Pull remove-hotkey into release branch
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106
107 #undef TTY_DEBUG_HANGUP
108
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
111
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
121 };
122
123 EXPORT_SYMBOL(tty_std_termios);
124
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
128
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
130
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
135
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 extern void disable_early_printk(void);
145
146 static void initialize_tty_struct(struct tty_struct *tty);
147
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
151 static unsigned int tty_poll(struct file *, poll_table *);
152 static int tty_open(struct inode *, struct file *);
153 static int tty_release(struct inode *, struct file *);
154 int tty_ioctl(struct inode * inode, struct file * file,
155 unsigned int cmd, unsigned long arg);
156 static int tty_fasync(int fd, struct file * filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static struct pid *__proc_set_tty(struct task_struct *tsk,
159 struct tty_struct *tty);
160
161 /**
162 * alloc_tty_struct - allocate a tty object
163 *
164 * Return a new empty tty structure. The data fields have not
165 * been initialized in any way but has been zeroed
166 *
167 * Locking: none
168 */
169
170 static struct tty_struct *alloc_tty_struct(void)
171 {
172 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 }
174
175 static void tty_buffer_free_all(struct tty_struct *);
176
177 /**
178 * free_tty_struct - free a disused tty
179 * @tty: tty struct to free
180 *
181 * Free the write buffers, tty queue and tty memory itself.
182 *
183 * Locking: none. Must be called after tty is definitely unused
184 */
185
186 static inline void free_tty_struct(struct tty_struct *tty)
187 {
188 kfree(tty->write_buf);
189 tty_buffer_free_all(tty);
190 kfree(tty);
191 }
192
193 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
194
195 /**
196 * tty_name - return tty naming
197 * @tty: tty structure
198 * @buf: buffer for output
199 *
200 * Convert a tty structure into a name. The name reflects the kernel
201 * naming policy and if udev is in use may not reflect user space
202 *
203 * Locking: none
204 */
205
206 char *tty_name(struct tty_struct *tty, char *buf)
207 {
208 if (!tty) /* Hmm. NULL pointer. That's fun. */
209 strcpy(buf, "NULL tty");
210 else
211 strcpy(buf, tty->name);
212 return buf;
213 }
214
215 EXPORT_SYMBOL(tty_name);
216
217 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
218 const char *routine)
219 {
220 #ifdef TTY_PARANOIA_CHECK
221 if (!tty) {
222 printk(KERN_WARNING
223 "null TTY for (%d:%d) in %s\n",
224 imajor(inode), iminor(inode), routine);
225 return 1;
226 }
227 if (tty->magic != TTY_MAGIC) {
228 printk(KERN_WARNING
229 "bad magic number for tty struct (%d:%d) in %s\n",
230 imajor(inode), iminor(inode), routine);
231 return 1;
232 }
233 #endif
234 return 0;
235 }
236
237 static int check_tty_count(struct tty_struct *tty, const char *routine)
238 {
239 #ifdef CHECK_TTY_COUNT
240 struct list_head *p;
241 int count = 0;
242
243 file_list_lock();
244 list_for_each(p, &tty->tty_files) {
245 count++;
246 }
247 file_list_unlock();
248 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
249 tty->driver->subtype == PTY_TYPE_SLAVE &&
250 tty->link && tty->link->count)
251 count++;
252 if (tty->count != count) {
253 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
254 "!= #fd's(%d) in %s\n",
255 tty->name, tty->count, count, routine);
256 return count;
257 }
258 #endif
259 return 0;
260 }
261
262 /*
263 * Tty buffer allocation management
264 */
265
266 /**
267 * tty_buffer_free_all - free buffers used by a tty
268 * @tty: tty to free from
269 *
270 * Remove all the buffers pending on a tty whether queued with data
271 * or in the free ring. Must be called when the tty is no longer in use
272 *
273 * Locking: none
274 */
275
276 static void tty_buffer_free_all(struct tty_struct *tty)
277 {
278 struct tty_buffer *thead;
279 while((thead = tty->buf.head) != NULL) {
280 tty->buf.head = thead->next;
281 kfree(thead);
282 }
283 while((thead = tty->buf.free) != NULL) {
284 tty->buf.free = thead->next;
285 kfree(thead);
286 }
287 tty->buf.tail = NULL;
288 tty->buf.memory_used = 0;
289 }
290
291 /**
292 * tty_buffer_init - prepare a tty buffer structure
293 * @tty: tty to initialise
294 *
295 * Set up the initial state of the buffer management for a tty device.
296 * Must be called before the other tty buffer functions are used.
297 *
298 * Locking: none
299 */
300
301 static void tty_buffer_init(struct tty_struct *tty)
302 {
303 spin_lock_init(&tty->buf.lock);
304 tty->buf.head = NULL;
305 tty->buf.tail = NULL;
306 tty->buf.free = NULL;
307 tty->buf.memory_used = 0;
308 }
309
310 /**
311 * tty_buffer_alloc - allocate a tty buffer
312 * @tty: tty device
313 * @size: desired size (characters)
314 *
315 * Allocate a new tty buffer to hold the desired number of characters.
316 * Return NULL if out of memory or the allocation would exceed the
317 * per device queue
318 *
319 * Locking: Caller must hold tty->buf.lock
320 */
321
322 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
323 {
324 struct tty_buffer *p;
325
326 if (tty->buf.memory_used + size > 65536)
327 return NULL;
328 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
329 if(p == NULL)
330 return NULL;
331 p->used = 0;
332 p->size = size;
333 p->next = NULL;
334 p->commit = 0;
335 p->read = 0;
336 p->char_buf_ptr = (char *)(p->data);
337 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
338 tty->buf.memory_used += size;
339 return p;
340 }
341
342 /**
343 * tty_buffer_free - free a tty buffer
344 * @tty: tty owning the buffer
345 * @b: the buffer to free
346 *
347 * Free a tty buffer, or add it to the free list according to our
348 * internal strategy
349 *
350 * Locking: Caller must hold tty->buf.lock
351 */
352
353 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
354 {
355 /* Dumb strategy for now - should keep some stats */
356 tty->buf.memory_used -= b->size;
357 WARN_ON(tty->buf.memory_used < 0);
358
359 if(b->size >= 512)
360 kfree(b);
361 else {
362 b->next = tty->buf.free;
363 tty->buf.free = b;
364 }
365 }
366
367 /**
368 * tty_buffer_find - find a free tty buffer
369 * @tty: tty owning the buffer
370 * @size: characters wanted
371 *
372 * Locate an existing suitable tty buffer or if we are lacking one then
373 * allocate a new one. We round our buffers off in 256 character chunks
374 * to get better allocation behaviour.
375 *
376 * Locking: Caller must hold tty->buf.lock
377 */
378
379 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
380 {
381 struct tty_buffer **tbh = &tty->buf.free;
382 while((*tbh) != NULL) {
383 struct tty_buffer *t = *tbh;
384 if(t->size >= size) {
385 *tbh = t->next;
386 t->next = NULL;
387 t->used = 0;
388 t->commit = 0;
389 t->read = 0;
390 tty->buf.memory_used += t->size;
391 return t;
392 }
393 tbh = &((*tbh)->next);
394 }
395 /* Round the buffer size out */
396 size = (size + 0xFF) & ~ 0xFF;
397 return tty_buffer_alloc(tty, size);
398 /* Should possibly check if this fails for the largest buffer we
399 have queued and recycle that ? */
400 }
401
402 /**
403 * tty_buffer_request_room - grow tty buffer if needed
404 * @tty: tty structure
405 * @size: size desired
406 *
407 * Make at least size bytes of linear space available for the tty
408 * buffer. If we fail return the size we managed to find.
409 *
410 * Locking: Takes tty->buf.lock
411 */
412 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
413 {
414 struct tty_buffer *b, *n;
415 int left;
416 unsigned long flags;
417
418 spin_lock_irqsave(&tty->buf.lock, flags);
419
420 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
421 remove this conditional if its worth it. This would be invisible
422 to the callers */
423 if ((b = tty->buf.tail) != NULL)
424 left = b->size - b->used;
425 else
426 left = 0;
427
428 if (left < size) {
429 /* This is the slow path - looking for new buffers to use */
430 if ((n = tty_buffer_find(tty, size)) != NULL) {
431 if (b != NULL) {
432 b->next = n;
433 b->commit = b->used;
434 } else
435 tty->buf.head = n;
436 tty->buf.tail = n;
437 } else
438 size = left;
439 }
440
441 spin_unlock_irqrestore(&tty->buf.lock, flags);
442 return size;
443 }
444 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
445
446 /**
447 * tty_insert_flip_string - Add characters to the tty buffer
448 * @tty: tty structure
449 * @chars: characters
450 * @size: size
451 *
452 * Queue a series of bytes to the tty buffering. All the characters
453 * passed are marked as without error. Returns the number added.
454 *
455 * Locking: Called functions may take tty->buf.lock
456 */
457
458 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
459 size_t size)
460 {
461 int copied = 0;
462 do {
463 int space = tty_buffer_request_room(tty, size - copied);
464 struct tty_buffer *tb = tty->buf.tail;
465 /* If there is no space then tb may be NULL */
466 if(unlikely(space == 0))
467 break;
468 memcpy(tb->char_buf_ptr + tb->used, chars, space);
469 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
470 tb->used += space;
471 copied += space;
472 chars += space;
473 /* There is a small chance that we need to split the data over
474 several buffers. If this is the case we must loop */
475 } while (unlikely(size > copied));
476 return copied;
477 }
478 EXPORT_SYMBOL(tty_insert_flip_string);
479
480 /**
481 * tty_insert_flip_string_flags - Add characters to the tty buffer
482 * @tty: tty structure
483 * @chars: characters
484 * @flags: flag bytes
485 * @size: size
486 *
487 * Queue a series of bytes to the tty buffering. For each character
488 * the flags array indicates the status of the character. Returns the
489 * number added.
490 *
491 * Locking: Called functions may take tty->buf.lock
492 */
493
494 int tty_insert_flip_string_flags(struct tty_struct *tty,
495 const unsigned char *chars, const char *flags, size_t size)
496 {
497 int copied = 0;
498 do {
499 int space = tty_buffer_request_room(tty, size - copied);
500 struct tty_buffer *tb = tty->buf.tail;
501 /* If there is no space then tb may be NULL */
502 if(unlikely(space == 0))
503 break;
504 memcpy(tb->char_buf_ptr + tb->used, chars, space);
505 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
506 tb->used += space;
507 copied += space;
508 chars += space;
509 flags += space;
510 /* There is a small chance that we need to split the data over
511 several buffers. If this is the case we must loop */
512 } while (unlikely(size > copied));
513 return copied;
514 }
515 EXPORT_SYMBOL(tty_insert_flip_string_flags);
516
517 /**
518 * tty_schedule_flip - push characters to ldisc
519 * @tty: tty to push from
520 *
521 * Takes any pending buffers and transfers their ownership to the
522 * ldisc side of the queue. It then schedules those characters for
523 * processing by the line discipline.
524 *
525 * Locking: Takes tty->buf.lock
526 */
527
528 void tty_schedule_flip(struct tty_struct *tty)
529 {
530 unsigned long flags;
531 spin_lock_irqsave(&tty->buf.lock, flags);
532 if (tty->buf.tail != NULL)
533 tty->buf.tail->commit = tty->buf.tail->used;
534 spin_unlock_irqrestore(&tty->buf.lock, flags);
535 schedule_delayed_work(&tty->buf.work, 1);
536 }
537 EXPORT_SYMBOL(tty_schedule_flip);
538
539 /**
540 * tty_prepare_flip_string - make room for characters
541 * @tty: tty
542 * @chars: return pointer for character write area
543 * @size: desired size
544 *
545 * Prepare a block of space in the buffer for data. Returns the length
546 * available and buffer pointer to the space which is now allocated and
547 * accounted for as ready for normal characters. This is used for drivers
548 * that need their own block copy routines into the buffer. There is no
549 * guarantee the buffer is a DMA target!
550 *
551 * Locking: May call functions taking tty->buf.lock
552 */
553
554 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
555 {
556 int space = tty_buffer_request_room(tty, size);
557 if (likely(space)) {
558 struct tty_buffer *tb = tty->buf.tail;
559 *chars = tb->char_buf_ptr + tb->used;
560 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
561 tb->used += space;
562 }
563 return space;
564 }
565
566 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
567
568 /**
569 * tty_prepare_flip_string_flags - make room for characters
570 * @tty: tty
571 * @chars: return pointer for character write area
572 * @flags: return pointer for status flag write area
573 * @size: desired size
574 *
575 * Prepare a block of space in the buffer for data. Returns the length
576 * available and buffer pointer to the space which is now allocated and
577 * accounted for as ready for characters. This is used for drivers
578 * that need their own block copy routines into the buffer. There is no
579 * guarantee the buffer is a DMA target!
580 *
581 * Locking: May call functions taking tty->buf.lock
582 */
583
584 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
585 {
586 int space = tty_buffer_request_room(tty, size);
587 if (likely(space)) {
588 struct tty_buffer *tb = tty->buf.tail;
589 *chars = tb->char_buf_ptr + tb->used;
590 *flags = tb->flag_buf_ptr + tb->used;
591 tb->used += space;
592 }
593 return space;
594 }
595
596 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
597
598
599
600 /**
601 * tty_set_termios_ldisc - set ldisc field
602 * @tty: tty structure
603 * @num: line discipline number
604 *
605 * This is probably overkill for real world processors but
606 * they are not on hot paths so a little discipline won't do
607 * any harm.
608 *
609 * Locking: takes termios_mutex
610 */
611
612 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
613 {
614 mutex_lock(&tty->termios_mutex);
615 tty->termios->c_line = num;
616 mutex_unlock(&tty->termios_mutex);
617 }
618
619 /*
620 * This guards the refcounted line discipline lists. The lock
621 * must be taken with irqs off because there are hangup path
622 * callers who will do ldisc lookups and cannot sleep.
623 */
624
625 static DEFINE_SPINLOCK(tty_ldisc_lock);
626 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
627 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
628
629 /**
630 * tty_register_ldisc - install a line discipline
631 * @disc: ldisc number
632 * @new_ldisc: pointer to the ldisc object
633 *
634 * Installs a new line discipline into the kernel. The discipline
635 * is set up as unreferenced and then made available to the kernel
636 * from this point onwards.
