goto got_driver;
2208 }
2209 mutex_unlock(&tty_mutex);
2210 return -ENODEV;
2211 }
2212
2213 driver = get_tty_driver(device, &index);
2214 if (!driver) {
2215 mutex_unlock(&tty_mutex);
2216 return -ENODEV;
2217 }
2218 got_driver:
2219 retval = init_dev(driver, index, &tty);
2220 mutex_unlock(&tty_mutex);
2221 if (retval)
2222 return retval;
2223
2224 filp->private_data = tty;
2225 file_move(filp, &tty->tty_files);
2226 check_tty_count(tty, "tty_open");
2227 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2228 tty->driver->subtype == PTY_TYPE_MASTER)
2229 noctty = 1;
2230 #ifdef TTY_DEBUG_HANGUP
2231 printk(KERN_DEBUG "opening %s...", tty->name);
2232 #endif
2233 if (!retval) {
2234 if (tty->ops->open)
2235 retval = tty->ops->open(tty, filp);
2236 else
2237 retval = -ENODEV;
2238 }
2239 filp->f_flags = saved_flags;
2240
2241 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2242 !capable(CAP_SYS_ADMIN))
2243 retval = -EBUSY;
2244
2245 if (retval) {
2246 #ifdef TTY_DEBUG_HANGUP
2247 printk(KERN_DEBUG "error %d in opening %s...", retval,
2248 tty->name);
2249 #endif
2250 release_dev(filp);
2251 if (retval != -ERESTARTSYS)
2252 return retval;
2253 if (signal_pending(current))
2254 return retval;
2255 schedule();
2256 /*
2257 * Need to reset f_op in case a hangup happened.
2258 */
2259 if (filp->f_op == &hung_up_tty_fops)
2260 filp->f_op = &tty_fops;
2261 goto retry_open;
2262 }
2263
2264 mutex_lock(&tty_mutex);
2265 spin_lock_irq(&current->sighand->siglock);
2266 if (!noctty &&
2267 current->signal->leader &&
2268 !current->signal->tty &&
2269 tty->session == NULL)
2270 __proc_set_tty(current, tty);
2271 spin_unlock_irq(&current->sighand->siglock);
2272 mutex_unlock(&tty_mutex);
2273 return 0;
2274 }
2275
2276 /* BKL pushdown: scary code avoidance wrapper */
2277 static int tty_open(struct inode *inode, struct file *filp)
2278 {
2279 int ret;
2280
2281 lock_kernel();
2282 ret = __tty_open(inode, filp);
2283 unlock_kernel();
2284 return ret;
2285 }
2286
2287
2288
2289 #ifdef CONFIG_UNIX98_PTYS
2290 /**
2291 * ptmx_open - open a unix 98 pty master
2292 * @inode: inode of device file
2293 * @filp: file pointer to tty
2294 *
2295 * Allocate a unix98 pty master device from the ptmx driver.
2296 *
2297 * Locking: tty_mutex protects theinit_dev work. tty->count should
2298 * protect the rest.
2299 * allocated_ptys_lock handles the list of free pty numbers
2300 */
2301
2302 static int __ptmx_open(struct inode *inode, struct file *filp)
2303 {
2304 struct tty_struct *tty;
2305 int retval;
2306 int index;
2307
2308 nonseekable_open(inode, filp);
2309
2310 /* find a device that is not in use. */
2311 index = devpts_new_index();
2312 if (index < 0)
2313 return index;
2314
2315 mutex_lock(&tty_mutex);
2316 retval = init_dev(ptm_driver, index, &tty);
2317 mutex_unlock(&tty_mutex);
2318
2319 if (retval)
2320 goto out;
2321
2322 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2323 filp->private_data = tty;
2324 file_move(filp, &tty->tty_files);
2325
2326 retval = devpts_pty_new(tty->link);
2327 if (retval)
2328 goto out1;
2329
2330 check_tty_count(tty, "ptmx_open");
2331 retval = ptm_driver->ops->open(tty, filp);
2332 if (!retval)
2333 return 0;
2334 out1:
2335 release_dev(filp);
2336 return retval;
2337 out:
2338 devpts_kill_index(index);
2339 return retval;
2340 }
2341
2342 static int ptmx_open(struct inode *inode, struct file *filp)
2343 {
2344 int ret;
2345
2346 lock_kernel();
2347 ret = __ptmx_open(inode, filp);
2348 unlock_kernel();
2349 return ret;
2350 }
2351 #endif
2352
2353 /**
2354 * tty_release - vfs callback for close
2355 * @inode: inode of tty
2356 * @filp: file pointer for handle to tty
2357 *
2358 * Called the last time each file handle is closed that references
2359 * this tty. There may however be several such references.
2360 *
2361 * Locking:
2362 * Takes bkl. See release_dev
2363 */
2364
2365 static int tty_release(struct inode *inode, struct file *filp)
2366 {
2367 lock_kernel();
2368 release_dev(filp);
2369 unlock_kernel();
2370 return 0;
2371 }
2372
2373 /**
2374 * tty_poll - check tty status
2375 * @filp: file being polled
2376 * @wait: poll wait structures to update
2377 *
2378 * Call the line discipline polling method to obtain the poll
2379 * status of the device.
2380 *
2381 * Locking: locks called line discipline but ldisc poll method
2382 * may be re-entered freely by other callers.
