Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106
107 #undef TTY_DEBUG_HANGUP
108
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
111
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
121 };
122
123 EXPORT_SYMBOL(tty_std_termios);
124
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
128
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
130
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
135
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 extern void disable_early_printk(void);
145
146 static void initialize_tty_struct(struct tty_struct *tty);
147
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
151 static unsigned int tty_poll(struct file *, poll_table *);
152 static int tty_open(struct inode *, struct file *);
153 static int tty_release(struct inode *, struct file *);
154 int tty_ioctl(struct inode * inode, struct file * file,
155 unsigned int cmd, unsigned long arg);
156 static int tty_fasync(int fd, struct file * filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static struct pid *__proc_set_tty(struct task_struct *tsk,
159 struct tty_struct *tty);
160
161 /**
162 * alloc_tty_struct - allocate a tty object
163 *
164 * Return a new empty tty structure. The data fields have not
165 * been initialized in any way but has been zeroed
166 *
167 * Locking: none
168 */
169
170 static struct tty_struct *alloc_tty_struct(void)
171 {
172 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 }
174
175 static void tty_buffer_free_all(struct tty_struct *);
176
177 /**
178 * free_tty_struct - free a disused tty
179 * @tty: tty struct to free
180 *
181 * Free the write buffers, tty queue and tty memory itself.
182 *
183 * Locking: none. Must be called after tty is definitely unused
184 */
185
186 static inline void free_tty_struct(struct tty_struct *tty)
187 {
188 kfree(tty->write_buf);
189 tty_buffer_free_all(tty);
190 kfree(tty);
191 }
192
193 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
194
195 /**
196 * tty_name - return tty naming
197 * @tty: tty structure
198 * @buf: buffer for output
199 *
200 * Convert a tty structure into a name. The name reflects the kernel
201 * naming policy and if udev is in use may not reflect user space
202 *
203 * Locking: none
204 */
205
206 char *tty_name(struct tty_struct *tty, char *buf)
207 {
208 if (!tty) /* Hmm. NULL pointer. That's fun. */
209 strcpy(buf, "NULL tty");
210 else
211 strcpy(buf, tty->name);
212 return buf;
213 }
214
215 EXPORT_SYMBOL(tty_name);
216
217 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
218 const char *routine)
219 {
220 #ifdef TTY_PARANOIA_CHECK
221 if (!tty) {
222 printk(KERN_WARNING
223 "null TTY for (%d:%d) in %s\n",
224 imajor(inode), iminor(inode), routine);
225 return 1;
226 }
227 if (tty->magic != TTY_MAGIC) {
228 printk(KERN_WARNING
229 "bad magic number for tty struct (%d:%d) in %s\n",
230 imajor(inode), iminor(inode), routine);
231 return 1;
232 }
233 #endif
234 return 0;
235 }
236
237 static int check_tty_count(struct tty_struct *tty, const char *routine)
238 {
239 #ifdef CHECK_TTY_COUNT
240 struct list_head *p;
241 int count = 0;
242
243 file_list_lock();
244 list_for_each(p, &tty->tty_files) {
245 count++;
246 }
247 file_list_unlock();
248 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
249 tty->driver->subtype == PTY_TYPE_SLAVE &&
250 tty->link && tty->link->count)
251 count++;
252 if (tty->count != count) {
253 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
254 "!= #fd's(%d) in %s\n",
255 tty->name, tty->count, count, routine);
256 return count;
257 }
258 #endif
259 return 0;
260 }
261
262 /*
263 * Tty buffer allocation management
264 */
265
266 /**
267 * tty_buffer_free_all - free buffers used by a tty
268 * @tty: tty to free from
269 *
270 * Remove all the buffers pending on a tty whether queued with data
271 * or in the free ring. Must be called when the tty is no longer in use
272 *
273 * Locking: none
274 */
275
276 static void tty_buffer_free_all(struct tty_struct *tty)
277 {
278 struct tty_buffer *thead;
279 while((thead = tty->buf.head) != NULL) {
280 tty->buf.head = thead->next;
281 kfree(thead);
282 }
283 while((thead = tty->buf.free) != NULL) {
284 tty->buf.free = thead->next;
285 kfree(thead);
286 }
287 tty->buf.tail = NULL;
288 tty->buf.memory_used = 0;
289 }
290
291 /**
292 * tty_buffer_init - prepare a tty buffer structure
293 * @tty: tty to initialise
294 *
295 * Set up the initial state of the buffer management for a tty device.
296 * Must be called before the other tty buffer functions are used.
297 *
298 * Locking: none
299 */
300
301 static void tty_buffer_init(struct tty_struct *tty)
302 {
303 spin_lock_init(&tty->buf.lock);
304 tty->buf.head = NULL;
305 tty->buf.tail = NULL;
306 tty->buf.free = NULL;
307 tty->buf.memory_used = 0;
308 }
309
310 /**
311 * tty_buffer_alloc - allocate a tty buffer
312 * @tty: tty device
313 * @size: desired size (characters)
314 *
315 * Allocate a new tty buffer to hold the desired number of characters.
316 * Return NULL if out of memory or the allocation would exceed the
317 * per device queue
318 *
319 * Locking: Caller must hold tty->buf.lock
320 */
321
322 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
323 {
324 struct tty_buffer *p;
325
326 if (tty->buf.memory_used + size > 65536)
327 return NULL;
328 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
329 if(p == NULL)
330 return NULL;
331 p->used = 0;
332 p->size = size;
333 p->next = NULL;
334 p->commit = 0;
335 p->read = 0;
336 p->char_buf_ptr = (char *)(p->data);
337 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
338 tty->buf.memory_used += size;
339 return p;
340 }
341
342 /**
343 * tty_buffer_free - free a tty buffer
344 * @tty: tty owning the buffer
345 * @b: the buffer to free
346 *
347 * Free a tty buffer, or add it to the free list according to our
348 * internal strategy
349 *
350 * Locking: Caller must hold tty->buf.lock
351 */
352
353 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
354 {
355 /* Dumb strategy for now - should keep some stats */
356 tty->buf.memory_used -= b->size;
357 WARN_ON(tty->buf.memory_used < 0);
358
359 if(b->size >= 512)
360 kfree(b);
361 else {
362 b->next = tty->buf.free;
363 tty->buf.free = b;
364 }
365 }
366
367 /**
368 * tty_buffer_find - find a free tty buffer
369 * @tty: tty owning the buffer
370 * @size: characters wanted
371 *
372 * Locate an existing suitable tty buffer or if we are lacking one then
373 * allocate a new one. We round our buffers off in 256 character chunks
374 * to get better allocation behaviour.
375 *
376 * Locking: Caller must hold tty->buf.lock
377 */
378
379 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
380 {
381 struct tty_buffer **tbh = &tty->buf.free;
382 while((*tbh) != NULL) {
383 struct tty_buffer *t = *tbh;
384 if(t->size >= size) {
385 *tbh = t->next;
386 t->next = NULL;
387 t->used = 0;
388 t->commit = 0;
389 t->read = 0;
390 tty->buf.memory_used += t->size;
391 return t;
392 }
393 tbh = &((*tbh)->next);
394 }
395 /* Round the buffer size out */
396 size = (size + 0xFF) & ~ 0xFF;
397 return tty_buffer_alloc(tty, size);
398 /* Should possibly check if this fails for the largest buffer we
399 have queued and recycle that ? */
400 }
401
402 /**
403 * tty_buffer_request_room - grow tty buffer if needed
404 * @tty: tty structure
405 * @size: size desired
406 *
407 * Make at least size bytes of linear space available for the tty
408 * buffer. If we fail return the size we managed to find.
409 *
410 * Locking: Takes tty->buf.lock
411 */
412 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
413 {
414 struct tty_buffer *b, *n;
415 int left;
416 unsigned long flags;
417
418 spin_lock_irqsave(&tty->buf.lock, flags);
419
420 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
421 remove this conditional if its worth it. This would be invisible
422 to the callers */
423 if ((b = tty->buf.tail) != NULL)
424 left = b->size - b->used;
425 else
426 left = 0;
427
428 if (left < size) {
429 /* This is the slow path - looking for new buffers to use */
430 if ((n = tty_buffer_find(tty, size)) != NULL) {
431 if (b != NULL) {
432 b->next = n;
433 b->commit = b->used;
434 } else
435 tty->buf.head = n;
436 tty->buf.tail = n;
437 } else
438 size = left;
439 }
440
441 spin_unlock_irqrestore(&tty->buf.lock, flags);
442 return size;
443 }
444 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
445
446 /**
447 * tty_insert_flip_string - Add characters to the tty buffer
448 * @tty: tty structure
449 * @chars: characters
450 * @size: size
451 *
452 * Queue a series of bytes to the tty buffering. All the characters
453 * passed are marked as without error. Returns the number added.
454 *
455 * Locking: Called functions may take tty->buf.lock
456 */
457
458 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
459 size_t size)
460 {
461 int copied = 0;
462 do {
463 int space = tty_buffer_request_room(tty, size - copied);
464 struct tty_buffer *tb = tty->buf.tail;
465 /* If there is no space then tb may be NULL */
466 if(unlikely(space == 0))
467 break;
468 memcpy(tb->char_buf_ptr + tb->used, chars, space);
469 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
470 tb->used += space;
471 copied += space;
472 chars += space;
473 /* There is a small chance that we need to split the data over
474 several buffers. If this is the case we must loop */
475 } while (unlikely(size > copied));
476 return copied;
477 }
478 EXPORT_SYMBOL(tty_insert_flip_string);
479
480 /**
481 * tty_insert_flip_string_flags - Add characters to the tty buffer
482 * @tty: tty structure
483 * @chars: characters
484 * @flags: flag bytes
485 * @size: size
486 *
487 * Queue a series of bytes to the tty buffering. For each character
488 * the flags array indicates the status of the character. Returns the
489 * number added.
490 *
491 * Locking: Called functions may take tty->buf.lock
492 */
493
494 int tty_insert_flip_string_flags(struct tty_struct *tty,
495 const unsigned char *chars, const char *flags, size_t size)
496 {
497 int copied = 0;
498 do {
499 int space = tty_buffer_request_room(tty, size - copied);
500 struct tty_buffer *tb = tty->buf.tail;
501 /* If there is no space then tb may be NULL */
502 if(unlikely(space == 0))
503 break;
504 memcpy(tb->char_buf_ptr + tb->used, chars, space);
505 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
506 tb->used += space;
507 copied += space;
508 chars += space;
509 flags += space;
510 /* There is a small chance that we need to split the data over
511 several buffers. If this is the case we must loop */
512 } while (unlikely(size > copied));
513 return copied;
514 }
515 EXPORT_SYMBOL(tty_insert_flip_string_flags);
516
517 /**
518 * tty_schedule_flip - push characters to ldisc
519 * @tty: tty to push from
520 *
521 * Takes any pending buffers and transfers their ownership to the
522 * ldisc side of the queue. It then schedules those characters for
523 * processing by the line discipline.
524 *
525 * Locking: Takes tty->buf.lock
526 */
527
528 void tty_schedule_flip(struct tty_struct *tty)
529 {
530 unsigned long flags;
531 spin_lock_irqsave(&tty->buf.lock, flags);
532 if (tty->buf.tail != NULL)
533 tty->buf.tail->commit = tty->buf.tail->used;
534 spin_unlock_irqrestore(&tty->buf.lock, flags);
535 schedule_delayed_work(&tty->buf.work, 1);
536 }
537 EXPORT_SYMBOL(tty_schedule_flip);
538
539 /**
540 * tty_prepare_flip_string - make room for characters
541 * @tty: tty
542 * @chars: return pointer for character write area
543 * @size: desired size
544 *
545 * Prepare a block of space in the buffer for data. Returns the length
546 * available and buffer pointer to the space which is now allocated and
547 * accounted for as ready for normal characters. This is used for drivers
548 * that need their own block copy routines into the buffer. There is no
549 * guarantee the buffer is a DMA target!
550 *
551 * Locking: May call functions taking tty->buf.lock
552 */
553
554 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
555 {
556 int space = tty_buffer_request_room(tty, size);
557 if (likely(space)) {
558 struct tty_buffer *tb = tty->buf.tail;
559 *chars = tb->char_buf_ptr + tb->used;
560 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
561 tb->used += space;
562 }
563 return space;
564 }
565
566 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
567
568 /**
569 * tty_prepare_flip_string_flags - make room for characters
570 * @tty: tty
571 * @chars: return pointer for character write area
572 * @flags: return pointer for status flag write area
573 * @size: desired size
574 *
575 * Prepare a block of space in the buffer for data. Returns the length
576 * available and buffer pointer to the space which is now allocated and
577 * accounted for as ready for characters. This is used for drivers
578 * that need their own block copy routines into the buffer. There is no
579 * guarantee the buffer is a DMA target!
580 *
581 * Locking: May call functions taking tty->buf.lock
582 */
583
584 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
585 {
586 int space = tty_buffer_request_room(tty, size);
587 if (likely(space)) {
588 struct tty_buffer *tb = tty->buf.tail;
589 *chars = tb->char_buf_ptr + tb->used;
590 *flags = tb->flag_buf_ptr + tb->used;
591 tb->used += space;
592 }
593 return space;
594 }
595
596 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
597
598
599
600 /**
601 * tty_set_termios_ldisc - set ldisc field
602 * @tty: tty structure
603 * @num: line discipline number
604 *
605 * This is probably overkill for real world processors but
606 * they are not on hot paths so a little discipline won't do
607 * any harm.
