tty: More driver operations
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static void initialize_tty_struct(struct tty_struct *tty);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 static int tty_release(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161 * alloc_tty_struct - allocate a tty object
162 *
163 * Return a new empty tty structure. The data fields have not
164 * been initialized in any way but has been zeroed
165 *
166 * Locking: none
167 */
168
169 static struct tty_struct *alloc_tty_struct(void)
170 {
171 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175 * free_tty_struct - free a disused tty
176 * @tty: tty struct to free
177 *
178 * Free the write buffers, tty queue and tty memory itself.
179 *
180 * Locking: none. Must be called after tty is definitely unused
181 */
182
183 static inline void free_tty_struct(struct tty_struct *tty)
184 {
185 kfree(tty->write_buf);
186 tty_buffer_free_all(tty);
187 kfree(tty);
188 }
189
190 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
191
192 /**
193 * tty_name - return tty naming
194 * @tty: tty structure
195 * @buf: buffer for output
196 *
197 * Convert a tty structure into a name. The name reflects the kernel
198 * naming policy and if udev is in use may not reflect user space
199 *
200 * Locking: none
201 */
202
203 char *tty_name(struct tty_struct *tty, char *buf)
204 {
205 if (!tty) /* Hmm. NULL pointer. That's fun. */
206 strcpy(buf, "NULL tty");
207 else
208 strcpy(buf, tty->name);
209 return buf;
210 }
211
212 EXPORT_SYMBOL(tty_name);
213
214 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
215 const char *routine)
216 {
217 #ifdef TTY_PARANOIA_CHECK
218 if (!tty) {
219 printk(KERN_WARNING
220 "null TTY for (%d:%d) in %s\n",
221 imajor(inode), iminor(inode), routine);
222 return 1;
223 }
224 if (tty->magic != TTY_MAGIC) {
225 printk(KERN_WARNING
226 "bad magic number for tty struct (%d:%d) in %s\n",
227 imajor(inode), iminor(inode), routine);
228 return 1;
229 }
230 #endif
231 return 0;
232 }
233
234 static int check_tty_count(struct tty_struct *tty, const char *routine)
235 {
236 #ifdef CHECK_TTY_COUNT
237 struct list_head *p;
238 int count = 0;
239
240 file_list_lock();
241 list_for_each(p, &tty->tty_files) {
242 count++;
243 }
244 file_list_unlock();
245 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
246 tty->driver->subtype == PTY_TYPE_SLAVE &&
247 tty->link && tty->link->count)
248 count++;
249 if (tty->count != count) {
250 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
251 "!= #fd's(%d) in %s\n",
252 tty->name, tty->count, count, routine);
253 return count;
254 }
255 #endif
256 return 0;
257 }
258
259 /**
260 * get_tty_driver - find device of a tty
261 * @dev_t: device identifier
262 * @index: returns the index of the tty
263 *
264 * This routine returns a tty driver structure, given a device number
265 * and also passes back the index number.
266 *
267 * Locking: caller must hold tty_mutex
268 */
269
270 static struct tty_driver *get_tty_driver(dev_t device, int *index)
271 {
272 struct tty_driver *p;
273
274 list_for_each_entry(p, &tty_drivers, tty_drivers) {
275 dev_t base = MKDEV(p->major, p->minor_start);
276 if (device < base || device >= base + p->num)
277 continue;
278 *index = device - base;
279 return tty_driver_kref_get(p);
280 }
281 return NULL;
282 }
283
284 #ifdef CONFIG_CONSOLE_POLL
285
286 /**
287 * tty_find_polling_driver - find device of a polled tty
288 * @name: name string to match
289 * @line: pointer to resulting tty line nr
290 *
291 * This routine returns a tty driver structure, given a name
292 * and the condition that the tty driver is capable of polled
293 * operation.
294 */
295 struct tty_driver *tty_find_polling_driver(char *name, int *line)
296 {
297 struct tty_driver *p, *res = NULL;
298 int tty_line = 0;
299 int len;
300 char *str;
301
302 for (str = name; *str; str++)
303 if ((*str >= '0' && *str <= '9') || *str == ',')
304 break;
305 if (!*str)
306 return NULL;
307
308 len = str - name;
309 tty_line = simple_strtoul(str, &str, 10);
310
311 mutex_lock(&tty_mutex);
312 /* Search through the tty devices to look for a match */
313 list_for_each_entry(p, &tty_drivers, tty_drivers) {
314 if (strncmp(name, p->name, len) != 0)
315 continue;
316 if (*str == ',')
317 str++;
318 if (*str == '\0')
319 str = NULL;
320
321 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
322 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
323 res = tty_driver_kref_get(p);
324 *line = tty_line;
325 break;
326 }
327 }
328 mutex_unlock(&tty_mutex);
329
330 return res;
331 }
332 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
333 #endif
334
335 /**
336 * tty_check_change - check for POSIX terminal changes
337 * @tty: tty to check
338 *
339 * If we try to write to, or set the state of, a terminal and we're
340 * not in the foreground, send a SIGTTOU. If the signal is blocked or
341 * ignored, go ahead and perform the operation. (POSIX 7.2)
342 *
343 * Locking: ctrl_lock
344 */
345
346 int tty_check_change(struct tty_struct *tty)
347 {
348 unsigned long flags;
349 int ret = 0;
350
351 if (current->signal->tty != tty)
352 return 0;
353
354 spin_lock_irqsave(&tty->ctrl_lock, flags);
355
356 if (!tty->pgrp) {
357 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
358 goto out_unlock;
359 }
360 if (task_pgrp(current) == tty->pgrp)
361 goto out_unlock;
362 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
363 if (is_ignored(SIGTTOU))
364 goto out;
365 if (is_current_pgrp_orphaned()) {
366 ret = -EIO;
367 goto out;
368 }
369 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
370 set_thread_flag(TIF_SIGPENDING);
371 ret = -ERESTARTSYS;
372 out:
373 return ret;
374 out_unlock:
375 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
376 return ret;
377 }
378
379 EXPORT_SYMBOL(tty_check_change);
380
381 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
382 size_t count, loff_t *ppos)
383 {
384 return 0;
385 }
386
387 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
388 size_t count, loff_t *ppos)
389 {
390 return -EIO;
391 }
392
393 /* No kernel lock held - none needed ;) */
394 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
395 {
396 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
397 }
398
399 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
400 unsigned long arg)
401 {
402 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
403 }
404
405 static long hung_up_tty_compat_ioctl(struct file *file,
406 unsigned int cmd, unsigned long arg)
407 {
408 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
409 }
410
411 static const struct file_operations tty_fops = {
412 .llseek = no_llseek,
413 .read = tty_read,
414 .write = tty_write,
415 .poll = tty_poll,
416 .unlocked_ioctl = tty_ioctl,
417 .compat_ioctl = tty_compat_ioctl,
418 .open = tty_open,
419 .release = tty_release,
420 .fasync = tty_fasync,
421 };
422
423 static const struct file_operations console_fops = {
424 .llseek = no_llseek,
425 .read = tty_read,
426 .write = redirected_tty_write,
427 .poll = tty_poll,
428 .unlocked_ioctl = tty_ioctl,
429 .compat_ioctl = tty_compat_ioctl,
430 .open = tty_open,
431 .release = tty_release,
432 .fasync = tty_fasync,
433 };
434
435 static const struct file_operations hung_up_tty_fops = {
436 .llseek = no_llseek,
437 .read = hung_up_tty_read,
438 .write = hung_up_tty_write,
439 .poll = hung_up_tty_poll,
440 .unlocked_ioctl = hung_up_tty_ioctl,
441 .compat_ioctl = hung_up_tty_compat_ioctl,
442 .release = tty_release,
443 };
444
445 static DEFINE_SPINLOCK(redirect_lock);
446 static struct file *redirect;
447
448 /**
449 * tty_wakeup - request more data
450 * @tty: terminal
451 *
452 * Internal and external helper for wakeups of tty. This function
453 * informs the line discipline if present that the driver is ready
454 * to receive more output data.
455 */
456
457 void tty_wakeup(struct tty_struct *tty)
458 {
459 struct tty_ldisc *ld;
460
461 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
462 ld = tty_ldisc_ref(tty);
463 if (ld) {
464 if (ld->ops->write_wakeup)
465 ld->ops->write_wakeup(tty);
466 tty_ldisc_deref(ld);
467 }
468 }
469 wake_up_interruptible(&tty->write_wait);
470 }
471
472 EXPORT_SYMBOL_GPL(tty_wakeup);
473
474 /**
475 * tty_ldisc_flush - flush line discipline queue
476 * @tty: tty
477 *
478 * Flush the line discipline queue (if any) for this tty. If there
479 * is no line discipline active this is a no-op.
480 */
481
482 void tty_ldisc_flush(struct tty_struct *tty)
483 {
484 struct tty_ldisc *ld = tty_ldisc_ref(tty);
485 if (ld) {
486 if (ld->ops->flush_buffer)
487 ld->ops->flush_buffer(tty);
488 tty_ldisc_deref(ld);
489 }
490 tty_buffer_flush(tty);
491 }
492
493 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
494
495 /**
496 * tty_reset_termios - reset terminal state
497 * @tty: tty to reset
498 *
499 * Restore a terminal to the driver default state
500 */
501
502 static void tty_reset_termios(struct tty_struct *tty)
503 {
504 mutex_lock(&tty->termios_mutex);
505 *tty->termios = tty->driver->init_termios;
506 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
507 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
508 mutex_unlock(&tty->termios_mutex);
509 }
510
511 /**
512 * do_tty_hangup - actual handler for hangup events
513 * @work: tty device
514 *
515 * This can be called by the "eventd" kernel thread. That is process
516 * synchronous but doesn't hold any locks, so we need to make sure we
517 * have the appropriate locks for what we're doing.
518 *
519 * The hangup event clears any pending redirections onto the hung up
520 * device. It ensures future writes will error and it does the needed
521 * line discipline hangup and signal delivery. The tty object itself
522 * remains intact.
523 *
524 * Locking:
525 * BKL
526 * redirect lock for undoing redirection
527 * file list lock for manipulating list of ttys
528 * tty_ldisc_lock from called functions
529 * termios_mutex resetting termios data
530 * tasklist_lock to walk task list for hangup event
531 * ->siglock to protect ->signal/->sighand
532 */
533 static void do_tty_hangup(struct work_struct *work)
534 {
535 struct tty_struct *tty =
536 container_of(work, struct tty_struct, hangup_work);
537 struct file *cons_filp = NULL;
538 struct file *filp, *f = NULL;
539 struct task_struct *p;
540 struct tty_ldisc *ld;
541 int closecount = 0, n;
542 unsigned long flags;
543 int refs = 0;
544
545 if (!tty)
546 return;
547
548 /* inuse_filps is protected by the single kernel lock */
549 lock_kernel();
550
551 spin_lock(&redirect_lock);
552 if (redirect && redirect->private_data == tty) {
553 f = redirect;
554 redirect = NULL;
555 }
556 spin_unlock(&redirect_lock);
557
558 check_tty_count(tty, "do_tty_hangup");
559 file_list_lock();
560 /* This breaks for file handles being sent over AF_UNIX sockets ? */
561 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
562 if (filp->f_op->write == redirected_tty_write)
563 cons_filp = filp;
564 if (filp->f_op->write != tty_write)
565 continue;
566 closecount++;
567 tty_fasync(-1, filp, 0); /* can't block */
568 filp->f_op = &hung_up_tty_fops;
569 }
570 file_list_unlock();
571 /*
572 * FIXME! What are the locking issues here? This may me overdoing
573 * things... This question is especially important now that we've
574 * removed the irqlock.