637 *
638 * Locking:
639 * takes tty_ldisc_lock to guard against ldisc races
640 */
641
642 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
643 {
644 unsigned long flags;
645 int ret = 0;
646
647 if (disc < N_TTY || disc >= NR_LDISCS)
648 return -EINVAL;
649
650 spin_lock_irqsave(&tty_ldisc_lock, flags);
651 tty_ldiscs[disc] = *new_ldisc;
652 tty_ldiscs[disc].num = disc;
653 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
654 tty_ldiscs[disc].refcount = 0;
655 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
656
657 return ret;
658 }
659 EXPORT_SYMBOL(tty_register_ldisc);
660
661 /**
662 * tty_unregister_ldisc - unload a line discipline
663 * @disc: ldisc number
664 * @new_ldisc: pointer to the ldisc object
665 *
666 * Remove a line discipline from the kernel providing it is not
667 * currently in use.
668 *
669 * Locking:
670 * takes tty_ldisc_lock to guard against ldisc races
671 */
672
673 int tty_unregister_ldisc(int disc)
674 {
675 unsigned long flags;
676 int ret = 0;
677
678 if (disc < N_TTY || disc >= NR_LDISCS)
679 return -EINVAL;
680
681 spin_lock_irqsave(&tty_ldisc_lock, flags);
682 if (tty_ldiscs[disc].refcount)
683 ret = -EBUSY;
684 else
685 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
686 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
687
688 return ret;
689 }
690 EXPORT_SYMBOL(tty_unregister_ldisc);
691
692 /**
693 * tty_ldisc_get - take a reference to an ldisc
694 * @disc: ldisc number
695 *
696 * Takes a reference to a line discipline. Deals with refcounts and
697 * module locking counts. Returns NULL if the discipline is not available.
698 * Returns a pointer to the discipline and bumps the ref count if it is
699 * available
700 *
701 * Locking:
702 * takes tty_ldisc_lock to guard against ldisc races
703 */
704
705 struct tty_ldisc *tty_ldisc_get(int disc)
706 {
707 unsigned long flags;
708 struct tty_ldisc *ld;
709
710 if (disc < N_TTY || disc >= NR_LDISCS)
711 return NULL;
712
713 spin_lock_irqsave(&tty_ldisc_lock, flags);
714
715 ld = &tty_ldiscs[disc];
716 /* Check the entry is defined */
717 if(ld->flags & LDISC_FLAG_DEFINED)
718 {
719 /* If the module is being unloaded we can't use it */
720 if (!try_module_get(ld->owner))
721 ld = NULL;
722 else /* lock it */
723 ld->refcount++;
724 }
725 else
726 ld = NULL;
727 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
728 return ld;
729 }
730
731 EXPORT_SYMBOL_GPL(tty_ldisc_get);
732
733 /**
734 * tty_ldisc_put - drop ldisc reference
735 * @disc: ldisc number
736 *
737 * Drop a reference to a line discipline. Manage refcounts and
738 * module usage counts
739 *
740 * Locking:
741 * takes tty_ldisc_lock to guard against ldisc races
742 */
743
744 void tty_ldisc_put(int disc)
745 {
746 struct tty_ldisc *ld;
747 unsigned long flags;
748
749 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
750
751 spin_lock_irqsave(&tty_ldisc_lock, flags);
752 ld = &tty_ldiscs[disc];
753 BUG_ON(ld->refcount == 0);
754 ld->refcount--;
755 module_put(ld->owner);
756 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
757 }
758
759 EXPORT_SYMBOL_GPL(tty_ldisc_put);
760
761 /**
762 * tty_ldisc_assign - set ldisc on a tty
763 * @tty: tty to assign
764 * @ld: line discipline
765 *
766 * Install an instance of a line discipline into a tty structure. The
767 * ldisc must have a reference count above zero to ensure it remains/
768 * The tty instance refcount starts at zero.
769 *
770 * Locking:
771 * Caller must hold references
772 */
773
774 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
775 {
776 tty->ldisc = *ld;
777 tty->ldisc.refcount = 0;
778 }
779
780 /**
781 * tty_ldisc_try - internal helper
782 * @tty: the tty
783 *
784 * Make a single attempt to grab and bump the refcount on
785 * the tty ldisc. Return 0 on failure or 1 on success. This is
786 * used to implement both the waiting and non waiting versions
787 * of tty_ldisc_ref
788 *
789 * Locking: takes tty_ldisc_lock
790 */
791
792 static int tty_ldisc_try(struct tty_struct *tty)
793 {
794 unsigned long flags;
795 struct tty_ldisc *ld;
796 int ret = 0;
797
798 spin_lock_irqsave(&tty_ldisc_lock, flags);
799 ld = &tty->ldisc;
800 if(test_bit(TTY_LDISC, &tty->flags))
801 {
802 ld->refcount++;
803 ret = 1;
804 }
805 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
806 return ret;
807 }
808
809 /**
810 * tty_ldisc_ref_wait - wait for the tty ldisc
811 * @tty: tty device
812 *
813 * Dereference the line discipline for the terminal and take a
814 * reference to it. If the line discipline is in flux then
815 * wait patiently until it changes.
816 *
817 * Note: Must not be called from an IRQ/timer context. The caller
818 * must also be careful not to hold other locks that will deadlock
819 * against a discipline change, such as an existing ldisc reference
820 * (which we check for)
821 *
822 * Locking: call functions take tty_ldisc_lock
823 */
824
825 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
826 {
827 /* wait_event is a macro */
828 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
829 if(tty->ldisc.refcount == 0)
830 printk(KERN_ERR "tty_ldisc_ref_wait\n");
831 return &tty->ldisc;
832 }
833
834 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
835
836 /**
837 * tty_ldisc_ref - get the tty ldisc
838 * @tty: tty device
839 *
840 * Dereference the line discipline for the terminal and take a
841 * reference to it. If the line discipline is in flux then
842 * return NULL. Can be called from IRQ and timer functions.
843 *
844 * Locking: called functions take tty_ldisc_lock
845 */
846
847 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
848 {
849 if(tty_ldisc_try(tty))
850 return &tty->ldisc;
851 return NULL;
852 }
853
854 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
855
856 /**
857 * tty_ldisc_deref - free a tty ldisc reference
858 * @ld: reference to free up
859 *
860 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
861 * be called in IRQ context.
862 *
863 * Locking: takes tty_ldisc_lock
864 */
865
866 void tty_ldisc_deref(struct tty_ldisc *ld)
867 {
868 unsigned long flags;
869
870 BUG_ON(ld == NULL);
871
872 spin_lock_irqsave(&tty_ldisc_lock, flags);
873 if(ld->refcount == 0)
874 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
875 else
876 ld->refcount--;
877 if(ld->refcount == 0)
878 wake_up(&tty_ldisc_wait);
879 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
880 }
881
882 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
883
884 /**
885 * tty_ldisc_enable - allow ldisc use
886 * @tty: terminal to activate ldisc on
887 *
888 * Set the TTY_LDISC flag when the line discipline can be called
889 * again. Do neccessary wakeups for existing sleepers.
890 *
891 * Note: nobody should set this bit except via this function. Clearing
892 * directly is allowed.
893 */
894
895 static void tty_ldisc_enable(struct tty_struct *tty)
896 {
897 set_bit(TTY_LDISC, &tty->flags);
898 wake_up(&tty_ldisc_wait);
899 }
900
901 /**
902 * tty_set_ldisc - set line discipline
903 * @tty: the terminal to set
904 * @ldisc: the line discipline
905 *
906 * Set the discipline of a tty line. Must be called from a process
907 * context.
908 *
909 * Locking: takes tty_ldisc_lock.
910 * called functions take termios_mutex
911 */
912
913 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
914 {
915 int retval = 0;
916 struct tty_ldisc o_ldisc;
917 char buf[64];
918 int work;
919 unsigned long flags;
920 struct tty_ldisc *ld;
921 struct tty_struct *o_tty;
922
923 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
924 return -EINVAL;
925
926 restart:
927
928 ld = tty_ldisc_get(ldisc);
929 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
930 /* Cyrus Durgin <cider@speakeasy.org> */
931 if (ld == NULL) {
932 request_module("tty-ldisc-%d", ldisc);
933 ld = tty_ldisc_get(ldisc);
934 }
935 if (ld == NULL)
936 return -EINVAL;
937
938 /*
939 * No more input please, we are switching. The new ldisc
940 * will update this value in the ldisc open function
941 */
942
943 tty->receive_room = 0;
944
945 /*
946 * Problem: What do we do if this blocks ?
947 */
948
949 tty_wait_until_sent(tty, 0);
950
951 if (tty->ldisc.num == ldisc) {
952 tty_ldisc_put(ldisc);
953 return 0;
954 }
955
956 o_ldisc = tty->ldisc;
957 o_tty = tty->link;
958
959 /*
960 * Make sure we don't change while someone holds a
961 * reference to the line discipline. The TTY_LDISC bit
962 * prevents anyone taking a reference once it is clear.
963 * We need the lock to avoid racing reference takers.
964 */
965
966 spin_lock_irqsave(&tty_ldisc_lock, flags);
967 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
968 if(tty->ldisc.refcount) {
969 /* Free the new ldisc we grabbed. Must drop the lock
970 first. */
971 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
972 tty_ldisc_put(ldisc);
973 /*
974 * There are several reasons we may be busy, including
975 * random momentary I/O traffic. We must therefore
976 * retry. We could distinguish between blocking ops
977 * and retries if we made tty_ldisc_wait() smarter. That
978 * is up for discussion.
979 */
980 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
981 return -ERESTARTSYS;
982 goto restart;
983 }
984 if(o_tty && o_tty->ldisc.refcount) {
985 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
986 tty_ldisc_put(ldisc);
987 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
988 return -ERESTARTSYS;
989 goto restart;
990 }
991 }
992
993 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
994
995 if (!test_bit(TTY_LDISC, &tty->flags)) {
996 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
997 tty_ldisc_put(ldisc);
998 ld = tty_ldisc_ref_wait(tty);
999 tty_ldisc_deref(ld);
1000 goto restart;
1001 }
1002
1003 clear_bit(TTY_LDISC, &tty->flags);
1004 if (o_tty)
1005 clear_bit(TTY_LDISC, &o_tty->flags);
1006 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1007
1008 /*
1009 * From this point on we know nobody has an ldisc
1010 * usage reference, nor can they obtain one until
1011 * we say so later on.
1012 */
1013
1014 work = cancel_delayed_work(&tty->buf.work);
1015 /*
1016 * Wait for ->hangup_work and ->buf.work handlers to terminate
1017 */
1018
1019 flush_scheduled_work();
1020 /* Shutdown the current discipline. */
1021 if (tty->ldisc.close)
1022 (tty->ldisc.close)(tty);
1023
1024 /* Now set up the new line discipline. */
1025 tty_ldisc_assign(tty, ld);
1026 tty_set_termios_ldisc(tty, ldisc);
1027 if (tty->ldisc.open)
1028 retval = (tty->ldisc.open)(tty);
1029 if (retval < 0) {
1030 tty_ldisc_put(ldisc);
1031 /* There is an outstanding reference here so this is safe */
1032 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1033 tty_set_termios_ldisc(tty, tty->ldisc.num);
1034 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1035 tty_ldisc_put(o_ldisc.num);
1036 /* This driver is always present */
1037 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1038 tty_set_termios_ldisc(tty, N_TTY);
1039 if (tty->ldisc.open) {
1040 int r = tty->ldisc.open(tty);
1041
1042 if (r < 0)
1043 panic("Couldn't open N_TTY ldisc for "
1044 "%s --- error %d.",
1045 tty_name(tty, buf), r);
1046 }
1047 }
1048 }
1049 /* At this point we hold a reference to the new ldisc and a
1050 a reference to the old ldisc. If we ended up flipping back
1051 to the existing ldisc we have two references to it */
1052
1053 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1054 tty->driver->set_ldisc(tty);
1055
1056 tty_ldisc_put(o_ldisc.num);
1057
1058 /*
1059 * Allow ldisc referencing to occur as soon as the driver
1060 * ldisc callback completes.
1061 */
1062
1063 tty_ldisc_enable(tty);
1064 if (o_tty)
1065 tty_ldisc_enable(o_tty);
1066
1067 /* Restart it in case no characters kick it off. Safe if
1068 already running */
1069 if (work)
1070 schedule_delayed_work(&tty->buf.work, 1);
1071 return retval;
1072 }
1073
1074 /**
1075 * get_tty_driver - find device of a tty
1076 * @dev_t: device identifier
1077 * @index: returns the index of the tty
1078 *
1079 * This routine returns a tty driver structure, given a device number
1080 * and also passes back the index number.
1081 *
1082 * Locking: caller must hold tty_mutex
1083 */
1084
1085 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1086 {
1087 struct tty_driver *p;
1088
1089 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1090 dev_t base = MKDEV(p->major, p->minor_start);
1091 if (device < base || device >= base + p->num)
1092 continue;
1093 *index = device - base;
1094 return p;
1095 }
1096 return NULL;
1097 }
1098
1099 /**
1100 * tty_check_change - check for POSIX terminal changes
1101 * @tty: tty to check
1102 *
1103 * If we try to write to, or set the state of, a terminal and we're
1104 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1105 * ignored, go ahead and perform the operation. (POSIX 7.2)
1106 *
1107 * Locking: none
1108 */
1109
1110 int tty_check_change(struct tty_struct * tty)
1111 {
1112 if (current->signal->tty != tty)
1113 return 0;
1114 if (!tty->pgrp) {
1115 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1116 return 0;
1117 }
1118 if (task_pgrp(current) == tty->pgrp)
1119 return 0;
1120 if (is_ignored(SIGTTOU))
1121 return 0;
1122 if (is_current_pgrp_orphaned())
1123 return -EIO;
1124 (void) kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1125 return -ERESTARTSYS;
1126 }
1127
1128 EXPORT_SYMBOL(tty_check_change);
1129
1130 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1131 size_t count, loff_t *ppos)
1132 {
1133 return 0;
1134 }
1135
1136 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1137 size_t count, loff_t *ppos)
1138 {
1139 return -EIO;
1140 }
1141
1142 /* No kernel lock held - none needed ;) */
1143 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1144 {
1145 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1146 }
1147
1148 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1149 unsigned int cmd, unsigned long arg)
1150 {
1151 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1152 }
1153
1154 static const struct file_operations tty_fops = {
1155 .llseek = no_llseek,
1156 .read = tty_read,
1157 .write = tty_write,
1158 .poll = tty_poll,
1159 .ioctl = tty_ioctl,
1160 .open = tty_open,
1161 .release = tty_release,
1162 .fasync = tty_fasync,
1163 };
1164
1165 #ifdef CONFIG_UNIX98_PTYS
1166 static const struct file_operations ptmx_fops = {
1167 .llseek = no_llseek,
1168 .read = tty_read,
1169 .write = tty_write,
1170 .poll = tty_poll,
1171 .ioctl = tty_ioctl,
1172 .open = ptmx_open,
1173 .release = tty_release,
1174 .fasync = tty_fasync,
1175 };
1176 #endif
1177
1178 static const struct file_operations console_fops = {
1179 .llseek = no_llseek,
1180 .read = tty_read,
1181 .write = redirected_tty_write,
1182 .poll = tty_poll,
1183 .ioctl = tty_ioctl,
1184 .open = tty_open,
1185 .release = tty_release,
1186 .fasync = tty_fasync,
1187 };
1188
1189 static const struct file_operations hung_up_tty_fops = {
1190 .llseek = no_llseek,
1191 .read = hung_up_tty_read,
1192 .write = hung_up_tty_write,
1193 .poll = hung_up_tty_poll,
1194 .ioctl = hung_up_tty_ioctl,
1195 .release = tty_release,
1196 };
1197
1198 static DEFINE_SPINLOCK(redirect_lock);
1199 static struct file *redirect;
1200
1201 /**
1202 * tty_wakeup - request more data
1203 * @tty: terminal
1204 *
1205 * Internal and external helper for wakeups of tty. This function
1206 * informs the line discipline if present that the driver is ready
1207 * to receive more output data.