608 *
609 * Locking: takes termios_mutex
610 */
611
612 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
613 {
614 mutex_lock(&tty->termios_mutex);
615 tty->termios->c_line = num;
616 mutex_unlock(&tty->termios_mutex);
617 }
618
619 /*
620 * This guards the refcounted line discipline lists. The lock
621 * must be taken with irqs off because there are hangup path
622 * callers who will do ldisc lookups and cannot sleep.
623 */
624
625 static DEFINE_SPINLOCK(tty_ldisc_lock);
626 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
627 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
628
629 /**
630 * tty_register_ldisc - install a line discipline
631 * @disc: ldisc number
632 * @new_ldisc: pointer to the ldisc object
633 *
634 * Installs a new line discipline into the kernel. The discipline
635 * is set up as unreferenced and then made available to the kernel
636 * from this point onwards.
637 *
638 * Locking:
639 * takes tty_ldisc_lock to guard against ldisc races
640 */
641
642 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
643 {
644 unsigned long flags;
645 int ret = 0;
646
647 if (disc < N_TTY || disc >= NR_LDISCS)
648 return -EINVAL;
649
650 spin_lock_irqsave(&tty_ldisc_lock, flags);
651 tty_ldiscs[disc] = *new_ldisc;
652 tty_ldiscs[disc].num = disc;
653 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
654 tty_ldiscs[disc].refcount = 0;
655 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
656
657 return ret;
658 }
659 EXPORT_SYMBOL(tty_register_ldisc);
660
661 /**
662 * tty_unregister_ldisc - unload a line discipline
663 * @disc: ldisc number
664 * @new_ldisc: pointer to the ldisc object
665 *
666 * Remove a line discipline from the kernel providing it is not
667 * currently in use.
668 *
669 * Locking:
670 * takes tty_ldisc_lock to guard against ldisc races
671 */
672
673 int tty_unregister_ldisc(int disc)
674 {
675 unsigned long flags;
676 int ret = 0;
677
678 if (disc < N_TTY || disc >= NR_LDISCS)
679 return -EINVAL;
680
681 spin_lock_irqsave(&tty_ldisc_lock, flags);
682 if (tty_ldiscs[disc].refcount)
683 ret = -EBUSY;
684 else
685 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
686 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
687
688 return ret;
689 }
690 EXPORT_SYMBOL(tty_unregister_ldisc);
691
692 /**
693 * tty_ldisc_get - take a reference to an ldisc
694 * @disc: ldisc number
695 *
696 * Takes a reference to a line discipline. Deals with refcounts and
697 * module locking counts. Returns NULL if the discipline is not available.
698 * Returns a pointer to the discipline and bumps the ref count if it is
699 * available
700 *
701 * Locking:
702 * takes tty_ldisc_lock to guard against ldisc races
703 */
704
705 struct tty_ldisc *tty_ldisc_get(int disc)
706 {
707 unsigned long flags;
708 struct tty_ldisc *ld;
709
710 if (disc < N_TTY || disc >= NR_LDISCS)
711 return NULL;
712
713 spin_lock_irqsave(&tty_ldisc_lock, flags);
714
715 ld = &tty_ldiscs[disc];
716 /* Check the entry is defined */
717 if(ld->flags & LDISC_FLAG_DEFINED)
718 {
719 /* If the module is being unloaded we can't use it */
720 if (!try_module_get(ld->owner))
721 ld = NULL;
722 else /* lock it */
723 ld->refcount++;
724 }
725 else
726 ld = NULL;
727 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
728 return ld;
729 }
730
731 EXPORT_SYMBOL_GPL(tty_ldisc_get);
732
733 /**
734 * tty_ldisc_put - drop ldisc reference
735 * @disc: ldisc number
736 *
737 * Drop a reference to a line discipline. Manage refcounts and
738 * module usage counts
739 *
740 * Locking:
741 * takes tty_ldisc_lock to guard against ldisc races
742 */
743
744 void tty_ldisc_put(int disc)
745 {
746 struct tty_ldisc *ld;
747 unsigned long flags;
748
749 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
750
751 spin_lock_irqsave(&tty_ldisc_lock, flags);
752 ld = &tty_ldiscs[disc];
753 BUG_ON(ld->refcount == 0);
754 ld->refcount--;
755 module_put(ld->owner);
756 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
757 }
758
759 EXPORT_SYMBOL_GPL(tty_ldisc_put);
760
761 /**
762 * tty_ldisc_assign - set ldisc on a tty
763 * @tty: tty to assign
764 * @ld: line discipline
765 *
766 * Install an instance of a line discipline into a tty structure. The
767 * ldisc must have a reference count above zero to ensure it remains/
768 * The tty instance refcount starts at zero.
769 *
770 * Locking:
771 * Caller must hold references
772 */
773
774 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
775 {
776 tty->ldisc = *ld;
777 tty->ldisc.refcount = 0;
778 }
779
780 /**
781 * tty_ldisc_try - internal helper
782 * @tty: the tty
783 *
784 * Make a single attempt to grab and bump the refcount on
785 * the tty ldisc. Return 0 on failure or 1 on success. This is
786 * used to implement both the waiting and non waiting versions
787 * of tty_ldisc_ref
788 *
789 * Locking: takes tty_ldisc_lock
790 */
791
792 static int tty_ldisc_try(struct tty_struct *tty)
793 {
794 unsigned long flags;
795 struct tty_ldisc *ld;
796 int ret = 0;
797
798 spin_lock_irqsave(&tty_ldisc_lock, flags);
799 ld = &tty->ldisc;
800 if(test_bit(TTY_LDISC, &tty->flags))
801 {
802 ld->refcount++;
803 ret = 1;
804 }
805 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
806 return ret;
807 }
808
809 /**
810 * tty_ldisc_ref_wait - wait for the tty ldisc
811 * @tty: tty device
812 *
813 * Dereference the line discipline for the terminal and take a
814 * reference to it. If the line discipline is in flux then
815 * wait patiently until it changes.
816 *
817 * Note: Must not be called from an IRQ/timer context. The caller
818 * must also be careful not to hold other locks that will deadlock
819 * against a discipline change, such as an existing ldisc reference
820 * (which we check for)
821 *
822 * Locking: call functions take tty_ldisc_lock
823 */
824
825 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
826 {
827 /* wait_event is a macro */
828 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
829 if(tty->ldisc.refcount == 0)
830 printk(KERN_ERR "tty_ldisc_ref_wait\n");
831 return &tty->ldisc;
832 }
833
834 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
835
836 /**
837 * tty_ldisc_ref - get the tty ldisc
838 * @tty: tty device
839 *
840 * Dereference the line discipline for the terminal and take a
841 * reference to it. If the line discipline is in flux then
842 * return NULL. Can be called from IRQ and timer functions.
843 *
844 * Locking: called functions take tty_ldisc_lock
845 */
846
847 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
848 {
849 if(tty_ldisc_try(tty))
850 return &tty->ldisc;
851 return NULL;
852 }
853
854 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
855
856 /**
857 * tty_ldisc_deref - free a tty ldisc reference
858 * @ld: reference to free up
859 *
860 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
861 * be called in IRQ context.
862 *
863 * Locking: takes tty_ldisc_lock
864 */
865
866 void tty_ldisc_deref(struct tty_ldisc *ld)
867 {
868 unsigned long flags;
869
870 BUG_ON(ld == NULL);
871
872 spin_lock_irqsave(&tty_ldisc_lock, flags);
873 if(ld->refcount == 0)
874 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
875 else
876 ld->refcount--;
877 if(ld->refcount == 0)
878 wake_up(&tty_ldisc_wait);
879 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
880 }
881
882 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
883
884 /**
885 * tty_ldisc_enable - allow ldisc use
886 * @tty: terminal to activate ldisc on
887 *
888 * Set the TTY_LDISC flag when the line discipline can be called
889 * again. Do neccessary wakeups for existing sleepers.
890 *
891 * Note: nobody should set this bit except via this function. Clearing
892 * directly is allowed.
893 */
894
895 static void tty_ldisc_enable(struct tty_struct *tty)
896 {
897 set_bit(TTY_LDISC, &tty->flags);
898 wake_up(&tty_ldisc_wait);
899 }
900
901 /**
902 * tty_set_ldisc - set line discipline
903 * @tty: the terminal to set
904 * @ldisc: the line discipline
905 *
906 * Set the discipline of a tty line. Must be called from a process
907 * context.
908 *
909 * Locking: takes tty_ldisc_lock.
910 * called functions take termios_mutex
911 */
912
913 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
914 {
915 int retval = 0;
916 struct tty_ldisc o_ldisc;
917 char buf[64];
918 int work;
919 unsigned long flags;
920 struct tty_ldisc *ld;
921 struct tty_struct *o_tty;
922
923 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
924 return -EINVAL;
925
926 restart:
927
928 ld = tty_ldisc_get(ldisc);
929 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
930 /* Cyrus Durgin <cider@speakeasy.org> */
931 if (ld == NULL) {
932 request_module("tty-ldisc-%d", ldisc);
933 ld = tty_ldisc_get(ldisc);
934 }
935 if (ld == NULL)
936 return -EINVAL;
937
938 /*
939 * No more input please, we are switching. The new ldisc
940 * will update this value in the ldisc open function
941 */
942
943 tty->receive_room = 0;
944
945 /*
946 * Problem: What do we do if this blocks ?
947 */
948
949 tty_wait_until_sent(tty, 0);
950
951 if (tty->ldisc.num == ldisc) {
952 tty_ldisc_put(ldisc);
953 return 0;
954 }
955
956 o_ldisc = tty->ldisc;
957 o_tty = tty->link;
958
959 /*
960 * Make sure we don't change while someone holds a
961 * reference to the line discipline. The TTY_LDISC bit
962 * prevents anyone taking a reference once it is clear.
963 * We need the lock to avoid racing reference takers.
964 */
965
966 spin_lock_irqsave(&tty_ldisc_lock, flags);
967 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
968 if(tty->ldisc.refcount) {
969 /* Free the new ldisc we grabbed. Must drop the lock
970 first. */
971 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
972 tty_ldisc_put(ldisc);
973 /*
974 * There are several reasons we may be busy, including
975 * random momentary I/O traffic. We must therefore
976 * retry. We could distinguish between blocking ops
977 * and retries if we made tty_ldisc_wait() smarter. That
978 * is up for discussion.
979 */
980 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
981 return -ERESTARTSYS;
982 goto restart;
983 }
984 if(o_tty && o_tty->ldisc.refcount) {
985 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
986 tty_ldisc_put(ldisc);
987 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
988 return -ERESTARTSYS;
989 goto restart;
990 }
991 }
992
993 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
994
995 if (!test_bit(TTY_LDISC, &tty->flags)) {
996 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
997 tty_ldisc_put(ldisc);
998 ld = tty_ldisc_ref_wait(tty);
999 tty_ldisc_deref(ld);
1000 goto restart;
1001 }
1002
1003 clear_bit(TTY_LDISC, &tty->flags);
1004 if (o_tty)
1005 clear_bit(TTY_LDISC, &o_tty->flags);
1006 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1007
1008 /*
1009 * From this point on we know nobody has an ldisc
1010 * usage reference, nor can they obtain one until
1011 * we say so later on.
1012 */
1013
1014 work = cancel_delayed_work(&tty->buf.work);
1015 /*
1016 * Wait for ->hangup_work and ->buf.work handlers to terminate
1017 */
1018
1019 flush_scheduled_work();
1020 /* Shutdown the current discipline. */
1021 if (tty->ldisc.close)
1022 (tty->ldisc.close)(tty);
1023
1024 /* Now set up the new line discipline. */
1025 tty_ldisc_assign(tty, ld);
1026 tty_set_termios_ldisc(tty, ldisc);
1027 if (tty->ldisc.open)
1028 retval = (tty->ldisc.open)(tty);
1029 if (retval < 0) {
1030 tty_ldisc_put(ldisc);
1031 /* There is an outstanding reference here so this is safe */
1032 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1033 tty_set_termios_ldisc(tty, tty->ldisc.num);
1034 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1035 tty_ldisc_put(o_ldisc.num);
1036 /* This driver is always present */
1037 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1038 tty_set_termios_ldisc(tty, N_TTY);
1039 if (tty->ldisc.open) {
1040 int r = tty->ldisc.open(tty);
1041
1042 if (r < 0)
1043 panic("Couldn't open N_TTY ldisc for "
1044 "%s --- error %d.",
1045 tty_name(tty, buf), r);
1046 }
1047 }
1048 }
1049 /* At this point we hold a reference to the new ldisc and a
1050 a reference to the old ldisc. If we ended up flipping back
1051 to the existing ldisc we have two references to it */
1052
1053 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1054 tty->driver->set_ldisc(tty);
1055
1056 tty_ldisc_put(o_ldisc.num);
1057
1058 /*
1059 * Allow ldisc referencing to occur as soon as the driver
1060 * ldisc callback completes.