575 */
576 ld = tty_ldisc_ref(tty);
577 if (ld != NULL) {
578 /* We may have no line discipline at this point */
579 if (ld->ops->flush_buffer)
580 ld->ops->flush_buffer(tty);
581 tty_driver_flush_buffer(tty);
582 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
583 ld->ops->write_wakeup)
584 ld->ops->write_wakeup(tty);
585 if (ld->ops->hangup)
586 ld->ops->hangup(tty);
587 }
588 /*
589 * FIXME: Once we trust the LDISC code better we can wait here for
590 * ldisc completion and fix the driver call race
591 */
592 wake_up_interruptible(&tty->write_wait);
593 wake_up_interruptible(&tty->read_wait);
594 /*
595 * Shutdown the current line discipline, and reset it to
596 * N_TTY.
597 */
598 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
599 tty_reset_termios(tty);
600 /* Defer ldisc switch */
601 /* tty_deferred_ldisc_switch(N_TTY);
602
603 This should get done automatically when the port closes and
604 tty_release is called */
605
606 read_lock(&tasklist_lock);
607 if (tty->session) {
608 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609 spin_lock_irq(&p->sighand->siglock);
610 if (p->signal->tty == tty) {
611 p->signal->tty = NULL;
612 /* We defer the dereferences outside fo
613 the tasklist lock */
614 refs++;
615 }
616 if (!p->signal->leader) {
617 spin_unlock_irq(&p->sighand->siglock);
618 continue;
619 }
620 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622 put_pid(p->signal->tty_old_pgrp); /* A noop */
623 spin_lock_irqsave(&tty->ctrl_lock, flags);
624 if (tty->pgrp)
625 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627 spin_unlock_irq(&p->sighand->siglock);
628 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629 }
630 read_unlock(&tasklist_lock);
631
632 spin_lock_irqsave(&tty->ctrl_lock, flags);
633 tty->flags = 0;
634 put_pid(tty->session);
635 put_pid(tty->pgrp);
636 tty->session = NULL;
637 tty->pgrp = NULL;
638 tty->ctrl_status = 0;
639 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
640
641 /* Account for the p->signal references we killed */
642 while (refs--)
643 tty_kref_put(tty);
644
645 /*
646 * If one of the devices matches a console pointer, we
647 * cannot just call hangup() because that will cause
648 * tty->count and state->count to go out of sync.
649 * So we just call close() the right number of times.
650 */
651 if (cons_filp) {
652 if (tty->ops->close)
653 for (n = 0; n < closecount; n++)
654 tty->ops->close(tty, cons_filp);
655 } else if (tty->ops->hangup)
656 (tty->ops->hangup)(tty);
657 /*
658 * We don't want to have driver/ldisc interactions beyond
659 * the ones we did here. The driver layer expects no
660 * calls after ->hangup() from the ldisc side. However we
661 * can't yet guarantee all that.
662 */
663 set_bit(TTY_HUPPED, &tty->flags);
664 if (ld) {
665 tty_ldisc_enable(tty);
666 tty_ldisc_deref(ld);
667 }
668 unlock_kernel();
669 if (f)
670 fput(f);
671 }
672
673 /**
674 * tty_hangup - trigger a hangup event
675 * @tty: tty to hangup
676 *
677 * A carrier loss (virtual or otherwise) has occurred on this like
678 * schedule a hangup sequence to run after this event.
679 */
680
681 void tty_hangup(struct tty_struct *tty)
682 {
683 #ifdef TTY_DEBUG_HANGUP
684 char buf[64];
685 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
686 #endif
687 schedule_work(&tty->hangup_work);
688 }
689
690 EXPORT_SYMBOL(tty_hangup);
691
692 /**
693 * tty_vhangup - process vhangup
694 * @tty: tty to hangup
695 *
696 * The user has asked via system call for the terminal to be hung up.
697 * We do this synchronously so that when the syscall returns the process
698 * is complete. That guarantee is necessary for security reasons.
699 */
700
701 void tty_vhangup(struct tty_struct *tty)
702 {
703 #ifdef TTY_DEBUG_HANGUP
704 char buf[64];
705
706 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
707 #endif
708 do_tty_hangup(&tty->hangup_work);
709 }
710
711 EXPORT_SYMBOL(tty_vhangup);
712
713 /**
714 * tty_vhangup_self - process vhangup for own ctty
715 *
716 * Perform a vhangup on the current controlling tty
717 */
718
719 void tty_vhangup_self(void)
720 {
721 struct tty_struct *tty;
722
723 tty = get_current_tty();
724 if (tty) {
725 tty_vhangup(tty);
726 tty_kref_put(tty);
727 }
728 }
729
730 /**
731 * tty_hung_up_p - was tty hung up
732 * @filp: file pointer of tty
733 *
734 * Return true if the tty has been subject to a vhangup or a carrier
735 * loss
736 */
737
738 int tty_hung_up_p(struct file *filp)
739 {
740 return (filp->f_op == &hung_up_tty_fops);
741 }
742
743 EXPORT_SYMBOL(tty_hung_up_p);
744
745 static void session_clear_tty(struct pid *session)
746 {
747 struct task_struct *p;
748 do_each_pid_task(session, PIDTYPE_SID, p) {
749 proc_clear_tty(p);
750 } while_each_pid_task(session, PIDTYPE_SID, p);
751 }
752
753 /**
754 * disassociate_ctty - disconnect controlling tty
755 * @on_exit: true if exiting so need to "hang up" the session
756 *
757 * This function is typically called only by the session leader, when
758 * it wants to disassociate itself from its controlling tty.
759 *
760 * It performs the following functions:
761 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
762 * (2) Clears the tty from being controlling the session
763 * (3) Clears the controlling tty for all processes in the
764 * session group.
765 *
766 * The argument on_exit is set to 1 if called when a process is
767 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
768 *
769 * Locking:
770 * BKL is taken for hysterical raisins
771 * tty_mutex is taken to protect tty
772 * ->siglock is taken to protect ->signal/->sighand
773 * tasklist_lock is taken to walk process list for sessions
774 * ->siglock is taken to protect ->signal/->sighand
775 */
776
777 void disassociate_ctty(int on_exit)
778 {
779 struct tty_struct *tty;
780 struct pid *tty_pgrp = NULL;
781
782
783 tty = get_current_tty();
784 if (tty) {
785 tty_pgrp = get_pid(tty->pgrp);
786 lock_kernel();
787 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
788 tty_vhangup(tty);
789 unlock_kernel();
790 tty_kref_put(tty);
791 } else if (on_exit) {
792 struct pid *old_pgrp;
793 spin_lock_irq(&current->sighand->siglock);
794 old_pgrp = current->signal->tty_old_pgrp;
795 current->signal->tty_old_pgrp = NULL;
796 spin_unlock_irq(&current->sighand->siglock);
797 if (old_pgrp) {
798 kill_pgrp(old_pgrp, SIGHUP, on_exit);
799 kill_pgrp(old_pgrp, SIGCONT, on_exit);
800 put_pid(old_pgrp);
801 }
802 return;
803 }
804 if (tty_pgrp) {
805 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806 if (!on_exit)
807 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808 put_pid(tty_pgrp);
809 }
810
811 spin_lock_irq(&current->sighand->siglock);
812 put_pid(current->signal->tty_old_pgrp);
813 current->signal->tty_old_pgrp = NULL;
814 spin_unlock_irq(&current->sighand->siglock);
815
816 tty = get_current_tty();
817 if (tty) {
818 unsigned long flags;
819 spin_lock_irqsave(&tty->ctrl_lock, flags);
820 put_pid(tty->session);
821 put_pid(tty->pgrp);
822 tty->session = NULL;
823 tty->pgrp = NULL;
824 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
825 tty_kref_put(tty);
826 } else {
827 #ifdef TTY_DEBUG_HANGUP
828 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
829 " = NULL", tty);
830 #endif
831 }
832
833 /* Now clear signal->tty under the lock */
834 read_lock(&tasklist_lock);
835 session_clear_tty(task_session(current));
836 read_unlock(&tasklist_lock);
837 }
838
839 /**
840 *
841 * no_tty - Ensure the current process does not have a controlling tty
842 */
843 void no_tty(void)
844 {
845 struct task_struct *tsk = current;
846 lock_kernel();
847 if (tsk->signal->leader)
848 disassociate_ctty(0);
849 unlock_kernel();
850 proc_clear_tty(tsk);
851 }
852
853
854 /**
855 * stop_tty - propagate flow control
856 * @tty: tty to stop
857 *
858 * Perform flow control to the driver. For PTY/TTY pairs we
859 * must also propagate the TIOCKPKT status. May be called
860 * on an already stopped device and will not re-call the driver
861 * method.
862 *
863 * This functionality is used by both the line disciplines for
864 * halting incoming flow and by the driver. It may therefore be
865 * called from any context, may be under the tty atomic_write_lock
866 * but not always.
867 *
868 * Locking:
869 * Uses the tty control lock internally
870 */
871
872 void stop_tty(struct tty_struct *tty)
873 {
874 unsigned long flags;
875 spin_lock_irqsave(&tty->ctrl_lock, flags);
876 if (tty->stopped) {
877 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
878 return;
879 }
880 tty->stopped = 1;
881 if (tty->link && tty->link->packet) {
882 tty->ctrl_status &= ~TIOCPKT_START;
883 tty->ctrl_status |= TIOCPKT_STOP;
884 wake_up_interruptible(&tty->link->read_wait);
885 }
886 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887 if (tty->ops->stop)
888 (tty->ops->stop)(tty);
889 }
890
891 EXPORT_SYMBOL(stop_tty);
892
893 /**
894 * start_tty - propagate flow control
895 * @tty: tty to start
896 *
897 * Start a tty that has been stopped if at all possible. Perform
898 * any necessary wakeups and propagate the TIOCPKT status. If this
899 * is the tty was previous stopped and is being started then the
900 * driver start method is invoked and the line discipline woken.
901 *
902 * Locking:
903 * ctrl_lock
904 */
905
906 void start_tty(struct tty_struct *tty)
907 {
908 unsigned long flags;
909 spin_lock_irqsave(&tty->ctrl_lock, flags);
910 if (!tty->stopped || tty->flow_stopped) {
911 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
912 return;
913 }
914 tty->stopped = 0;
915 if (tty->link && tty->link->packet) {
916 tty->ctrl_status &= ~TIOCPKT_STOP;
917 tty->ctrl_status |= TIOCPKT_START;
918 wake_up_interruptible(&tty->link->read_wait);
919 }
920 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
921 if (tty->ops->start)
922 (tty->ops->start)(tty);
923 /* If we have a running line discipline it may need kicking */
924 tty_wakeup(tty);
925 }
926
927 EXPORT_SYMBOL(start_tty);
928
929 /**
930 * tty_read - read method for tty device files
931 * @file: pointer to tty file
932 * @buf: user buffer
933 * @count: size of user buffer
934 * @ppos: unused
935 *
936 * Perform the read system call function on this terminal device. Checks
937 * for hung up devices before calling the line discipline method.
938 *
939 * Locking:
940 * Locks the line discipline internally while needed. Multiple
941 * read calls may be outstanding in parallel.