2383 */
2384
2385 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2386 {
2387 struct tty_struct *tty;
2388 struct tty_ldisc *ld;
2389 int ret = 0;
2390
2391 tty = (struct tty_struct *)filp->private_data;
2392 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2393 return 0;
2394
2395 ld = tty_ldisc_ref_wait(tty);
2396 if (ld->ops->poll)
2397 ret = (ld->ops->poll)(tty, filp, wait);
2398 tty_ldisc_deref(ld);
2399 return ret;
2400 }
2401
2402 static int tty_fasync(int fd, struct file *filp, int on)
2403 {
2404 struct tty_struct *tty;
2405 unsigned long flags;
2406 int retval = 0;
2407
2408 lock_kernel();
2409 tty = (struct tty_struct *)filp->private_data;
2410 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2411 goto out;
2412
2413 retval = fasync_helper(fd, filp, on, &tty->fasync);
2414 if (retval <= 0)
2415 goto out;
2416
2417 if (on) {
2418 enum pid_type type;
2419 struct pid *pid;
2420 if (!waitqueue_active(&tty->read_wait))
2421 tty->minimum_to_wake = 1;
2422 spin_lock_irqsave(&tty->ctrl_lock, flags);
2423 if (tty->pgrp) {
2424 pid = tty->pgrp;
2425 type = PIDTYPE_PGID;
2426 } else {
2427 pid = task_pid(current);
2428 type = PIDTYPE_PID;
2429 }
2430 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2431 retval = __f_setown(filp, pid, type, 0);
2432 if (retval)
2433 goto out;
2434 } else {
2435 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2436 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2437 }
2438 retval = 0;
2439 out:
2440 unlock_kernel();
2441 return retval;
2442 }
2443
2444 /**
2445 * tiocsti - fake input character
2446 * @tty: tty to fake input into
2447 * @p: pointer to character
2448 *
2449 * Fake input to a tty device. Does the necessary locking and
2450 * input management.
2451 *
2452 * FIXME: does not honour flow control ??
2453 *
2454 * Locking:
2455 * Called functions take tty_ldisc_lock
2456 * current->signal->tty check is safe without locks
2457 *
2458 * FIXME: may race normal receive processing
2459 */
2460
2461 static int tiocsti(struct tty_struct *tty, char __user *p)
2462 {
2463 char ch, mbz = 0;
2464 struct tty_ldisc *ld;
2465
2466 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2467 return -EPERM;
2468 if (get_user(ch, p))
2469 return -EFAULT;
2470 ld = tty_ldisc_ref_wait(tty);
2471 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2472 tty_ldisc_deref(ld);
2473 return 0;
2474 }
2475
2476 /**
2477 * tiocgwinsz - implement window query ioctl
2478 * @tty; tty
2479 * @arg: user buffer for result
2480 *
2481 * Copies the kernel idea of the window size into the user buffer.
2482 *
2483 * Locking: tty->termios_mutex is taken to ensure the winsize data
2484 * is consistent.
2485 */
2486
2487 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2488 {
2489 int err;
2490
2491 mutex_lock(&tty->termios_mutex);
2492 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2493 mutex_unlock(&tty->termios_mutex);
2494
2495 return err ? -EFAULT: 0;
2496 }
2497
2498 /**
2499 * tty_do_resize - resize event
2500 * @tty: tty being resized
2501 * @real_tty: real tty (not the same as tty if using a pty/tty pair)
2502 * @rows: rows (character)
2503 * @cols: cols (character)
2504 *
2505 * Update the termios variables and send the neccessary signals to
2506 * peform a terminal resize correctly
2507 */
2508
2509 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2510 struct winsize *ws)
2511 {
2512 struct pid *pgrp, *rpgrp;
2513 unsigned long flags;
2514
2515 /* For a PTY we need to lock the tty side */
2516 mutex_lock(&real_tty->termios_mutex);
2517 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2518 goto done;
2519 /* Get the PID values and reference them so we can
2520 avoid holding the tty ctrl lock while sending signals */
2521 spin_lock_irqsave(&tty->ctrl_lock, flags);
2522 pgrp = get_pid(tty->pgrp);
2523 rpgrp = get_pid(real_tty->pgrp);
2524 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525
2526 if (pgrp)
2527 kill_pgrp(pgrp, SIGWINCH, 1);
2528 if (rpgrp != pgrp && rpgrp)
2529 kill_pgrp(rpgrp, SIGWINCH, 1);
2530
2531 put_pid(pgrp);
2532 put_pid(rpgrp);
2533
2534 tty->winsize = *ws;
2535 real_tty->winsize = *ws;
2536 done:
2537 mutex_unlock(&real_tty->termios_mutex);
2538 return 0;
2539 }
2540
2541 /**
2542 * tiocswinsz - implement window size set ioctl
2543 * @tty; tty
2544 * @arg: user buffer for result
2545 *
2546 * Copies the user idea of the window size to the kernel. Traditionally
2547 * this is just advisory information but for the Linux console it
2548 * actually has driver level meaning and triggers a VC resize.
2549 *
2550 * Locking:
2551 * Driver dependant. The default do_resize method takes the
2552 * tty termios mutex and ctrl_lock. The console takes its own lock
2553 * then calls into the default method.
2554 */
2555
2556 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2557 struct winsize __user *arg)
2558 {
2559 struct winsize tmp_ws;
2560 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2561 return -EFAULT;
2562
2563 if (tty->ops->resize)
2564 return tty->ops->resize(tty, real_tty, &tmp_ws);
2565 else
2566 return tty_do_resize(tty, real_tty, &tmp_ws);
2567 }
2568
2569 /**
2570 * tioccons - allow admin to move logical console
2571 * @file: the file to become console
2572 *
2573 * Allow the adminstrator to move the redirected console device
2574 *
2575 * Locking: uses redirect_lock to guard the redirect information
2576 */
2577
2578 static int tioccons(struct file *file)
2579 {
2580 if (!capable(CAP_SYS_ADMIN))
2581 return -EPERM;
2582 if (file->f_op->write == redirected_tty_write) {
2583 struct file *f;
2584 spin_lock(&redirect_lock);
2585 f = redirect;
2586 redirect = NULL;
2587 spin_unlock(&redirect_lock);
2588 if (f)
2589 fput(f);
2590 return 0;
2591 }
2592 spin_lock(&redirect_lock);
2593 if (redirect) {
2594 spin_unlock(&redirect_lock);
2595 return -EBUSY;
2596 }
2597 get_file(file);
2598 redirect = file;
2599 spin_unlock(&redirect_lock);
2600 return 0;
2601 }
2602
2603 /**
2604 * fionbio - non blocking ioctl
2605 * @file: file to set blocking value
2606 * @p: user parameter
2607 *
2608 * Historical tty interfaces had a blocking control ioctl before
2609 * the generic functionality existed. This piece of history is preserved
2610 * in the expected tty API of posix OS's.