1061 */
1062
1063 tty_ldisc_enable(tty);
1064 if (o_tty)
1065 tty_ldisc_enable(o_tty);
1066
1067 /* Restart it in case no characters kick it off. Safe if
1068 already running */
1069 if (work)
1070 schedule_delayed_work(&tty->buf.work, 1);
1071 return retval;
1072 }
1073
1074 /**
1075 * get_tty_driver - find device of a tty
1076 * @dev_t: device identifier
1077 * @index: returns the index of the tty
1078 *
1079 * This routine returns a tty driver structure, given a device number
1080 * and also passes back the index number.
1081 *
1082 * Locking: caller must hold tty_mutex
1083 */
1084
1085 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1086 {
1087 struct tty_driver *p;
1088
1089 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1090 dev_t base = MKDEV(p->major, p->minor_start);
1091 if (device < base || device >= base + p->num)
1092 continue;
1093 *index = device - base;
1094 return p;
1095 }
1096 return NULL;
1097 }
1098
1099 /**
1100 * tty_check_change - check for POSIX terminal changes
1101 * @tty: tty to check
1102 *
1103 * If we try to write to, or set the state of, a terminal and we're
1104 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1105 * ignored, go ahead and perform the operation. (POSIX 7.2)
1106 *
1107 * Locking: none
1108 */
1109
1110 int tty_check_change(struct tty_struct * tty)
1111 {
1112 if (current->signal->tty != tty)
1113 return 0;
1114 if (!tty->pgrp) {
1115 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1116 return 0;
1117 }
1118 if (task_pgrp(current) == tty->pgrp)
1119 return 0;
1120 if (is_ignored(SIGTTOU))
1121 return 0;
1122 if (is_current_pgrp_orphaned())
1123 return -EIO;
1124 (void) kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1125 return -ERESTARTSYS;
1126 }
1127
1128 EXPORT_SYMBOL(tty_check_change);
1129
1130 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1131 size_t count, loff_t *ppos)
1132 {
1133 return 0;
1134 }
1135
1136 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1137 size_t count, loff_t *ppos)
1138 {
1139 return -EIO;
1140 }
1141
1142 /* No kernel lock held - none needed ;) */
1143 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1144 {
1145 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1146 }
1147
1148 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1149 unsigned int cmd, unsigned long arg)
1150 {
1151 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1152 }
1153
1154 static const struct file_operations tty_fops = {
1155 .llseek = no_llseek,
1156 .read = tty_read,
1157 .write = tty_write,
1158 .poll = tty_poll,
1159 .ioctl = tty_ioctl,
1160 .open = tty_open,
1161 .release = tty_release,
1162 .fasync = tty_fasync,
1163 };
1164
1165 #ifdef CONFIG_UNIX98_PTYS
1166 static const struct file_operations ptmx_fops = {
1167 .llseek = no_llseek,
1168 .read = tty_read,
1169 .write = tty_write,
1170 .poll = tty_poll,
1171 .ioctl = tty_ioctl,
1172 .open = ptmx_open,
1173 .release = tty_release,
1174 .fasync = tty_fasync,
1175 };
1176 #endif
1177
1178 static const struct file_operations console_fops = {
1179 .llseek = no_llseek,
1180 .read = tty_read,
1181 .write = redirected_tty_write,
1182 .poll = tty_poll,
1183 .ioctl = tty_ioctl,
1184 .open = tty_open,
1185 .release = tty_release,
1186 .fasync = tty_fasync,
1187 };
1188
1189 static const struct file_operations hung_up_tty_fops = {
1190 .llseek = no_llseek,
1191 .read = hung_up_tty_read,
1192 .write = hung_up_tty_write,
1193 .poll = hung_up_tty_poll,
1194 .ioctl = hung_up_tty_ioctl,
1195 .release = tty_release,
1196 };
1197
1198 static DEFINE_SPINLOCK(redirect_lock);
1199 static struct file *redirect;
1200
1201 /**
1202 * tty_wakeup - request more data
1203 * @tty: terminal
1204 *
1205 * Internal and external helper for wakeups of tty. This function
1206 * informs the line discipline if present that the driver is ready
1207 * to receive more output data.
1208 */
1209
1210 void tty_wakeup(struct tty_struct *tty)
1211 {
1212 struct tty_ldisc *ld;
1213
1214 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1215 ld = tty_ldisc_ref(tty);
1216 if(ld) {
1217 if(ld->write_wakeup)
1218 ld->write_wakeup(tty);
1219 tty_ldisc_deref(ld);
1220 }
1221 }
1222 wake_up_interruptible(&tty->write_wait);
1223 }
1224
1225 EXPORT_SYMBOL_GPL(tty_wakeup);
1226
1227 /**
1228 * tty_ldisc_flush - flush line discipline queue
1229 * @tty: tty
1230 *
1231 * Flush the line discipline queue (if any) for this tty. If there
1232 * is no line discipline active this is a no-op.
1233 */
1234
1235 void tty_ldisc_flush(struct tty_struct *tty)
1236 {
1237 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1238 if(ld) {
1239 if(ld->flush_buffer)
1240 ld->flush_buffer(tty);
1241 tty_ldisc_deref(ld);
1242 }
1243 }
1244
1245 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1246
1247 /**
1248 * tty_reset_termios - reset terminal state
1249 * @tty: tty to reset
1250 *
1251 * Restore a terminal to the driver default state
1252 */
1253
1254 static void tty_reset_termios(struct tty_struct *tty)
1255 {
1256 mutex_lock(&tty->termios_mutex);
1257 *tty->termios = tty->driver->init_termios;
1258 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1259 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1260 mutex_unlock(&tty->termios_mutex);
1261 }
1262
1263 /**
1264 * do_tty_hangup - actual handler for hangup events
1265 * @work: tty device
1266 *
1267 * This can be called by the "eventd" kernel thread. That is process
1268 * synchronous but doesn't hold any locks, so we need to make sure we
1269 * have the appropriate locks for what we're doing.
1270 *
1271 * The hangup event clears any pending redirections onto the hung up
1272 * device. It ensures future writes will error and it does the needed
1273 * line discipline hangup and signal delivery. The tty object itself
1274 * remains intact.
1275 *
1276 * Locking:
1277 * BKL
1278 * redirect lock for undoing redirection
1279 * file list lock for manipulating list of ttys
1280 * tty_ldisc_lock from called functions
1281 * termios_mutex resetting termios data
1282 * tasklist_lock to walk task list for hangup event
1283 * ->siglock to protect ->signal/->sighand
1284 */
1285 static void do_tty_hangup(struct work_struct *work)
1286 {
1287 struct tty_struct *tty =
1288 container_of(work, struct tty_struct, hangup_work);
1289 struct file * cons_filp = NULL;
1290 struct file *filp, *f = NULL;
1291 struct task_struct *p;
1292 struct tty_ldisc *ld;
1293 int closecount = 0, n;
1294
1295 if (!tty)
1296 return;
1297
1298 /* inuse_filps is protected by the single kernel lock */
1299 lock_kernel();
1300
1301 spin_lock(&redirect_lock);
1302 if (redirect && redirect->private_data == tty) {
1303 f = redirect;
1304 redirect = NULL;
1305 }
1306 spin_unlock(&redirect_lock);
1307
1308 check_tty_count(tty, "do_tty_hangup");
1309 file_list_lock();
1310 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1311 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1312 if (filp->f_op->write == redirected_tty_write)
1313 cons_filp = filp;
1314 if (filp->f_op->write != tty_write)
1315 continue;
1316 closecount++;
1317 tty_fasync(-1, filp, 0); /* can't block */
1318 filp->f_op = &hung_up_tty_fops;
1319 }
1320 file_list_unlock();
1321
1322 /* FIXME! What are the locking issues here? This may me overdoing things..
1323 * this question is especially important now that we've removed the irqlock. */
1324
1325 ld = tty_ldisc_ref(tty);
1326 if(ld != NULL) /* We may have no line discipline at this point */
1327 {
1328 if (ld->flush_buffer)
1329 ld->flush_buffer(tty);
1330 if (tty->driver->flush_buffer)
1331 tty->driver->flush_buffer(tty);
1332 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1333 ld->write_wakeup)
1334 ld->write_wakeup(tty);
1335 if (ld->hangup)
1336 ld->hangup(tty);
1337 }
1338
1339 /* FIXME: Once we trust the LDISC code better we can wait here for
1340 ldisc completion and fix the driver call race */
1341
1342 wake_up_interruptible(&tty->write_wait);
1343 wake_up_interruptible(&tty->read_wait);
1344
1345 /*
1346 * Shutdown the current line discipline, and reset it to
1347 * N_TTY.
1348 */
1349 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1350 tty_reset_termios(tty);
1351
1352 /* Defer ldisc switch */
1353 /* tty_deferred_ldisc_switch(N_TTY);
1354
1355 This should get done automatically when the port closes and
1356 tty_release is called */
1357
1358 read_lock(&tasklist_lock);
1359 if (tty->session) {
1360 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1361 spin_lock_irq(&p->sighand->siglock);
1362 if (p->signal->tty == tty)
1363 p->signal->tty = NULL;
1364 if (!p->signal->leader) {
1365 spin_unlock_irq(&p->sighand->siglock);
1366 continue;
1367 }
1368 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1369 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1370 put_pid(p->signal->tty_old_pgrp); /* A noop */
1371 if (tty->pgrp)
1372 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1373 spin_unlock_irq(&p->sighand->siglock);
1374 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1375 }
1376 read_unlock(&tasklist_lock);
1377
1378 tty->flags = 0;
1379 put_pid(tty->session);
1380 put_pid(tty->pgrp);
1381 tty->session = NULL;
1382 tty->pgrp = NULL;
1383 tty->ctrl_status = 0;
1384 /*
1385 * If one of the devices matches a console pointer, we
1386 * cannot just call hangup() because that will cause
1387 * tty->count and state->count to go out of sync.
1388 * So we just call close() the right number of times.
1389 */
1390 if (cons_filp) {
1391 if (tty->driver->close)
1392 for (n = 0; n < closecount; n++)
1393 tty->driver->close(tty, cons_filp);
1394 } else if (tty->driver->hangup)
1395 (tty->driver->hangup)(tty);
1396
1397 /* We don't want to have driver/ldisc interactions beyond
1398 the ones we did here. The driver layer expects no
1399 calls after ->hangup() from the ldisc side. However we
1400 can't yet guarantee all that */
1401
1402 set_bit(TTY_HUPPED, &tty->flags);
1403 if (ld) {
1404 tty_ldisc_enable(tty);
1405 tty_ldisc_deref(ld);
1406 }
1407 unlock_kernel();
1408 if (f)
1409 fput(f);
1410 }
1411
1412 /**
1413 * tty_hangup - trigger a hangup event
1414 * @tty: tty to hangup
1415 *
1416 * A carrier loss (virtual or otherwise) has occurred on this like
1417 * schedule a hangup sequence to run after this event.
1418 */
1419
1420 void tty_hangup(struct tty_struct * tty)
1421 {
1422 #ifdef TTY_DEBUG_HANGUP
1423 char buf[64];
1424
1425 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1426 #endif
1427 schedule_work(&tty->hangup_work);
1428 }
1429
1430 EXPORT_SYMBOL(tty_hangup);
1431
1432 /**
1433 * tty_vhangup - process vhangup
1434 * @tty: tty to hangup
1435 *
1436 * The user has asked via system call for the terminal to be hung up.
1437 * We do this synchronously so that when the syscall returns the process
1438 * is complete. That guarantee is neccessary for security reasons.
1439 */
1440
1441 void tty_vhangup(struct tty_struct * tty)
1442 {
1443 #ifdef TTY_DEBUG_HANGUP
1444 char buf[64];
1445
1446 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1447 #endif
1448 do_tty_hangup(&tty->hangup_work);
1449 }
1450 EXPORT_SYMBOL(tty_vhangup);
1451
1452 /**
1453 * tty_hung_up_p - was tty hung up
1454 * @filp: file pointer of tty
1455 *
1456 * Return true if the tty has been subject to a vhangup or a carrier
1457 * loss
1458 */
1459
1460 int tty_hung_up_p(struct file * filp)
1461 {
1462 return (filp->f_op == &hung_up_tty_fops);
1463 }
1464
1465 EXPORT_SYMBOL(tty_hung_up_p);
1466
1467 static void session_clear_tty(struct pid *session)
1468 {
1469 struct task_struct *p;
1470 do_each_pid_task(session, PIDTYPE_SID, p) {
1471 proc_clear_tty(p);
1472 } while_each_pid_task(session, PIDTYPE_SID, p);
1473 }
1474
1475 /**
1476 * disassociate_ctty - disconnect controlling tty
1477 * @on_exit: true if exiting so need to "hang up" the session
1478 *
1479 * This function is typically called only by the session leader, when
1480 * it wants to disassociate itself from its controlling tty.
1481 *
1482 * It performs the following functions:
1483 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1484 * (2) Clears the tty from being controlling the session
1485 * (3) Clears the controlling tty for all processes in the
1486 * session group.