942 */
943
944 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
945 loff_t *ppos)
946 {
947 int i;
948 struct tty_struct *tty;
949 struct inode *inode;
950 struct tty_ldisc *ld;
951
952 tty = (struct tty_struct *)file->private_data;
953 inode = file->f_path.dentry->d_inode;
954 if (tty_paranoia_check(tty, inode, "tty_read"))
955 return -EIO;
956 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
957 return -EIO;
958
959 /* We want to wait for the line discipline to sort out in this
960 situation */
961 ld = tty_ldisc_ref_wait(tty);
962 if (ld->ops->read)
963 i = (ld->ops->read)(tty, file, buf, count);
964 else
965 i = -EIO;
966 tty_ldisc_deref(ld);
967 if (i > 0)
968 inode->i_atime = current_fs_time(inode->i_sb);
969 return i;
970 }
971
972 void tty_write_unlock(struct tty_struct *tty)
973 {
974 mutex_unlock(&tty->atomic_write_lock);
975 wake_up_interruptible(&tty->write_wait);
976 }
977
978 int tty_write_lock(struct tty_struct *tty, int ndelay)
979 {
980 if (!mutex_trylock(&tty->atomic_write_lock)) {
981 if (ndelay)
982 return -EAGAIN;
983 if (mutex_lock_interruptible(&tty->atomic_write_lock))
984 return -ERESTARTSYS;
985 }
986 return 0;
987 }
988
989 /*
990 * Split writes up in sane blocksizes to avoid
991 * denial-of-service type attacks
992 */
993 static inline ssize_t do_tty_write(
994 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
995 struct tty_struct *tty,
996 struct file *file,
997 const char __user *buf,
998 size_t count)
999 {
1000 ssize_t ret, written = 0;
1001 unsigned int chunk;
1002
1003 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1004 if (ret < 0)
1005 return ret;
1006
1007 /*
1008 * We chunk up writes into a temporary buffer. This
1009 * simplifies low-level drivers immensely, since they
1010 * don't have locking issues and user mode accesses.
1011 *
1012 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1013 * big chunk-size..
1014 *
1015 * The default chunk-size is 2kB, because the NTTY
1016 * layer has problems with bigger chunks. It will
1017 * claim to be able to handle more characters than
1018 * it actually does.
1019 *
1020 * FIXME: This can probably go away now except that 64K chunks
1021 * are too likely to fail unless switched to vmalloc...
1022 */
1023 chunk = 2048;
1024 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1025 chunk = 65536;
1026 if (count < chunk)
1027 chunk = count;
1028
1029 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1030 if (tty->write_cnt < chunk) {
1031 unsigned char *buf;
1032
1033 if (chunk < 1024)
1034 chunk = 1024;
1035
1036 buf = kmalloc(chunk, GFP_KERNEL);
1037 if (!buf) {
1038 ret = -ENOMEM;
1039 goto out;
1040 }
1041 kfree(tty->write_buf);
1042 tty->write_cnt = chunk;
1043 tty->write_buf = buf;
1044 }
1045
1046 /* Do the write .. */
1047 for (;;) {
1048 size_t size = count;
1049 if (size > chunk)
1050 size = chunk;
1051 ret = -EFAULT;
1052 if (copy_from_user(tty->write_buf, buf, size))
1053 break;
1054 ret = write(tty, file, tty->write_buf, size);
1055 if (ret <= 0)
1056 break;
1057 written += ret;
1058 buf += ret;
1059 count -= ret;
1060 if (!count)
1061 break;
1062 ret = -ERESTARTSYS;
1063 if (signal_pending(current))
1064 break;
1065 cond_resched();
1066 }
1067 if (written) {
1068 struct inode *inode = file->f_path.dentry->d_inode;
1069 inode->i_mtime = current_fs_time(inode->i_sb);
1070 ret = written;
1071 }
1072 out:
1073 tty_write_unlock(tty);
1074 return ret;
1075 }
1076
1077 /**
1078 * tty_write_message - write a message to a certain tty, not just the console.
1079 * @tty: the destination tty_struct
1080 * @msg: the message to write
1081 *
1082 * This is used for messages that need to be redirected to a specific tty.
1083 * We don't put it into the syslog queue right now maybe in the future if
1084 * really needed.
1085 *
1086 * We must still hold the BKL and test the CLOSING flag for the moment.
1087 */
1088
1089 void tty_write_message(struct tty_struct *tty, char *msg)
1090 {
1091 lock_kernel();
1092 if (tty) {
1093 mutex_lock(&tty->atomic_write_lock);
1094 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1095 tty->ops->write(tty, msg, strlen(msg));
1096 tty_write_unlock(tty);
1097 }
1098 unlock_kernel();
1099 return;
1100 }
1101
1102
1103 /**
1104 * tty_write - write method for tty device file
1105 * @file: tty file pointer
1106 * @buf: user data to write
1107 * @count: bytes to write
1108 * @ppos: unused
1109 *
1110 * Write data to a tty device via the line discipline.
1111 *
1112 * Locking:
1113 * Locks the line discipline as required
1114 * Writes to the tty driver are serialized by the atomic_write_lock
1115 * and are then processed in chunks to the device. The line discipline
1116 * write method will not be involked in parallel for each device
1117 * The line discipline write method is called under the big
1118 * kernel lock for historical reasons. New code should not rely on this.
1119 */
1120
1121 static ssize_t tty_write(struct file *file, const char __user *buf,
1122 size_t count, loff_t *ppos)
1123 {
1124 struct tty_struct *tty;
1125 struct inode *inode = file->f_path.dentry->d_inode;
1126 ssize_t ret;
1127 struct tty_ldisc *ld;
1128
1129 tty = (struct tty_struct *)file->private_data;
1130 if (tty_paranoia_check(tty, inode, "tty_write"))
1131 return -EIO;
1132 if (!tty || !tty->ops->write ||
1133 (test_bit(TTY_IO_ERROR, &tty->flags)))
1134 return -EIO;
1135 /* Short term debug to catch buggy drivers */
1136 if (tty->ops->write_room == NULL)
1137 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1138 tty->driver->name);
1139 ld = tty_ldisc_ref_wait(tty);
1140 if (!ld->ops->write)
1141 ret = -EIO;
1142 else
1143 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1144 tty_ldisc_deref(ld);
1145 return ret;
1146 }
1147
1148 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1149 size_t count, loff_t *ppos)
1150 {
1151 struct file *p = NULL;
1152
1153 spin_lock(&redirect_lock);
1154 if (redirect) {
1155 get_file(redirect);
1156 p = redirect;
1157 }
1158 spin_unlock(&redirect_lock);
1159
1160 if (p) {
1161 ssize_t res;
1162 res = vfs_write(p, buf, count, &p->f_pos);
1163 fput(p);
1164 return res;
1165 }
1166 return tty_write(file, buf, count, ppos);
1167 }
1168
1169 static char ptychar[] = "pqrstuvwxyzabcde";
1170
1171 /**
1172 * pty_line_name - generate name for a pty
1173 * @driver: the tty driver in use
1174 * @index: the minor number
1175 * @p: output buffer of at least 6 bytes
1176 *
1177 * Generate a name from a driver reference and write it to the output
1178 * buffer.
1179 *
1180 * Locking: None
1181 */
1182 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1183 {
1184 int i = index + driver->name_base;
1185 /* ->name is initialized to "ttyp", but "tty" is expected */
1186 sprintf(p, "%s%c%x",
1187 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1188 ptychar[i >> 4 & 0xf], i & 0xf);
1189 }
1190
1191 /**
1192 * tty_line_name - generate name for a tty
1193 * @driver: the tty driver in use
1194 * @index: the minor number
1195 * @p: output buffer of at least 7 bytes
1196 *
1197 * Generate a name from a driver reference and write it to the output
1198 * buffer.
1199 *
1200 * Locking: None
1201 */
1202 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1203 {
1204 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1205 }
1206
1207 /**
1208 * tty_driver_lookup_tty() - find an existing tty, if any
1209 * @driver: the driver for the tty
1210 * @idx: the minor number
1211 *
1212 * Return the tty, if found or ERR_PTR() otherwise.
1213 *
1214 * Locking: tty_mutex must be held. If tty is found, the mutex must
1215 * be held until the 'fast-open' is also done. Will change once we
1216 * have refcounting in the driver and per driver locking
1217 */
1218 struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, int idx)
1219 {
1220 struct tty_struct *tty;
1221
1222 if (driver->ops->lookup)
1223 return driver->ops->lookup(driver, idx);
1224
1225 tty = driver->ttys[idx];
1226 return tty;
1227 }
1228
1229 /**
1230 * tty_driver_install_tty() - install a tty entry in the driver
1231 * @driver: the driver for the tty
1232 * @tty: the tty
1233 *
1234 * Install a tty object into the driver tables. The tty->index field
1235 * will be set by the time this is called.
1236 *
1237 * Locking: tty_mutex for now
1238 */
1239 static int tty_driver_install_tty(struct tty_driver *driver,
1240 struct tty_struct *tty)
1241 {
1242 if (driver->ops->install)
1243 return driver->ops->install(driver, tty);
1244 driver->ttys[tty->index] = tty;
1245 return 0;
1246 }
1247
1248 /**
1249 * tty_driver_remove_tty() - remove a tty from the driver tables
1250 * @driver: the driver for the tty
1251 * @idx: the minor number
1252 *
1253 * Remvoe a tty object from the driver tables. The tty->index field
1254 * will be set by the time this is called.
1255 *
1256 * Locking: tty_mutex for now
1257 */
1258 static void tty_driver_remove_tty(struct tty_driver *driver,
1259 struct tty_struct *tty)
1260 {
1261 if (driver->ops->remove)
1262 driver->ops->remove(driver, tty);
1263 else
1264 driver->ttys[tty->index] = NULL;
1265 }
1266
1267 /*
1268 * tty_reopen() - fast re-open of an open tty
1269 * @tty - the tty to open
1270 *
1271 * Return 0 on success, -errno on error.
1272 *
1273 * Locking: tty_mutex must be held from the time the tty was found
1274 * till this open completes.
1275 */
1276 static int tty_reopen(struct tty_struct *tty)
1277 {
1278 struct tty_driver *driver = tty->driver;
1279
1280 if (test_bit(TTY_CLOSING, &tty->flags))
1281 return -EIO;
1282
1283 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1284 driver->subtype == PTY_TYPE_MASTER) {
1285 /*
1286 * special case for PTY masters: only one open permitted,
1287 * and the slave side open count is incremented as well.
1288 */
1289 if (tty->count)
1290 return -EIO;
1291
1292 tty->link->count++;
1293 }
1294 tty->count++;
1295 tty->driver = driver; /* N.B. why do this every time?? */
1296
1297 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1298
1299 return 0;
1300 }
1301
1302 /**
1303 * tty_init_dev - initialise a tty device
1304 * @driver: tty driver we are opening a device on
1305 * @idx: device index
1306 * @ret_tty: returned tty structure
1307 * @first_ok: ok to open a new device (used by ptmx)
1308 *
1309 * Prepare a tty device. This may not be a "new" clean device but
1310 * could also be an active device. The pty drivers require special
1311 * handling because of this.
1312 *
1313 * Locking:
1314 * The function is called under the tty_mutex, which
1315 * protects us from the tty struct or driver itself going away.
1316 *
1317 * On exit the tty device has the line discipline attached and
1318 * a reference count of 1. If a pair was created for pty/tty use
1319 * and the other was a pty master then it too has a reference count of 1.
1320 *
1321 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1322 * failed open. The new code protects the open with a mutex, so it's
1323 * really quite straightforward. The mutex locking can probably be
1324 * relaxed for the (most common) case of reopening a tty.
1325 */
1326
1327 int tty_init_dev(struct tty_driver *driver, int idx,
1328 struct tty_struct **ret_tty, int first_ok)
1329 {
1330 struct tty_struct *tty, *o_tty;
1331 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1332 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1333 int retval = 0;
1334
1335 /* check whether we're reopening an existing tty */
1336 tty = tty_driver_lookup_tty(driver, idx);
1337 if (IS_ERR(tty)) {
1338 retval = PTR_ERR(tty);
1339 goto end_init;
1340 }
1341
1342 if (tty) {
1343 retval = tty_reopen(tty);
1344 if (retval)
1345 return retval;
1346 *ret_tty = tty;
1347 return 0;
1348 }
1349
1350 /* Check if pty master is being opened multiple times */
1351 if (driver->subtype == PTY_TYPE_MASTER &&
1352 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1353 retval = -EIO;
1354 goto end_init;
1355 }
1356 /*
1357 * First time open is complex, especially for PTY devices.
1358 * This code guarantees that either everything succeeds and the
1359 * TTY is ready for operation, or else the table slots are vacated
1360 * and the allocated memory released. (Except that the termios
1361 * and locked termios may be retained.)