1208 */
1209
1210 void tty_wakeup(struct tty_struct *tty)
1211 {
1212 struct tty_ldisc *ld;
1213
1214 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1215 ld = tty_ldisc_ref(tty);
1216 if(ld) {
1217 if(ld->write_wakeup)
1218 ld->write_wakeup(tty);
1219 tty_ldisc_deref(ld);
1220 }
1221 }
1222 wake_up_interruptible(&tty->write_wait);
1223 }
1224
1225 EXPORT_SYMBOL_GPL(tty_wakeup);
1226
1227 /**
1228 * tty_ldisc_flush - flush line discipline queue
1229 * @tty: tty
1230 *
1231 * Flush the line discipline queue (if any) for this tty. If there
1232 * is no line discipline active this is a no-op.
1233 */
1234
1235 void tty_ldisc_flush(struct tty_struct *tty)
1236 {
1237 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1238 if(ld) {
1239 if(ld->flush_buffer)
1240 ld->flush_buffer(tty);
1241 tty_ldisc_deref(ld);
1242 }
1243 }
1244
1245 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1246
1247 /**
1248 * tty_reset_termios - reset terminal state
1249 * @tty: tty to reset
1250 *
1251 * Restore a terminal to the driver default state
1252 */
1253
1254 static void tty_reset_termios(struct tty_struct *tty)
1255 {
1256 mutex_lock(&tty->termios_mutex);
1257 *tty->termios = tty->driver->init_termios;
1258 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1259 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1260 mutex_unlock(&tty->termios_mutex);
1261 }
1262
1263 /**
1264 * do_tty_hangup - actual handler for hangup events
1265 * @work: tty device
1266 *
1267 * This can be called by the "eventd" kernel thread. That is process
1268 * synchronous but doesn't hold any locks, so we need to make sure we
1269 * have the appropriate locks for what we're doing.
1270 *
1271 * The hangup event clears any pending redirections onto the hung up
1272 * device. It ensures future writes will error and it does the needed
1273 * line discipline hangup and signal delivery. The tty object itself
1274 * remains intact.
1275 *
1276 * Locking:
1277 * BKL
1278 * redirect lock for undoing redirection
1279 * file list lock for manipulating list of ttys
1280 * tty_ldisc_lock from called functions
1281 * termios_mutex resetting termios data
1282 * tasklist_lock to walk task list for hangup event
1283 * ->siglock to protect ->signal/->sighand
1284 */
1285 static void do_tty_hangup(struct work_struct *work)
1286 {
1287 struct tty_struct *tty =
1288 container_of(work, struct tty_struct, hangup_work);
1289 struct file * cons_filp = NULL;
1290 struct file *filp, *f = NULL;
1291 struct task_struct *p;
1292 struct tty_ldisc *ld;
1293 int closecount = 0, n;
1294
1295 if (!tty)
1296 return;
1297
1298 /* inuse_filps is protected by the single kernel lock */
1299 lock_kernel();
1300
1301 spin_lock(&redirect_lock);
1302 if (redirect && redirect->private_data == tty) {
1303 f = redirect;
1304 redirect = NULL;
1305 }
1306 spin_unlock(&redirect_lock);
1307
1308 check_tty_count(tty, "do_tty_hangup");
1309 file_list_lock();
1310 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1311 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1312 if (filp->f_op->write == redirected_tty_write)
1313 cons_filp = filp;
1314 if (filp->f_op->write != tty_write)
1315 continue;
1316 closecount++;
1317 tty_fasync(-1, filp, 0); /* can't block */
1318 filp->f_op = &hung_up_tty_fops;
1319 }
1320 file_list_unlock();
1321
1322 /* FIXME! What are the locking issues here? This may me overdoing things..
1323 * this question is especially important now that we've removed the irqlock. */
1324
1325 ld = tty_ldisc_ref(tty);
1326 if(ld != NULL) /* We may have no line discipline at this point */
1327 {
1328 if (ld->flush_buffer)
1329 ld->flush_buffer(tty);
1330 if (tty->driver->flush_buffer)
1331 tty->driver->flush_buffer(tty);
1332 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1333 ld->write_wakeup)
1334 ld->write_wakeup(tty);
1335 if (ld->hangup)
1336 ld->hangup(tty);
1337 }
1338
1339 /* FIXME: Once we trust the LDISC code better we can wait here for
1340 ldisc completion and fix the driver call race */
1341
1342 wake_up_interruptible(&tty->write_wait);
1343 wake_up_interruptible(&tty->read_wait);
1344
1345 /*
1346 * Shutdown the current line discipline, and reset it to
1347 * N_TTY.
1348 */
1349 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1350 tty_reset_termios(tty);
1351
1352 /* Defer ldisc switch */
1353 /* tty_deferred_ldisc_switch(N_TTY);
1354
1355 This should get done automatically when the port closes and
1356 tty_release is called */
1357
1358 read_lock(&tasklist_lock);
1359 if (tty->session) {
1360 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1361 spin_lock_irq(&p->sighand->siglock);
1362 if (p->signal->tty == tty)
1363 p->signal->tty = NULL;
1364 if (!p->signal->leader) {
1365 spin_unlock_irq(&p->sighand->siglock);
1366 continue;
1367 }
1368 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1369 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1370 put_pid(p->signal->tty_old_pgrp); /* A noop */
1371 if (tty->pgrp)
1372 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1373 spin_unlock_irq(&p->sighand->siglock);
1374 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1375 }
1376 read_unlock(&tasklist_lock);
1377
1378 tty->flags = 0;
1379 tty->session = NULL;
1380 tty->pgrp = NULL;
1381 tty->ctrl_status = 0;
1382 /*
1383 * If one of the devices matches a console pointer, we
1384 * cannot just call hangup() because that will cause
1385 * tty->count and state->count to go out of sync.
1386 * So we just call close() the right number of times.
1387 */
1388 if (cons_filp) {
1389 if (tty->driver->close)
1390 for (n = 0; n < closecount; n++)
1391 tty->driver->close(tty, cons_filp);
1392 } else if (tty->driver->hangup)
1393 (tty->driver->hangup)(tty);
1394
1395 /* We don't want to have driver/ldisc interactions beyond
1396 the ones we did here. The driver layer expects no
1397 calls after ->hangup() from the ldisc side. However we
1398 can't yet guarantee all that */
1399
1400 set_bit(TTY_HUPPED, &tty->flags);
1401 if (ld) {
1402 tty_ldisc_enable(tty);
1403 tty_ldisc_deref(ld);
1404 }
1405 unlock_kernel();
1406 if (f)
1407 fput(f);
1408 }
1409
1410 /**
1411 * tty_hangup - trigger a hangup event
1412 * @tty: tty to hangup
1413 *
1414 * A carrier loss (virtual or otherwise) has occurred on this like
1415 * schedule a hangup sequence to run after this event.
1416 */
1417
1418 void tty_hangup(struct tty_struct * tty)
1419 {
1420 #ifdef TTY_DEBUG_HANGUP
1421 char buf[64];
1422
1423 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1424 #endif
1425 schedule_work(&tty->hangup_work);
1426 }
1427
1428 EXPORT_SYMBOL(tty_hangup);
1429
1430 /**
1431 * tty_vhangup - process vhangup
1432 * @tty: tty to hangup
1433 *
1434 * The user has asked via system call for the terminal to be hung up.
1435 * We do this synchronously so that when the syscall returns the process
1436 * is complete. That guarantee is neccessary for security reasons.
1437 */
1438
1439 void tty_vhangup(struct tty_struct * tty)
1440 {
1441 #ifdef TTY_DEBUG_HANGUP
1442 char buf[64];
1443
1444 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1445 #endif
1446 do_tty_hangup(&tty->hangup_work);
1447 }
1448 EXPORT_SYMBOL(tty_vhangup);
1449
1450 /**
1451 * tty_hung_up_p - was tty hung up
1452 * @filp: file pointer of tty
1453 *
1454 * Return true if the tty has been subject to a vhangup or a carrier
1455 * loss
1456 */
1457
1458 int tty_hung_up_p(struct file * filp)
1459 {
1460 return (filp->f_op == &hung_up_tty_fops);
1461 }
1462
1463 EXPORT_SYMBOL(tty_hung_up_p);
1464
1465 static void session_clear_tty(struct pid *session)
1466 {
1467 struct task_struct *p;
1468 do_each_pid_task(session, PIDTYPE_SID, p) {
1469 proc_clear_tty(p);
1470 } while_each_pid_task(session, PIDTYPE_SID, p);
1471 }
1472
1473 /**
1474 * disassociate_ctty - disconnect controlling tty
1475 * @on_exit: true if exiting so need to "hang up" the session
1476 *
1477 * This function is typically called only by the session leader, when
1478 * it wants to disassociate itself from its controlling tty.
1479 *
1480 * It performs the following functions:
1481 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1482 * (2) Clears the tty from being controlling the session
1483 * (3) Clears the controlling tty for all processes in the
1484 * session group.
1485 *
1486 * The argument on_exit is set to 1 if called when a process is
1487 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1488 *
1489 * Locking:
1490 * BKL is taken for hysterical raisins
1491 * tty_mutex is taken to protect tty
1492 * ->siglock is taken to protect ->signal/->sighand
1493 * tasklist_lock is taken to walk process list for sessions
1494 * ->siglock is taken to protect ->signal/->sighand
1495 */
1496
1497 void disassociate_ctty(int on_exit)
1498 {
1499 struct tty_struct *tty;
1500 struct pid *tty_pgrp = NULL;
1501
1502 lock_kernel();
1503
1504 mutex_lock(&tty_mutex);
1505 tty = get_current_tty();
1506 if (tty) {
1507 tty_pgrp = get_pid(tty->pgrp);
1508 mutex_unlock(&tty_mutex);
1509 /* XXX: here we race, there is nothing protecting tty */
1510 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1511 tty_vhangup(tty);
1512 } else if (on_exit) {
1513 struct pid *old_pgrp;
1514 spin_lock_irq(&current->sighand->siglock);
1515 old_pgrp = current->signal->tty_old_pgrp;
1516 current->signal->tty_old_pgrp = NULL;
1517 spin_unlock_irq(&current->sighand->siglock);
1518 if (old_pgrp) {
1519 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1520 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1521 put_pid(old_pgrp);
1522 }
1523 mutex_unlock(&tty_mutex);
1524 unlock_kernel();
1525 return;
1526 }
1527 if (tty_pgrp) {
1528 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1529 if (!on_exit)
1530 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1531 put_pid(tty_pgrp);
1532 }
1533
1534 spin_lock_irq(&current->sighand->siglock);
1535 tty_pgrp = current->signal->tty_old_pgrp;
1536 current->signal->tty_old_pgrp = 0;
1537 spin_unlock_irq(&current->sighand->siglock);
1538 put_pid(tty_pgrp);
1539
1540 mutex_lock(&tty_mutex);
1541 /* It is possible that do_tty_hangup has free'd this tty */
1542 tty = get_current_tty();
1543 if (tty) {
1544 put_pid(tty->session);
1545 put_pid(tty->pgrp);
1546 tty->session = NULL;
1547 tty->pgrp = NULL;
1548 } else {
1549 #ifdef TTY_DEBUG_HANGUP
1550 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1551 " = NULL", tty);
1552 #endif
1553 }
1554 mutex_unlock(&tty_mutex);
1555
1556 /* Now clear signal->tty under the lock */
1557 read_lock(&tasklist_lock);
1558 session_clear_tty(task_session(current));
1559 read_unlock(&tasklist_lock);
1560 unlock_kernel();
1561 }
1562
1563
1564 /**
1565 * stop_tty - propogate flow control
1566 * @tty: tty to stop
1567 *
1568 * Perform flow control to the driver. For PTY/TTY pairs we
1569 * must also propogate the TIOCKPKT status. May be called
1570 * on an already stopped device and will not re-call the driver
1571 * method.
1572 *
1573 * This functionality is used by both the line disciplines for
1574 * halting incoming flow and by the driver. It may therefore be
1575 * called from any context, may be under the tty atomic_write_lock
1576 * but not always.
1577 *
1578 * Locking:
1579 * Broken. Relies on BKL which is unsafe here.
1580 */
1581
1582 void stop_tty(struct tty_struct *tty)
1583 {
1584 if (tty->stopped)
1585 return;
1586 tty->stopped = 1;
1587 if (tty->link && tty->link->packet) {
1588 tty->ctrl_status &= ~TIOCPKT_START;
1589 tty->ctrl_status |= TIOCPKT_STOP;
1590 wake_up_interruptible(&tty->link->read_wait);
1591 }
1592 if (tty->driver->stop)
1593 (tty->driver->stop)(tty);
1594 }
1595
1596 EXPORT_SYMBOL(stop_tty);
1597
1598 /**
1599 * start_tty - propogate flow control
1600 * @tty: tty to start
1601 *
1602 * Start a tty that has been stopped if at all possible. Perform
1603 * any neccessary wakeups and propogate the TIOCPKT status. If this
1604 * is the tty was previous stopped and is being started then the
1605 * driver start method is invoked and the line discipline woken.
1606 *
1607 * Locking:
1608 * Broken. Relies on BKL which is unsafe here.