1487 *
1488 * The argument on_exit is set to 1 if called when a process is
1489 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1490 *
1491 * Locking:
1492 * BKL is taken for hysterical raisins
1493 * tty_mutex is taken to protect tty
1494 * ->siglock is taken to protect ->signal/->sighand
1495 * tasklist_lock is taken to walk process list for sessions
1496 * ->siglock is taken to protect ->signal/->sighand
1497 */
1498
1499 void disassociate_ctty(int on_exit)
1500 {
1501 struct tty_struct *tty;
1502 struct pid *tty_pgrp = NULL;
1503
1504 lock_kernel();
1505
1506 mutex_lock(&tty_mutex);
1507 tty = get_current_tty();
1508 if (tty) {
1509 tty_pgrp = get_pid(tty->pgrp);
1510 mutex_unlock(&tty_mutex);
1511 /* XXX: here we race, there is nothing protecting tty */
1512 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1513 tty_vhangup(tty);
1514 } else if (on_exit) {
1515 struct pid *old_pgrp;
1516 spin_lock_irq(&current->sighand->siglock);
1517 old_pgrp = current->signal->tty_old_pgrp;
1518 current->signal->tty_old_pgrp = NULL;
1519 spin_unlock_irq(&current->sighand->siglock);
1520 if (old_pgrp) {
1521 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1522 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1523 put_pid(old_pgrp);
1524 }
1525 mutex_unlock(&tty_mutex);
1526 unlock_kernel();
1527 return;
1528 }
1529 if (tty_pgrp) {
1530 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1531 if (!on_exit)
1532 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1533 put_pid(tty_pgrp);
1534 }
1535
1536 spin_lock_irq(&current->sighand->siglock);
1537 tty_pgrp = current->signal->tty_old_pgrp;
1538 current->signal->tty_old_pgrp = NULL;
1539 spin_unlock_irq(&current->sighand->siglock);
1540 put_pid(tty_pgrp);
1541
1542 mutex_lock(&tty_mutex);
1543 /* It is possible that do_tty_hangup has free'd this tty */
1544 tty = get_current_tty();
1545 if (tty) {
1546 put_pid(tty->session);
1547 put_pid(tty->pgrp);
1548 tty->session = NULL;
1549 tty->pgrp = NULL;
1550 } else {
1551 #ifdef TTY_DEBUG_HANGUP
1552 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1553 " = NULL", tty);
1554 #endif
1555 }
1556 mutex_unlock(&tty_mutex);
1557
1558 /* Now clear signal->tty under the lock */
1559 read_lock(&tasklist_lock);
1560 session_clear_tty(task_session(current));
1561 read_unlock(&tasklist_lock);
1562 unlock_kernel();
1563 }
1564
1565
1566 /**
1567 * stop_tty - propogate flow control
1568 * @tty: tty to stop
1569 *
1570 * Perform flow control to the driver. For PTY/TTY pairs we
1571 * must also propogate the TIOCKPKT status. May be called
1572 * on an already stopped device and will not re-call the driver
1573 * method.
1574 *
1575 * This functionality is used by both the line disciplines for
1576 * halting incoming flow and by the driver. It may therefore be
1577 * called from any context, may be under the tty atomic_write_lock
1578 * but not always.
1579 *
1580 * Locking:
1581 * Broken. Relies on BKL which is unsafe here.
1582 */
1583
1584 void stop_tty(struct tty_struct *tty)
1585 {
1586 if (tty->stopped)
1587 return;
1588 tty->stopped = 1;
1589 if (tty->link && tty->link->packet) {
1590 tty->ctrl_status &= ~TIOCPKT_START;
1591 tty->ctrl_status |= TIOCPKT_STOP;
1592 wake_up_interruptible(&tty->link->read_wait);
1593 }
1594 if (tty->driver->stop)
1595 (tty->driver->stop)(tty);
1596 }
1597
1598 EXPORT_SYMBOL(stop_tty);
1599
1600 /**
1601 * start_tty - propogate flow control
1602 * @tty: tty to start
1603 *
1604 * Start a tty that has been stopped if at all possible. Perform
1605 * any neccessary wakeups and propogate the TIOCPKT status. If this
1606 * is the tty was previous stopped and is being started then the
1607 * driver start method is invoked and the line discipline woken.
1608 *
1609 * Locking:
1610 * Broken. Relies on BKL which is unsafe here.
1611 */
1612
1613 void start_tty(struct tty_struct *tty)
1614 {
1615 if (!tty->stopped || tty->flow_stopped)
1616 return;
1617 tty->stopped = 0;
1618 if (tty->link && tty->link->packet) {
1619 tty->ctrl_status &= ~TIOCPKT_STOP;
1620 tty->ctrl_status |= TIOCPKT_START;
1621 wake_up_interruptible(&tty->link->read_wait);
1622 }
1623 if (tty->driver->start)
1624 (tty->driver->start)(tty);
1625
1626 /* If we have a running line discipline it may need kicking */
1627 tty_wakeup(tty);
1628 }
1629
1630 EXPORT_SYMBOL(start_tty);
1631
1632 /**
1633 * tty_read - read method for tty device files
1634 * @file: pointer to tty file
1635 * @buf: user buffer
1636 * @count: size of user buffer
1637 * @ppos: unused
1638 *
1639 * Perform the read system call function on this terminal device. Checks
1640 * for hung up devices before calling the line discipline method.
1641 *
1642 * Locking:
1643 * Locks the line discipline internally while needed
1644 * For historical reasons the line discipline read method is
1645 * invoked under the BKL. This will go away in time so do not rely on it
1646 * in new code. Multiple read calls may be outstanding in parallel.
1647 */
1648
1649 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1650 loff_t *ppos)
1651 {
1652 int i;
1653 struct tty_struct * tty;
1654 struct inode *inode;
1655 struct tty_ldisc *ld;
1656
1657 tty = (struct tty_struct *)file->private_data;
1658 inode = file->f_path.dentry->d_inode;
1659 if (tty_paranoia_check(tty, inode, "tty_read"))
1660 return -EIO;
1661 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1662 return -EIO;
1663
1664 /* We want to wait for the line discipline to sort out in this
1665 situation */
1666 ld = tty_ldisc_ref_wait(tty);
1667 lock_kernel();
1668 if (ld->read)
1669 i = (ld->read)(tty,file,buf,count);
1670 else
1671 i = -EIO;
1672 tty_ldisc_deref(ld);
1673 unlock_kernel();
1674 if (i > 0)
1675 inode->i_atime = current_fs_time(inode->i_sb);
1676 return i;
1677 }
1678
1679 /*
1680 * Split writes up in sane blocksizes to avoid
1681 * denial-of-service type attacks
1682 */
1683 static inline ssize_t do_tty_write(
1684 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1685 struct tty_struct *tty,
1686 struct file *file,
1687 const char __user *buf,
1688 size_t count)
1689 {
1690 ssize_t ret = 0, written = 0;
1691 unsigned int chunk;
1692
1693 /* FIXME: O_NDELAY ... */
1694 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1695 return -ERESTARTSYS;
1696 }
1697
1698 /*
1699 * We chunk up writes into a temporary buffer. This
1700 * simplifies low-level drivers immensely, since they
1701 * don't have locking issues and user mode accesses.
1702 *
1703 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1704 * big chunk-size..
1705 *
1706 * The default chunk-size is 2kB, because the NTTY
1707 * layer has problems with bigger chunks. It will
1708 * claim to be able to handle more characters than
1709 * it actually does.
1710 *
1711 * FIXME: This can probably go away now except that 64K chunks
1712 * are too likely to fail unless switched to vmalloc...
1713 */
1714 chunk = 2048;
1715 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1716 chunk = 65536;
1717 if (count < chunk)
1718 chunk = count;
1719
1720 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1721 if (tty->write_cnt < chunk) {
1722 unsigned char *buf;
1723
1724 if (chunk < 1024)
1725 chunk = 1024;
1726
1727 buf = kmalloc(chunk, GFP_KERNEL);
1728 if (!buf) {
1729 mutex_unlock(&tty->atomic_write_lock);
1730 return -ENOMEM;
1731 }
1732 kfree(tty->write_buf);
1733 tty->write_cnt = chunk;
1734 tty->write_buf = buf;
1735 }
1736
1737 /* Do the write .. */
1738 for (;;) {
1739 size_t size = count;
1740 if (size > chunk)
1741 size = chunk;
1742 ret = -EFAULT;
1743 if (copy_from_user(tty->write_buf, buf, size))
1744 break;
1745 lock_kernel();
1746 ret = write(tty, file, tty->write_buf, size);
1747 unlock_kernel();
1748 if (ret <= 0)
1749 break;
1750 written += ret;
1751 buf += ret;
1752 count -= ret;
1753 if (!count)
1754 break;
1755 ret = -ERESTARTSYS;
1756 if (signal_pending(current))
1757 break;
1758 cond_resched();
1759 }
1760 if (written) {
1761 struct inode *inode = file->f_path.dentry->d_inode;
1762 inode->i_mtime = current_fs_time(inode->i_sb);
1763 ret = written;
1764 }
1765 mutex_unlock(&tty->atomic_write_lock);
1766 return ret;
1767 }
1768
1769
1770 /**
1771 * tty_write - write method for tty device file
1772 * @file: tty file pointer
1773 * @buf: user data to write
1774 * @count: bytes to write
1775 * @ppos: unused
1776 *
1777 * Write data to a tty device via the line discipline.
1778 *
1779 * Locking:
1780 * Locks the line discipline as required
1781 * Writes to the tty driver are serialized by the atomic_write_lock
1782 * and are then processed in chunks to the device. The line discipline
1783 * write method will not be involked in parallel for each device
1784 * The line discipline write method is called under the big
1785 * kernel lock for historical reasons. New code should not rely on this.
1786 */
1787
1788 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1789 loff_t *ppos)
1790 {
1791 struct tty_struct * tty;
1792 struct inode *inode = file->f_path.dentry->d_inode;
1793 ssize_t ret;
1794 struct tty_ldisc *ld;
1795
1796 tty = (struct tty_struct *)file->private_data;
1797 if (tty_paranoia_check(tty, inode, "tty_write"))
1798 return -EIO;
1799 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1800 return -EIO;
1801
1802 ld = tty_ldisc_ref_wait(tty);
1803 if (!ld->write)
1804 ret = -EIO;
1805 else
1806 ret = do_tty_write(ld->write, tty, file, buf, count);
1807 tty_ldisc_deref(ld);
1808 return ret;
1809 }
1810
1811 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1812 loff_t *ppos)
1813 {
1814 struct file *p = NULL;
1815
1816 spin_lock(&redirect_lock);
1817 if (redirect) {
1818 get_file(redirect);
1819 p = redirect;
1820 }
1821 spin_unlock(&redirect_lock);
1822
1823 if (p) {
1824 ssize_t res;
1825 res = vfs_write(p, buf, count, &p->f_pos);
1826 fput(p);
1827 return res;
1828 }
1829
1830 return tty_write(file, buf, count, ppos);
1831 }
1832
1833 static char ptychar[] = "pqrstuvwxyzabcde";
1834
1835 /**
1836 * pty_line_name - generate name for a pty
1837 * @driver: the tty driver in use
1838 * @index: the minor number
1839 * @p: output buffer of at least 6 bytes
1840 *
1841 * Generate a name from a driver reference and write it to the output
1842 * buffer.
1843 *
1844 * Locking: None
1845 */
1846 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1847 {
1848 int i = index + driver->name_base;
1849 /* ->name is initialized to "ttyp", but "tty" is expected */
1850 sprintf(p, "%s%c%x",
1851 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1852 ptychar[i >> 4 & 0xf], i & 0xf);
1853 }
1854
1855 /**
1856 * pty_line_name - generate name for a tty
1857 * @driver: the tty driver in use
1858 * @index: the minor number
1859 * @p: output buffer of at least 7 bytes
1860 *
1861 * Generate a name from a driver reference and write it to the output
1862 * buffer.
1863 *
1864 * Locking: None
1865 */
1866 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1867 {
1868 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1869 }
1870
1871 /**
1872 * init_dev - initialise a tty device
1873 * @driver: tty driver we are opening a device on
1874 * @idx: device index
1875 * @tty: returned tty structure
1876 *
1877 * Prepare a tty device. This may not be a "new" clean device but
1878 * could also be an active device. The pty drivers require special
1879 * handling because of this.
1880 *
1881 * Locking:
1882 * The function is called under the tty_mutex, which
1883 * protects us from the tty struct or driver itself going away.
1884 *
1885 * On exit the tty device has the line discipline attached and
1886 * a reference count of 1. If a pair was created for pty/tty use
1887 * and the other was a pty master then it too has a reference count of 1.
1888 *
1889 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1890 * failed open. The new code protects the open with a mutex, so it's
1891 * really quite straightforward. The mutex locking can probably be
1892 * relaxed for the (most common) case of reopening a tty.
1893 */
1894
1895 static int init_dev(struct tty_driver *driver, int idx,
1896 struct tty_struct **ret_tty)
1897 {
1898 struct tty_struct *tty, *o_tty;
1899 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1900 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1901 int retval = 0;
1902
1903 /* check whether we're reopening an existing tty */
1904 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1905 tty = devpts_get_tty(idx);
1906 /*
1907 * If we don't have a tty here on a slave open, it's because
1908 * the master already started the close process and there's
1909 * no relation between devpts file and tty anymore.