2611 *
2612 * Locking: none, the open fle handle ensures it won't go away.
2613 */
2614
2615 static int fionbio(struct file *file, int __user *p)
2616 {
2617 int nonblock;
2618
2619 if (get_user(nonblock, p))
2620 return -EFAULT;
2621
2622 /* file->f_flags is still BKL protected in the fs layer - vomit */
2623 lock_kernel();
2624 if (nonblock)
2625 file->f_flags |= O_NONBLOCK;
2626 else
2627 file->f_flags &= ~O_NONBLOCK;
2628 unlock_kernel();
2629 return 0;
2630 }
2631
2632 /**
2633 * tiocsctty - set controlling tty
2634 * @tty: tty structure
2635 * @arg: user argument
2636 *
2637 * This ioctl is used to manage job control. It permits a session
2638 * leader to set this tty as the controlling tty for the session.
2639 *
2640 * Locking:
2641 * Takes tty_mutex() to protect tty instance
2642 * Takes tasklist_lock internally to walk sessions
2643 * Takes ->siglock() when updating signal->tty
2644 */
2645
2646 static int tiocsctty(struct tty_struct *tty, int arg)
2647 {
2648 int ret = 0;
2649 if (current->signal->leader && (task_session(current) == tty->session))
2650 return ret;
2651
2652 mutex_lock(&tty_mutex);
2653 /*
2654 * The process must be a session leader and
2655 * not have a controlling tty already.
2656 */
2657 if (!current->signal->leader || current->signal->tty) {
2658 ret = -EPERM;
2659 goto unlock;
2660 }
2661
2662 if (tty->session) {
2663 /*
2664 * This tty is already the controlling
2665 * tty for another session group!
2666 */
2667 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2668 /*
2669 * Steal it away
2670 */
2671 read_lock(&tasklist_lock);
2672 session_clear_tty(tty->session);
2673 read_unlock(&tasklist_lock);
2674 } else {
2675 ret = -EPERM;
2676 goto unlock;
2677 }
2678 }
2679 proc_set_tty(current, tty);
2680 unlock:
2681 mutex_unlock(&tty_mutex);
2682 return ret;
2683 }
2684
2685 /**
2686 * tty_get_pgrp - return a ref counted pgrp pid
2687 * @tty: tty to read
2688 *
2689 * Returns a refcounted instance of the pid struct for the process
2690 * group controlling the tty.
2691 */
2692
2693 struct pid *tty_get_pgrp(struct tty_struct *tty)
2694 {
2695 unsigned long flags;
2696 struct pid *pgrp;
2697
2698 spin_lock_irqsave(&tty->ctrl_lock, flags);
2699 pgrp = get_pid(tty->pgrp);
2700 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2701
2702 return pgrp;
2703 }
2704 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2705
2706 /**
2707 * tiocgpgrp - get process group
2708 * @tty: tty passed by user
2709 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2710 * @p: returned pid
2711 *
2712 * Obtain the process group of the tty. If there is no process group
2713 * return an error.
2714 *
2715 * Locking: none. Reference to current->signal->tty is safe.
2716 */
2717
2718 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2719 {
2720 struct pid *pid;
2721 int ret;
2722 /*
2723 * (tty == real_tty) is a cheap way of
2724 * testing if the tty is NOT a master pty.
2725 */
2726 if (tty == real_tty && current->signal->tty != real_tty)
2727 return -ENOTTY;
2728 pid = tty_get_pgrp(real_tty);
2729 ret = put_user(pid_vnr(pid), p);
2730 put_pid(pid);
2731 return ret;
2732 }
2733
2734 /**
2735 * tiocspgrp - attempt to set process group
2736 * @tty: tty passed by user
2737 * @real_tty: tty side device matching tty passed by user
2738 * @p: pid pointer
2739 *
2740 * Set the process group of the tty to the session passed. Only
2741 * permitted where the tty session is our session.
2742 *
2743 * Locking: RCU, ctrl lock
2744 */
2745
2746 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2747 {
2748 struct pid *pgrp;
2749 pid_t pgrp_nr;
2750 int retval = tty_check_change(real_tty);
2751 unsigned long flags;
2752
2753 if (retval == -EIO)
2754 return -ENOTTY;
2755 if (retval)
2756 return retval;
2757 if (!current->signal->tty ||
2758 (current->signal->tty != real_tty) ||
2759 (real_tty->session != task_session(current)))
2760 return -ENOTTY;
2761 if (get_user(pgrp_nr, p))
2762 return -EFAULT;
2763 if (pgrp_nr < 0)
2764 return -EINVAL;
2765 rcu_read_lock();
2766 pgrp = find_vpid(pgrp_nr);
2767 retval = -ESRCH;
2768 if (!pgrp)
2769 goto out_unlock;
2770 retval = -EPERM;
2771 if (session_of_pgrp(pgrp) != task_session(current))
2772 goto out_unlock;
2773 retval = 0;
2774 spin_lock_irqsave(&tty->ctrl_lock, flags);
2775 put_pid(real_tty->pgrp);
2776 real_tty->pgrp = get_pid(pgrp);
2777 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2778 out_unlock:
2779 rcu_read_unlock();
2780 return retval;
2781 }
2782
2783 /**
2784 * tiocgsid - get session id
2785 * @tty: tty passed by user
2786 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2787 * @p: pointer to returned session id
2788 *
2789 * Obtain the session id of the tty. If there is no session
2790 * return an error.
2791 *
2792 * Locking: none. Reference to current->signal->tty is safe.
2793 */
2794
2795 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2796 {
2797 /*
2798 * (tty == real_tty) is a cheap way of
2799 * testing if the tty is NOT a master pty.