1362 */
1363
1364 if (!try_module_get(driver->owner)) {
1365 retval = -ENODEV;
1366 goto end_init;
1367 }
1368
1369 o_tty = NULL;
1370 tp = o_tp = NULL;
1371 ltp = o_ltp = NULL;
1372
1373 tty = alloc_tty_struct();
1374 if (!tty)
1375 goto fail_no_mem;
1376 initialize_tty_struct(tty);
1377 tty->driver = driver;
1378 tty->ops = driver->ops;
1379 tty->index = idx;
1380 tty_line_name(driver, idx, tty->name);
1381
1382 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1383 tp_loc = &tty->termios;
1384 ltp_loc = &tty->termios_locked;
1385 } else {
1386 tp_loc = &driver->termios[idx];
1387 ltp_loc = &driver->termios_locked[idx];
1388 }
1389
1390 if (!*tp_loc) {
1391 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1392 if (!tp)
1393 goto free_mem_out;
1394 *tp = driver->init_termios;
1395 }
1396
1397 if (!*ltp_loc) {
1398 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1399 if (!ltp)
1400 goto free_mem_out;
1401 }
1402
1403 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1404 o_tty = alloc_tty_struct();
1405 if (!o_tty)
1406 goto free_mem_out;
1407 if (!try_module_get(driver->other->owner)) {
1408 /* This cannot in fact currently happen */
1409 free_tty_struct(o_tty);
1410 o_tty = NULL;
1411 goto free_mem_out;
1412 }
1413 initialize_tty_struct(o_tty);
1414 o_tty->driver = driver->other;
1415 o_tty->ops = driver->ops;
1416 o_tty->index = idx;
1417 tty_line_name(driver->other, idx, o_tty->name);
1418
1419 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1420 o_tp_loc = &o_tty->termios;
1421 o_ltp_loc = &o_tty->termios_locked;
1422 } else {
1423 o_tp_loc = &driver->other->termios[idx];
1424 o_ltp_loc = &driver->other->termios_locked[idx];
1425 }
1426
1427 if (!*o_tp_loc) {
1428 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1429 if (!o_tp)
1430 goto free_mem_out;
1431 *o_tp = driver->other->init_termios;
1432 }
1433
1434 if (!*o_ltp_loc) {
1435 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1436 if (!o_ltp)
1437 goto free_mem_out;
1438 }
1439
1440 /*
1441 * Everything allocated ... set up the o_tty structure.
1442 */
1443 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1444 driver->other->ttys[idx] = o_tty;
1445 if (!*o_tp_loc)
1446 *o_tp_loc = o_tp;
1447 if (!*o_ltp_loc)
1448 *o_ltp_loc = o_ltp;
1449 o_tty->termios = *o_tp_loc;
1450 o_tty->termios_locked = *o_ltp_loc;
1451 tty_driver_kref_get(driver->other);
1452 if (driver->subtype == PTY_TYPE_MASTER)
1453 o_tty->count++;
1454
1455 /* Establish the links in both directions */
1456 tty->link = o_tty;
1457 o_tty->link = tty;
1458 }
1459
1460 /*
1461 * All structures have been allocated, so now we install them.
1462 * Failures after this point use release_tty to clean up, so
1463 * there's no need to null out the local pointers.
1464 */
1465
1466 if (!*tp_loc)
1467 *tp_loc = tp;
1468 if (!*ltp_loc)
1469 *ltp_loc = ltp;
1470 tty->termios = *tp_loc;
1471 tty->termios_locked = *ltp_loc;
1472 /* Compatibility until drivers always set this */
1473 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1474 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1475 tty_driver_kref_get(driver);
1476 tty->count++;
1477
1478 if (tty_driver_install_tty(driver, tty) < 0)
1479 goto release_mem_out;
1480
1481 /*
1482 * Structures all installed ... call the ldisc open routines.
1483 * If we fail here just call release_tty to clean up. No need
1484 * to decrement the use counts, as release_tty doesn't care.
1485 */
1486
1487 retval = tty_ldisc_setup(tty, o_tty);
1488
1489 if (retval)
1490 goto release_mem_out;
1491
1492 *ret_tty = tty;
1493 /* All paths come through here to release the mutex */
1494 end_init:
1495 return retval;
1496
1497 /* Release locally allocated memory ... nothing placed in slots */
1498 free_mem_out:
1499 kfree(o_tp);
1500 if (o_tty) {
1501 module_put(o_tty->driver->owner);
1502 free_tty_struct(o_tty);
1503 }
1504 kfree(ltp);
1505 kfree(tp);
1506 free_tty_struct(tty);
1507
1508 fail_no_mem:
1509 module_put(driver->owner);
1510 retval = -ENOMEM;
1511 goto end_init;
1512
1513 /* call the tty release_tty routine to clean out this slot */
1514 release_mem_out:
1515 if (printk_ratelimit())
1516 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1517 "clearing slot %d\n", idx);
1518 release_tty(tty, idx);
1519 goto end_init;
1520 }
1521
1522 void tty_free_termios(struct tty_struct *tty)
1523 {
1524 struct ktermios *tp;
1525 int idx = tty->index;
1526 /* Kill this flag and push into drivers for locking etc */
1527 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1528 /* FIXME: Locking on ->termios array */
1529 tp = tty->termios;
1530 tty->driver->termios[idx] = NULL;
1531 kfree(tp);
1532
1533 tp = tty->termios_locked;
1534 tty->driver->termios_locked[idx] = NULL;
1535 kfree(tp);
1536 }
1537 }
1538 EXPORT_SYMBOL(tty_free_termios);
1539
1540 void tty_shutdown(struct tty_struct *tty)
1541 {
1542 tty_driver_remove_tty(tty->driver, tty);
1543 tty_free_termios(tty);
1544 }
1545 EXPORT_SYMBOL(tty_shutdown);
1546
1547 /**
1548 * release_one_tty - release tty structure memory
1549 * @kref: kref of tty we are obliterating
1550 *
1551 * Releases memory associated with a tty structure, and clears out the
1552 * driver table slots. This function is called when a device is no longer
1553 * in use. It also gets called when setup of a device fails.
1554 *
1555 * Locking:
1556 * tty_mutex - sometimes only
1557 * takes the file list lock internally when working on the list
1558 * of ttys that the driver keeps.
1559 */
1560 static void release_one_tty(struct kref *kref)
1561 {
1562 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1563 struct tty_driver *driver = tty->driver;
1564
1565 if (tty->ops->shutdown)
1566 tty->ops->shutdown(tty);
1567 else
1568 tty_shutdown(tty);
1569 tty->magic = 0;
1570 tty_driver_kref_put(driver);
1571 module_put(driver->owner);
1572
1573 file_list_lock();
1574 list_del_init(&tty->tty_files);
1575 file_list_unlock();
1576
1577 free_tty_struct(tty);
1578 }
1579
1580 /**
1581 * tty_kref_put - release a tty kref
1582 * @tty: tty device
1583 *
1584 * Release a reference to a tty device and if need be let the kref
1585 * layer destruct the object for us
1586 */
1587
1588 void tty_kref_put(struct tty_struct *tty)
1589 {
1590 if (tty)
1591 kref_put(&tty->kref, release_one_tty);
1592 }
1593 EXPORT_SYMBOL(tty_kref_put);
1594
1595 /**
1596 * release_tty - release tty structure memory
1597 *
1598 * Release both @tty and a possible linked partner (think pty pair),
1599 * and decrement the refcount of the backing module.
1600 *
1601 * Locking:
1602 * tty_mutex - sometimes only
1603 * takes the file list lock internally when working on the list
1604 * of ttys that the driver keeps.
1605 * FIXME: should we require tty_mutex is held here ??
1606 *
1607 */
1608 static void release_tty(struct tty_struct *tty, int idx)
1609 {
1610 /* This should always be true but check for the moment */
1611 WARN_ON(tty->index != idx);
1612
1613 if (tty->link)
1614 tty_kref_put(tty->link);
1615 tty_kref_put(tty);
1616 }
1617
1618 /*
1619 * Even releasing the tty structures is a tricky business.. We have
1620 * to be very careful that the structures are all released at the
1621 * same time, as interrupts might otherwise get the wrong pointers.
1622 *
1623 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1624 * lead to double frees or releasing memory still in use.
1625 */
1626 void tty_release_dev(struct file *filp)
1627 {
1628 struct tty_struct *tty, *o_tty;
1629 int pty_master, tty_closing, o_tty_closing, do_sleep;
1630 int devpts;
1631 int idx;
1632 char buf[64];
1633
1634 tty = (struct tty_struct *)filp->private_data;
1635 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1636 "tty_release_dev"))
1637 return;
1638
1639 check_tty_count(tty, "tty_release_dev");
1640
1641 tty_fasync(-1, filp, 0);
1642
1643 idx = tty->index;
1644 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1645 tty->driver->subtype == PTY_TYPE_MASTER);
1646 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1647 o_tty = tty->link;
1648
1649 #ifdef TTY_PARANOIA_CHECK
1650 if (idx < 0 || idx >= tty->driver->num) {
1651 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1652 "free (%s)\n", tty->name);
1653 return;
1654 }
1655 if (!devpts) {
1656 if (tty != tty->driver->ttys[idx]) {
1657 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1658 "for (%s)\n", idx, tty->name);
1659 return;
1660 }
1661 if (tty->termios != tty->driver->termios[idx]) {
1662 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1663 "for (%s)\n",
1664 idx, tty->name);
1665 return;
1666 }
1667 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1668 printk(KERN_DEBUG "tty_release_dev: driver.termios_locked[%d] not "
1669 "termios_locked for (%s)\n",
1670 idx, tty->name);
1671 return;
1672 }
1673 }
1674 #endif
1675
1676 #ifdef TTY_DEBUG_HANGUP
1677 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1678 tty_name(tty, buf), tty->count);
1679 #endif
1680
1681 #ifdef TTY_PARANOIA_CHECK
1682 if (tty->driver->other &&
1683 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1684 if (o_tty != tty->driver->other->ttys[idx]) {
1685 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1686 "not o_tty for (%s)\n",
1687 idx, tty->name);
1688 return;
1689 }
1690 if (o_tty->termios != tty->driver->other->termios[idx]) {
1691 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1692 "not o_termios for (%s)\n",
1693 idx, tty->name);
1694 return;
1695 }
1696 if (o_tty->termios_locked !=
1697 tty->driver->other->termios_locked[idx]) {
1698 printk(KERN_DEBUG "tty_release_dev: other->termios_locked["
1699 "%d] not o_termios_locked for (%s)\n",
1700 idx, tty->name);
1701 return;
1702 }
1703 if (o_tty->link != tty) {
1704 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1705 return;
1706 }
1707 }
1708 #endif
1709 if (tty->ops->close)
1710 tty->ops->close(tty, filp);
1711
1712 /*
1713 * Sanity check: if tty->count is going to zero, there shouldn't be
1714 * any waiters on tty->read_wait or tty->write_wait. We test the
1715 * wait queues and kick everyone out _before_ actually starting to
1716 * close. This ensures that we won't block while releasing the tty
1717 * structure.
1718 *
1719 * The test for the o_tty closing is necessary, since the master and
1720 * slave sides may close in any order. If the slave side closes out
1721 * first, its count will be one, since the master side holds an open.
1722 * Thus this test wouldn't be triggered at the time the slave closes,
1723 * so we do it now.
1724 *
1725 * Note that it's possible for the tty to be opened again while we're
1726 * flushing out waiters. By recalculating the closing flags before
1727 * each iteration we avoid any problems.