1609 */
1610
1611 void start_tty(struct tty_struct *tty)
1612 {
1613 if (!tty->stopped || tty->flow_stopped)
1614 return;
1615 tty->stopped = 0;
1616 if (tty->link && tty->link->packet) {
1617 tty->ctrl_status &= ~TIOCPKT_STOP;
1618 tty->ctrl_status |= TIOCPKT_START;
1619 wake_up_interruptible(&tty->link->read_wait);
1620 }
1621 if (tty->driver->start)
1622 (tty->driver->start)(tty);
1623
1624 /* If we have a running line discipline it may need kicking */
1625 tty_wakeup(tty);
1626 }
1627
1628 EXPORT_SYMBOL(start_tty);
1629
1630 /**
1631 * tty_read - read method for tty device files
1632 * @file: pointer to tty file
1633 * @buf: user buffer
1634 * @count: size of user buffer
1635 * @ppos: unused
1636 *
1637 * Perform the read system call function on this terminal device. Checks
1638 * for hung up devices before calling the line discipline method.
1639 *
1640 * Locking:
1641 * Locks the line discipline internally while needed
1642 * For historical reasons the line discipline read method is
1643 * invoked under the BKL. This will go away in time so do not rely on it
1644 * in new code. Multiple read calls may be outstanding in parallel.
1645 */
1646
1647 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1648 loff_t *ppos)
1649 {
1650 int i;
1651 struct tty_struct * tty;
1652 struct inode *inode;
1653 struct tty_ldisc *ld;
1654
1655 tty = (struct tty_struct *)file->private_data;
1656 inode = file->f_path.dentry->d_inode;
1657 if (tty_paranoia_check(tty, inode, "tty_read"))
1658 return -EIO;
1659 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1660 return -EIO;
1661
1662 /* We want to wait for the line discipline to sort out in this
1663 situation */
1664 ld = tty_ldisc_ref_wait(tty);
1665 lock_kernel();
1666 if (ld->read)
1667 i = (ld->read)(tty,file,buf,count);
1668 else
1669 i = -EIO;
1670 tty_ldisc_deref(ld);
1671 unlock_kernel();
1672 if (i > 0)
1673 inode->i_atime = current_fs_time(inode->i_sb);
1674 return i;
1675 }
1676
1677 /*
1678 * Split writes up in sane blocksizes to avoid
1679 * denial-of-service type attacks
1680 */
1681 static inline ssize_t do_tty_write(
1682 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1683 struct tty_struct *tty,
1684 struct file *file,
1685 const char __user *buf,
1686 size_t count)
1687 {
1688 ssize_t ret = 0, written = 0;
1689 unsigned int chunk;
1690
1691 /* FIXME: O_NDELAY ... */
1692 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1693 return -ERESTARTSYS;
1694 }
1695
1696 /*
1697 * We chunk up writes into a temporary buffer. This
1698 * simplifies low-level drivers immensely, since they
1699 * don't have locking issues and user mode accesses.
1700 *
1701 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1702 * big chunk-size..
1703 *
1704 * The default chunk-size is 2kB, because the NTTY
1705 * layer has problems with bigger chunks. It will
1706 * claim to be able to handle more characters than
1707 * it actually does.
1708 *
1709 * FIXME: This can probably go away now except that 64K chunks
1710 * are too likely to fail unless switched to vmalloc...
1711 */
1712 chunk = 2048;
1713 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1714 chunk = 65536;
1715 if (count < chunk)
1716 chunk = count;
1717
1718 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1719 if (tty->write_cnt < chunk) {
1720 unsigned char *buf;
1721
1722 if (chunk < 1024)
1723 chunk = 1024;
1724
1725 buf = kmalloc(chunk, GFP_KERNEL);
1726 if (!buf) {
1727 mutex_unlock(&tty->atomic_write_lock);
1728 return -ENOMEM;
1729 }
1730 kfree(tty->write_buf);
1731 tty->write_cnt = chunk;
1732 tty->write_buf = buf;
1733 }
1734
1735 /* Do the write .. */
1736 for (;;) {
1737 size_t size = count;
1738 if (size > chunk)
1739 size = chunk;
1740 ret = -EFAULT;
1741 if (copy_from_user(tty->write_buf, buf, size))
1742 break;
1743 lock_kernel();
1744 ret = write(tty, file, tty->write_buf, size);
1745 unlock_kernel();
1746 if (ret <= 0)
1747 break;
1748 written += ret;
1749 buf += ret;
1750 count -= ret;
1751 if (!count)
1752 break;
1753 ret = -ERESTARTSYS;
1754 if (signal_pending(current))
1755 break;
1756 cond_resched();
1757 }
1758 if (written) {
1759 struct inode *inode = file->f_path.dentry->d_inode;
1760 inode->i_mtime = current_fs_time(inode->i_sb);
1761 ret = written;
1762 }
1763 mutex_unlock(&tty->atomic_write_lock);
1764 return ret;
1765 }
1766
1767
1768 /**
1769 * tty_write - write method for tty device file
1770 * @file: tty file pointer
1771 * @buf: user data to write
1772 * @count: bytes to write
1773 * @ppos: unused
1774 *
1775 * Write data to a tty device via the line discipline.
1776 *
1777 * Locking:
1778 * Locks the line discipline as required
1779 * Writes to the tty driver are serialized by the atomic_write_lock
1780 * and are then processed in chunks to the device. The line discipline
1781 * write method will not be involked in parallel for each device
1782 * The line discipline write method is called under the big
1783 * kernel lock for historical reasons. New code should not rely on this.
1784 */
1785
1786 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1787 loff_t *ppos)
1788 {
1789 struct tty_struct * tty;
1790 struct inode *inode = file->f_path.dentry->d_inode;
1791 ssize_t ret;
1792 struct tty_ldisc *ld;
1793
1794 tty = (struct tty_struct *)file->private_data;
1795 if (tty_paranoia_check(tty, inode, "tty_write"))
1796 return -EIO;
1797 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1798 return -EIO;
1799
1800 ld = tty_ldisc_ref_wait(tty);
1801 if (!ld->write)
1802 ret = -EIO;
1803 else
1804 ret = do_tty_write(ld->write, tty, file, buf, count);
1805 tty_ldisc_deref(ld);
1806 return ret;
1807 }
1808
1809 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1810 loff_t *ppos)
1811 {
1812 struct file *p = NULL;
1813
1814 spin_lock(&redirect_lock);
1815 if (redirect) {
1816 get_file(redirect);
1817 p = redirect;
1818 }
1819 spin_unlock(&redirect_lock);
1820
1821 if (p) {
1822 ssize_t res;
1823 res = vfs_write(p, buf, count, &p->f_pos);
1824 fput(p);
1825 return res;
1826 }
1827
1828 return tty_write(file, buf, count, ppos);
1829 }
1830
1831 static char ptychar[] = "pqrstuvwxyzabcde";
1832
1833 /**
1834 * pty_line_name - generate name for a pty
1835 * @driver: the tty driver in use
1836 * @index: the minor number
1837 * @p: output buffer of at least 6 bytes
1838 *
1839 * Generate a name from a driver reference and write it to the output
1840 * buffer.
1841 *
1842 * Locking: None
1843 */
1844 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1845 {
1846 int i = index + driver->name_base;
1847 /* ->name is initialized to "ttyp", but "tty" is expected */
1848 sprintf(p, "%s%c%x",
1849 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1850 ptychar[i >> 4 & 0xf], i & 0xf);
1851 }
1852
1853 /**
1854 * pty_line_name - generate name for a tty
1855 * @driver: the tty driver in use
1856 * @index: the minor number
1857 * @p: output buffer of at least 7 bytes
1858 *
1859 * Generate a name from a driver reference and write it to the output
1860 * buffer.
1861 *
1862 * Locking: None
1863 */
1864 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1865 {
1866 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1867 }
1868
1869 /**
1870 * init_dev - initialise a tty device
1871 * @driver: tty driver we are opening a device on
1872 * @idx: device index
1873 * @tty: returned tty structure
1874 *
1875 * Prepare a tty device. This may not be a "new" clean device but
1876 * could also be an active device. The pty drivers require special
1877 * handling because of this.
1878 *
1879 * Locking:
1880 * The function is called under the tty_mutex, which
1881 * protects us from the tty struct or driver itself going away.
1882 *
1883 * On exit the tty device has the line discipline attached and
1884 * a reference count of 1. If a pair was created for pty/tty use
1885 * and the other was a pty master then it too has a reference count of 1.
1886 *
1887 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1888 * failed open. The new code protects the open with a mutex, so it's
1889 * really quite straightforward. The mutex locking can probably be
1890 * relaxed for the (most common) case of reopening a tty.
1891 */
1892
1893 static int init_dev(struct tty_driver *driver, int idx,
1894 struct tty_struct **ret_tty)
1895 {
1896 struct tty_struct *tty, *o_tty;
1897 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1898 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1899 int retval = 0;
1900
1901 /* check whether we're reopening an existing tty */
1902 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1903 tty = devpts_get_tty(idx);
1904 if (tty && driver->subtype == PTY_TYPE_MASTER)
1905 tty = tty->link;
1906 } else {
1907 tty = driver->ttys[idx];
1908 }
1909 if (tty) goto fast_track;
1910
1911 /*
1912 * First time open is complex, especially for PTY devices.
1913 * This code guarantees that either everything succeeds and the
1914 * TTY is ready for operation, or else the table slots are vacated
1915 * and the allocated memory released. (Except that the termios
1916 * and locked termios may be retained.)
1917 */
1918
1919 if (!try_module_get(driver->owner)) {
1920 retval = -ENODEV;
1921 goto end_init;
1922 }
1923
1924 o_tty = NULL;
1925 tp = o_tp = NULL;
1926 ltp = o_ltp = NULL;
1927
1928 tty = alloc_tty_struct();
1929 if(!tty)
1930 goto fail_no_mem;
1931 initialize_tty_struct(tty);
1932 tty->driver = driver;
1933 tty->index = idx;
1934 tty_line_name(driver, idx, tty->name);
1935
1936 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1937 tp_loc = &tty->termios;
1938 ltp_loc = &tty->termios_locked;
1939 } else {
1940 tp_loc = &driver->termios[idx];
1941 ltp_loc = &driver->termios_locked[idx];
1942 }
1943
1944 if (!*tp_loc) {
1945 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1946 GFP_KERNEL);
1947 if (!tp)
1948 goto free_mem_out;
1949 *tp = driver->init_termios;
1950 }
1951
1952 if (!*ltp_loc) {
1953 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1954 GFP_KERNEL);
1955 if (!ltp)
1956 goto free_mem_out;
1957 memset(ltp, 0, sizeof(struct ktermios));
1958 }
1959
1960 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1961 o_tty = alloc_tty_struct();
1962 if (!o_tty)
1963 goto free_mem_out;
1964 initialize_tty_struct(o_tty);
1965 o_tty->driver = driver->other;
1966 o_tty->index = idx;
1967 tty_line_name(driver->other, idx, o_tty->name);
1968
1969 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1970 o_tp_loc = &o_tty->termios;
1971 o_ltp_loc = &o_tty->termios_locked;
1972 } else {
1973 o_tp_loc = &driver->other->termios[idx];
1974 o_ltp_loc = &driver->other->termios_locked[idx];
1975 }
1976
1977 if (!*o_tp_loc) {
1978 o_tp = (struct ktermios *)
1979 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1980 if (!o_tp)
1981 goto free_mem_out;
1982 *o_tp = driver->other->init_termios;
1983 }
1984
1985 if (!*o_ltp_loc) {
1986 o_ltp = (struct ktermios *)
1987 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1988 if (!o_ltp)
1989 goto free_mem_out;
1990 memset(o_ltp, 0, sizeof(struct ktermios));
1991 }
1992
1993 /*
1994 * Everything allocated ... set up the o_tty structure.
1995 */
1996 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
1997 driver->other->ttys[idx] = o_tty;
1998 }
1999 if (!*o_tp_loc)
2000 *o_tp_loc = o_tp;
2001 if (!*o_ltp_loc)
2002 *o_ltp_loc = o_ltp;
2003 o_tty->termios = *o_tp_loc;
2004 o_tty->termios_locked = *o_ltp_loc;
2005 driver->other->refcount++;
2006 if (driver->subtype == PTY_TYPE_MASTER)
2007 o_tty->count++;
2008
2009 /* Establish the links in both directions */
2010 tty->link = o_tty;
2011 o_tty->link = tty;
2012 }
2013
2014 /*
2015 * All structures have been allocated, so now we install them.
2016 * Failures after this point use release_tty to clean up, so
2017 * there's no need to null out the local pointers.
2018 */
2019 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2020 driver->ttys[idx] = tty;
2021 }
2022
2023 if (!*tp_loc)
2024 *tp_loc = tp;
2025 if (!*ltp_loc)
2026 *ltp_loc = ltp;
2027 tty->termios = *tp_loc;
2028 tty->termios_locked = *ltp_loc;
2029 /* Compatibility until drivers always set this */
2030 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2031 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2032 driver->refcount++;
2033 tty->count++;
2034
2035 /*
2036 * Structures all installed ... call the ldisc open routines.
2037 * If we fail here just call release_tty to clean up. No need
2038 * to decrement the use counts, as release_tty doesn't care.
2039 */
2040
2041 if (tty->ldisc.open) {
2042 retval = (tty->ldisc.open)(tty);
2043 if (retval)
2044 goto release_mem_out;
2045 }
2046 if (o_tty && o_tty->ldisc.open) {
2047 retval = (o_tty->ldisc.open)(o_tty);
2048 if (retval) {
2049 if (tty->ldisc.close)
2050 (tty->ldisc.close)(tty);
2051 goto release_mem_out;
2052 }
2053 tty_ldisc_enable(o_tty);
2054 }
2055 tty_ldisc_enable(tty);
2056 goto success;
2057
2058 /*
2059 * This fast open can be used if the tty is already open.
2060 * No memory is allocated, and the only failures are from
2061 * attempting to open a closing tty or attempting multiple
2062 * opens on a pty master.
2063 */
2064 fast_track:
2065 if (test_bit(TTY_CLOSING, &tty->flags)) {
2066 retval = -EIO;
2067 goto end_init;
2068 }
2069 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2070 driver->subtype == PTY_TYPE_MASTER) {
2071 /*
2072 * special case for PTY masters: only one open permitted,
2073 * and the slave side open count is incremented as well.