2800 */
2801 if (tty == real_tty && current->signal->tty != real_tty)
2802 return -ENOTTY;
2803 if (!real_tty->session)
2804 return -ENOTTY;
2805 return put_user(pid_vnr(real_tty->session), p);
2806 }
2807
2808 /**
2809 * tiocsetd - set line discipline
2810 * @tty: tty device
2811 * @p: pointer to user data
2812 *
2813 * Set the line discipline according to user request.
2814 *
2815 * Locking: see tty_set_ldisc, this function is just a helper
2816 */
2817
2818 static int tiocsetd(struct tty_struct *tty, int __user *p)
2819 {
2820 int ldisc;
2821 int ret;
2822
2823 if (get_user(ldisc, p))
2824 return -EFAULT;
2825
2826 lock_kernel();
2827 ret = tty_set_ldisc(tty, ldisc);
2828 unlock_kernel();
2829
2830 return ret;
2831 }
2832
2833 /**
2834 * send_break - performed time break
2835 * @tty: device to break on
2836 * @duration: timeout in mS
2837 *
2838 * Perform a timed break on hardware that lacks its own driver level
2839 * timed break functionality.
2840 *
2841 * Locking:
2842 * atomic_write_lock serializes
2843 *
2844 */
2845
2846 static int send_break(struct tty_struct *tty, unsigned int duration)
2847 {
2848 int retval;
2849
2850 if (tty->ops->break_ctl == NULL)
2851 return 0;
2852
2853 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2854 retval = tty->ops->break_ctl(tty, duration);
2855 else {
2856 /* Do the work ourselves */
2857 if (tty_write_lock(tty, 0) < 0)
2858 return -EINTR;
2859 retval = tty->ops->break_ctl(tty, -1);
2860 if (retval)
2861 goto out;
2862 if (!signal_pending(current))
2863 msleep_interruptible(duration);
2864 retval = tty->ops->break_ctl(tty, 0);
2865 out:
2866 tty_write_unlock(tty);
2867 if (signal_pending(current))
2868 retval = -EINTR;
2869 }
2870 return retval;
2871 }
2872
2873 /**
2874 * tty_tiocmget - get modem status
2875 * @tty: tty device
2876 * @file: user file pointer
2877 * @p: pointer to result
2878 *
2879 * Obtain the modem status bits from the tty driver if the feature
2880 * is supported. Return -EINVAL if it is not available.
2881 *
2882 * Locking: none (up to the driver)
2883 */
2884
2885 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2886 {
2887 int retval = -EINVAL;
2888
2889 if (tty->ops->tiocmget) {
2890 retval = tty->ops->tiocmget(tty, file);
2891
2892 if (retval >= 0)
2893 retval = put_user(retval, p);
2894 }
2895 return retval;
2896 }
2897
2898 /**
2899 * tty_tiocmset - set modem status
2900 * @tty: tty device
2901 * @file: user file pointer
2902 * @cmd: command - clear bits, set bits or set all
2903 * @p: pointer to desired bits
2904 *
2905 * Set the modem status bits from the tty driver if the feature
2906 * is supported. Return -EINVAL if it is not available.
2907 *
2908 * Locking: none (up to the driver)
2909 */
2910
2911 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2912 unsigned __user *p)
2913 {
2914 int retval;
2915 unsigned int set, clear, val;
2916
2917 if (tty->ops->tiocmset == NULL)
2918 return -EINVAL;
2919
2920 retval = get_user(val, p);
2921 if (retval)
2922 return retval;
2923 set = clear = 0;
2924 switch (cmd) {
2925 case TIOCMBIS:
2926 set = val;
2927 break;
2928 case TIOCMBIC:
2929 clear = val;
2930 break;
2931 case TIOCMSET:
2932 set = val;
2933 clear = ~val;
2934 break;
2935 }
2936 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2937 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2938 return tty->ops->tiocmset(tty, file, set, clear);
2939 }
2940
2941 /*
2942 * Split this up, as gcc can choke on it otherwise..
2943 */
2944 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2945 {
2946 struct tty_struct *tty, *real_tty;
2947 void __user *p = (void __user *)arg;
2948 int retval;
2949 struct tty_ldisc *ld;
2950 struct inode *inode = file->f_dentry->d_inode;
2951
2952 tty = (struct tty_struct *)file->private_data;
2953 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2954 return -EINVAL;
2955
2956 real_tty = tty;
2957 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2958 tty->driver->subtype == PTY_TYPE_MASTER)
2959 real_tty = tty->link;
2960
2961
2962 /*
2963 * Factor out some common prep work
2964 */
2965 switch (cmd) {
2966 case TIOCSETD:
2967 case TIOCSBRK:
2968 case TIOCCBRK:
2969 case TCSBRK:
2970 case TCSBRKP:
2971 retval = tty_check_change(tty);
2972 if (retval)
2973 return retval;
2974 if (cmd != TIOCCBRK) {
2975 tty_wait_until_sent(tty, 0);
2976 if (signal_pending(current))
2977 return -EINTR;
2978 }
2979 break;
2980 }
2981
2982 /*
2983 * Now do the stuff.