1728 */
1729 while (1) {
1730 /* Guard against races with tty->count changes elsewhere and
1731 opens on /dev/tty */
1732
1733 mutex_lock(&tty_mutex);
1734 tty_closing = tty->count <= 1;
1735 o_tty_closing = o_tty &&
1736 (o_tty->count <= (pty_master ? 1 : 0));
1737 do_sleep = 0;
1738
1739 if (tty_closing) {
1740 if (waitqueue_active(&tty->read_wait)) {
1741 wake_up(&tty->read_wait);
1742 do_sleep++;
1743 }
1744 if (waitqueue_active(&tty->write_wait)) {
1745 wake_up(&tty->write_wait);
1746 do_sleep++;
1747 }
1748 }
1749 if (o_tty_closing) {
1750 if (waitqueue_active(&o_tty->read_wait)) {
1751 wake_up(&o_tty->read_wait);
1752 do_sleep++;
1753 }
1754 if (waitqueue_active(&o_tty->write_wait)) {
1755 wake_up(&o_tty->write_wait);
1756 do_sleep++;
1757 }
1758 }
1759 if (!do_sleep)
1760 break;
1761
1762 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1763 "active!\n", tty_name(tty, buf));
1764 mutex_unlock(&tty_mutex);
1765 schedule();
1766 }
1767
1768 /*
1769 * The closing flags are now consistent with the open counts on
1770 * both sides, and we've completed the last operation that could
1771 * block, so it's safe to proceed with closing.
1772 */
1773 if (pty_master) {
1774 if (--o_tty->count < 0) {
1775 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1776 "(%d) for %s\n",
1777 o_tty->count, tty_name(o_tty, buf));
1778 o_tty->count = 0;
1779 }
1780 }
1781 if (--tty->count < 0) {
1782 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1783 tty->count, tty_name(tty, buf));
1784 tty->count = 0;
1785 }
1786
1787 /*
1788 * We've decremented tty->count, so we need to remove this file
1789 * descriptor off the tty->tty_files list; this serves two
1790 * purposes:
1791 * - check_tty_count sees the correct number of file descriptors
1792 * associated with this tty.
1793 * - do_tty_hangup no longer sees this file descriptor as
1794 * something that needs to be handled for hangups.
1795 */
1796 file_kill(filp);
1797 filp->private_data = NULL;
1798
1799 /*
1800 * Perform some housekeeping before deciding whether to return.
1801 *
1802 * Set the TTY_CLOSING flag if this was the last open. In the
1803 * case of a pty we may have to wait around for the other side
1804 * to close, and TTY_CLOSING makes sure we can't be reopened.
1805 */
1806 if (tty_closing)
1807 set_bit(TTY_CLOSING, &tty->flags);
1808 if (o_tty_closing)
1809 set_bit(TTY_CLOSING, &o_tty->flags);
1810
1811 /*
1812 * If _either_ side is closing, make sure there aren't any
1813 * processes that still think tty or o_tty is their controlling
1814 * tty.
1815 */
1816 if (tty_closing || o_tty_closing) {
1817 read_lock(&tasklist_lock);
1818 session_clear_tty(tty->session);
1819 if (o_tty)
1820 session_clear_tty(o_tty->session);
1821 read_unlock(&tasklist_lock);
1822 }
1823
1824 mutex_unlock(&tty_mutex);
1825
1826 /* check whether both sides are closing ... */
1827 if (!tty_closing || (o_tty && !o_tty_closing))
1828 return;
1829
1830 #ifdef TTY_DEBUG_HANGUP
1831 printk(KERN_DEBUG "freeing tty structure...");
1832 #endif
1833 /*
1834 * Ask the line discipline code to release its structures
1835 */
1836 tty_ldisc_release(tty, o_tty);
1837 /*
1838 * The release_tty function takes care of the details of clearing
1839 * the slots and preserving the termios structure.
1840 */
1841 release_tty(tty, idx);
1842
1843 /* Make this pty number available for reallocation */
1844 if (devpts)
1845 devpts_kill_index(idx);
1846 }
1847
1848 /**
1849 * __tty_open - open a tty device
1850 * @inode: inode of device file
1851 * @filp: file pointer to tty
1852 *
1853 * tty_open and tty_release keep up the tty count that contains the
1854 * number of opens done on a tty. We cannot use the inode-count, as
1855 * different inodes might point to the same tty.
1856 *
1857 * Open-counting is needed for pty masters, as well as for keeping
1858 * track of serial lines: DTR is dropped when the last close happens.
1859 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1860 *
1861 * The termios state of a pty is reset on first open so that
1862 * settings don't persist across reuse.
1863 *
1864 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1865 * tty->count should protect the rest.
1866 * ->siglock protects ->signal/->sighand
1867 */
1868
1869 static int __tty_open(struct inode *inode, struct file *filp)
1870 {
1871 struct tty_struct *tty;
1872 int noctty, retval;
1873 struct tty_driver *driver;
1874 int index;
1875 dev_t device = inode->i_rdev;
1876 unsigned short saved_flags = filp->f_flags;
1877
1878 nonseekable_open(inode, filp);
1879
1880 retry_open:
1881 noctty = filp->f_flags & O_NOCTTY;
1882 index = -1;
1883 retval = 0;
1884
1885 mutex_lock(&tty_mutex);
1886
1887 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1888 tty = get_current_tty();
1889 if (!tty) {
1890 mutex_unlock(&tty_mutex);
1891 return -ENXIO;
1892 }
1893 driver = tty_driver_kref_get(tty->driver);
1894 index = tty->index;
1895 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1896 /* noctty = 1; */
1897 /* FIXME: Should we take a driver reference ? */
1898 tty_kref_put(tty);
1899 goto got_driver;
1900 }
1901 #ifdef CONFIG_VT
1902 if (device == MKDEV(TTY_MAJOR, 0)) {
1903 extern struct tty_driver *console_driver;
1904 driver = tty_driver_kref_get(console_driver);
1905 index = fg_console;
1906 noctty = 1;
1907 goto got_driver;
1908 }
1909 #endif
1910 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1911 driver = tty_driver_kref_get(console_device(&index));
1912 if (driver) {
1913 /* Don't let /dev/console block */
1914 filp->f_flags |= O_NONBLOCK;
1915 noctty = 1;
1916 goto got_driver;
1917 }
1918 mutex_unlock(&tty_mutex);
1919 return -ENODEV;
1920 }
1921
1922 driver = get_tty_driver(device, &index);
1923 if (!driver) {
1924 mutex_unlock(&tty_mutex);
1925 return -ENODEV;
1926 }
1927 got_driver:
1928 retval = tty_init_dev(driver, index, &tty, 0);
1929 mutex_unlock(&tty_mutex);
1930 tty_driver_kref_put(driver);
1931 if (retval)
1932 return retval;
1933
1934 filp->private_data = tty;
1935 file_move(filp, &tty->tty_files);
1936 check_tty_count(tty, "tty_open");
1937 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1938 tty->driver->subtype == PTY_TYPE_MASTER)
1939 noctty = 1;
1940 #ifdef TTY_DEBUG_HANGUP
1941 printk(KERN_DEBUG "opening %s...", tty->name);
1942 #endif
1943 if (!retval) {
1944 if (tty->ops->open)
1945 retval = tty->ops->open(tty, filp);
1946 else
1947 retval = -ENODEV;
1948 }
1949 filp->f_flags = saved_flags;
1950
1951 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1952 !capable(CAP_SYS_ADMIN))
1953 retval = -EBUSY;
1954
1955 if (retval) {
1956 #ifdef TTY_DEBUG_HANGUP
1957 printk(KERN_DEBUG "error %d in opening %s...", retval,
1958 tty->name);
1959 #endif
1960 tty_release_dev(filp);
1961 if (retval != -ERESTARTSYS)
1962 return retval;
1963 if (signal_pending(current))
1964 return retval;
1965 schedule();
1966 /*
1967 * Need to reset f_op in case a hangup happened.
1968 */
1969 if (filp->f_op == &hung_up_tty_fops)
1970 filp->f_op = &tty_fops;
1971 goto retry_open;
1972 }
1973
1974 mutex_lock(&tty_mutex);
1975 spin_lock_irq(&current->sighand->siglock);
1976 if (!noctty &&
1977 current->signal->leader &&
1978 !current->signal->tty &&
1979 tty->session == NULL)
1980 __proc_set_tty(current, tty);
1981 spin_unlock_irq(&current->sighand->siglock);
1982 mutex_unlock(&tty_mutex);
1983 return 0;
1984 }
1985
1986 /* BKL pushdown: scary code avoidance wrapper */
1987 static int tty_open(struct inode *inode, struct file *filp)
1988 {
1989 int ret;
1990
1991 lock_kernel();
1992 ret = __tty_open(inode, filp);
1993 unlock_kernel();
1994 return ret;
1995 }
1996
1997
1998
1999
2000 /**
2001 * tty_release - vfs callback for close
2002 * @inode: inode of tty
2003 * @filp: file pointer for handle to tty
2004 *
2005 * Called the last time each file handle is closed that references
2006 * this tty. There may however be several such references.
2007 *
2008 * Locking:
2009 * Takes bkl. See tty_release_dev
2010 */
2011
2012 static int tty_release(struct inode *inode, struct file *filp)
2013 {
2014 lock_kernel();
2015 tty_release_dev(filp);
2016 unlock_kernel();
2017 return 0;
2018 }
2019
2020 /**
2021 * tty_poll - check tty status
2022 * @filp: file being polled
2023 * @wait: poll wait structures to update
2024 *
2025 * Call the line discipline polling method to obtain the poll
2026 * status of the device.
2027 *
2028 * Locking: locks called line discipline but ldisc poll method
2029 * may be re-entered freely by other callers.
2030 */
2031
2032 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2033 {
2034 struct tty_struct *tty;
2035 struct tty_ldisc *ld;
2036 int ret = 0;
2037
2038 tty = (struct tty_struct *)filp->private_data;
2039 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2040 return 0;
2041
2042 ld = tty_ldisc_ref_wait(tty);
2043 if (ld->ops->poll)
2044 ret = (ld->ops->poll)(tty, filp, wait);
2045 tty_ldisc_deref(ld);
2046 return ret;
2047 }
2048
2049 static int tty_fasync(int fd, struct file *filp, int on)
2050 {
2051 struct tty_struct *tty;
2052 unsigned long flags;
2053 int retval = 0;
2054
2055 lock_kernel();
2056 tty = (struct tty_struct *)filp->private_data;
2057 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2058 goto out;
2059
2060 retval = fasync_helper(fd, filp, on, &tty->fasync);
2061 if (retval <= 0)
2062 goto out;
2063
2064 if (on) {
2065 enum pid_type type;
2066 struct pid *pid;
2067 if (!waitqueue_active(&tty->read_wait))
2068 tty->minimum_to_wake = 1;
2069 spin_lock_irqsave(&tty->ctrl_lock, flags);
2070 if (tty->pgrp) {
2071 pid = tty->pgrp;
2072 type = PIDTYPE_PGID;
2073 } else {
2074 pid = task_pid(current);
2075 type = PIDTYPE_PID;
2076 }
2077 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2078 retval = __f_setown(filp, pid, type, 0);
2079 if (retval)
2080 goto out;
2081 } else {
2082 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2083 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2084 }
2085 retval = 0;
2086 out:
2087 unlock_kernel();
2088 return retval;
2089 }
2090
2091 /**
2092 * tiocsti - fake input character
2093 * @tty: tty to fake input into
2094 * @p: pointer to character
2095 *
2096 * Fake input to a tty device. Does the necessary locking and
2097 * input management.
2098 *
2099 * FIXME: does not honour flow control ??
2100 *
2101 * Locking:
2102 * Called functions take tty_ldisc_lock
2103 * current->signal->tty check is safe without locks
2104 *
2105 * FIXME: may race normal receive processing
2106 */
2107
2108 static int tiocsti(struct tty_struct *tty, char __user *p)
2109 {
2110 char ch, mbz = 0;
2111 struct tty_ldisc *ld;
2112
2113 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2114 return -EPERM;
2115 if (get_user(ch, p))
2116 return -EFAULT;
2117 ld = tty_ldisc_ref_wait(tty);
2118 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2119 tty_ldisc_deref(ld);
2120 return 0;
2121 }
2122
2123 /**
2124 * tiocgwinsz - implement window query ioctl
2125 * @tty; tty
2126 * @arg: user buffer for result
2127 *
2128 * Copies the kernel idea of the window size into the user buffer.