2074 */
2075 if (tty->count) {
2076 retval = -EIO;
2077 goto end_init;
2078 }
2079 tty->link->count++;
2080 }
2081 tty->count++;
2082 tty->driver = driver; /* N.B. why do this every time?? */
2083
2084 /* FIXME */
2085 if(!test_bit(TTY_LDISC, &tty->flags))
2086 printk(KERN_ERR "init_dev but no ldisc\n");
2087 success:
2088 *ret_tty = tty;
2089
2090 /* All paths come through here to release the mutex */
2091 end_init:
2092 return retval;
2093
2094 /* Release locally allocated memory ... nothing placed in slots */
2095 free_mem_out:
2096 kfree(o_tp);
2097 if (o_tty)
2098 free_tty_struct(o_tty);
2099 kfree(ltp);
2100 kfree(tp);
2101 free_tty_struct(tty);
2102
2103 fail_no_mem:
2104 module_put(driver->owner);
2105 retval = -ENOMEM;
2106 goto end_init;
2107
2108 /* call the tty release_tty routine to clean out this slot */
2109 release_mem_out:
2110 if (printk_ratelimit())
2111 printk(KERN_INFO "init_dev: ldisc open failed, "
2112 "clearing slot %d\n", idx);
2113 release_tty(tty, idx);
2114 goto end_init;
2115 }
2116
2117 /**
2118 * release_one_tty - release tty structure memory
2119 *
2120 * Releases memory associated with a tty structure, and clears out the
2121 * driver table slots. This function is called when a device is no longer
2122 * in use. It also gets called when setup of a device fails.
2123 *
2124 * Locking:
2125 * tty_mutex - sometimes only
2126 * takes the file list lock internally when working on the list
2127 * of ttys that the driver keeps.
2128 * FIXME: should we require tty_mutex is held here ??
2129 */
2130 static void release_one_tty(struct tty_struct *tty, int idx)
2131 {
2132 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2133 struct ktermios *tp;
2134
2135 if (!devpts)
2136 tty->driver->ttys[idx] = NULL;
2137
2138 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2139 tp = tty->termios;
2140 if (!devpts)
2141 tty->driver->termios[idx] = NULL;
2142 kfree(tp);
2143
2144 tp = tty->termios_locked;
2145 if (!devpts)
2146 tty->driver->termios_locked[idx] = NULL;
2147 kfree(tp);
2148 }
2149
2150
2151 tty->magic = 0;
2152 tty->driver->refcount--;
2153
2154 file_list_lock();
2155 list_del_init(&tty->tty_files);
2156 file_list_unlock();
2157
2158 free_tty_struct(tty);
2159 }
2160
2161 /**
2162 * release_tty - release tty structure memory
2163 *
2164 * Release both @tty and a possible linked partner (think pty pair),
2165 * and decrement the refcount of the backing module.
2166 *
2167 * Locking:
2168 * tty_mutex - sometimes only
2169 * takes the file list lock internally when working on the list
2170 * of ttys that the driver keeps.
2171 * FIXME: should we require tty_mutex is held here ??
2172 */
2173 static void release_tty(struct tty_struct *tty, int idx)
2174 {
2175 struct tty_driver *driver = tty->driver;
2176
2177 if (tty->link)
2178 release_one_tty(tty->link, idx);
2179 release_one_tty(tty, idx);
2180 module_put(driver->owner);
2181 }
2182
2183 /*
2184 * Even releasing the tty structures is a tricky business.. We have
2185 * to be very careful that the structures are all released at the
2186 * same time, as interrupts might otherwise get the wrong pointers.
2187 *
2188 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2189 * lead to double frees or releasing memory still in use.
2190 */
2191 static void release_dev(struct file * filp)
2192 {
2193 struct tty_struct *tty, *o_tty;
2194 int pty_master, tty_closing, o_tty_closing, do_sleep;
2195 int devpts;
2196 int idx;
2197 char buf[64];
2198 unsigned long flags;
2199
2200 tty = (struct tty_struct *)filp->private_data;
2201 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2202 return;
2203
2204 check_tty_count(tty, "release_dev");
2205
2206 tty_fasync(-1, filp, 0);
2207
2208 idx = tty->index;
2209 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2210 tty->driver->subtype == PTY_TYPE_MASTER);
2211 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2212 o_tty = tty->link;
2213
2214 #ifdef TTY_PARANOIA_CHECK
2215 if (idx < 0 || idx >= tty->driver->num) {
2216 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2217 "free (%s)\n", tty->name);
2218 return;
2219 }
2220 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2221 if (tty != tty->driver->ttys[idx]) {
2222 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2223 "for (%s)\n", idx, tty->name);
2224 return;
2225 }
2226 if (tty->termios != tty->driver->termios[idx]) {
2227 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2228 "for (%s)\n",
2229 idx, tty->name);
2230 return;
2231 }
2232 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2233 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2234 "termios_locked for (%s)\n",
2235 idx, tty->name);
2236 return;
2237 }
2238 }
2239 #endif
2240
2241 #ifdef TTY_DEBUG_HANGUP
2242 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2243 tty_name(tty, buf), tty->count);
2244 #endif
2245
2246 #ifdef TTY_PARANOIA_CHECK
2247 if (tty->driver->other &&
2248 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2249 if (o_tty != tty->driver->other->ttys[idx]) {
2250 printk(KERN_DEBUG "release_dev: other->table[%d] "
2251 "not o_tty for (%s)\n",
2252 idx, tty->name);
2253 return;
2254 }
2255 if (o_tty->termios != tty->driver->other->termios[idx]) {
2256 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2257 "not o_termios for (%s)\n",
2258 idx, tty->name);
2259 return;
2260 }
2261 if (o_tty->termios_locked !=
2262 tty->driver->other->termios_locked[idx]) {
2263 printk(KERN_DEBUG "release_dev: other->termios_locked["
2264 "%d] not o_termios_locked for (%s)\n",
2265 idx, tty->name);
2266 return;
2267 }
2268 if (o_tty->link != tty) {
2269 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2270 return;
2271 }
2272 }
2273 #endif
2274 if (tty->driver->close)
2275 tty->driver->close(tty, filp);
2276
2277 /*
2278 * Sanity check: if tty->count is going to zero, there shouldn't be
2279 * any waiters on tty->read_wait or tty->write_wait. We test the
2280 * wait queues and kick everyone out _before_ actually starting to
2281 * close. This ensures that we won't block while releasing the tty
2282 * structure.
2283 *
2284 * The test for the o_tty closing is necessary, since the master and
2285 * slave sides may close in any order. If the slave side closes out
2286 * first, its count will be one, since the master side holds an open.
2287 * Thus this test wouldn't be triggered at the time the slave closes,
2288 * so we do it now.
2289 *
2290 * Note that it's possible for the tty to be opened again while we're
2291 * flushing out waiters. By recalculating the closing flags before
2292 * each iteration we avoid any problems.
2293 */
2294 while (1) {
2295 /* Guard against races with tty->count changes elsewhere and
2296 opens on /dev/tty */
2297
2298 mutex_lock(&tty_mutex);
2299 tty_closing = tty->count <= 1;
2300 o_tty_closing = o_tty &&
2301 (o_tty->count <= (pty_master ? 1 : 0));
2302 do_sleep = 0;
2303
2304 if (tty_closing) {
2305 if (waitqueue_active(&tty->read_wait)) {
2306 wake_up(&tty->read_wait);
2307 do_sleep++;
2308 }
2309 if (waitqueue_active(&tty->write_wait)) {
2310 wake_up(&tty->write_wait);
2311 do_sleep++;
2312 }
2313 }
2314 if (o_tty_closing) {
2315 if (waitqueue_active(&o_tty->read_wait)) {
2316 wake_up(&o_tty->read_wait);
2317 do_sleep++;
2318 }
2319 if (waitqueue_active(&o_tty->write_wait)) {
2320 wake_up(&o_tty->write_wait);
2321 do_sleep++;
2322 }
2323 }
2324 if (!do_sleep)
2325 break;
2326
2327 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2328 "active!\n", tty_name(tty, buf));
2329 mutex_unlock(&tty_mutex);
2330 schedule();
2331 }
2332
2333 /*
2334 * The closing flags are now consistent with the open counts on
2335 * both sides, and we've completed the last operation that could
2336 * block, so it's safe to proceed with closing.
2337 */
2338 if (pty_master) {
2339 if (--o_tty->count < 0) {
2340 printk(KERN_WARNING "release_dev: bad pty slave count "
2341 "(%d) for %s\n",
2342 o_tty->count, tty_name(o_tty, buf));
2343 o_tty->count = 0;
2344 }
2345 }
2346 if (--tty->count < 0) {
2347 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2348 tty->count, tty_name(tty, buf));
2349 tty->count = 0;
2350 }
2351
2352 /*
2353 * We've decremented tty->count, so we need to remove this file
2354 * descriptor off the tty->tty_files list; this serves two
2355 * purposes:
2356 * - check_tty_count sees the correct number of file descriptors
2357 * associated with this tty.
2358 * - do_tty_hangup no longer sees this file descriptor as
2359 * something that needs to be handled for hangups.
2360 */
2361 file_kill(filp);
2362 filp->private_data = NULL;
2363
2364 /*
2365 * Perform some housekeeping before deciding whether to return.
2366 *
2367 * Set the TTY_CLOSING flag if this was the last open. In the
2368 * case of a pty we may have to wait around for the other side
2369 * to close, and TTY_CLOSING makes sure we can't be reopened.
2370 */
2371 if(tty_closing)
2372 set_bit(TTY_CLOSING, &tty->flags);
2373 if(o_tty_closing)
2374 set_bit(TTY_CLOSING, &o_tty->flags);
2375
2376 /*
2377 * If _either_ side is closing, make sure there aren't any
2378 * processes that still think tty or o_tty is their controlling
2379 * tty.
2380 */
2381 if (tty_closing || o_tty_closing) {
2382 read_lock(&tasklist_lock);
2383 session_clear_tty(tty->session);
2384 if (o_tty)
2385 session_clear_tty(o_tty->session);
2386 read_unlock(&tasklist_lock);
2387 }
2388
2389 mutex_unlock(&tty_mutex);
2390
2391 /* check whether both sides are closing ... */
2392 if (!tty_closing || (o_tty && !o_tty_closing))
2393 return;
2394
2395 #ifdef TTY_DEBUG_HANGUP
2396 printk(KERN_DEBUG "freeing tty structure...");
2397 #endif
2398 /*
2399 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2400 * kill any delayed work. As this is the final close it does not
2401 * race with the set_ldisc code path.
2402 */
2403 clear_bit(TTY_LDISC, &tty->flags);
2404 cancel_delayed_work(&tty->buf.work);
2405
2406 /*
2407 * Wait for ->hangup_work and ->buf.work handlers to terminate
2408 */
2409
2410 flush_scheduled_work();
2411
2412 /*
2413 * Wait for any short term users (we know they are just driver
2414 * side waiters as the file is closing so user count on the file
2415 * side is zero.
2416 */
2417 spin_lock_irqsave(&tty_ldisc_lock, flags);
2418 while(tty->ldisc.refcount)
2419 {
2420 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2421 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2422 spin_lock_irqsave(&tty_ldisc_lock, flags);
2423 }
2424 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2425 /*
2426 * Shutdown the current line discipline, and reset it to N_TTY.
2427 * N.B. why reset ldisc when we're releasing the memory??
2428 *
2429 * FIXME: this MUST get fixed for the new reflocking
2430 */
2431 if (tty->ldisc.close)
2432 (tty->ldisc.close)(tty);
2433 tty_ldisc_put(tty->ldisc.num);
2434
2435 /*
2436 * Switch the line discipline back
2437 */
2438 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2439 tty_set_termios_ldisc(tty,N_TTY);
2440 if (o_tty) {
2441 /* FIXME: could o_tty be in setldisc here ? */
2442 clear_bit(TTY_LDISC, &o_tty->flags);
2443 if (o_tty->ldisc.close)
2444 (o_tty->ldisc.close)(o_tty);
2445 tty_ldisc_put(o_tty->ldisc.num);
2446 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2447 tty_set_termios_ldisc(o_tty,N_TTY);
2448 }
2449 /*
2450 * The release_tty function takes care of the details of clearing
2451 * the slots and preserving the termios structure.
2452 */
2453 release_tty(tty, idx);
2454
2455 #ifdef CONFIG_UNIX98_PTYS
2456 /* Make this pty number available for reallocation */
2457 if (devpts) {
2458 down(&allocated_ptys_lock);
2459 idr_remove(&allocated_ptys, idx);
2460 up(&allocated_ptys_lock);
2461 }
2462 #endif
2463
2464 }
2465
2466 /**
2467 * tty_open - open a tty device
2468 * @inode: inode of device file
2469 * @filp: file pointer to tty
2470 *
2471 * tty_open and tty_release keep up the tty count that contains the
2472 * number of opens done on a tty. We cannot use the inode-count, as
2473 * different inodes might point to the same tty.
2474 *
2475 * Open-counting is needed for pty masters, as well as for keeping
2476 * track of serial lines: DTR is dropped when the last close happens.
2477 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2478 *
2479 * The termios state of a pty is reset on first open so that
2480 * settings don't persist across reuse.
2481 *
2482 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2483 * tty->count should protect the rest.
2484 * ->siglock protects ->signal/->sighand
2485 */
2486
2487 static int tty_open(struct inode * inode, struct file * filp)
2488 {
2489 struct tty_struct *tty;
2490 int noctty, retval;
2491 struct tty_driver *driver;
2492 int index;
2493 dev_t device = inode->i_rdev;
2494 unsigned short saved_flags = filp->f_flags;
2495 struct pid *old_pgrp;
2496
2497 nonseekable_open(inode, filp);
2498
2499 retry_open:
2500 noctty = filp->f_flags & O_NOCTTY;
2501 index = -1;
2502 retval = 0;
2503
2504 mutex_lock(&tty_mutex);
2505
2506 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2507 tty = get_current_tty();
2508 if (!tty) {
2509 mutex_unlock(&tty_mutex);
2510 return -ENXIO;
2511 }
2512 driver = tty->driver;
2513 index = tty->index;
2514 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2515 /* noctty = 1; */
2516 goto got_driver;
2517 }
2518 #ifdef CONFIG_VT
2519 if (device == MKDEV(TTY_MAJOR,0)) {
2520 extern struct tty_driver *console_driver;
2521 driver = console_driver;
2522 index = fg_console;
2523 noctty = 1;
2524 goto got_driver;
2525 }
2526 #endif
2527 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2528 driver = console_device(&index);
2529 if (driver) {
2530 /* Don't let /dev/console block */
2531 filp->f_flags |= O_NONBLOCK;
2532 noctty = 1;
2533 goto got_driver;
2534 }
2535 mutex_unlock(&tty_mutex);
2536 return -ENODEV;
2537 }
2538
2539 driver = get_tty_driver(device, &index);
2540 if (!driver) {
2541 mutex_unlock(&tty_mutex);
2542 return -ENODEV;
2543 }
2544 got_driver:
2545 retval = init_dev(driver, index, &tty);
2546 mutex_unlock(&tty_mutex);
2547 if (retval)
2548 return retval;
2549
2550 filp->private_data = tty;
2551 file_move(filp, &tty->tty_files);
2552 check_tty_count(tty, "tty_open");
2553 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2554 tty->driver->subtype == PTY_TYPE_MASTER)
2555 noctty = 1;
2556 #ifdef TTY_DEBUG_HANGUP
2557 printk(KERN_DEBUG "opening %s...", tty->name);
2558 #endif
2559 if (!retval) {
2560 if (tty->driver->open)
2561 retval = tty->driver->open(tty, filp);
2562 else
2563 retval = -ENODEV;
2564 }
2565 filp->f_flags = saved_flags;
2566
2567 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2568 retval = -EBUSY;
2569
2570 if (retval) {
2571 #ifdef TTY_DEBUG_HANGUP
2572 printk(KERN_DEBUG "error %d in opening %s...", retval,
2573 tty->name);
2574 #endif
2575 release_dev(filp);
2576 if (retval != -ERESTARTSYS)
2577 return retval;
2578 if (signal_pending(current))
2579 return retval;
2580 schedule();
2581 /*
2582 * Need to reset f_op in case a hangup happened.