2984 */
2985 switch (cmd) {
2986 case TIOCSTI:
2987 return tiocsti(tty, p);
2988 case TIOCGWINSZ:
2989 return tiocgwinsz(tty, p);
2990 case TIOCSWINSZ:
2991 return tiocswinsz(tty, real_tty, p);
2992 case TIOCCONS:
2993 return real_tty != tty ? -EINVAL : tioccons(file);
2994 case FIONBIO:
2995 return fionbio(file, p);
2996 case TIOCEXCL:
2997 set_bit(TTY_EXCLUSIVE, &tty->flags);
2998 return 0;
2999 case TIOCNXCL:
3000 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3001 return 0;
3002 case TIOCNOTTY:
3003 if (current->signal->tty != tty)
3004 return -ENOTTY;
3005 no_tty();
3006 return 0;
3007 case TIOCSCTTY:
3008 return tiocsctty(tty, arg);
3009 case TIOCGPGRP:
3010 return tiocgpgrp(tty, real_tty, p);
3011 case TIOCSPGRP:
3012 return tiocspgrp(tty, real_tty, p);
3013 case TIOCGSID:
3014 return tiocgsid(tty, real_tty, p);
3015 case TIOCGETD:
3016 return put_user(tty->ldisc.ops->num, (int __user *)p);
3017 case TIOCSETD:
3018 return tiocsetd(tty, p);
3019 #ifdef CONFIG_VT
3020 case TIOCLINUX:
3021 return tioclinux(tty, arg);
3022 #endif
3023 /*
3024 * Break handling
3025 */
3026 case TIOCSBRK: /* Turn break on, unconditionally */
3027 if (tty->ops->break_ctl)
3028 return tty->ops->break_ctl(tty, -1);
3029 return 0;
3030 case TIOCCBRK: /* Turn break off, unconditionally */
3031 if (tty->ops->break_ctl)
3032 return tty->ops->break_ctl(tty, 0);
3033 return 0;
3034 case TCSBRK: /* SVID version: non-zero arg --> no break */
3035 /* non-zero arg means wait for all output data
3036 * to be sent (performed above) but don't send break.
3037 * This is used by the tcdrain() termios function.
3038 */
3039 if (!arg)
3040 return send_break(tty, 250);
3041 return 0;
3042 case TCSBRKP: /* support for POSIX tcsendbreak() */
3043 return send_break(tty, arg ? arg*100 : 250);
3044
3045 case TIOCMGET:
3046 return tty_tiocmget(tty, file, p);
3047 case TIOCMSET:
3048 case TIOCMBIC:
3049 case TIOCMBIS:
3050 return tty_tiocmset(tty, file, cmd, p);
3051 case TCFLSH:
3052 switch (arg) {
3053 case TCIFLUSH:
3054 case TCIOFLUSH:
3055 /* flush tty buffer and allow ldisc to process ioctl */
3056 tty_buffer_flush(tty);
3057 break;
3058 }
3059 break;
3060 }
3061 if (tty->ops->ioctl) {
3062 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
3063 if (retval != -ENOIOCTLCMD)
3064 return retval;
3065 }
3066 ld = tty_ldisc_ref_wait(tty);
3067 retval = -EINVAL;
3068 if (ld->ops->ioctl) {
3069 retval = ld->ops->ioctl(tty, file, cmd, arg);
3070 if (retval == -ENOIOCTLCMD)
3071 retval = -EINVAL;
3072 }
3073 tty_ldisc_deref(ld);
3074 return retval;
3075 }
3076
3077 #ifdef CONFIG_COMPAT
3078 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3079 unsigned long arg)
3080 {
3081 struct inode *inode = file->f_dentry->d_inode;
3082 struct tty_struct *tty = file->private_data;
3083 struct tty_ldisc *ld;
3084 int retval = -ENOIOCTLCMD;
3085
3086 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3087 return -EINVAL;
3088
3089 if (tty->ops->compat_ioctl) {
3090 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
3091 if (retval != -ENOIOCTLCMD)
3092 return retval;
3093 }
3094
3095 ld = tty_ldisc_ref_wait(tty);
3096 if (ld->ops->compat_ioctl)
3097 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3098 tty_ldisc_deref(ld);
3099
3100 return retval;
3101 }
3102 #endif
3103
3104 /*
3105 * This implements the "Secure Attention Key" --- the idea is to
3106 * prevent trojan horses by killing all processes associated with this
3107 * tty when the user hits the "Secure Attention Key". Required for
3108 * super-paranoid applications --- see the Orange Book for more details.
3109 *
3110 * This code could be nicer; ideally it should send a HUP, wait a few
3111 * seconds, then send a INT, and then a KILL signal. But you then
3112 * have to coordinate with the init process, since all processes associated
3113 * with the current tty must be dead before the new getty is allowed
3114 * to spawn.
3115 *
3116 * Now, if it would be correct ;-/ The current code has a nasty hole -
3117 * it doesn't catch files in flight. We may send the descriptor to ourselves
3118 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3119 *
3120 * Nasty bug: do_SAK is being called in interrupt context. This can
3121 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3122 */
3123 void __do_SAK(struct tty_struct *tty)
3124 {
3125 #ifdef TTY_SOFT_SAK
3126 tty_hangup(tty);
3127 #else
3128 struct task_struct *g, *p;
3129 struct pid *session;
3130 int i;
3131 struct file *filp;
3132 struct fdtable *fdt;
3133
3134 if (!tty)
3135 return;
3136 session = tty->session;
3137
3138 tty_ldisc_flush(tty);
3139
3140 tty_driver_flush_buffer(tty);
3141
3142 read_lock(&tasklist_lock);
3143 /* Kill the entire session */
3144 do_each_pid_task(session, PIDTYPE_SID, p) {
3145 printk(KERN_NOTICE "SAK: killed process %d"
3146 " (%s): task_session_nr(p)==tty->session\n",
3147 task_pid_nr(p), p->comm);
3148 send_sig(SIGKILL, p, 1);
3149 } while_each_pid_task(session, PIDTYPE_SID, p);
3150 /* Now kill any processes that happen to have the
3151 * tty open.
3152 */
3153 do_each_thread(g, p) {
3154 if (p->signal->tty == tty) {
3155 printk(KERN_NOTICE "SAK: killed process %d"
3156 " (%s): task_session_nr(p)==tty->session\n",
3157 task_pid_nr(p), p->comm);
3158 send_sig(SIGKILL, p, 1);
3159 continue;
3160 }
3161 task_lock(p);
3162 if (p->files) {
3163 /*
3164 * We don't take a ref to the file, so we must
3165 * hold ->file_lock instead.