2129 *
2130 * Locking: tty->termios_mutex is taken to ensure the winsize data
2131 * is consistent.
2132 */
2133
2134 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2135 {
2136 int err;
2137
2138 mutex_lock(&tty->termios_mutex);
2139 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2140 mutex_unlock(&tty->termios_mutex);
2141
2142 return err ? -EFAULT: 0;
2143 }
2144
2145 /**
2146 * tty_do_resize - resize event
2147 * @tty: tty being resized
2148 * @real_tty: real tty (not the same as tty if using a pty/tty pair)
2149 * @rows: rows (character)
2150 * @cols: cols (character)
2151 *
2152 * Update the termios variables and send the neccessary signals to
2153 * peform a terminal resize correctly
2154 */
2155
2156 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2157 struct winsize *ws)
2158 {
2159 struct pid *pgrp, *rpgrp;
2160 unsigned long flags;
2161
2162 /* For a PTY we need to lock the tty side */
2163 mutex_lock(&real_tty->termios_mutex);
2164 if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2165 goto done;
2166 /* Get the PID values and reference them so we can
2167 avoid holding the tty ctrl lock while sending signals */
2168 spin_lock_irqsave(&tty->ctrl_lock, flags);
2169 pgrp = get_pid(tty->pgrp);
2170 rpgrp = get_pid(real_tty->pgrp);
2171 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2172
2173 if (pgrp)
2174 kill_pgrp(pgrp, SIGWINCH, 1);
2175 if (rpgrp != pgrp && rpgrp)
2176 kill_pgrp(rpgrp, SIGWINCH, 1);
2177
2178 put_pid(pgrp);
2179 put_pid(rpgrp);
2180
2181 tty->winsize = *ws;
2182 real_tty->winsize = *ws;
2183 done:
2184 mutex_unlock(&real_tty->termios_mutex);
2185 return 0;
2186 }
2187
2188 /**
2189 * tiocswinsz - implement window size set ioctl
2190 * @tty; tty
2191 * @arg: user buffer for result
2192 *
2193 * Copies the user idea of the window size to the kernel. Traditionally
2194 * this is just advisory information but for the Linux console it
2195 * actually has driver level meaning and triggers a VC resize.
2196 *
2197 * Locking:
2198 * Driver dependant. The default do_resize method takes the
2199 * tty termios mutex and ctrl_lock. The console takes its own lock
2200 * then calls into the default method.
2201 */
2202
2203 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2204 struct winsize __user *arg)
2205 {
2206 struct winsize tmp_ws;
2207 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2208 return -EFAULT;
2209
2210 if (tty->ops->resize)
2211 return tty->ops->resize(tty, real_tty, &tmp_ws);
2212 else
2213 return tty_do_resize(tty, real_tty, &tmp_ws);
2214 }
2215
2216 /**
2217 * tioccons - allow admin to move logical console
2218 * @file: the file to become console
2219 *
2220 * Allow the adminstrator to move the redirected console device
2221 *
2222 * Locking: uses redirect_lock to guard the redirect information
2223 */
2224
2225 static int tioccons(struct file *file)
2226 {
2227 if (!capable(CAP_SYS_ADMIN))
2228 return -EPERM;
2229 if (file->f_op->write == redirected_tty_write) {
2230 struct file *f;
2231 spin_lock(&redirect_lock);
2232 f = redirect;
2233 redirect = NULL;
2234 spin_unlock(&redirect_lock);
2235 if (f)
2236 fput(f);
2237 return 0;
2238 }
2239 spin_lock(&redirect_lock);
2240 if (redirect) {
2241 spin_unlock(&redirect_lock);
2242 return -EBUSY;
2243 }
2244 get_file(file);
2245 redirect = file;
2246 spin_unlock(&redirect_lock);
2247 return 0;
2248 }
2249
2250 /**
2251 * fionbio - non blocking ioctl
2252 * @file: file to set blocking value
2253 * @p: user parameter
2254 *
2255 * Historical tty interfaces had a blocking control ioctl before
2256 * the generic functionality existed. This piece of history is preserved
2257 * in the expected tty API of posix OS's.
2258 *
2259 * Locking: none, the open fle handle ensures it won't go away.
2260 */
2261
2262 static int fionbio(struct file *file, int __user *p)
2263 {
2264 int nonblock;
2265
2266 if (get_user(nonblock, p))
2267 return -EFAULT;
2268
2269 /* file->f_flags is still BKL protected in the fs layer - vomit */
2270 lock_kernel();
2271 if (nonblock)
2272 file->f_flags |= O_NONBLOCK;
2273 else
2274 file->f_flags &= ~O_NONBLOCK;
2275 unlock_kernel();
2276 return 0;
2277 }
2278
2279 /**
2280 * tiocsctty - set controlling tty
2281 * @tty: tty structure
2282 * @arg: user argument
2283 *
2284 * This ioctl is used to manage job control. It permits a session
2285 * leader to set this tty as the controlling tty for the session.
2286 *
2287 * Locking:
2288 * Takes tty_mutex() to protect tty instance
2289 * Takes tasklist_lock internally to walk sessions
2290 * Takes ->siglock() when updating signal->tty
2291 */
2292
2293 static int tiocsctty(struct tty_struct *tty, int arg)
2294 {
2295 int ret = 0;
2296 if (current->signal->leader && (task_session(current) == tty->session))
2297 return ret;
2298
2299 mutex_lock(&tty_mutex);
2300 /*
2301 * The process must be a session leader and
2302 * not have a controlling tty already.
2303 */
2304 if (!current->signal->leader || current->signal->tty) {
2305 ret = -EPERM;
2306 goto unlock;
2307 }
2308
2309 if (tty->session) {
2310 /*
2311 * This tty is already the controlling
2312 * tty for another session group!
2313 */
2314 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2315 /*
2316 * Steal it away
2317 */
2318 read_lock(&tasklist_lock);
2319 session_clear_tty(tty->session);
2320 read_unlock(&tasklist_lock);
2321 } else {
2322 ret = -EPERM;
2323 goto unlock;
2324 }
2325 }
2326 proc_set_tty(current, tty);
2327 unlock:
2328 mutex_unlock(&tty_mutex);
2329 return ret;
2330 }
2331
2332 /**
2333 * tty_get_pgrp - return a ref counted pgrp pid
2334 * @tty: tty to read
2335 *
2336 * Returns a refcounted instance of the pid struct for the process
2337 * group controlling the tty.
2338 */
2339
2340 struct pid *tty_get_pgrp(struct tty_struct *tty)
2341 {
2342 unsigned long flags;
2343 struct pid *pgrp;
2344
2345 spin_lock_irqsave(&tty->ctrl_lock, flags);
2346 pgrp = get_pid(tty->pgrp);
2347 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2348
2349 return pgrp;
2350 }
2351 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2352
2353 /**
2354 * tiocgpgrp - get process group
2355 * @tty: tty passed by user
2356 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2357 * @p: returned pid
2358 *
2359 * Obtain the process group of the tty. If there is no process group
2360 * return an error.
2361 *
2362 * Locking: none. Reference to current->signal->tty is safe.
2363 */
2364
2365 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2366 {
2367 struct pid *pid;
2368 int ret;
2369 /*
2370 * (tty == real_tty) is a cheap way of
2371 * testing if the tty is NOT a master pty.
2372 */
2373 if (tty == real_tty && current->signal->tty != real_tty)
2374 return -ENOTTY;
2375 pid = tty_get_pgrp(real_tty);
2376 ret = put_user(pid_vnr(pid), p);
2377 put_pid(pid);
2378 return ret;
2379 }
2380
2381 /**
2382 * tiocspgrp - attempt to set process group
2383 * @tty: tty passed by user
2384 * @real_tty: tty side device matching tty passed by user
2385 * @p: pid pointer
2386 *
2387 * Set the process group of the tty to the session passed. Only
2388 * permitted where the tty session is our session.
2389 *
2390 * Locking: RCU, ctrl lock
2391 */
2392
2393 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2394 {
2395 struct pid *pgrp;
2396 pid_t pgrp_nr;
2397 int retval = tty_check_change(real_tty);
2398 unsigned long flags;
2399
2400 if (retval == -EIO)
2401 return -ENOTTY;
2402 if (retval)
2403 return retval;
2404 if (!current->signal->tty ||
2405 (current->signal->tty != real_tty) ||
2406 (real_tty->session != task_session(current)))
2407 return -ENOTTY;
2408 if (get_user(pgrp_nr, p))
2409 return -EFAULT;
2410 if (pgrp_nr < 0)
2411 return -EINVAL;
2412 rcu_read_lock();
2413 pgrp = find_vpid(pgrp_nr);
2414 retval = -ESRCH;
2415 if (!pgrp)
2416 goto out_unlock;
2417 retval = -EPERM;
2418 if (session_of_pgrp(pgrp) != task_session(current))
2419 goto out_unlock;
2420 retval = 0;
2421 spin_lock_irqsave(&tty->ctrl_lock, flags);
2422 put_pid(real_tty->pgrp);
2423 real_tty->pgrp = get_pid(pgrp);
2424 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2425 out_unlock:
2426 rcu_read_unlock();
2427 return retval;
2428 }
2429
2430 /**
2431 * tiocgsid - get session id
2432 * @tty: tty passed by user
2433 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2434 * @p: pointer to returned session id
2435 *
2436 * Obtain the session id of the tty. If there is no session
2437 * return an error.
2438 *
2439 * Locking: none. Reference to current->signal->tty is safe.
2440 */
2441
2442 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2443 {
2444 /*
2445 * (tty == real_tty) is a cheap way of
2446 * testing if the tty is NOT a master pty.
2447 */
2448 if (tty == real_tty && current->signal->tty != real_tty)
2449 return -ENOTTY;
2450 if (!real_tty->session)
2451 return -ENOTTY;
2452 return put_user(pid_vnr(real_tty->session), p);
2453 }
2454
2455 /**
2456 * tiocsetd - set line discipline
2457 * @tty: tty device
2458 * @p: pointer to user data
2459 *
2460 * Set the line discipline according to user request.
2461 *
2462 * Locking: see tty_set_ldisc, this function is just a helper
2463 */
2464
2465 static int tiocsetd(struct tty_struct *tty, int __user *p)
2466 {
2467 int ldisc;
2468 int ret;
2469
2470 if (get_user(ldisc, p))
2471 return -EFAULT;
2472
2473 lock_kernel();
2474 ret = tty_set_ldisc(tty, ldisc);
2475 unlock_kernel();
2476
2477 return ret;
2478 }
2479
2480 /**
2481 * send_break - performed time break
2482 * @tty: device to break on
2483 * @duration: timeout in mS
2484 *
2485 * Perform a timed break on hardware that lacks its own driver level
2486 * timed break functionality.
2487 *
2488 * Locking:
2489 * atomic_write_lock serializes
2490 *
2491 */
2492
2493 static int send_break(struct tty_struct *tty, unsigned int duration)
2494 {
2495 int retval;
2496
2497 if (tty->ops->break_ctl == NULL)
2498 return 0;
2499
2500 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2501 retval = tty->ops->break_ctl(tty, duration);
2502 else {
2503 /* Do the work ourselves */
2504 if (tty_write_lock(tty, 0) < 0)
2505 return -EINTR;
2506 retval = tty->ops->break_ctl(tty, -1);
2507 if (retval)
2508 goto out;
2509 if (!signal_pending(current))
2510 msleep_interruptible(duration);
2511 retval = tty->ops->break_ctl(tty, 0);
2512 out:
2513 tty_write_unlock(tty);
2514 if (signal_pending(current))
2515 retval = -EINTR;
2516 }
2517 return retval;
2518 }
2519
2520 /**
2521 * tty_tiocmget - get modem status
2522 * @tty: tty device
2523 * @file: user file pointer
2524 * @p: pointer to result
2525 *
2526 * Obtain the modem status bits from the tty driver if the feature
2527 * is supported. Return -EINVAL if it is not available.