2583 */
2584 if (filp->f_op == &hung_up_tty_fops)
2585 filp->f_op = &tty_fops;
2586 goto retry_open;
2587 }
2588
2589 old_pgrp = NULL;
2590 mutex_lock(&tty_mutex);
2591 spin_lock_irq(&current->sighand->siglock);
2592 if (!noctty &&
2593 current->signal->leader &&
2594 !current->signal->tty &&
2595 tty->session == NULL)
2596 old_pgrp = __proc_set_tty(current, tty);
2597 spin_unlock_irq(&current->sighand->siglock);
2598 mutex_unlock(&tty_mutex);
2599 put_pid(old_pgrp);
2600 return 0;
2601 }
2602
2603 #ifdef CONFIG_UNIX98_PTYS
2604 /**
2605 * ptmx_open - open a unix 98 pty master
2606 * @inode: inode of device file
2607 * @filp: file pointer to tty
2608 *
2609 * Allocate a unix98 pty master device from the ptmx driver.
2610 *
2611 * Locking: tty_mutex protects theinit_dev work. tty->count should
2612 protect the rest.
2613 * allocated_ptys_lock handles the list of free pty numbers
2614 */
2615
2616 static int ptmx_open(struct inode * inode, struct file * filp)
2617 {
2618 struct tty_struct *tty;
2619 int retval;
2620 int index;
2621 int idr_ret;
2622
2623 nonseekable_open(inode, filp);
2624
2625 /* find a device that is not in use. */
2626 down(&allocated_ptys_lock);
2627 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2628 up(&allocated_ptys_lock);
2629 return -ENOMEM;
2630 }
2631 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2632 if (idr_ret < 0) {
2633 up(&allocated_ptys_lock);
2634 if (idr_ret == -EAGAIN)
2635 return -ENOMEM;
2636 return -EIO;
2637 }
2638 if (index >= pty_limit) {
2639 idr_remove(&allocated_ptys, index);
2640 up(&allocated_ptys_lock);
2641 return -EIO;
2642 }
2643 up(&allocated_ptys_lock);
2644
2645 mutex_lock(&tty_mutex);
2646 retval = init_dev(ptm_driver, index, &tty);
2647 mutex_unlock(&tty_mutex);
2648
2649 if (retval)
2650 goto out;
2651
2652 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2653 filp->private_data = tty;
2654 file_move(filp, &tty->tty_files);
2655
2656 retval = -ENOMEM;
2657 if (devpts_pty_new(tty->link))
2658 goto out1;
2659
2660 check_tty_count(tty, "tty_open");
2661 retval = ptm_driver->open(tty, filp);
2662 if (!retval)
2663 return 0;
2664 out1:
2665 release_dev(filp);
2666 return retval;
2667 out:
2668 down(&allocated_ptys_lock);
2669 idr_remove(&allocated_ptys, index);
2670 up(&allocated_ptys_lock);
2671 return retval;
2672 }
2673 #endif
2674
2675 /**
2676 * tty_release - vfs callback for close
2677 * @inode: inode of tty
2678 * @filp: file pointer for handle to tty
2679 *
2680 * Called the last time each file handle is closed that references
2681 * this tty. There may however be several such references.
2682 *
2683 * Locking:
2684 * Takes bkl. See release_dev
2685 */
2686
2687 static int tty_release(struct inode * inode, struct file * filp)
2688 {
2689 lock_kernel();
2690 release_dev(filp);
2691 unlock_kernel();
2692 return 0;
2693 }
2694
2695 /**
2696 * tty_poll - check tty status
2697 * @filp: file being polled
2698 * @wait: poll wait structures to update
2699 *
2700 * Call the line discipline polling method to obtain the poll
2701 * status of the device.
2702 *
2703 * Locking: locks called line discipline but ldisc poll method
2704 * may be re-entered freely by other callers.
2705 */
2706
2707 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2708 {
2709 struct tty_struct * tty;
2710 struct tty_ldisc *ld;
2711 int ret = 0;
2712
2713 tty = (struct tty_struct *)filp->private_data;
2714 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2715 return 0;
2716
2717 ld = tty_ldisc_ref_wait(tty);
2718 if (ld->poll)
2719 ret = (ld->poll)(tty, filp, wait);
2720 tty_ldisc_deref(ld);
2721 return ret;
2722 }
2723
2724 static int tty_fasync(int fd, struct file * filp, int on)
2725 {
2726 struct tty_struct * tty;
2727 int retval;
2728
2729 tty = (struct tty_struct *)filp->private_data;
2730 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2731 return 0;
2732
2733 retval = fasync_helper(fd, filp, on, &tty->fasync);
2734 if (retval <= 0)
2735 return retval;
2736
2737 if (on) {
2738 enum pid_type type;
2739 struct pid *pid;
2740 if (!waitqueue_active(&tty->read_wait))
2741 tty->minimum_to_wake = 1;
2742 if (tty->pgrp) {
2743 pid = tty->pgrp;
2744 type = PIDTYPE_PGID;
2745 } else {
2746 pid = task_pid(current);
2747 type = PIDTYPE_PID;
2748 }
2749 retval = __f_setown(filp, pid, type, 0);
2750 if (retval)
2751 return retval;
2752 } else {
2753 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2754 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2755 }
2756 return 0;
2757 }
2758
2759 /**
2760 * tiocsti - fake input character
2761 * @tty: tty to fake input into
2762 * @p: pointer to character
2763 *
2764 * Fake input to a tty device. Does the neccessary locking and
2765 * input management.
2766 *
2767 * FIXME: does not honour flow control ??
2768 *
2769 * Locking:
2770 * Called functions take tty_ldisc_lock
2771 * current->signal->tty check is safe without locks
2772 *
2773 * FIXME: may race normal receive processing
2774 */
2775
2776 static int tiocsti(struct tty_struct *tty, char __user *p)
2777 {
2778 char ch, mbz = 0;
2779 struct tty_ldisc *ld;
2780
2781 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2782 return -EPERM;
2783 if (get_user(ch, p))
2784 return -EFAULT;
2785 ld = tty_ldisc_ref_wait(tty);
2786 ld->receive_buf(tty, &ch, &mbz, 1);
2787 tty_ldisc_deref(ld);
2788 return 0;
2789 }
2790
2791 /**
2792 * tiocgwinsz - implement window query ioctl
2793 * @tty; tty
2794 * @arg: user buffer for result
2795 *
2796 * Copies the kernel idea of the window size into the user buffer.
2797 *
2798 * Locking: tty->termios_mutex is taken to ensure the winsize data
2799 * is consistent.
2800 */
2801
2802 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2803 {
2804 int err;
2805
2806 mutex_lock(&tty->termios_mutex);
2807 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2808 mutex_unlock(&tty->termios_mutex);
2809
2810 return err ? -EFAULT: 0;
2811 }
2812
2813 /**
2814 * tiocswinsz - implement window size set ioctl
2815 * @tty; tty
2816 * @arg: user buffer for result
2817 *
2818 * Copies the user idea of the window size to the kernel. Traditionally
2819 * this is just advisory information but for the Linux console it
2820 * actually has driver level meaning and triggers a VC resize.
2821 *
2822 * Locking:
2823 * Called function use the console_sem is used to ensure we do
2824 * not try and resize the console twice at once.
2825 * The tty->termios_mutex is used to ensure we don't double
2826 * resize and get confused. Lock order - tty->termios_mutex before
2827 * console sem
2828 */
2829
2830 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2831 struct winsize __user * arg)
2832 {
2833 struct winsize tmp_ws;
2834
2835 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2836 return -EFAULT;
2837
2838 mutex_lock(&tty->termios_mutex);
2839 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2840 goto done;
2841
2842 #ifdef CONFIG_VT
2843 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2844 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2845 tmp_ws.ws_row)) {
2846 mutex_unlock(&tty->termios_mutex);
2847 return -ENXIO;
2848 }
2849 }
2850 #endif
2851 if (tty->pgrp)
2852 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2853 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2854 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2855 tty->winsize = tmp_ws;
2856 real_tty->winsize = tmp_ws;
2857 done:
2858 mutex_unlock(&tty->termios_mutex);
2859 return 0;
2860 }
2861
2862 /**
2863 * tioccons - allow admin to move logical console
2864 * @file: the file to become console
2865 *
2866 * Allow the adminstrator to move the redirected console device
2867 *
2868 * Locking: uses redirect_lock to guard the redirect information
2869 */
2870
2871 static int tioccons(struct file *file)
2872 {
2873 if (!capable(CAP_SYS_ADMIN))
2874 return -EPERM;
2875 if (file->f_op->write == redirected_tty_write) {
2876 struct file *f;
2877 spin_lock(&redirect_lock);
2878 f = redirect;
2879 redirect = NULL;
2880 spin_unlock(&redirect_lock);
2881 if (f)
2882 fput(f);
2883 return 0;
2884 }
2885 spin_lock(&redirect_lock);
2886 if (redirect) {
2887 spin_unlock(&redirect_lock);
2888 return -EBUSY;
2889 }
2890 get_file(file);
2891 redirect = file;
2892 spin_unlock(&redirect_lock);
2893 return 0;
2894 }
2895
2896 /**
2897 * fionbio - non blocking ioctl
2898 * @file: file to set blocking value
2899 * @p: user parameter
2900 *
2901 * Historical tty interfaces had a blocking control ioctl before
2902 * the generic functionality existed. This piece of history is preserved
2903 * in the expected tty API of posix OS's.
2904 *
2905 * Locking: none, the open fle handle ensures it won't go away.
2906 */
2907
2908 static int fionbio(struct file *file, int __user *p)
2909 {
2910 int nonblock;
2911
2912 if (get_user(nonblock, p))
2913 return -EFAULT;
2914
2915 if (nonblock)
2916 file->f_flags |= O_NONBLOCK;
2917 else
2918 file->f_flags &= ~O_NONBLOCK;
2919 return 0;
2920 }
2921
2922 /**
2923 * tiocsctty - set controlling tty
2924 * @tty: tty structure
2925 * @arg: user argument
2926 *
2927 * This ioctl is used to manage job control. It permits a session
2928 * leader to set this tty as the controlling tty for the session.
2929 *
2930 * Locking:
2931 * Takes tty_mutex() to protect tty instance
2932 * Takes tasklist_lock internally to walk sessions
2933 * Takes ->siglock() when updating signal->tty
2934 */
2935
2936 static int tiocsctty(struct tty_struct *tty, int arg)
2937 {
2938 int ret = 0;
2939 if (current->signal->leader && (task_session(current) == tty->session))
2940 return ret;
2941
2942 mutex_lock(&tty_mutex);
2943 /*
2944 * The process must be a session leader and
2945 * not have a controlling tty already.
2946 */
2947 if (!current->signal->leader || current->signal->tty) {
2948 ret = -EPERM;
2949 goto unlock;
2950 }
2951
2952 if (tty->session) {
2953 /*
2954 * This tty is already the controlling
2955 * tty for another session group!
2956 */
2957 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2958 /*
2959 * Steal it away
2960 */
2961 read_lock(&tasklist_lock);
2962 session_clear_tty(tty->session);
2963 read_unlock(&tasklist_lock);
2964 } else {
2965 ret = -EPERM;
2966 goto unlock;
2967 }
2968 }
2969 proc_set_tty(current, tty);
2970 unlock:
2971 mutex_unlock(&tty_mutex);
2972 return ret;
2973 }
2974
2975 /**
2976 * tiocgpgrp - get process group
2977 * @tty: tty passed by user
2978 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2979 * @p: returned pid
2980 *
2981 * Obtain the process group of the tty. If there is no process group
2982 * return an error.
2983 *
2984 * Locking: none. Reference to current->signal->tty is safe.
2985 */
2986
2987 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2988 {
2989 /*
2990 * (tty == real_tty) is a cheap way of
2991 * testing if the tty is NOT a master pty.
2992 */
2993 if (tty == real_tty && current->signal->tty != real_tty)
2994 return -ENOTTY;
2995 return put_user(pid_nr(real_tty->pgrp), p);
2996 }
2997
2998 /**
2999 * tiocspgrp - attempt to set process group
3000 * @tty: tty passed by user
3001 * @real_tty: tty side device matching tty passed by user
3002 * @p: pid pointer
3003 *
3004 * Set the process group of the tty to the session passed. Only
3005 * permitted where the tty session is our session.
3006 *
3007 * Locking: None
3008 */
3009
3010 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3011 {
3012 struct pid *pgrp;
3013 pid_t pgrp_nr;
3014 int retval = tty_check_change(real_tty);
3015
3016 if (retval == -EIO)
3017 return -ENOTTY;
3018 if (retval)
3019 return retval;
3020 if (!current->signal->tty ||
3021 (current->signal->tty != real_tty) ||
3022 (real_tty->session != task_session(current)))
3023 return -ENOTTY;
3024 if (get_user(pgrp_nr, p))
3025 return -EFAULT;
3026 if (pgrp_nr < 0)
3027 return -EINVAL;
3028 rcu_read_lock();
3029 pgrp = find_pid(pgrp_nr);
3030 retval = -ESRCH;
3031 if (!pgrp)
3032 goto out_unlock;
3033 retval = -EPERM;
3034 if (session_of_pgrp(pgrp) != task_session(current))
3035 goto out_unlock;
3036 retval = 0;
3037 put_pid(real_tty->pgrp);
3038 real_tty->pgrp = get_pid(pgrp);
3039 out_unlock:
3040 rcu_read_unlock();
3041 return retval;
3042 }
3043
3044 /**
3045 * tiocgsid - get session id
3046 * @tty: tty passed by user
3047 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3048 * @p: pointer to returned session id
3049 *
3050 * Obtain the session id of the tty. If there is no session
3051 * return an error.