1910 */
1911 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1912 retval = -EIO;
1913 goto end_init;
1914 }
1915 /*
1916 * It's safe from now on because init_dev() is called with
1917 * tty_mutex held and release_dev() won't change tty->count
1918 * or tty->flags without having to grab tty_mutex
1919 */
1920 if (tty && driver->subtype == PTY_TYPE_MASTER)
1921 tty = tty->link;
1922 } else {
1923 tty = driver->ttys[idx];
1924 }
1925 if (tty) goto fast_track;
1926
1927 /*
1928 * First time open is complex, especially for PTY devices.
1929 * This code guarantees that either everything succeeds and the
1930 * TTY is ready for operation, or else the table slots are vacated
1931 * and the allocated memory released. (Except that the termios
1932 * and locked termios may be retained.)
1933 */
1934
1935 if (!try_module_get(driver->owner)) {
1936 retval = -ENODEV;
1937 goto end_init;
1938 }
1939
1940 o_tty = NULL;
1941 tp = o_tp = NULL;
1942 ltp = o_ltp = NULL;
1943
1944 tty = alloc_tty_struct();
1945 if(!tty)
1946 goto fail_no_mem;
1947 initialize_tty_struct(tty);
1948 tty->driver = driver;
1949 tty->index = idx;
1950 tty_line_name(driver, idx, tty->name);
1951
1952 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1953 tp_loc = &tty->termios;
1954 ltp_loc = &tty->termios_locked;
1955 } else {
1956 tp_loc = &driver->termios[idx];
1957 ltp_loc = &driver->termios_locked[idx];
1958 }
1959
1960 if (!*tp_loc) {
1961 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1962 GFP_KERNEL);
1963 if (!tp)
1964 goto free_mem_out;
1965 *tp = driver->init_termios;
1966 }
1967
1968 if (!*ltp_loc) {
1969 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1970 GFP_KERNEL);
1971 if (!ltp)
1972 goto free_mem_out;
1973 memset(ltp, 0, sizeof(struct ktermios));
1974 }
1975
1976 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1977 o_tty = alloc_tty_struct();
1978 if (!o_tty)
1979 goto free_mem_out;
1980 initialize_tty_struct(o_tty);
1981 o_tty->driver = driver->other;
1982 o_tty->index = idx;
1983 tty_line_name(driver->other, idx, o_tty->name);
1984
1985 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1986 o_tp_loc = &o_tty->termios;
1987 o_ltp_loc = &o_tty->termios_locked;
1988 } else {
1989 o_tp_loc = &driver->other->termios[idx];
1990 o_ltp_loc = &driver->other->termios_locked[idx];
1991 }
1992
1993 if (!*o_tp_loc) {
1994 o_tp = (struct ktermios *)
1995 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1996 if (!o_tp)
1997 goto free_mem_out;
1998 *o_tp = driver->other->init_termios;
1999 }
2000
2001 if (!*o_ltp_loc) {
2002 o_ltp = (struct ktermios *)
2003 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2004 if (!o_ltp)
2005 goto free_mem_out;
2006 memset(o_ltp, 0, sizeof(struct ktermios));
2007 }
2008
2009 /*
2010 * Everything allocated ... set up the o_tty structure.
2011 */
2012 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2013 driver->other->ttys[idx] = o_tty;
2014 }
2015 if (!*o_tp_loc)
2016 *o_tp_loc = o_tp;
2017 if (!*o_ltp_loc)
2018 *o_ltp_loc = o_ltp;
2019 o_tty->termios = *o_tp_loc;
2020 o_tty->termios_locked = *o_ltp_loc;
2021 driver->other->refcount++;
2022 if (driver->subtype == PTY_TYPE_MASTER)
2023 o_tty->count++;
2024
2025 /* Establish the links in both directions */
2026 tty->link = o_tty;
2027 o_tty->link = tty;
2028 }
2029
2030 /*
2031 * All structures have been allocated, so now we install them.
2032 * Failures after this point use release_tty to clean up, so
2033 * there's no need to null out the local pointers.
2034 */
2035 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2036 driver->ttys[idx] = tty;
2037 }
2038
2039 if (!*tp_loc)
2040 *tp_loc = tp;
2041 if (!*ltp_loc)
2042 *ltp_loc = ltp;
2043 tty->termios = *tp_loc;
2044 tty->termios_locked = *ltp_loc;
2045 /* Compatibility until drivers always set this */
2046 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2047 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2048 driver->refcount++;
2049 tty->count++;
2050
2051 /*
2052 * Structures all installed ... call the ldisc open routines.
2053 * If we fail here just call release_tty to clean up. No need
2054 * to decrement the use counts, as release_tty doesn't care.
2055 */
2056
2057 if (tty->ldisc.open) {
2058 retval = (tty->ldisc.open)(tty);
2059 if (retval)
2060 goto release_mem_out;
2061 }
2062 if (o_tty && o_tty->ldisc.open) {
2063 retval = (o_tty->ldisc.open)(o_tty);
2064 if (retval) {
2065 if (tty->ldisc.close)
2066 (tty->ldisc.close)(tty);
2067 goto release_mem_out;
2068 }
2069 tty_ldisc_enable(o_tty);
2070 }
2071 tty_ldisc_enable(tty);
2072 goto success;
2073
2074 /*
2075 * This fast open can be used if the tty is already open.
2076 * No memory is allocated, and the only failures are from
2077 * attempting to open a closing tty or attempting multiple
2078 * opens on a pty master.
2079 */
2080 fast_track:
2081 if (test_bit(TTY_CLOSING, &tty->flags)) {
2082 retval = -EIO;
2083 goto end_init;
2084 }
2085 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2086 driver->subtype == PTY_TYPE_MASTER) {
2087 /*
2088 * special case for PTY masters: only one open permitted,
2089 * and the slave side open count is incremented as well.
2090 */
2091 if (tty->count) {
2092 retval = -EIO;
2093 goto end_init;
2094 }
2095 tty->link->count++;
2096 }
2097 tty->count++;
2098 tty->driver = driver; /* N.B. why do this every time?? */
2099
2100 /* FIXME */
2101 if(!test_bit(TTY_LDISC, &tty->flags))
2102 printk(KERN_ERR "init_dev but no ldisc\n");
2103 success:
2104 *ret_tty = tty;
2105
2106 /* All paths come through here to release the mutex */
2107 end_init:
2108 return retval;
2109
2110 /* Release locally allocated memory ... nothing placed in slots */
2111 free_mem_out:
2112 kfree(o_tp);
2113 if (o_tty)
2114 free_tty_struct(o_tty);
2115 kfree(ltp);
2116 kfree(tp);
2117 free_tty_struct(tty);
2118
2119 fail_no_mem:
2120 module_put(driver->owner);
2121 retval = -ENOMEM;
2122 goto end_init;
2123
2124 /* call the tty release_tty routine to clean out this slot */
2125 release_mem_out:
2126 if (printk_ratelimit())
2127 printk(KERN_INFO "init_dev: ldisc open failed, "
2128 "clearing slot %d\n", idx);
2129 release_tty(tty, idx);
2130 goto end_init;
2131 }
2132
2133 /**
2134 * release_one_tty - release tty structure memory
2135 *
2136 * Releases memory associated with a tty structure, and clears out the
2137 * driver table slots. This function is called when a device is no longer
2138 * in use. It also gets called when setup of a device fails.
2139 *
2140 * Locking:
2141 * tty_mutex - sometimes only
2142 * takes the file list lock internally when working on the list
2143 * of ttys that the driver keeps.
2144 * FIXME: should we require tty_mutex is held here ??
2145 */
2146 static void release_one_tty(struct tty_struct *tty, int idx)
2147 {
2148 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2149 struct ktermios *tp;
2150
2151 if (!devpts)
2152 tty->driver->ttys[idx] = NULL;
2153
2154 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2155 tp = tty->termios;
2156 if (!devpts)
2157 tty->driver->termios[idx] = NULL;
2158 kfree(tp);
2159
2160 tp = tty->termios_locked;
2161 if (!devpts)
2162 tty->driver->termios_locked[idx] = NULL;
2163 kfree(tp);
2164 }
2165
2166
2167 tty->magic = 0;
2168 tty->driver->refcount--;
2169
2170 file_list_lock();
2171 list_del_init(&tty->tty_files);
2172 file_list_unlock();
2173
2174 free_tty_struct(tty);
2175 }
2176
2177 /**
2178 * release_tty - release tty structure memory
2179 *
2180 * Release both @tty and a possible linked partner (think pty pair),
2181 * and decrement the refcount of the backing module.
2182 *
2183 * Locking:
2184 * tty_mutex - sometimes only
2185 * takes the file list lock internally when working on the list
2186 * of ttys that the driver keeps.
2187 * FIXME: should we require tty_mutex is held here ??
2188 */
2189 static void release_tty(struct tty_struct *tty, int idx)
2190 {
2191 struct tty_driver *driver = tty->driver;
2192
2193 if (tty->link)
2194 release_one_tty(tty->link, idx);
2195 release_one_tty(tty, idx);
2196 module_put(driver->owner);
2197 }
2198
2199 /*
2200 * Even releasing the tty structures is a tricky business.. We have
2201 * to be very careful that the structures are all released at the
2202 * same time, as interrupts might otherwise get the wrong pointers.
2203 *
2204 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2205 * lead to double frees or releasing memory still in use.
2206 */
2207 static void release_dev(struct file * filp)
2208 {
2209 struct tty_struct *tty, *o_tty;
2210 int pty_master, tty_closing, o_tty_closing, do_sleep;
2211 int devpts;
2212 int idx;
2213 char buf[64];
2214 unsigned long flags;
2215
2216 tty = (struct tty_struct *)filp->private_data;
2217 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2218 return;
2219
2220 check_tty_count(tty, "release_dev");
2221
2222 tty_fasync(-1, filp, 0);
2223
2224 idx = tty->index;
2225 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2226 tty->driver->subtype == PTY_TYPE_MASTER);
2227 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2228 o_tty = tty->link;
2229
2230 #ifdef TTY_PARANOIA_CHECK
2231 if (idx < 0 || idx >= tty->driver->num) {
2232 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2233 "free (%s)\n", tty->name);
2234 return;
2235 }
2236 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2237 if (tty != tty->driver->ttys[idx]) {
2238 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2239 "for (%s)\n", idx, tty->name);
2240 return;
2241 }
2242 if (tty->termios != tty->driver->termios[idx]) {
2243 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2244 "for (%s)\n",
2245 idx, tty->name);
2246 return;
2247 }
2248 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2249 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2250 "termios_locked for (%s)\n",
2251 idx, tty->name);
2252 return;
2253 }
2254 }
2255 #endif
2256
2257 #ifdef TTY_DEBUG_HANGUP
2258 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2259 tty_name(tty, buf), tty->count);
2260 #endif
2261
2262 #ifdef TTY_PARANOIA_CHECK
2263 if (tty->driver->other &&
2264 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2265 if (o_tty != tty->driver->other->ttys[idx]) {
2266 printk(KERN_DEBUG "release_dev: other->table[%d] "
2267 "not o_tty for (%s)\n",
2268 idx, tty->name);
2269 return;
2270 }
2271 if (o_tty->termios != tty->driver->other->termios[idx]) {
2272 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2273 "not o_termios for (%s)\n",
2274 idx, tty->name);
2275 return;
2276 }
2277 if (o_tty->termios_locked !=
2278 tty->driver->other->termios_locked[idx]) {
2279 printk(KERN_DEBUG "release_dev: other->termios_locked["
2280 "%d] not o_termios_locked for (%s)\n",
2281 idx, tty->name);
2282 return;
2283 }
2284 if (o_tty->link != tty) {
2285 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2286 return;
2287 }
2288 }
2289 #endif
2290 if (tty->driver->close)
2291 tty->driver->close(tty, filp);
2292
2293 /*
2294 * Sanity check: if tty->count is going to zero, there shouldn't be
2295 * any waiters on tty->read_wait or tty->write_wait. We test the
2296 * wait queues and kick everyone out _before_ actually starting to
2297 * close. This ensures that we won't block while releasing the tty
2298 * structure.
2299 *
2300 * The test for the o_tty closing is necessary, since the master and
2301 * slave sides may close in any order. If the slave side closes out
2302 * first, its count will be one, since the master side holds an open.
2303 * Thus this test wouldn't be triggered at the time the slave closes,
2304 * so we do it now.
2305 *
2306 * Note that it's possible for the tty to be opened again while we're
2307 * flushing out waiters. By recalculating the closing flags before
2308 * each iteration we avoid any problems.