3166 */
3167 spin_lock(&p->files->file_lock);
3168 fdt = files_fdtable(p->files);
3169 for (i = 0; i < fdt->max_fds; i++) {
3170 filp = fcheck_files(p->files, i);
3171 if (!filp)
3172 continue;
3173 if (filp->f_op->read == tty_read &&
3174 filp->private_data == tty) {
3175 printk(KERN_NOTICE "SAK: killed process %d"
3176 " (%s): fd#%d opened to the tty\n",
3177 task_pid_nr(p), p->comm, i);
3178 force_sig(SIGKILL, p);
3179 break;
3180 }
3181 }
3182 spin_unlock(&p->files->file_lock);
3183 }
3184 task_unlock(p);
3185 } while_each_thread(g, p);
3186 read_unlock(&tasklist_lock);
3187 #endif
3188 }
3189
3190 static void do_SAK_work(struct work_struct *work)
3191 {
3192 struct tty_struct *tty =
3193 container_of(work, struct tty_struct, SAK_work);
3194 __do_SAK(tty);
3195 }
3196
3197 /*
3198 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3199 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3200 * the values which we write to it will be identical to the values which it
3201 * already has. --akpm
3202 */
3203 void do_SAK(struct tty_struct *tty)
3204 {
3205 if (!tty)
3206 return;
3207 schedule_work(&tty->SAK_work);
3208 }
3209
3210 EXPORT_SYMBOL(do_SAK);
3211
3212 /**
3213 * flush_to_ldisc
3214 * @work: tty structure passed from work queue.
3215 *
3216 * This routine is called out of the software interrupt to flush data
3217 * from the buffer chain to the line discipline.
3218 *
3219 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3220 * while invoking the line discipline receive_buf method. The
3221 * receive_buf method is single threaded for each tty instance.
3222 */
3223
3224 static void flush_to_ldisc(struct work_struct *work)
3225 {
3226 struct tty_struct *tty =
3227 container_of(work, struct tty_struct, buf.work.work);
3228 unsigned long flags;
3229 struct tty_ldisc *disc;
3230 struct tty_buffer *tbuf, *head;
3231 char *char_buf;
3232 unsigned char *flag_buf;
3233
3234 disc = tty_ldisc_ref(tty);
3235 if (disc == NULL) /* !TTY_LDISC */
3236 return;
3237
3238 spin_lock_irqsave(&tty->buf.lock, flags);
3239 /* So we know a flush is running */
3240 set_bit(TTY_FLUSHING, &tty->flags);
3241 head = tty->buf.head;
3242 if (head != NULL) {
3243 tty->buf.head = NULL;
3244 for (;;) {
3245 int count = head->commit - head->read;
3246 if (!count) {
3247 if (head->next == NULL)
3248 break;
3249 tbuf = head;
3250 head = head->next;
3251 tty_buffer_free(tty, tbuf);
3252 continue;
3253 }
3254 /* Ldisc or user is trying to flush the buffers
3255 we are feeding to the ldisc, stop feeding the
3256 line discipline as we want to empty the queue */
3257 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3258 break;
3259 if (!tty->receive_room) {
3260 schedule_delayed_work(&tty->buf.work, 1);
3261 break;
3262 }
3263 if (count > tty->receive_room)
3264 count = tty->receive_room;
3265 char_buf = head->char_buf_ptr + head->read;
3266 flag_buf = head->flag_buf_ptr + head->read;
3267 head->read += count;
3268 spin_unlock_irqrestore(&tty->buf.lock, flags);
3269 disc->ops->receive_buf(tty, char_buf,
3270 flag_buf, count);
3271 spin_lock_irqsave(&tty->buf.lock, flags);
3272 }
3273 /* Restore the queue head */
3274 tty->buf.head = head;
3275 }
3276 /* We may have a deferred request to flush the input buffer,
3277 if so pull the chain under the lock and empty the queue */
3278 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3279 __tty_buffer_flush(tty);
3280 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3281 wake_up(&tty->read_wait);
3282 }
3283 clear_bit(TTY_FLUSHING, &tty->flags);
3284 spin_unlock_irqrestore(&tty->buf.lock, flags);
3285
3286 tty_ldisc_deref(disc);
3287 }
3288
3289 /**
3290 * tty_flip_buffer_push - terminal
3291 * @tty: tty to push
3292 *
3293 * Queue a push of the terminal flip buffers to the line discipline. This
3294 * function must not be called from IRQ context if tty->low_latency is set.
3295 *
3296 * In the event of the queue being busy for flipping the work will be
3297 * held off and retried later.
3298 *
3299 * Locking: tty buffer lock. Driver locks in low latency mode.
3300 */
3301
3302 void tty_flip_buffer_push(struct tty_struct *tty)
3303 {
3304 unsigned long flags;
3305 spin_lock_irqsave(&tty->buf.lock, flags);
3306 if (tty->buf.tail != NULL)
3307 tty->buf.tail->commit = tty->buf.tail->used;
3308 spin_unlock_irqrestore(&tty->buf.lock, flags);
3309
3310 if (tty->low_latency)
3311 flush_to_ldisc(&tty->buf.work.work);
3312 else
3313 schedule_delayed_work(&tty->buf.work, 1);
3314 }
3315
3316 EXPORT_SYMBOL(tty_flip_buffer_push);
3317
3318
3319 /**
3320 * initialize_tty_struct
3321 * @tty: tty to initialize
3322 *
3323 * This subroutine initializes a tty structure that has been newly
3324 * allocated.
3325 *
3326 * Locking: none - tty in question must not be exposed at this point
3327 */
3328
3329 static void initialize_tty_struct(struct tty_struct *tty)
3330 {
3331 memset(tty, 0, sizeof(struct tty_struct));
3332 tty->magic = TTY_MAGIC;
3333 tty_ldisc_init(tty);
3334 tty->session = NULL;
3335 tty->pgrp = NULL;
3336 tty->overrun_time = jiffies;
3337 tty->buf.head = tty->buf.tail = NULL;
3338 tty_buffer_init(tty);
3339 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3340 mutex_init(&tty->termios_mutex);
3341 init_waitqueue_head(&tty->write_wait);
3342 init_waitqueue_head(&tty->read_wait);
3343 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3344 mutex_init(&tty->atomic_read_lock);
3345 mutex_init(&tty->atomic_write_lock);
3346 spin_lock_init(&tty->read_lock);
3347 spin_lock_init(&tty->ctrl_lock);
3348 INIT_LIST_HEAD(&tty->tty_files);
3349 INIT_WORK(&tty->SAK_work, do_SAK_work);
3350 }
3351
3352 /**
3353 * tty_put_char - write one character to a tty
3354 * @tty: tty
3355 * @ch: character
3356 *
3357 * Write one byte to the tty using the provided put_char method
3358 * if present. Returns the number of characters successfully output.