3052 *
3053 * Locking: none. Reference to current->signal->tty is safe.
3054 */
3055
3056 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3057 {
3058 /*
3059 * (tty == real_tty) is a cheap way of
3060 * testing if the tty is NOT a master pty.
3061 */
3062 if (tty == real_tty && current->signal->tty != real_tty)
3063 return -ENOTTY;
3064 if (!real_tty->session)
3065 return -ENOTTY;
3066 return put_user(pid_nr(real_tty->session), p);
3067 }
3068
3069 /**
3070 * tiocsetd - set line discipline
3071 * @tty: tty device
3072 * @p: pointer to user data
3073 *
3074 * Set the line discipline according to user request.
3075 *
3076 * Locking: see tty_set_ldisc, this function is just a helper
3077 */
3078
3079 static int tiocsetd(struct tty_struct *tty, int __user *p)
3080 {
3081 int ldisc;
3082
3083 if (get_user(ldisc, p))
3084 return -EFAULT;
3085 return tty_set_ldisc(tty, ldisc);
3086 }
3087
3088 /**
3089 * send_break - performed time break
3090 * @tty: device to break on
3091 * @duration: timeout in mS
3092 *
3093 * Perform a timed break on hardware that lacks its own driver level
3094 * timed break functionality.
3095 *
3096 * Locking:
3097 * atomic_write_lock serializes
3098 *
3099 */
3100
3101 static int send_break(struct tty_struct *tty, unsigned int duration)
3102 {
3103 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3104 return -EINTR;
3105 tty->driver->break_ctl(tty, -1);
3106 if (!signal_pending(current)) {
3107 msleep_interruptible(duration);
3108 }
3109 tty->driver->break_ctl(tty, 0);
3110 mutex_unlock(&tty->atomic_write_lock);
3111 if (signal_pending(current))
3112 return -EINTR;
3113 return 0;
3114 }
3115
3116 /**
3117 * tiocmget - get modem status
3118 * @tty: tty device
3119 * @file: user file pointer
3120 * @p: pointer to result
3121 *
3122 * Obtain the modem status bits from the tty driver if the feature
3123 * is supported. Return -EINVAL if it is not available.
3124 *
3125 * Locking: none (up to the driver)
3126 */
3127
3128 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3129 {
3130 int retval = -EINVAL;
3131
3132 if (tty->driver->tiocmget) {
3133 retval = tty->driver->tiocmget(tty, file);
3134
3135 if (retval >= 0)
3136 retval = put_user(retval, p);
3137 }
3138 return retval;
3139 }
3140
3141 /**
3142 * tiocmset - set modem status
3143 * @tty: tty device
3144 * @file: user file pointer
3145 * @cmd: command - clear bits, set bits or set all
3146 * @p: pointer to desired bits
3147 *
3148 * Set the modem status bits from the tty driver if the feature
3149 * is supported. Return -EINVAL if it is not available.
3150 *
3151 * Locking: none (up to the driver)
3152 */
3153
3154 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3155 unsigned __user *p)
3156 {
3157 int retval = -EINVAL;
3158
3159 if (tty->driver->tiocmset) {
3160 unsigned int set, clear, val;
3161
3162 retval = get_user(val, p);
3163 if (retval)
3164 return retval;
3165
3166 set = clear = 0;
3167 switch (cmd) {
3168 case TIOCMBIS:
3169 set = val;
3170 break;
3171 case TIOCMBIC:
3172 clear = val;
3173 break;
3174 case TIOCMSET:
3175 set = val;
3176 clear = ~val;
3177 break;
3178 }
3179
3180 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3181 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3182
3183 retval = tty->driver->tiocmset(tty, file, set, clear);
3184 }
3185 return retval;
3186 }
3187
3188 /*
3189 * Split this up, as gcc can choke on it otherwise..
3190 */
3191 int tty_ioctl(struct inode * inode, struct file * file,
3192 unsigned int cmd, unsigned long arg)
3193 {
3194 struct tty_struct *tty, *real_tty;
3195 void __user *p = (void __user *)arg;
3196 int retval;
3197 struct tty_ldisc *ld;
3198
3199 tty = (struct tty_struct *)file->private_data;
3200 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3201 return -EINVAL;
3202
3203 /* CHECKME: is this safe as one end closes ? */
3204
3205 real_tty = tty;
3206 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3207 tty->driver->subtype == PTY_TYPE_MASTER)
3208 real_tty = tty->link;
3209
3210 /*
3211 * Break handling by driver
3212 */
3213 if (!tty->driver->break_ctl) {
3214 switch(cmd) {
3215 case TIOCSBRK:
3216 case TIOCCBRK:
3217 if (tty->driver->ioctl)
3218 return tty->driver->ioctl(tty, file, cmd, arg);
3219 return -EINVAL;
3220
3221 /* These two ioctl's always return success; even if */
3222 /* the driver doesn't support them. */
3223 case TCSBRK:
3224 case TCSBRKP:
3225 if (!tty->driver->ioctl)
3226 return 0;
3227 retval = tty->driver->ioctl(tty, file, cmd, arg);
3228 if (retval == -ENOIOCTLCMD)
3229 retval = 0;
3230 return retval;
3231 }
3232 }
3233
3234 /*
3235 * Factor out some common prep work
3236 */
3237 switch (cmd) {
3238 case TIOCSETD:
3239 case TIOCSBRK:
3240 case TIOCCBRK:
3241 case TCSBRK:
3242 case TCSBRKP:
3243 retval = tty_check_change(tty);
3244 if (retval)
3245 return retval;
3246 if (cmd != TIOCCBRK) {
3247 tty_wait_until_sent(tty, 0);
3248 if (signal_pending(current))
3249 return -EINTR;
3250 }
3251 break;
3252 }
3253
3254 switch (cmd) {
3255 case TIOCSTI:
3256 return tiocsti(tty, p);
3257 case TIOCGWINSZ:
3258 return tiocgwinsz(tty, p);
3259 case TIOCSWINSZ:
3260 return tiocswinsz(tty, real_tty, p);
3261 case TIOCCONS:
3262 return real_tty!=tty ? -EINVAL : tioccons(file);
3263 case FIONBIO:
3264 return fionbio(file, p);
3265 case TIOCEXCL:
3266 set_bit(TTY_EXCLUSIVE, &tty->flags);
3267 return 0;
3268 case TIOCNXCL:
3269 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3270 return 0;
3271 case TIOCNOTTY:
3272 if (current->signal->tty != tty)
3273 return -ENOTTY;
3274 if (current->signal->leader)
3275 disassociate_ctty(0);
3276 proc_clear_tty(current);
3277 return 0;
3278 case TIOCSCTTY:
3279 return tiocsctty(tty, arg);
3280 case TIOCGPGRP:
3281 return tiocgpgrp(tty, real_tty, p);
3282 case TIOCSPGRP:
3283 return tiocspgrp(tty, real_tty, p);
3284 case TIOCGSID:
3285 return tiocgsid(tty, real_tty, p);
3286 case TIOCGETD:
3287 /* FIXME: check this is ok */
3288 return put_user(tty->ldisc.num, (int __user *)p);
3289 case TIOCSETD:
3290 return tiocsetd(tty, p);
3291 #ifdef CONFIG_VT
3292 case TIOCLINUX:
3293 return tioclinux(tty, arg);
3294 #endif
3295 /*
3296 * Break handling
3297 */
3298 case TIOCSBRK: /* Turn break on, unconditionally */
3299 tty->driver->break_ctl(tty, -1);
3300 return 0;
3301
3302 case TIOCCBRK: /* Turn break off, unconditionally */
3303 tty->driver->break_ctl(tty, 0);
3304 return 0;
3305 case TCSBRK: /* SVID version: non-zero arg --> no break */
3306 /* non-zero arg means wait for all output data
3307 * to be sent (performed above) but don't send break.
3308 * This is used by the tcdrain() termios function.
3309 */
3310 if (!arg)
3311 return send_break(tty, 250);
3312 return 0;
3313 case TCSBRKP: /* support for POSIX tcsendbreak() */
3314 return send_break(tty, arg ? arg*100 : 250);
3315
3316 case TIOCMGET:
3317 return tty_tiocmget(tty, file, p);
3318
3319 case TIOCMSET:
3320 case TIOCMBIC:
3321 case TIOCMBIS:
3322 return tty_tiocmset(tty, file, cmd, p);
3323 }
3324 if (tty->driver->ioctl) {
3325 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3326 if (retval != -ENOIOCTLCMD)
3327 return retval;
3328 }
3329 ld = tty_ldisc_ref_wait(tty);
3330 retval = -EINVAL;
3331 if (ld->ioctl) {
3332 retval = ld->ioctl(tty, file, cmd, arg);
3333 if (retval == -ENOIOCTLCMD)
3334 retval = -EINVAL;
3335 }
3336 tty_ldisc_deref(ld);
3337 return retval;
3338 }
3339
3340
3341 /*
3342 * This implements the "Secure Attention Key" --- the idea is to
3343 * prevent trojan horses by killing all processes associated with this
3344 * tty when the user hits the "Secure Attention Key". Required for
3345 * super-paranoid applications --- see the Orange Book for more details.
3346 *
3347 * This code could be nicer; ideally it should send a HUP, wait a few
3348 * seconds, then send a INT, and then a KILL signal. But you then
3349 * have to coordinate with the init process, since all processes associated
3350 * with the current tty must be dead before the new getty is allowed
3351 * to spawn.
3352 *
3353 * Now, if it would be correct ;-/ The current code has a nasty hole -
3354 * it doesn't catch files in flight. We may send the descriptor to ourselves
3355 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3356 *
3357 * Nasty bug: do_SAK is being called in interrupt context. This can
3358 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3359 */
3360 void __do_SAK(struct tty_struct *tty)
3361 {
3362 #ifdef TTY_SOFT_SAK
3363 tty_hangup(tty);
3364 #else
3365 struct task_struct *g, *p;
3366 struct pid *session;
3367 int i;
3368 struct file *filp;
3369 struct fdtable *fdt;
3370
3371 if (!tty)
3372 return;
3373 session = tty->session;
3374
3375 tty_ldisc_flush(tty);
3376
3377 if (tty->driver->flush_buffer)
3378 tty->driver->flush_buffer(tty);
3379
3380 read_lock(&tasklist_lock);
3381 /* Kill the entire session */
3382 do_each_pid_task(session, PIDTYPE_SID, p) {
3383 printk(KERN_NOTICE "SAK: killed process %d"
3384 " (%s): process_session(p)==tty->session\n",
3385 p->pid, p->comm);
3386 send_sig(SIGKILL, p, 1);
3387 } while_each_pid_task(session, PIDTYPE_SID, p);
3388 /* Now kill any processes that happen to have the
3389 * tty open.
3390 */
3391 do_each_thread(g, p) {
3392 if (p->signal->tty == tty) {
3393 printk(KERN_NOTICE "SAK: killed process %d"
3394 " (%s): process_session(p)==tty->session\n",
3395 p->pid, p->comm);
3396 send_sig(SIGKILL, p, 1);
3397 continue;
3398 }
3399 task_lock(p);
3400 if (p->files) {
3401 /*
3402 * We don't take a ref to the file, so we must
3403 * hold ->file_lock instead.
3404 */
3405 spin_lock(&p->files->file_lock);
3406 fdt = files_fdtable(p->files);
3407 for (i=0; i < fdt->max_fds; i++) {
3408 filp = fcheck_files(p->files, i);
3409 if (!filp)
3410 continue;
3411 if (filp->f_op->read == tty_read &&
3412 filp->private_data == tty) {
3413 printk(KERN_NOTICE "SAK: killed process %d"
3414 " (%s): fd#%d opened to the tty\n",
3415 p->pid, p->comm, i);
3416 force_sig(SIGKILL, p);
3417 break;
3418 }
3419 }
3420 spin_unlock(&p->files->file_lock);
3421 }
3422 task_unlock(p);
3423 } while_each_thread(g, p);
3424 read_unlock(&tasklist_lock);
3425 #endif
3426 }
3427
3428 static void do_SAK_work(struct work_struct *work)
3429 {
3430 struct tty_struct *tty =
3431 container_of(work, struct tty_struct, SAK_work);
3432 __do_SAK(tty);
3433 }
3434
3435 /*
3436 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3437 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3438 * the values which we write to it will be identical to the values which it
3439 * already has. --akpm
3440 */
3441 void do_SAK(struct tty_struct *tty)
3442 {
3443 if (!tty)
3444 return;
3445 schedule_work(&tty->SAK_work);
3446 }
3447
3448 EXPORT_SYMBOL(do_SAK);
3449
3450 /**
3451 * flush_to_ldisc
3452 * @work: tty structure passed from work queue.
3453 *
3454 * This routine is called out of the software interrupt to flush data
3455 * from the buffer chain to the line discipline.
3456 *
3457 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3458 * while invoking the line discipline receive_buf method. The
3459 * receive_buf method is single threaded for each tty instance.
3460 */
3461
3462 static void flush_to_ldisc(struct work_struct *work)
3463 {
3464 struct tty_struct *tty =
3465 container_of(work, struct tty_struct, buf.work.work);
3466 unsigned long flags;
3467 struct tty_ldisc *disc;
3468 struct tty_buffer *tbuf, *head;
3469 char *char_buf;
3470 unsigned char *flag_buf;
3471
3472 disc = tty_ldisc_ref(tty);
3473 if (disc == NULL) /* !TTY_LDISC */
3474 return;
3475
3476 spin_lock_irqsave(&tty->buf.lock, flags);
3477 head = tty->buf.head;
3478 if (head != NULL) {
3479 tty->buf.head = NULL;
3480 for (;;) {
3481 int count = head->commit - head->read;
3482 if (!count) {
3483 if (head->next == NULL)
3484 break;
3485 tbuf = head;
3486 head = head->next;
3487 tty_buffer_free(tty, tbuf);
3488 continue;
3489 }
3490 if (!tty->receive_room) {
3491 schedule_delayed_work(&tty->buf.work, 1);
3492 break;
3493 }
3494 if (count > tty->receive_room)
3495 count = tty->receive_room;
3496 char_buf = head->char_buf_ptr + head->read;
3497 flag_buf = head->flag_buf_ptr + head->read;
3498 head->read += count;
3499 spin_unlock_irqrestore(&tty->buf.lock, flags);
3500 disc->receive_buf(tty, char_buf, flag_buf, count);
3501 spin_lock_irqsave(&tty->buf.lock, flags);
3502 }
3503 tty->buf.head = head;
3504 }
3505 spin_unlock_irqrestore(&tty->buf.lock, flags);
3506
3507 tty_ldisc_deref(disc);
3508 }
3509
3510 /**
3511 * tty_flip_buffer_push - terminal
3512 * @tty: tty to push
3513 *
3514 * Queue a push of the terminal flip buffers to the line discipline. This
3515 * function must not be called from IRQ context if tty->low_latency is set.