2309 */
2310 while (1) {
2311 /* Guard against races with tty->count changes elsewhere and
2312 opens on /dev/tty */
2313
2314 mutex_lock(&tty_mutex);
2315 tty_closing = tty->count <= 1;
2316 o_tty_closing = o_tty &&
2317 (o_tty->count <= (pty_master ? 1 : 0));
2318 do_sleep = 0;
2319
2320 if (tty_closing) {
2321 if (waitqueue_active(&tty->read_wait)) {
2322 wake_up(&tty->read_wait);
2323 do_sleep++;
2324 }
2325 if (waitqueue_active(&tty->write_wait)) {
2326 wake_up(&tty->write_wait);
2327 do_sleep++;
2328 }
2329 }
2330 if (o_tty_closing) {
2331 if (waitqueue_active(&o_tty->read_wait)) {
2332 wake_up(&o_tty->read_wait);
2333 do_sleep++;
2334 }
2335 if (waitqueue_active(&o_tty->write_wait)) {
2336 wake_up(&o_tty->write_wait);
2337 do_sleep++;
2338 }
2339 }
2340 if (!do_sleep)
2341 break;
2342
2343 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2344 "active!\n", tty_name(tty, buf));
2345 mutex_unlock(&tty_mutex);
2346 schedule();
2347 }
2348
2349 /*
2350 * The closing flags are now consistent with the open counts on
2351 * both sides, and we've completed the last operation that could
2352 * block, so it's safe to proceed with closing.
2353 */
2354 if (pty_master) {
2355 if (--o_tty->count < 0) {
2356 printk(KERN_WARNING "release_dev: bad pty slave count "
2357 "(%d) for %s\n",
2358 o_tty->count, tty_name(o_tty, buf));
2359 o_tty->count = 0;
2360 }
2361 }
2362 if (--tty->count < 0) {
2363 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2364 tty->count, tty_name(tty, buf));
2365 tty->count = 0;
2366 }
2367
2368 /*
2369 * We've decremented tty->count, so we need to remove this file
2370 * descriptor off the tty->tty_files list; this serves two
2371 * purposes:
2372 * - check_tty_count sees the correct number of file descriptors
2373 * associated with this tty.
2374 * - do_tty_hangup no longer sees this file descriptor as
2375 * something that needs to be handled for hangups.
2376 */
2377 file_kill(filp);
2378 filp->private_data = NULL;
2379
2380 /*
2381 * Perform some housekeeping before deciding whether to return.
2382 *
2383 * Set the TTY_CLOSING flag if this was the last open. In the
2384 * case of a pty we may have to wait around for the other side
2385 * to close, and TTY_CLOSING makes sure we can't be reopened.
2386 */
2387 if(tty_closing)
2388 set_bit(TTY_CLOSING, &tty->flags);
2389 if(o_tty_closing)
2390 set_bit(TTY_CLOSING, &o_tty->flags);
2391
2392 /*
2393 * If _either_ side is closing, make sure there aren't any
2394 * processes that still think tty or o_tty is their controlling
2395 * tty.
2396 */
2397 if (tty_closing || o_tty_closing) {
2398 read_lock(&tasklist_lock);
2399 session_clear_tty(tty->session);
2400 if (o_tty)
2401 session_clear_tty(o_tty->session);
2402 read_unlock(&tasklist_lock);
2403 }
2404
2405 mutex_unlock(&tty_mutex);
2406
2407 /* check whether both sides are closing ... */
2408 if (!tty_closing || (o_tty && !o_tty_closing))
2409 return;
2410
2411 #ifdef TTY_DEBUG_HANGUP
2412 printk(KERN_DEBUG "freeing tty structure...");
2413 #endif
2414 /*
2415 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2416 * kill any delayed work. As this is the final close it does not
2417 * race with the set_ldisc code path.
2418 */
2419 clear_bit(TTY_LDISC, &tty->flags);
2420 cancel_delayed_work(&tty->buf.work);
2421
2422 /*
2423 * Wait for ->hangup_work and ->buf.work handlers to terminate
2424 */
2425
2426 flush_scheduled_work();
2427
2428 /*
2429 * Wait for any short term users (we know they are just driver
2430 * side waiters as the file is closing so user count on the file
2431 * side is zero.
2432 */
2433 spin_lock_irqsave(&tty_ldisc_lock, flags);
2434 while(tty->ldisc.refcount)
2435 {
2436 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2437 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2438 spin_lock_irqsave(&tty_ldisc_lock, flags);
2439 }
2440 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2441 /*
2442 * Shutdown the current line discipline, and reset it to N_TTY.
2443 * N.B. why reset ldisc when we're releasing the memory??
2444 *
2445 * FIXME: this MUST get fixed for the new reflocking
2446 */
2447 if (tty->ldisc.close)
2448 (tty->ldisc.close)(tty);
2449 tty_ldisc_put(tty->ldisc.num);
2450
2451 /*
2452 * Switch the line discipline back
2453 */
2454 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2455 tty_set_termios_ldisc(tty,N_TTY);
2456 if (o_tty) {
2457 /* FIXME: could o_tty be in setldisc here ? */
2458 clear_bit(TTY_LDISC, &o_tty->flags);
2459 if (o_tty->ldisc.close)
2460 (o_tty->ldisc.close)(o_tty);
2461 tty_ldisc_put(o_tty->ldisc.num);
2462 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2463 tty_set_termios_ldisc(o_tty,N_TTY);
2464 }
2465 /*
2466 * The release_tty function takes care of the details of clearing
2467 * the slots and preserving the termios structure.
2468 */
2469 release_tty(tty, idx);
2470
2471 #ifdef CONFIG_UNIX98_PTYS
2472 /* Make this pty number available for reallocation */
2473 if (devpts) {
2474 down(&allocated_ptys_lock);
2475 idr_remove(&allocated_ptys, idx);
2476 up(&allocated_ptys_lock);
2477 }
2478 #endif
2479
2480 }
2481
2482 /**
2483 * tty_open - open a tty device
2484 * @inode: inode of device file
2485 * @filp: file pointer to tty
2486 *
2487 * tty_open and tty_release keep up the tty count that contains the
2488 * number of opens done on a tty. We cannot use the inode-count, as
2489 * different inodes might point to the same tty.
2490 *
2491 * Open-counting is needed for pty masters, as well as for keeping
2492 * track of serial lines: DTR is dropped when the last close happens.
2493 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2494 *
2495 * The termios state of a pty is reset on first open so that
2496 * settings don't persist across reuse.
2497 *
2498 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2499 * tty->count should protect the rest.
2500 * ->siglock protects ->signal/->sighand
2501 */
2502
2503 static int tty_open(struct inode * inode, struct file * filp)
2504 {
2505 struct tty_struct *tty;
2506 int noctty, retval;
2507 struct tty_driver *driver;
2508 int index;
2509 dev_t device = inode->i_rdev;
2510 unsigned short saved_flags = filp->f_flags;
2511 struct pid *old_pgrp;
2512
2513 nonseekable_open(inode, filp);
2514
2515 retry_open:
2516 noctty = filp->f_flags & O_NOCTTY;
2517 index = -1;
2518 retval = 0;
2519
2520 mutex_lock(&tty_mutex);
2521
2522 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2523 tty = get_current_tty();
2524 if (!tty) {
2525 mutex_unlock(&tty_mutex);
2526 return -ENXIO;
2527 }
2528 driver = tty->driver;
2529 index = tty->index;
2530 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2531 /* noctty = 1; */
2532 goto got_driver;
2533 }
2534 #ifdef CONFIG_VT
2535 if (device == MKDEV(TTY_MAJOR,0)) {
2536 extern struct tty_driver *console_driver;
2537 driver = console_driver;
2538 index = fg_console;
2539 noctty = 1;
2540 goto got_driver;
2541 }
2542 #endif
2543 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2544 driver = console_device(&index);
2545 if (driver) {
2546 /* Don't let /dev/console block */
2547 filp->f_flags |= O_NONBLOCK;
2548 noctty = 1;
2549 goto got_driver;
2550 }
2551 mutex_unlock(&tty_mutex);
2552 return -ENODEV;
2553 }
2554
2555 driver = get_tty_driver(device, &index);
2556 if (!driver) {
2557 mutex_unlock(&tty_mutex);
2558 return -ENODEV;
2559 }
2560 got_driver:
2561 retval = init_dev(driver, index, &tty);
2562 mutex_unlock(&tty_mutex);
2563 if (retval)
2564 return retval;
2565
2566 filp->private_data = tty;
2567 file_move(filp, &tty->tty_files);
2568 check_tty_count(tty, "tty_open");
2569 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2570 tty->driver->subtype == PTY_TYPE_MASTER)
2571 noctty = 1;
2572 #ifdef TTY_DEBUG_HANGUP
2573 printk(KERN_DEBUG "opening %s...", tty->name);
2574 #endif
2575 if (!retval) {
2576 if (tty->driver->open)
2577 retval = tty->driver->open(tty, filp);
2578 else
2579 retval = -ENODEV;
2580 }
2581 filp->f_flags = saved_flags;
2582
2583 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2584 retval = -EBUSY;
2585
2586 if (retval) {
2587 #ifdef TTY_DEBUG_HANGUP
2588 printk(KERN_DEBUG "error %d in opening %s...", retval,
2589 tty->name);
2590 #endif
2591 release_dev(filp);
2592 if (retval != -ERESTARTSYS)
2593 return retval;
2594 if (signal_pending(current))
2595 return retval;
2596 schedule();
2597 /*
2598 * Need to reset f_op in case a hangup happened.
2599 */
2600 if (filp->f_op == &hung_up_tty_fops)
2601 filp->f_op = &tty_fops;
2602 goto retry_open;
2603 }
2604
2605 old_pgrp = NULL;
2606 mutex_lock(&tty_mutex);
2607 spin_lock_irq(&current->sighand->siglock);
2608 if (!noctty &&
2609 current->signal->leader &&
2610 !current->signal->tty &&
2611 tty->session == NULL)
2612 old_pgrp = __proc_set_tty(current, tty);
2613 spin_unlock_irq(&current->sighand->siglock);
2614 mutex_unlock(&tty_mutex);
2615 put_pid(old_pgrp);
2616 return 0;
2617 }
2618
2619 #ifdef CONFIG_UNIX98_PTYS
2620 /**
2621 * ptmx_open - open a unix 98 pty master
2622 * @inode: inode of device file
2623 * @filp: file pointer to tty
2624 *
2625 * Allocate a unix98 pty master device from the ptmx driver.
2626 *
2627 * Locking: tty_mutex protects theinit_dev work. tty->count should
2628 protect the rest.
2629 * allocated_ptys_lock handles the list of free pty numbers
2630 */
2631
2632 static int ptmx_open(struct inode * inode, struct file * filp)
2633 {
2634 struct tty_struct *tty;
2635 int retval;
2636 int index;
2637 int idr_ret;
2638
2639 nonseekable_open(inode, filp);
2640
2641 /* find a device that is not in use. */
2642 down(&allocated_ptys_lock);
2643 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2644 up(&allocated_ptys_lock);
2645 return -ENOMEM;
2646 }
2647 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2648 if (idr_ret < 0) {
2649 up(&allocated_ptys_lock);
2650 if (idr_ret == -EAGAIN)
2651 return -ENOMEM;
2652 return -EIO;
2653 }
2654 if (index >= pty_limit) {
2655 idr_remove(&allocated_ptys, index);
2656 up(&allocated_ptys_lock);
2657 return -EIO;
2658 }
2659 up(&allocated_ptys_lock);
2660
2661 mutex_lock(&tty_mutex);
2662 retval = init_dev(ptm_driver, index, &tty);
2663 mutex_unlock(&tty_mutex);
2664
2665 if (retval)
2666 goto out;
2667
2668 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2669 filp->private_data = tty;
2670 file_move(filp, &tty->tty_files);
2671
2672 retval = -ENOMEM;
2673 if (devpts_pty_new(tty->link))
2674 goto out1;
2675
2676 check_tty_count(tty, "tty_open");
2677 retval = ptm_driver->open(tty, filp);
2678 if (!retval)
2679 return 0;
2680 out1:
2681 release_dev(filp);
2682 return retval;
2683 out:
2684 down(&allocated_ptys_lock);
2685 idr_remove(&allocated_ptys, index);
2686 up(&allocated_ptys_lock);
2687 return retval;
2688 }
2689 #endif
2690
2691 /**
2692 * tty_release - vfs callback for close
2693 * @inode: inode of tty
2694 * @filp: file pointer for handle to tty
2695 *
2696 * Called the last time each file handle is closed that references
2697 * this tty. There may however be several such references.
2698 *
2699 * Locking:
2700 * Takes bkl. See release_dev
2701 */
2702
2703 static int tty_release(struct inode * inode, struct file * filp)
2704 {
2705 lock_kernel();
2706 release_dev(filp);
2707 unlock_kernel();
2708 return 0;
2709 }
2710
2711 /**
2712 * tty_poll - check tty status
2713 * @filp: file being polled
2714 * @wait: poll wait structures to update
2715 *
2716 * Call the line discipline polling method to obtain the poll
2717 * status of the device.
2718 *
2719 * Locking: locks called line discipline but ldisc poll method
2720 * may be re-entered freely by other callers.