3359 *
3360 * Note: the specific put_char operation in the driver layer may go
3361 * away soon. Don't call it directly, use this method
3362 */
3363
3364 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3365 {
3366 if (tty->ops->put_char)
3367 return tty->ops->put_char(tty, ch);
3368 return tty->ops->write(tty, &ch, 1);
3369 }
3370
3371 EXPORT_SYMBOL_GPL(tty_put_char);
3372
3373 static struct class *tty_class;
3374
3375 /**
3376 * tty_register_device - register a tty device
3377 * @driver: the tty driver that describes the tty device
3378 * @index: the index in the tty driver for this tty device
3379 * @device: a struct device that is associated with this tty device.
3380 * This field is optional, if there is no known struct device
3381 * for this tty device it can be set to NULL safely.
3382 *
3383 * Returns a pointer to the struct device for this tty device
3384 * (or ERR_PTR(-EFOO) on error).
3385 *
3386 * This call is required to be made to register an individual tty device
3387 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3388 * that bit is not set, this function should not be called by a tty
3389 * driver.
3390 *
3391 * Locking: ??
3392 */
3393
3394 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3395 struct device *device)
3396 {
3397 char name[64];
3398 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3399
3400 if (index >= driver->num) {
3401 printk(KERN_ERR "Attempt to register invalid tty line number "
3402 " (%d).\n", index);
3403 return ERR_PTR(-EINVAL);
3404 }
3405
3406 if (driver->type == TTY_DRIVER_TYPE_PTY)
3407 pty_line_name(driver, index, name);
3408 else
3409 tty_line_name(driver, index, name);
3410
3411 return device_create_drvdata(tty_class, device, dev, NULL, name);
3412 }
3413
3414 /**
3415 * tty_unregister_device - unregister a tty device
3416 * @driver: the tty driver that describes the tty device
3417 * @index: the index in the tty driver for this tty device
3418 *
3419 * If a tty device is registered with a call to tty_register_device() then
3420 * this function must be called when the tty device is gone.
3421 *
3422 * Locking: ??
3423 */
3424
3425 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3426 {
3427 device_destroy(tty_class,
3428 MKDEV(driver->major, driver->minor_start) + index);
3429 }
3430
3431 EXPORT_SYMBOL(tty_register_device);
3432 EXPORT_SYMBOL(tty_unregister_device);
3433
3434 struct tty_driver *alloc_tty_driver(int lines)
3435 {
3436 struct tty_driver *driver;
3437
3438 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3439 if (driver) {
3440 driver->magic = TTY_DRIVER_MAGIC;
3441 driver->num = lines;
3442 /* later we'll move allocation of tables here */
3443 }
3444 return driver;
3445 }
3446
3447 void put_tty_driver(struct tty_driver *driver)
3448 {
3449 kfree(driver);
3450 }
3451
3452 void tty_set_operations(struct tty_driver *driver,
3453 const struct tty_operations *op)
3454 {
3455 driver->ops = op;
3456 };
3457
3458 EXPORT_SYMBOL(alloc_tty_driver);
3459 EXPORT_SYMBOL(put_tty_driver);
3460 EXPORT_SYMBOL(tty_set_operations);
3461
3462 /*
3463 * Called by a tty driver to register itself.
3464 */
3465 int tty_register_driver(struct tty_driver *driver)
3466 {
3467 int error;
3468 int i;
3469 dev_t dev;
3470 void **p = NULL;
3471
3472 if (driver->flags & TTY_DRIVER_INSTALLED)
3473 return 0;
3474
3475 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3476 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3477 if (!p)
3478 return -ENOMEM;
3479 }
3480
3481 if (!driver->major) {
3482 error = alloc_chrdev_region(&dev, driver->minor_start,
3483 driver->num, driver->name);
3484 if (!error) {
3485 driver->major = MAJOR(dev);
3486 driver->minor_start = MINOR(dev);
3487 }
3488 } else {
3489 dev = MKDEV(driver->major, driver->minor_start);
3490 error = register_chrdev_region(dev, driver->num, driver->name);
3491 }
3492 if (error < 0) {
3493 kfree(p);
3494 return error;
3495 }
3496
3497 if (p) {
3498 driver->ttys = (struct tty_struct **)p;
3499 driver->termios = (struct ktermios **)(p + driver->num);
3500 driver->termios_locked = (struct ktermios **)
3501 (p + driver->num * 2);
3502 } else {
3503 driver->ttys = NULL;
3504 driver->termios = NULL;
3505 driver->termios_locked = NULL;
3506 }
3507
3508 cdev_init(&driver->cdev, &tty_fops);
3509 driver->cdev.owner = driver->owner;
3510 error = cdev_add(&driver->cdev, dev, driver->num);
3511 if (error) {
3512 unregister_chrdev_region(dev, driver->num);
3513 driver->ttys = NULL;
3514 driver->termios = driver->termios_locked = NULL;
3515 kfree(p);
3516 return error;
3517 }
3518
3519 mutex_lock(&tty_mutex);
3520 list_add(&driver->tty_drivers, &tty_drivers);
3521 mutex_unlock(&tty_mutex);
3522
3523 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3524 for (i = 0; i < driver->num; i++)
3525 tty_register_device(driver, i, NULL);
3526 }
3527 proc_tty_register_driver(driver);
3528 return 0;
3529 }
3530
3531 EXPORT_SYMBOL(tty_register_driver);
3532
3533 /*
3534 * Called by a tty driver to unregister itself.