3516 *
3517 * In the event of the queue being busy for flipping the work will be
3518 * held off and retried later.
3519 *
3520 * Locking: tty buffer lock. Driver locks in low latency mode.
3521 */
3522
3523 void tty_flip_buffer_push(struct tty_struct *tty)
3524 {
3525 unsigned long flags;
3526 spin_lock_irqsave(&tty->buf.lock, flags);
3527 if (tty->buf.tail != NULL)
3528 tty->buf.tail->commit = tty->buf.tail->used;
3529 spin_unlock_irqrestore(&tty->buf.lock, flags);
3530
3531 if (tty->low_latency)
3532 flush_to_ldisc(&tty->buf.work.work);
3533 else
3534 schedule_delayed_work(&tty->buf.work, 1);
3535 }
3536
3537 EXPORT_SYMBOL(tty_flip_buffer_push);
3538
3539
3540 /**
3541 * initialize_tty_struct
3542 * @tty: tty to initialize
3543 *
3544 * This subroutine initializes a tty structure that has been newly
3545 * allocated.
3546 *
3547 * Locking: none - tty in question must not be exposed at this point
3548 */
3549
3550 static void initialize_tty_struct(struct tty_struct *tty)
3551 {
3552 memset(tty, 0, sizeof(struct tty_struct));
3553 tty->magic = TTY_MAGIC;
3554 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3555 tty->session = NULL;
3556 tty->pgrp = NULL;
3557 tty->overrun_time = jiffies;
3558 tty->buf.head = tty->buf.tail = NULL;
3559 tty_buffer_init(tty);
3560 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3561 init_MUTEX(&tty->buf.pty_sem);
3562 mutex_init(&tty->termios_mutex);
3563 init_waitqueue_head(&tty->write_wait);
3564 init_waitqueue_head(&tty->read_wait);
3565 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3566 mutex_init(&tty->atomic_read_lock);
3567 mutex_init(&tty->atomic_write_lock);
3568 spin_lock_init(&tty->read_lock);
3569 INIT_LIST_HEAD(&tty->tty_files);
3570 INIT_WORK(&tty->SAK_work, do_SAK_work);
3571 }
3572
3573 /*
3574 * The default put_char routine if the driver did not define one.
3575 */
3576
3577 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3578 {
3579 tty->driver->write(tty, &ch, 1);
3580 }
3581
3582 static struct class *tty_class;
3583
3584 /**
3585 * tty_register_device - register a tty device
3586 * @driver: the tty driver that describes the tty device
3587 * @index: the index in the tty driver for this tty device
3588 * @device: a struct device that is associated with this tty device.
3589 * This field is optional, if there is no known struct device
3590 * for this tty device it can be set to NULL safely.
3591 *
3592 * Returns a pointer to the struct device for this tty device
3593 * (or ERR_PTR(-EFOO) on error).
3594 *
3595 * This call is required to be made to register an individual tty device
3596 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3597 * that bit is not set, this function should not be called by a tty
3598 * driver.
3599 *
3600 * Locking: ??
3601 */
3602
3603 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3604 struct device *device)
3605 {
3606 char name[64];
3607 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3608
3609 if (index >= driver->num) {
3610 printk(KERN_ERR "Attempt to register invalid tty line number "
3611 " (%d).\n", index);
3612 return ERR_PTR(-EINVAL);
3613 }
3614
3615 if (driver->type == TTY_DRIVER_TYPE_PTY)
3616 pty_line_name(driver, index, name);
3617 else
3618 tty_line_name(driver, index, name);
3619
3620 return device_create(tty_class, device, dev, name);
3621 }
3622
3623 /**
3624 * tty_unregister_device - unregister a tty device
3625 * @driver: the tty driver that describes the tty device
3626 * @index: the index in the tty driver for this tty device
3627 *
3628 * If a tty device is registered with a call to tty_register_device() then
3629 * this function must be called when the tty device is gone.
3630 *
3631 * Locking: ??
3632 */
3633
3634 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3635 {
3636 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3637 }
3638
3639 EXPORT_SYMBOL(tty_register_device);
3640 EXPORT_SYMBOL(tty_unregister_device);
3641
3642 struct tty_driver *alloc_tty_driver(int lines)
3643 {
3644 struct tty_driver *driver;
3645
3646 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3647 if (driver) {
3648 memset(driver, 0, sizeof(struct tty_driver));
3649 driver->magic = TTY_DRIVER_MAGIC;
3650 driver->num = lines;
3651 /* later we'll move allocation of tables here */
3652 }
3653 return driver;
3654 }
3655
3656 void put_tty_driver(struct tty_driver *driver)
3657 {
3658 kfree(driver);
3659 }
3660
3661 void tty_set_operations(struct tty_driver *driver,
3662 const struct tty_operations *op)
3663 {
3664 driver->open = op->open;
3665 driver->close = op->close;
3666 driver->write = op->write;
3667 driver->put_char = op->put_char;
3668 driver->flush_chars = op->flush_chars;
3669 driver->write_room = op->write_room;
3670 driver->chars_in_buffer = op->chars_in_buffer;
3671 driver->ioctl = op->ioctl;
3672 driver->set_termios = op->set_termios;
3673 driver->throttle = op->throttle;
3674 driver->unthrottle = op->unthrottle;
3675 driver->stop = op->stop;
3676 driver->start = op->start;
3677 driver->hangup = op->hangup;
3678 driver->break_ctl = op->break_ctl;
3679 driver->flush_buffer = op->flush_buffer;
3680 driver->set_ldisc = op->set_ldisc;
3681 driver->wait_until_sent = op->wait_until_sent;
3682 driver->send_xchar = op->send_xchar;
3683 driver->read_proc = op->read_proc;
3684 driver->write_proc = op->write_proc;
3685 driver->tiocmget = op->tiocmget;
3686 driver->tiocmset = op->tiocmset;
3687 }
3688
3689
3690 EXPORT_SYMBOL(alloc_tty_driver);
3691 EXPORT_SYMBOL(put_tty_driver);
3692 EXPORT_SYMBOL(tty_set_operations);
3693
3694 /*
3695 * Called by a tty driver to register itself.
3696 */
3697 int tty_register_driver(struct tty_driver *driver)
3698 {
3699 int error;
3700 int i;
3701 dev_t dev;
3702 void **p = NULL;
3703
3704 if (driver->flags & TTY_DRIVER_INSTALLED)
3705 return 0;
3706
3707 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
3708 p = kmalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3709 if (!p)
3710 return -ENOMEM;
3711 memset(p, 0, driver->num * 3 * sizeof(void *));
3712 }
3713
3714 if (!driver->major) {
3715 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3716 (char*)driver->name);
3717 if (!error) {
3718 driver->major = MAJOR(dev);
3719 driver->minor_start = MINOR(dev);
3720 }
3721 } else {
3722 dev = MKDEV(driver->major, driver->minor_start);
3723 error = register_chrdev_region(dev, driver->num,
3724 (char*)driver->name);
3725 }
3726 if (error < 0) {
3727 kfree(p);
3728 return error;
3729 }
3730
3731 if (p) {
3732 driver->ttys = (struct tty_struct **)p;
3733 driver->termios = (struct ktermios **)(p + driver->num);
3734 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3735 } else {
3736 driver->ttys = NULL;
3737 driver->termios = NULL;
3738 driver->termios_locked = NULL;
3739 }
3740
3741 cdev_init(&driver->cdev, &tty_fops);
3742 driver->cdev.owner = driver->owner;
3743 error = cdev_add(&driver->cdev, dev, driver->num);
3744 if (error) {
3745 unregister_chrdev_region(dev, driver->num);
3746 driver->ttys = NULL;
3747 driver->termios = driver->termios_locked = NULL;
3748 kfree(p);
3749 return error;
3750 }
3751
3752 if (!driver->put_char)
3753 driver->put_char = tty_default_put_char;
3754
3755 list_add(&driver->tty_drivers, &tty_drivers);
3756
3757 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3758 for(i = 0; i < driver->num; i++)
3759 tty_register_device(driver, i, NULL);
3760 }
3761 proc_tty_register_driver(driver);
3762 return 0;
3763 }
3764
3765 EXPORT_SYMBOL(tty_register_driver);
3766
3767 /*
3768 * Called by a tty driver to unregister itself.
3769 */
3770 int tty_unregister_driver(struct tty_driver *driver)
3771 {
3772 int i;
3773 struct ktermios *tp;
3774 void *p;
3775
3776 if (driver->refcount)
3777 return -EBUSY;
3778
3779 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3780 driver->num);
3781
3782 list_del(&driver->tty_drivers);
3783
3784 /*
3785 * Free the termios and termios_locked structures because
3786 * we don't want to get memory leaks when modular tty
3787 * drivers are removed from the kernel.
3788 */
3789 for (i = 0; i < driver->num; i++) {
3790 tp = driver->termios[i];
3791 if (tp) {
3792 driver->termios[i] = NULL;
3793 kfree(tp);
3794 }
3795 tp = driver->termios_locked[i];
3796 if (tp) {
3797 driver->termios_locked[i] = NULL;
3798 kfree(tp);
3799 }
3800 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3801 tty_unregister_device(driver, i);
3802 }
3803 p = driver->ttys;
3804 proc_tty_unregister_driver(driver);
3805 driver->ttys = NULL;
3806 driver->termios = driver->termios_locked = NULL;
3807 kfree(p);
3808 cdev_del(&driver->cdev);
3809 return 0;
3810 }
3811 EXPORT_SYMBOL(tty_unregister_driver);
3812
3813 dev_t tty_devnum(struct tty_struct *tty)
3814 {
3815 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3816 }
3817 EXPORT_SYMBOL(tty_devnum);
3818
3819 void proc_clear_tty(struct task_struct *p)
3820 {
3821 spin_lock_irq(&p->sighand->siglock);
3822 p->signal->tty = NULL;
3823 spin_unlock_irq(&p->sighand->siglock);
3824 }
3825 EXPORT_SYMBOL(proc_clear_tty);
3826
3827 static struct pid *__proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3828 {
3829 struct pid *old_pgrp;
3830 if (tty) {
3831 tty->session = get_pid(task_session(tsk));
3832 tty->pgrp = get_pid(task_pgrp(tsk));
3833 }
3834 old_pgrp = tsk->signal->tty_old_pgrp;
3835 tsk->signal->tty = tty;
3836 tsk->signal->tty_old_pgrp = NULL;
3837 return old_pgrp;
3838 }
3839
3840 void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3841 {
3842 struct pid *old_pgrp;
3843
3844 spin_lock_irq(&tsk->sighand->siglock);
3845 old_pgrp = __proc_set_tty(tsk, tty);
3846 spin_unlock_irq(&tsk->sighand->siglock);
3847
3848 put_pid(old_pgrp);
3849 }
3850
3851 struct tty_struct *get_current_tty(void)
3852 {
3853 struct tty_struct *tty;
3854 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3855 tty = current->signal->tty;
3856 /*
3857 * session->tty can be changed/cleared from under us, make sure we
3858 * issue the load. The obtained pointer, when not NULL, is valid as
3859 * long as we hold tty_mutex.
3860 */
3861 barrier();
3862 return tty;
3863 }
3864 EXPORT_SYMBOL_GPL(get_current_tty);
3865
3866 /*
3867 * Initialize the console device. This is called *early*, so
3868 * we can't necessarily depend on lots of kernel help here.
3869 * Just do some early initializations, and do the complex setup
3870 * later.
3871 */
3872 void __init console_init(void)
3873 {
3874 initcall_t *call;
3875
3876 /* Setup the default TTY line discipline. */
3877 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3878
3879 /*
3880 * set up the console device so that later boot sequences can
3881 * inform about problems etc..
3882 */
3883 #ifdef CONFIG_EARLY_PRINTK
3884 disable_early_printk();
3885 #endif
3886 call = __con_initcall_start;
3887 while (call < __con_initcall_end) {
3888 (*call)();
3889 call++;
3890 }
3891 }
3892
3893 #ifdef CONFIG_VT
3894 extern int vty_init(void);
3895 #endif
3896
3897 static int __init tty_class_init(void)
3898 {
3899 tty_class = class_create(THIS_MODULE, "tty");
3900 if (IS_ERR(tty_class))
3901 return PTR_ERR(tty_class);
3902 return 0;
3903 }
3904
3905 postcore_initcall(tty_class_init);
3906
3907 /* 3/2004 jmc: why do these devices exist? */
3908
3909 static struct cdev tty_cdev, console_cdev;
3910 #ifdef CONFIG_UNIX98_PTYS
3911 static struct cdev ptmx_cdev;
3912 #endif
3913 #ifdef CONFIG_VT
3914 static struct cdev vc0_cdev;
3915 #endif
3916
3917 /*
3918 * Ok, now we can initialize the rest of the tty devices and can count
3919 * on memory allocations, interrupts etc..
3920 */
3921 static int __init tty_init(void)
3922 {
3923 cdev_init(&tty_cdev, &tty_fops);
3924 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3925 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3926 panic("Couldn't register /dev/tty driver\n");
3927 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3928
3929 cdev_init(&console_cdev, &console_fops);
3930 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3931 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3932 panic("Couldn't register /dev/console driver\n");
3933 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3934
3935 #ifdef CONFIG_UNIX98_PTYS
3936 cdev_init(&ptmx_cdev, &ptmx_fops);
3937 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3938 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3939 panic("Couldn't register /dev/ptmx driver\n");
3940 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3941 #endif
3942
3943 #ifdef CONFIG_VT
3944 cdev_init(&vc0_cdev, &console_fops);
3945 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3946 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3947 panic("Couldn't register /dev/tty0 driver\n");
3948 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3949
3950 vty_init();
3951 #endif
3952 return 0;
3953 }
3954 module_init(tty_init);
This page took 0.111641 seconds and 6 git commands to generate.