2721 */
2722
2723 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2724 {
2725 struct tty_struct * tty;
2726 struct tty_ldisc *ld;
2727 int ret = 0;
2728
2729 tty = (struct tty_struct *)filp->private_data;
2730 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2731 return 0;
2732
2733 ld = tty_ldisc_ref_wait(tty);
2734 if (ld->poll)
2735 ret = (ld->poll)(tty, filp, wait);
2736 tty_ldisc_deref(ld);
2737 return ret;
2738 }
2739
2740 static int tty_fasync(int fd, struct file * filp, int on)
2741 {
2742 struct tty_struct * tty;
2743 int retval;
2744
2745 tty = (struct tty_struct *)filp->private_data;
2746 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2747 return 0;
2748
2749 retval = fasync_helper(fd, filp, on, &tty->fasync);
2750 if (retval <= 0)
2751 return retval;
2752
2753 if (on) {
2754 enum pid_type type;
2755 struct pid *pid;
2756 if (!waitqueue_active(&tty->read_wait))
2757 tty->minimum_to_wake = 1;
2758 if (tty->pgrp) {
2759 pid = tty->pgrp;
2760 type = PIDTYPE_PGID;
2761 } else {
2762 pid = task_pid(current);
2763 type = PIDTYPE_PID;
2764 }
2765 retval = __f_setown(filp, pid, type, 0);
2766 if (retval)
2767 return retval;
2768 } else {
2769 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2770 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2771 }
2772 return 0;
2773 }
2774
2775 /**
2776 * tiocsti - fake input character
2777 * @tty: tty to fake input into
2778 * @p: pointer to character
2779 *
2780 * Fake input to a tty device. Does the neccessary locking and
2781 * input management.
2782 *
2783 * FIXME: does not honour flow control ??
2784 *
2785 * Locking:
2786 * Called functions take tty_ldisc_lock
2787 * current->signal->tty check is safe without locks
2788 *
2789 * FIXME: may race normal receive processing
2790 */
2791
2792 static int tiocsti(struct tty_struct *tty, char __user *p)
2793 {
2794 char ch, mbz = 0;
2795 struct tty_ldisc *ld;
2796
2797 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2798 return -EPERM;
2799 if (get_user(ch, p))
2800 return -EFAULT;
2801 ld = tty_ldisc_ref_wait(tty);
2802 ld->receive_buf(tty, &ch, &mbz, 1);
2803 tty_ldisc_deref(ld);
2804 return 0;
2805 }
2806
2807 /**
2808 * tiocgwinsz - implement window query ioctl
2809 * @tty; tty
2810 * @arg: user buffer for result
2811 *
2812 * Copies the kernel idea of the window size into the user buffer.
2813 *
2814 * Locking: tty->termios_mutex is taken to ensure the winsize data
2815 * is consistent.
2816 */
2817
2818 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2819 {
2820 int err;
2821
2822 mutex_lock(&tty->termios_mutex);
2823 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2824 mutex_unlock(&tty->termios_mutex);
2825
2826 return err ? -EFAULT: 0;
2827 }
2828
2829 /**
2830 * tiocswinsz - implement window size set ioctl
2831 * @tty; tty
2832 * @arg: user buffer for result
2833 *
2834 * Copies the user idea of the window size to the kernel. Traditionally
2835 * this is just advisory information but for the Linux console it
2836 * actually has driver level meaning and triggers a VC resize.
2837 *
2838 * Locking:
2839 * Called function use the console_sem is used to ensure we do
2840 * not try and resize the console twice at once.
2841 * The tty->termios_mutex is used to ensure we don't double
2842 * resize and get confused. Lock order - tty->termios_mutex before
2843 * console sem
2844 */
2845
2846 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2847 struct winsize __user * arg)
2848 {
2849 struct winsize tmp_ws;
2850
2851 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2852 return -EFAULT;
2853
2854 mutex_lock(&tty->termios_mutex);
2855 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2856 goto done;
2857
2858 #ifdef CONFIG_VT
2859 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2860 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2861 tmp_ws.ws_row)) {
2862 mutex_unlock(&tty->termios_mutex);
2863 return -ENXIO;
2864 }
2865 }
2866 #endif
2867 if (tty->pgrp)
2868 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2869 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2870 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2871 tty->winsize = tmp_ws;
2872 real_tty->winsize = tmp_ws;
2873 done:
2874 mutex_unlock(&tty->termios_mutex);
2875 return 0;
2876 }
2877
2878 /**
2879 * tioccons - allow admin to move logical console
2880 * @file: the file to become console
2881 *
2882 * Allow the adminstrator to move the redirected console device
2883 *
2884 * Locking: uses redirect_lock to guard the redirect information
2885 */
2886
2887 static int tioccons(struct file *file)
2888 {
2889 if (!capable(CAP_SYS_ADMIN))
2890 return -EPERM;
2891 if (file->f_op->write == redirected_tty_write) {
2892 struct file *f;
2893 spin_lock(&redirect_lock);
2894 f = redirect;
2895 redirect = NULL;
2896 spin_unlock(&redirect_lock);
2897 if (f)
2898 fput(f);
2899 return 0;
2900 }
2901 spin_lock(&redirect_lock);
2902 if (redirect) {
2903 spin_unlock(&redirect_lock);
2904 return -EBUSY;
2905 }
2906 get_file(file);
2907 redirect = file;
2908 spin_unlock(&redirect_lock);
2909 return 0;
2910 }
2911
2912 /**
2913 * fionbio - non blocking ioctl
2914 * @file: file to set blocking value
2915 * @p: user parameter
2916 *
2917 * Historical tty interfaces had a blocking control ioctl before
2918 * the generic functionality existed. This piece of history is preserved
2919 * in the expected tty API of posix OS's.
2920 *
2921 * Locking: none, the open fle handle ensures it won't go away.
2922 */
2923
2924 static int fionbio(struct file *file, int __user *p)
2925 {
2926 int nonblock;
2927
2928 if (get_user(nonblock, p))
2929 return -EFAULT;
2930
2931 if (nonblock)
2932 file->f_flags |= O_NONBLOCK;
2933 else
2934 file->f_flags &= ~O_NONBLOCK;
2935 return 0;
2936 }
2937
2938 /**
2939 * tiocsctty - set controlling tty
2940 * @tty: tty structure
2941 * @arg: user argument
2942 *
2943 * This ioctl is used to manage job control. It permits a session
2944 * leader to set this tty as the controlling tty for the session.
2945 *
2946 * Locking:
2947 * Takes tty_mutex() to protect tty instance
2948 * Takes tasklist_lock internally to walk sessions
2949 * Takes ->siglock() when updating signal->tty
2950 */
2951
2952 static int tiocsctty(struct tty_struct *tty, int arg)
2953 {
2954 int ret = 0;
2955 if (current->signal->leader && (task_session(current) == tty->session))
2956 return ret;
2957
2958 mutex_lock(&tty_mutex);
2959 /*
2960 * The process must be a session leader and
2961 * not have a controlling tty already.
2962 */
2963 if (!current->signal->leader || current->signal->tty) {
2964 ret = -EPERM;
2965 goto unlock;
2966 }
2967
2968 if (tty->session) {
2969 /*
2970 * This tty is already the controlling
2971 * tty for another session group!
2972 */
2973 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2974 /*
2975 * Steal it away
2976 */
2977 read_lock(&tasklist_lock);
2978 session_clear_tty(tty->session);
2979 read_unlock(&tasklist_lock);
2980 } else {
2981 ret = -EPERM;
2982 goto unlock;
2983 }
2984 }
2985 proc_set_tty(current, tty);
2986 unlock:
2987 mutex_unlock(&tty_mutex);
2988 return ret;
2989 }
2990
2991 /**
2992 * tiocgpgrp - get process group
2993 * @tty: tty passed by user
2994 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2995 * @p: returned pid
2996 *
2997 * Obtain the process group of the tty. If there is no process group
2998 * return an error.
2999 *
3000 * Locking: none. Reference to current->signal->tty is safe.
3001 */
3002
3003 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3004 {
3005 /*
3006 * (tty == real_tty) is a cheap way of
3007 * testing if the tty is NOT a master pty.
3008 */
3009 if (tty == real_tty && current->signal->tty != real_tty)
3010 return -ENOTTY;
3011 return put_user(pid_nr(real_tty->pgrp), p);
3012 }
3013
3014 /**
3015 * tiocspgrp - attempt to set process group
3016 * @tty: tty passed by user
3017 * @real_tty: tty side device matching tty passed by user
3018 * @p: pid pointer
3019 *
3020 * Set the process group of the tty to the session passed. Only
3021 * permitted where the tty session is our session.
3022 *
3023 * Locking: None
3024 */
3025
3026 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3027 {
3028 struct pid *pgrp;
3029 pid_t pgrp_nr;
3030 int retval = tty_check_change(real_tty);
3031
3032 if (retval == -EIO)
3033 return -ENOTTY;
3034 if (retval)
3035 return retval;
3036 if (!current->signal->tty ||
3037 (current->signal->tty != real_tty) ||
3038 (real_tty->session != task_session(current)))
3039 return -ENOTTY;
3040 if (get_user(pgrp_nr, p))
3041 return -EFAULT;
3042 if (pgrp_nr < 0)
3043 return -EINVAL;
3044 rcu_read_lock();
3045 pgrp = find_pid(pgrp_nr);
3046 retval = -ESRCH;
3047 if (!pgrp)
3048 goto out_unlock;
3049 retval = -EPERM;
3050 if (session_of_pgrp(pgrp) != task_session(current))
3051 goto out_unlock;
3052 retval = 0;
3053 put_pid(real_tty->pgrp);
3054 real_tty->pgrp = get_pid(pgrp);
3055 out_unlock:
3056 rcu_read_unlock();
3057 return retval;
3058 }
3059
3060 /**
3061 * tiocgsid - get session id
3062 * @tty: tty passed by user
3063 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3064 * @p: pointer to returned session id
3065 *
3066 * Obtain the session id of the tty. If there is no session
3067 * return an error.
3068 *
3069 * Locking: none. Reference to current->signal->tty is safe.
3070 */
3071
3072 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3073 {
3074 /*
3075 * (tty == real_tty) is a cheap way of
3076 * testing if the tty is NOT a master pty.
3077 */
3078 if (tty == real_tty && current->signal->tty != real_tty)
3079 return -ENOTTY;
3080 if (!real_tty->session)
3081 return -ENOTTY;
3082 return put_user(pid_nr(real_tty->session), p);
3083 }
3084
3085 /**
3086 * tiocsetd - set line discipline
3087 * @tty: tty device
3088 * @p: pointer to user data
3089 *
3090 * Set the line discipline according to user request.
3091 *
3092 * Locking: see tty_set_ldisc, this function is just a helper
3093 */
3094
3095 static int tiocsetd(struct tty_struct *tty, int __user *p)
3096 {
3097 int ldisc;
3098
3099 if (get_user(ldisc, p))
3100 return -EFAULT;
3101 return tty_set_ldisc(tty, ldisc);
3102 }
3103
3104 /**
3105 * send_break - performed time break
3106 * @tty: device to break on
3107 * @duration: timeout in mS
3108 *
3109 * Perform a timed break on hardware that lacks its own driver level
3110 * timed break functionality.
3111 *
3112 * Locking:
3113 * atomic_write_lock serializes
3114 *
3115 */
3116
3117 static int send_break(struct tty_struct *tty, unsigned int duration)
3118 {
3119 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3120 return -EINTR;
3121 tty->driver->break_ctl(tty, -1);
3122 if (!signal_pending(current)) {
3123 msleep_interruptible(duration);
3124 }
3125 tty->driver->break_ctl(tty, 0);
3126 mutex_unlock(&tty->atomic_write_lock);
3127 if (signal_pending(current))
3128 return -EINTR;
3129 return 0;
3130 }
3131
3132 /**
3133 * tiocmget - get modem status
3134 * @tty: tty device
3135 * @file: user file pointer
3136 * @p: pointer to result
3137 *
3138 * Obtain the modem status bits from the tty driver if the feature
3139 * is supported. Return -EINVAL if it is not available.
3140 *
3141 * Locking: none (up to the driver)
3142 */
3143
3144 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3145 {
3146 int retval = -EINVAL;
3147
3148 if (tty->driver->tiocmget) {
3149 retval = tty->driver->tiocmget(tty, file);
3150
3151 if (retval >= 0)
3152 retval = put_user(retval, p);
3153 }
3154 return retval;
3155 }
3156
3157 /**
3158 * tiocmset - set modem status
3159 * @tty: tty device
3160 * @file: user file pointer
3161 * @cmd: command - clear bits, set bits or set all
3162 * @p: pointer to desired bits
3163 *
3164 * Set the modem status bits from the tty driver if the feature
3165 * is supported. Return -EINVAL if it is not available.
3166 *
3167 * Locking: none (up to the driver)
3168 */
3169
3170 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3171 unsigned __user *p)
3172 {
3173 int retval = -EINVAL;
3174
3175 if (tty->driver->tiocmset) {
3176 unsigned int set, clear, val;
3177
3178 retval = get_user(val, p);
3179 if (retval)
3180 return retval;
3181
3182 set = clear = 0;
3183 switch (cmd) {
3184 case TIOCMBIS:
3185 set = val;
3186 break;
3187 case TIOCMBIC:
3188 clear = val;
3189 break;
3190 case TIOCMSET:
3191 set = val;
3192 clear = ~val;
3193 break;
3194 }
3195
3196 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3197 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3198
3199 retval = tty->driver->tiocmset(tty, file, set, clear);
3200 }
3201 return retval;
3202 }
3203
3204 /*
3205 * Split this up, as gcc can choke on it otherwise..