2528 *
2529 * Locking: none (up to the driver)
2530 */
2531
2532 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2533 {
2534 int retval = -EINVAL;
2535
2536 if (tty->ops->tiocmget) {
2537 retval = tty->ops->tiocmget(tty, file);
2538
2539 if (retval >= 0)
2540 retval = put_user(retval, p);
2541 }
2542 return retval;
2543 }
2544
2545 /**
2546 * tty_tiocmset - set modem status
2547 * @tty: tty device
2548 * @file: user file pointer
2549 * @cmd: command - clear bits, set bits or set all
2550 * @p: pointer to desired bits
2551 *
2552 * Set the modem status bits from the tty driver if the feature
2553 * is supported. Return -EINVAL if it is not available.
2554 *
2555 * Locking: none (up to the driver)
2556 */
2557
2558 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2559 unsigned __user *p)
2560 {
2561 int retval;
2562 unsigned int set, clear, val;
2563
2564 if (tty->ops->tiocmset == NULL)
2565 return -EINVAL;
2566
2567 retval = get_user(val, p);
2568 if (retval)
2569 return retval;
2570 set = clear = 0;
2571 switch (cmd) {
2572 case TIOCMBIS:
2573 set = val;
2574 break;
2575 case TIOCMBIC:
2576 clear = val;
2577 break;
2578 case TIOCMSET:
2579 set = val;
2580 clear = ~val;
2581 break;
2582 }
2583 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585 return tty->ops->tiocmset(tty, file, set, clear);
2586 }
2587
2588 /*
2589 * Split this up, as gcc can choke on it otherwise..
2590 */
2591 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2592 {
2593 struct tty_struct *tty, *real_tty;
2594 void __user *p = (void __user *)arg;
2595 int retval;
2596 struct tty_ldisc *ld;
2597 struct inode *inode = file->f_dentry->d_inode;
2598
2599 tty = (struct tty_struct *)file->private_data;
2600 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2601 return -EINVAL;
2602
2603 real_tty = tty;
2604 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2605 tty->driver->subtype == PTY_TYPE_MASTER)
2606 real_tty = tty->link;
2607
2608
2609 /*
2610 * Factor out some common prep work
2611 */
2612 switch (cmd) {
2613 case TIOCSETD:
2614 case TIOCSBRK:
2615 case TIOCCBRK:
2616 case TCSBRK:
2617 case TCSBRKP:
2618 retval = tty_check_change(tty);
2619 if (retval)
2620 return retval;
2621 if (cmd != TIOCCBRK) {
2622 tty_wait_until_sent(tty, 0);
2623 if (signal_pending(current))
2624 return -EINTR;
2625 }
2626 break;
2627 }
2628
2629 /*
2630 * Now do the stuff.
2631 */
2632 switch (cmd) {
2633 case TIOCSTI:
2634 return tiocsti(tty, p);
2635 case TIOCGWINSZ:
2636 return tiocgwinsz(real_tty, p);
2637 case TIOCSWINSZ:
2638 return tiocswinsz(tty, real_tty, p);
2639 case TIOCCONS:
2640 return real_tty != tty ? -EINVAL : tioccons(file);
2641 case FIONBIO:
2642 return fionbio(file, p);
2643 case TIOCEXCL:
2644 set_bit(TTY_EXCLUSIVE, &tty->flags);
2645 return 0;
2646 case TIOCNXCL:
2647 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2648 return 0;
2649 case TIOCNOTTY:
2650 if (current->signal->tty != tty)
2651 return -ENOTTY;
2652 no_tty();
2653 return 0;
2654 case TIOCSCTTY:
2655 return tiocsctty(tty, arg);
2656 case TIOCGPGRP:
2657 return tiocgpgrp(tty, real_tty, p);
2658 case TIOCSPGRP:
2659 return tiocspgrp(tty, real_tty, p);
2660 case TIOCGSID:
2661 return tiocgsid(tty, real_tty, p);
2662 case TIOCGETD:
2663 return put_user(tty->ldisc.ops->num, (int __user *)p);
2664 case TIOCSETD:
2665 return tiocsetd(tty, p);
2666 /*
2667 * Break handling
2668 */
2669 case TIOCSBRK: /* Turn break on, unconditionally */
2670 if (tty->ops->break_ctl)
2671 return tty->ops->break_ctl(tty, -1);
2672 return 0;
2673 case TIOCCBRK: /* Turn break off, unconditionally */
2674 if (tty->ops->break_ctl)
2675 return tty->ops->break_ctl(tty, 0);
2676 return 0;
2677 case TCSBRK: /* SVID version: non-zero arg --> no break */
2678 /* non-zero arg means wait for all output data
2679 * to be sent (performed above) but don't send break.
2680 * This is used by the tcdrain() termios function.
2681 */
2682 if (!arg)
2683 return send_break(tty, 250);
2684 return 0;
2685 case TCSBRKP: /* support for POSIX tcsendbreak() */
2686 return send_break(tty, arg ? arg*100 : 250);
2687
2688 case TIOCMGET:
2689 return tty_tiocmget(tty, file, p);
2690 case TIOCMSET:
2691 case TIOCMBIC:
2692 case TIOCMBIS:
2693 return tty_tiocmset(tty, file, cmd, p);
2694 case TCFLSH:
2695 switch (arg) {
2696 case TCIFLUSH:
2697 case TCIOFLUSH:
2698 /* flush tty buffer and allow ldisc to process ioctl */
2699 tty_buffer_flush(tty);
2700 break;
2701 }
2702 break;
2703 }
2704 if (tty->ops->ioctl) {
2705 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2706 if (retval != -ENOIOCTLCMD)
2707 return retval;
2708 }
2709 ld = tty_ldisc_ref_wait(tty);
2710 retval = -EINVAL;
2711 if (ld->ops->ioctl) {
2712 retval = ld->ops->ioctl(tty, file, cmd, arg);
2713 if (retval == -ENOIOCTLCMD)
2714 retval = -EINVAL;
2715 }
2716 tty_ldisc_deref(ld);
2717 return retval;
2718 }
2719
2720 #ifdef CONFIG_COMPAT
2721 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2722 unsigned long arg)
2723 {
2724 struct inode *inode = file->f_dentry->d_inode;
2725 struct tty_struct *tty = file->private_data;
2726 struct tty_ldisc *ld;
2727 int retval = -ENOIOCTLCMD;
2728
2729 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2730 return -EINVAL;
2731
2732 if (tty->ops->compat_ioctl) {
2733 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2734 if (retval != -ENOIOCTLCMD)
2735 return retval;
2736 }
2737
2738 ld = tty_ldisc_ref_wait(tty);
2739 if (ld->ops->compat_ioctl)
2740 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2741 tty_ldisc_deref(ld);
2742
2743 return retval;
2744 }
2745 #endif
2746
2747 /*
2748 * This implements the "Secure Attention Key" --- the idea is to
2749 * prevent trojan horses by killing all processes associated with this
2750 * tty when the user hits the "Secure Attention Key". Required for
2751 * super-paranoid applications --- see the Orange Book for more details.
2752 *
2753 * This code could be nicer; ideally it should send a HUP, wait a few
2754 * seconds, then send a INT, and then a KILL signal. But you then
2755 * have to coordinate with the init process, since all processes associated
2756 * with the current tty must be dead before the new getty is allowed
2757 * to spawn.
2758 *
2759 * Now, if it would be correct ;-/ The current code has a nasty hole -
2760 * it doesn't catch files in flight. We may send the descriptor to ourselves
2761 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2762 *
2763 * Nasty bug: do_SAK is being called in interrupt context. This can
2764 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2765 */
2766 void __do_SAK(struct tty_struct *tty)
2767 {
2768 #ifdef TTY_SOFT_SAK
2769 tty_hangup(tty);
2770 #else
2771 struct task_struct *g, *p;
2772 struct pid *session;
2773 int i;
2774 struct file *filp;
2775 struct fdtable *fdt;
2776
2777 if (!tty)
2778 return;
2779 session = tty->session;
2780
2781 tty_ldisc_flush(tty);
2782
2783 tty_driver_flush_buffer(tty);
2784
2785 read_lock(&tasklist_lock);
2786 /* Kill the entire session */
2787 do_each_pid_task(session, PIDTYPE_SID, p) {
2788 printk(KERN_NOTICE "SAK: killed process %d"
2789 " (%s): task_session_nr(p)==tty->session\n",
2790 task_pid_nr(p), p->comm);
2791 send_sig(SIGKILL, p, 1);
2792 } while_each_pid_task(session, PIDTYPE_SID, p);
2793 /* Now kill any processes that happen to have the
2794 * tty open.
2795 */
2796 do_each_thread(g, p) {
2797 if (p->signal->tty == tty) {
2798 printk(KERN_NOTICE "SAK: killed process %d"
2799 " (%s): task_session_nr(p)==tty->session\n",
2800 task_pid_nr(p), p->comm);
2801 send_sig(SIGKILL, p, 1);
2802 continue;
2803 }
2804 task_lock(p);
2805 if (p->files) {
2806 /*
2807 * We don't take a ref to the file, so we must
2808 * hold ->file_lock instead.
2809 */
2810 spin_lock(&p->files->file_lock);
2811 fdt = files_fdtable(p->files);
2812 for (i = 0; i < fdt->max_fds; i++) {
2813 filp = fcheck_files(p->files, i);
2814 if (!filp)
2815 continue;
2816 if (filp->f_op->read == tty_read &&
2817 filp->private_data == tty) {
2818 printk(KERN_NOTICE "SAK: killed process %d"
2819 " (%s): fd#%d opened to the tty\n",
2820 task_pid_nr(p), p->comm, i);
2821 force_sig(SIGKILL, p);
2822 break;
2823 }
2824 }
2825 spin_unlock(&p->files->file_lock);
2826 }
2827 task_unlock(p);
2828 } while_each_thread(g, p);
2829 read_unlock(&tasklist_lock);
2830 #endif
2831 }
2832
2833 static void do_SAK_work(struct work_struct *work)
2834 {
2835 struct tty_struct *tty =
2836 container_of(work, struct tty_struct, SAK_work);
2837 __do_SAK(tty);
2838 }
2839
2840 /*
2841 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2842 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2843 * the values which we write to it will be identical to the values which it
2844 * already has. --akpm
2845 */
2846 void do_SAK(struct tty_struct *tty)
2847 {
2848 if (!tty)
2849 return;
2850 schedule_work(&tty->SAK_work);
2851 }
2852
2853 EXPORT_SYMBOL(do_SAK);
2854
2855 /**
2856 * initialize_tty_struct
2857 * @tty: tty to initialize
2858 *
2859 * This subroutine initializes a tty structure that has been newly
2860 * allocated.
2861 *
2862 * Locking: none - tty in question must not be exposed at this point
2863 */
2864
2865 static void initialize_tty_struct(struct tty_struct *tty)
2866 {
2867 memset(tty, 0, sizeof(struct tty_struct));
2868 kref_init(&tty->kref);
2869 tty->magic = TTY_MAGIC;
2870 tty_ldisc_init(tty);
2871 tty->session = NULL;
2872 tty->pgrp = NULL;
2873 tty->overrun_time = jiffies;
2874 tty->buf.head = tty->buf.tail = NULL;
2875 tty_buffer_init(tty);
2876 mutex_init(&tty->termios_mutex);
2877 init_waitqueue_head(&tty->write_wait);
2878 init_waitqueue_head(&tty->read_wait);
2879 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2880 mutex_init(&tty->atomic_read_lock);
2881 mutex_init(&tty->atomic_write_lock);
2882 spin_lock_init(&tty->read_lock);
2883 spin_lock_init(&tty->ctrl_lock);
2884 INIT_LIST_HEAD(&tty->tty_files);
2885 INIT_WORK(&tty->SAK_work, do_SAK_work);
2886 }
2887
2888 /**
2889 * tty_put_char - write one character to a tty
2890 * @tty: tty
2891 * @ch: character
2892 *
2893 * Write one byte to the tty using the provided put_char method
2894 * if present. Returns the number of characters successfully output.