3535 */
3536 int tty_unregister_driver(struct tty_driver *driver)
3537 {
3538 int i;
3539 struct ktermios *tp;
3540 void *p;
3541
3542 if (driver->refcount)
3543 return -EBUSY;
3544
3545 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3546 driver->num);
3547 mutex_lock(&tty_mutex);
3548 list_del(&driver->tty_drivers);
3549 mutex_unlock(&tty_mutex);
3550
3551 /*
3552 * Free the termios and termios_locked structures because
3553 * we don't want to get memory leaks when modular tty
3554 * drivers are removed from the kernel.
3555 */
3556 for (i = 0; i < driver->num; i++) {
3557 tp = driver->termios[i];
3558 if (tp) {
3559 driver->termios[i] = NULL;
3560 kfree(tp);
3561 }
3562 tp = driver->termios_locked[i];
3563 if (tp) {
3564 driver->termios_locked[i] = NULL;
3565 kfree(tp);
3566 }
3567 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3568 tty_unregister_device(driver, i);
3569 }
3570 p = driver->ttys;
3571 proc_tty_unregister_driver(driver);
3572 driver->ttys = NULL;
3573 driver->termios = driver->termios_locked = NULL;
3574 kfree(p);
3575 cdev_del(&driver->cdev);
3576 return 0;
3577 }
3578 EXPORT_SYMBOL(tty_unregister_driver);
3579
3580 dev_t tty_devnum(struct tty_struct *tty)
3581 {
3582 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3583 }
3584 EXPORT_SYMBOL(tty_devnum);
3585
3586 void proc_clear_tty(struct task_struct *p)
3587 {
3588 spin_lock_irq(&p->sighand->siglock);
3589 p->signal->tty = NULL;
3590 spin_unlock_irq(&p->sighand->siglock);
3591 }
3592
3593 /* Called under the sighand lock */
3594
3595 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3596 {
3597 if (tty) {
3598 unsigned long flags;
3599 /* We should not have a session or pgrp to put here but.... */
3600 spin_lock_irqsave(&tty->ctrl_lock, flags);
3601 put_pid(tty->session);
3602 put_pid(tty->pgrp);
3603 tty->pgrp = get_pid(task_pgrp(tsk));
3604 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3605 tty->session = get_pid(task_session(tsk));
3606 }
3607 put_pid(tsk->signal->tty_old_pgrp);
3608 tsk->signal->tty = tty;
3609 tsk->signal->tty_old_pgrp = NULL;
3610 }
3611
3612 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3613 {
3614 spin_lock_irq(&tsk->sighand->siglock);
3615 __proc_set_tty(tsk, tty);
3616 spin_unlock_irq(&tsk->sighand->siglock);
3617 }
3618
3619 struct tty_struct *get_current_tty(void)
3620 {
3621 struct tty_struct *tty;
3622 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3623 tty = current->signal->tty;
3624 /*
3625 * session->tty can be changed/cleared from under us, make sure we
3626 * issue the load. The obtained pointer, when not NULL, is valid as
3627 * long as we hold tty_mutex.
3628 */
3629 barrier();
3630 return tty;
3631 }
3632 EXPORT_SYMBOL_GPL(get_current_tty);
3633
3634 /*
3635 * Initialize the console device. This is called *early*, so
3636 * we can't necessarily depend on lots of kernel help here.
3637 * Just do some early initializations, and do the complex setup
3638 * later.
3639 */
3640 void __init console_init(void)
3641 {
3642 initcall_t *call;
3643
3644 /* Setup the default TTY line discipline. */
3645 tty_ldisc_begin();
3646
3647 /*
3648 * set up the console device so that later boot sequences can
3649 * inform about problems etc..
3650 */
3651 call = __con_initcall_start;
3652 while (call < __con_initcall_end) {
3653 (*call)();
3654 call++;
3655 }
3656 }
3657
3658 static int __init tty_class_init(void)
3659 {
3660 tty_class = class_create(THIS_MODULE, "tty");
3661 if (IS_ERR(tty_class))
3662 return PTR_ERR(tty_class);
3663 return 0;
3664 }
3665
3666 postcore_initcall(tty_class_init);
3667
3668 /* 3/2004 jmc: why do these devices exist? */
3669
3670 static struct cdev tty_cdev, console_cdev;
3671 #ifdef CONFIG_UNIX98_PTYS
3672 static struct cdev ptmx_cdev;
3673 #endif
3674 #ifdef CONFIG_VT
3675 static struct cdev vc0_cdev;
3676 #endif
3677
3678 /*
3679 * Ok, now we can initialize the rest of the tty devices and can count
3680 * on memory allocations, interrupts etc..
3681 */
3682 static int __init tty_init(void)
3683 {
3684 cdev_init(&tty_cdev, &tty_fops);
3685 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3686 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3687 panic("Couldn't register /dev/tty driver\n");
3688 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3689 "tty");
3690
3691 cdev_init(&console_cdev, &console_fops);
3692 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3693 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3694 panic("Couldn't register /dev/console driver\n");
3695 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3696 "console");
3697
3698 #ifdef CONFIG_UNIX98_PTYS
3699 cdev_init(&ptmx_cdev, &ptmx_fops);
3700 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3701 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3702 panic("Couldn't register /dev/ptmx driver\n");
3703 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), NULL, "ptmx");
3704 #endif
3705
3706 #ifdef CONFIG_VT
3707 cdev_init(&vc0_cdev, &console_fops);
3708 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3709 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3710 panic("Couldn't register /dev/tty0 driver\n");
3711 device_create_drvdata(tty_class, NULL, MKDEV(TTY_MAJOR, 0), NULL, "tty0");
3712
3713 vty_init();
3714 #endif
3715 return 0;
3716 }
3717 module_init(tty_init);
This page took 0.101675 seconds and 6 git commands to generate.