2895 *
2896 * Note: the specific put_char operation in the driver layer may go
2897 * away soon. Don't call it directly, use this method
2898 */
2899
2900 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2901 {
2902 if (tty->ops->put_char)
2903 return tty->ops->put_char(tty, ch);
2904 return tty->ops->write(tty, &ch, 1);
2905 }
2906 EXPORT_SYMBOL_GPL(tty_put_char);
2907
2908 struct class *tty_class;
2909
2910 /**
2911 * tty_register_device - register a tty device
2912 * @driver: the tty driver that describes the tty device
2913 * @index: the index in the tty driver for this tty device
2914 * @device: a struct device that is associated with this tty device.
2915 * This field is optional, if there is no known struct device
2916 * for this tty device it can be set to NULL safely.
2917 *
2918 * Returns a pointer to the struct device for this tty device
2919 * (or ERR_PTR(-EFOO) on error).
2920 *
2921 * This call is required to be made to register an individual tty device
2922 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2923 * that bit is not set, this function should not be called by a tty
2924 * driver.
2925 *
2926 * Locking: ??
2927 */
2928
2929 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2930 struct device *device)
2931 {
2932 char name[64];
2933 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2934
2935 if (index >= driver->num) {
2936 printk(KERN_ERR "Attempt to register invalid tty line number "
2937 " (%d).\n", index);
2938 return ERR_PTR(-EINVAL);
2939 }
2940
2941 if (driver->type == TTY_DRIVER_TYPE_PTY)
2942 pty_line_name(driver, index, name);
2943 else
2944 tty_line_name(driver, index, name);
2945
2946 return device_create_drvdata(tty_class, device, dev, NULL, name);
2947 }
2948 EXPORT_SYMBOL(tty_register_device);
2949
2950 /**
2951 * tty_unregister_device - unregister a tty device
2952 * @driver: the tty driver that describes the tty device
2953 * @index: the index in the tty driver for this tty device
2954 *
2955 * If a tty device is registered with a call to tty_register_device() then
2956 * this function must be called when the tty device is gone.
2957 *
2958 * Locking: ??
2959 */
2960
2961 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2962 {
2963 device_destroy(tty_class,
2964 MKDEV(driver->major, driver->minor_start) + index);
2965 }
2966 EXPORT_SYMBOL(tty_unregister_device);
2967
2968 struct tty_driver *alloc_tty_driver(int lines)
2969 {
2970 struct tty_driver *driver;
2971
2972 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2973 if (driver) {
2974 kref_init(&driver->kref);
2975 driver->magic = TTY_DRIVER_MAGIC;
2976 driver->num = lines;
2977 /* later we'll move allocation of tables here */
2978 }
2979 return driver;
2980 }
2981 EXPORT_SYMBOL(alloc_tty_driver);
2982
2983 static void destruct_tty_driver(struct kref *kref)
2984 {
2985 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2986 int i;
2987 struct ktermios *tp;
2988 void *p;
2989
2990 if (driver->flags & TTY_DRIVER_INSTALLED) {
2991 /*
2992 * Free the termios and termios_locked structures because
2993 * we don't want to get memory leaks when modular tty
2994 * drivers are removed from the kernel.
2995 */
2996 for (i = 0; i < driver->num; i++) {
2997 tp = driver->termios[i];
2998 if (tp) {
2999 driver->termios[i] = NULL;
3000 kfree(tp);
3001 }
3002 tp = driver->termios_locked[i];
3003 if (tp) {
3004 driver->termios_locked[i] = NULL;
3005 kfree(tp);
3006 }
3007 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3008 tty_unregister_device(driver, i);
3009 }
3010 p = driver->ttys;
3011 proc_tty_unregister_driver(driver);
3012 driver->ttys = NULL;
3013 driver->termios = driver->termios_locked = NULL;
3014 kfree(p);
3015 cdev_del(&driver->cdev);
3016 }
3017 kfree(driver);
3018 }
3019
3020 void tty_driver_kref_put(struct tty_driver *driver)
3021 {
3022 kref_put(&driver->kref, destruct_tty_driver);
3023 }
3024 EXPORT_SYMBOL(tty_driver_kref_put);
3025
3026 void tty_set_operations(struct tty_driver *driver,
3027 const struct tty_operations *op)
3028 {
3029 driver->ops = op;
3030 };
3031 EXPORT_SYMBOL(tty_set_operations);
3032
3033 void put_tty_driver(struct tty_driver *d)
3034 {
3035 tty_driver_kref_put(d);
3036 }
3037 EXPORT_SYMBOL(put_tty_driver);
3038
3039 /*
3040 * Called by a tty driver to register itself.
3041 */
3042 int tty_register_driver(struct tty_driver *driver)
3043 {
3044 int error;
3045 int i;
3046 dev_t dev;
3047 void **p = NULL;
3048
3049 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3050 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3051 if (!p)
3052 return -ENOMEM;
3053 }
3054
3055 if (!driver->major) {
3056 error = alloc_chrdev_region(&dev, driver->minor_start,
3057 driver->num, driver->name);
3058 if (!error) {
3059 driver->major = MAJOR(dev);
3060 driver->minor_start = MINOR(dev);
3061 }
3062 } else {
3063 dev = MKDEV(driver->major, driver->minor_start);
3064 error = register_chrdev_region(dev, driver->num, driver->name);
3065 }
3066 if (error < 0) {
3067 kfree(p);
3068 return error;
3069 }
3070
3071 if (p) {
3072 driver->ttys = (struct tty_struct **)p;
3073 driver->termios = (struct ktermios **)(p + driver->num);
3074 driver->termios_locked = (struct ktermios **)
3075 (p + driver->num * 2);
3076 } else {
3077 driver->ttys = NULL;
3078 driver->termios = NULL;
3079 driver->termios_locked = NULL;
3080 }
3081
3082 cdev_init(&driver->cdev, &tty_fops);
3083 driver->cdev.owner = driver->owner;
3084 error = cdev_add(&driver->cdev, dev, driver->num);
3085 if (error) {
3086 unregister_chrdev_region(dev, driver->num);
3087 driver->ttys = NULL;
3088 driver->termios = driver->termios_locked = NULL;
3089 kfree(p);
3090 return error;
3091 }
3092
3093 mutex_lock(&tty_mutex);
3094 list_add(&driver->tty_drivers, &tty_drivers);
3095 mutex_unlock(&tty_mutex);
3096
3097 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3098 for (i = 0; i < driver->num; i++)
3099 tty_register_device(driver, i, NULL);
3100 }
3101 proc_tty_register_driver(driver);
3102 driver->flags |= TTY_DRIVER_INSTALLED;
3103 return 0;
3104 }
3105
3106 EXPORT_SYMBOL(tty_register_driver);
3107
3108 /*
3109 * Called by a tty driver to unregister itself.
3110 */
3111 int tty_unregister_driver(struct tty_driver *driver)
3112 {
3113 #if 0
3114 /* FIXME */
3115 if (driver->refcount)
3116 return -EBUSY;
3117 #endif
3118 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3119 driver->num);
3120 mutex_lock(&tty_mutex);
3121 list_del(&driver->tty_drivers);
3122 mutex_unlock(&tty_mutex);
3123 return 0;
3124 }
3125
3126 EXPORT_SYMBOL(tty_unregister_driver);
3127
3128 dev_t tty_devnum(struct tty_struct *tty)
3129 {
3130 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3131 }
3132 EXPORT_SYMBOL(tty_devnum);
3133
3134 void proc_clear_tty(struct task_struct *p)
3135 {
3136 struct tty_struct *tty;
3137 spin_lock_irq(&p->sighand->siglock);
3138 tty = p->signal->tty;
3139 p->signal->tty = NULL;
3140 spin_unlock_irq(&p->sighand->siglock);
3141 tty_kref_put(tty);
3142 }
3143
3144 /* Called under the sighand lock */
3145
3146 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3147 {
3148 if (tty) {
3149 unsigned long flags;
3150 /* We should not have a session or pgrp to put here but.... */
3151 spin_lock_irqsave(&tty->ctrl_lock, flags);
3152 put_pid(tty->session);
3153 put_pid(tty->pgrp);
3154 tty->pgrp = get_pid(task_pgrp(tsk));
3155 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3156 tty->session = get_pid(task_session(tsk));
3157 if (tsk->signal->tty) {
3158 printk(KERN_DEBUG "tty not NULL!!\n");
3159 tty_kref_put(tsk->signal->tty);
3160 }
3161 }
3162 put_pid(tsk->signal->tty_old_pgrp);
3163 tsk->signal->tty = tty_kref_get(tty);
3164 tsk->signal->tty_old_pgrp = NULL;
3165 }
3166
3167 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3168 {
3169 spin_lock_irq(&tsk->sighand->siglock);
3170 __proc_set_tty(tsk, tty);
3171 spin_unlock_irq(&tsk->sighand->siglock);
3172 }
3173
3174 struct tty_struct *get_current_tty(void)
3175 {
3176 struct tty_struct *tty;
3177 unsigned long flags;
3178
3179 spin_lock_irqsave(&current->sighand->siglock, flags);
3180 tty = tty_kref_get(current->signal->tty);
3181 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3182 return tty;
3183 }
3184 EXPORT_SYMBOL_GPL(get_current_tty);
3185
3186 void tty_default_fops(struct file_operations *fops)
3187 {
3188 *fops = tty_fops;
3189 }
3190
3191 /*
3192 * Initialize the console device. This is called *early*, so
3193 * we can't necessarily depend on lots of kernel help here.
3194 * Just do some early initializations, and do the complex setup
3195 * later.
3196 */
3197 void __init console_init(void)
3198 {
3199 initcall_t *call;
3200
3201 /* Setup the default TTY line discipline. */
3202 tty_ldisc_begin();
3203
3204 /*
3205 * set up the console device so that later boot sequences can
3206 * inform about problems etc..
3207 */
3208 call = __con_initcall_start;
3209 while (call < __con_initcall_end) {
3210 (*call)();
3211 call++;
3212 }
3213 }
3214
3215 static int __init tty_class_init(void)
3216 {
3217 tty_class = class_create(THIS_MODULE, "tty");
3218 if (IS_ERR(tty_class))
3219 return PTR_ERR(tty_class);
3220 return 0;
3221 }
3222
3223 postcore_initcall(tty_class_init);
3224
3225 /* 3/2004 jmc: why do these devices exist? */
3226
3227 static struct cdev tty_cdev, console_cdev;
3228
3229 /*
3230 * Ok, now we can initialize the rest of the tty devices and can count
3231 * on memory allocations, interrupts etc..
3232 */
3233 static int __init tty_init(void)
3234 {
3235 cdev_init(&tty_cdev, &tty_fops);
3236 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3237 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3238 panic("Couldn't register /dev/tty driver\n");
3239 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3240 "tty");
3241
3242 cdev_init(&console_cdev, &console_fops);
3243 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3244 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3245 panic("Couldn't register /dev/console driver\n");
3246 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3247 "console");
3248
3249 #ifdef CONFIG_VT
3250 vty_init(&console_fops);
3251 #endif
3252 return 0;
3253 }
3254 module_init(tty_init);
This page took 0.411887 seconds and 6 git commands to generate.