3206 */
3207 int tty_ioctl(struct inode * inode, struct file * file,
3208 unsigned int cmd, unsigned long arg)
3209 {
3210 struct tty_struct *tty, *real_tty;
3211 void __user *p = (void __user *)arg;
3212 int retval;
3213 struct tty_ldisc *ld;
3214
3215 tty = (struct tty_struct *)file->private_data;
3216 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3217 return -EINVAL;
3218
3219 /* CHECKME: is this safe as one end closes ? */
3220
3221 real_tty = tty;
3222 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3223 tty->driver->subtype == PTY_TYPE_MASTER)
3224 real_tty = tty->link;
3225
3226 /*
3227 * Break handling by driver
3228 */
3229 if (!tty->driver->break_ctl) {
3230 switch(cmd) {
3231 case TIOCSBRK:
3232 case TIOCCBRK:
3233 if (tty->driver->ioctl)
3234 return tty->driver->ioctl(tty, file, cmd, arg);
3235 return -EINVAL;
3236
3237 /* These two ioctl's always return success; even if */
3238 /* the driver doesn't support them. */
3239 case TCSBRK:
3240 case TCSBRKP:
3241 if (!tty->driver->ioctl)
3242 return 0;
3243 retval = tty->driver->ioctl(tty, file, cmd, arg);
3244 if (retval == -ENOIOCTLCMD)
3245 retval = 0;
3246 return retval;
3247 }
3248 }
3249
3250 /*
3251 * Factor out some common prep work
3252 */
3253 switch (cmd) {
3254 case TIOCSETD:
3255 case TIOCSBRK:
3256 case TIOCCBRK:
3257 case TCSBRK:
3258 case TCSBRKP:
3259 retval = tty_check_change(tty);
3260 if (retval)
3261 return retval;
3262 if (cmd != TIOCCBRK) {
3263 tty_wait_until_sent(tty, 0);
3264 if (signal_pending(current))
3265 return -EINTR;
3266 }
3267 break;
3268 }
3269
3270 switch (cmd) {
3271 case TIOCSTI:
3272 return tiocsti(tty, p);
3273 case TIOCGWINSZ:
3274 return tiocgwinsz(tty, p);
3275 case TIOCSWINSZ:
3276 return tiocswinsz(tty, real_tty, p);
3277 case TIOCCONS:
3278 return real_tty!=tty ? -EINVAL : tioccons(file);
3279 case FIONBIO:
3280 return fionbio(file, p);
3281 case TIOCEXCL:
3282 set_bit(TTY_EXCLUSIVE, &tty->flags);
3283 return 0;
3284 case TIOCNXCL:
3285 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3286 return 0;
3287 case TIOCNOTTY:
3288 if (current->signal->tty != tty)
3289 return -ENOTTY;
3290 if (current->signal->leader)
3291 disassociate_ctty(0);
3292 proc_clear_tty(current);
3293 return 0;
3294 case TIOCSCTTY:
3295 return tiocsctty(tty, arg);
3296 case TIOCGPGRP:
3297 return tiocgpgrp(tty, real_tty, p);
3298 case TIOCSPGRP:
3299 return tiocspgrp(tty, real_tty, p);
3300 case TIOCGSID:
3301 return tiocgsid(tty, real_tty, p);
3302 case TIOCGETD:
3303 /* FIXME: check this is ok */
3304 return put_user(tty->ldisc.num, (int __user *)p);
3305 case TIOCSETD:
3306 return tiocsetd(tty, p);
3307 #ifdef CONFIG_VT
3308 case TIOCLINUX:
3309 return tioclinux(tty, arg);
3310 #endif
3311 /*
3312 * Break handling
3313 */
3314 case TIOCSBRK: /* Turn break on, unconditionally */
3315 tty->driver->break_ctl(tty, -1);
3316 return 0;
3317
3318 case TIOCCBRK: /* Turn break off, unconditionally */
3319 tty->driver->break_ctl(tty, 0);
3320 return 0;
3321 case TCSBRK: /* SVID version: non-zero arg --> no break */
3322 /* non-zero arg means wait for all output data
3323 * to be sent (performed above) but don't send break.
3324 * This is used by the tcdrain() termios function.
3325 */
3326 if (!arg)
3327 return send_break(tty, 250);
3328 return 0;
3329 case TCSBRKP: /* support for POSIX tcsendbreak() */
3330 return send_break(tty, arg ? arg*100 : 250);
3331
3332 case TIOCMGET:
3333 return tty_tiocmget(tty, file, p);
3334
3335 case TIOCMSET:
3336 case TIOCMBIC:
3337 case TIOCMBIS:
3338 return tty_tiocmset(tty, file, cmd, p);
3339 }
3340 if (tty->driver->ioctl) {
3341 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3342 if (retval != -ENOIOCTLCMD)
3343 return retval;
3344 }
3345 ld = tty_ldisc_ref_wait(tty);
3346 retval = -EINVAL;
3347 if (ld->ioctl) {
3348 retval = ld->ioctl(tty, file, cmd, arg);
3349 if (retval == -ENOIOCTLCMD)
3350 retval = -EINVAL;
3351 }
3352 tty_ldisc_deref(ld);
3353 return retval;
3354 }
3355
3356
3357 /*
3358 * This implements the "Secure Attention Key" --- the idea is to
3359 * prevent trojan horses by killing all processes associated with this
3360 * tty when the user hits the "Secure Attention Key". Required for
3361 * super-paranoid applications --- see the Orange Book for more details.
3362 *
3363 * This code could be nicer; ideally it should send a HUP, wait a few
3364 * seconds, then send a INT, and then a KILL signal. But you then
3365 * have to coordinate with the init process, since all processes associated
3366 * with the current tty must be dead before the new getty is allowed
3367 * to spawn.
3368 *
3369 * Now, if it would be correct ;-/ The current code has a nasty hole -
3370 * it doesn't catch files in flight. We may send the descriptor to ourselves
3371 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3372 *
3373 * Nasty bug: do_SAK is being called in interrupt context. This can
3374 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3375 */
3376 void __do_SAK(struct tty_struct *tty)
3377 {
3378 #ifdef TTY_SOFT_SAK
3379 tty_hangup(tty);
3380 #else
3381 struct task_struct *g, *p;
3382 struct pid *session;
3383 int i;
3384 struct file *filp;
3385 struct fdtable *fdt;
3386
3387 if (!tty)
3388 return;
3389 session = tty->session;
3390
3391 tty_ldisc_flush(tty);
3392
3393 if (tty->driver->flush_buffer)
3394 tty->driver->flush_buffer(tty);
3395
3396 read_lock(&tasklist_lock);
3397 /* Kill the entire session */
3398 do_each_pid_task(session, PIDTYPE_SID, p) {
3399 printk(KERN_NOTICE "SAK: killed process %d"
3400 " (%s): process_session(p)==tty->session\n",
3401 p->pid, p->comm);
3402 send_sig(SIGKILL, p, 1);
3403 } while_each_pid_task(session, PIDTYPE_SID, p);
3404 /* Now kill any processes that happen to have the
3405 * tty open.
3406 */
3407 do_each_thread(g, p) {
3408 if (p->signal->tty == tty) {
3409 printk(KERN_NOTICE "SAK: killed process %d"
3410 " (%s): process_session(p)==tty->session\n",
3411 p->pid, p->comm);
3412 send_sig(SIGKILL, p, 1);
3413 continue;
3414 }
3415 task_lock(p);
3416 if (p->files) {
3417 /*
3418 * We don't take a ref to the file, so we must
3419 * hold ->file_lock instead.
3420 */
3421 spin_lock(&p->files->file_lock);
3422 fdt = files_fdtable(p->files);
3423 for (i=0; i < fdt->max_fds; i++) {
3424 filp = fcheck_files(p->files, i);
3425 if (!filp)
3426 continue;
3427 if (filp->f_op->read == tty_read &&
3428 filp->private_data == tty) {
3429 printk(KERN_NOTICE "SAK: killed process %d"
3430 " (%s): fd#%d opened to the tty\n",
3431 p->pid, p->comm, i);
3432 force_sig(SIGKILL, p);
3433 break;
3434 }
3435 }
3436 spin_unlock(&p->files->file_lock);
3437 }
3438 task_unlock(p);
3439 } while_each_thread(g, p);
3440 read_unlock(&tasklist_lock);
3441 #endif
3442 }
3443
3444 static void do_SAK_work(struct work_struct *work)
3445 {
3446 struct tty_struct *tty =
3447 container_of(work, struct tty_struct, SAK_work);
3448 __do_SAK(tty);
3449 }
3450
3451 /*
3452 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3453 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3454 * the values which we write to it will be identical to the values which it
3455 * already has. --akpm
3456 */
3457 void do_SAK(struct tty_struct *tty)
3458 {
3459 if (!tty)
3460 return;
3461 schedule_work(&tty->SAK_work);
3462 }
3463
3464 EXPORT_SYMBOL(do_SAK);
3465
3466 /**
3467 * flush_to_ldisc
3468 * @work: tty structure passed from work queue.
3469 *
3470 * This routine is called out of the software interrupt to flush data
3471 * from the buffer chain to the line discipline.
3472 *
3473 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3474 * while invoking the line discipline receive_buf method. The
3475 * receive_buf method is single threaded for each tty instance.
3476 */
3477
3478 static void flush_to_ldisc(struct work_struct *work)
3479 {
3480 struct tty_struct *tty =
3481 container_of(work, struct tty_struct, buf.work.work);
3482 unsigned long flags;
3483 struct tty_ldisc *disc;
3484 struct tty_buffer *tbuf, *head;
3485 char *char_buf;
3486 unsigned char *flag_buf;
3487
3488 disc = tty_ldisc_ref(tty);
3489 if (disc == NULL) /* !TTY_LDISC */
3490 return;
3491
3492 spin_lock_irqsave(&tty->buf.lock, flags);
3493 head = tty->buf.head;
3494 if (head != NULL) {
3495 tty->buf.head = NULL;
3496 for (;;) {
3497 int count = head->commit - head->read;
3498 if (!count) {
3499 if (head->next == NULL)
3500 break;
3501 tbuf = head;
3502 head = head->next;
3503 tty_buffer_free(tty, tbuf);
3504 continue;
3505 }
3506 if (!tty->receive_room) {
3507 schedule_delayed_work(&tty->buf.work, 1);
3508 break;
3509 }
3510 if (count > tty->receive_room)
3511 count = tty->receive_room;
3512 char_buf = head->char_buf_ptr + head->read;
3513 flag_buf = head->flag_buf_ptr + head->read;
3514 head->read += count;
3515 spin_unlock_irqrestore(&tty->buf.lock, flags);
3516 disc->receive_buf(tty, char_buf, flag_buf, count);
3517 spin_lock_irqsave(&tty->buf.lock, flags);
3518 }
3519 tty->buf.head = head;
3520 }
3521 spin_unlock_irqrestore(&tty->buf.lock, flags);
3522
3523 tty_ldisc_deref(disc);
3524 }
3525
3526 /**
3527 * tty_flip_buffer_push - terminal
3528 * @tty: tty to push
3529 *
3530 * Queue a push of the terminal flip buffers to the line discipline. This
3531 * function must not be called from IRQ context if tty->low_latency is set.
3532 *
3533 * In the event of the queue being busy for flipping the work will be
3534 * held off and retried later.
3535 *
3536 * Locking: tty buffer lock. Driver locks in low latency mode.
3537 */
3538
3539 void tty_flip_buffer_push(struct tty_struct *tty)
3540 {
3541 unsigned long flags;
3542 spin_lock_irqsave(&tty->buf.lock, flags);
3543 if (tty->buf.tail != NULL)
3544 tty->buf.tail->commit = tty->buf.tail->used;
3545 spin_unlock_irqrestore(&tty->buf.lock, flags);
3546
3547 if (tty->low_latency)
3548 flush_to_ldisc(&tty->buf.work.work);
3549 else
3550 schedule_delayed_work(&tty->buf.work, 1);
3551 }
3552
3553 EXPORT_SYMBOL(tty_flip_buffer_push);
3554
3555
3556 /**
3557 * initialize_tty_struct
3558 * @tty: tty to initialize
3559 *
3560 * This subroutine initializes a tty structure that has been newly
3561 * allocated.
3562 *
3563 * Locking: none - tty in question must not be exposed at this point
3564 */
3565
3566 static void initialize_tty_struct(struct tty_struct *tty)
3567 {
3568 memset(tty, 0, sizeof(struct tty_struct));
3569 tty->magic = TTY_MAGIC;
3570 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3571 tty->session = NULL;
3572 tty->pgrp = NULL;
3573 tty->overrun_time = jiffies;
3574 tty->buf.head = tty->buf.tail = NULL;
3575 tty_buffer_init(tty);
3576 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3577 init_MUTEX(&tty->buf.pty_sem);
3578 mutex_init(&tty->termios_mutex);
3579 init_waitqueue_head(&tty->write_wait);
3580 init_waitqueue_head(&tty->read_wait);
3581 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3582 mutex_init(&tty->atomic_read_lock);
3583 mutex_init(&tty->atomic_write_lock);
3584 spin_lock_init(&tty->read_lock);
3585 INIT_LIST_HEAD(&tty->tty_files);
3586 INIT_WORK(&tty->SAK_work, do_SAK_work);
3587 }
3588
3589 /*
3590 * The default put_char routine if the driver did not define one.
3591 */
3592
3593 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3594 {
3595 tty->driver->write(tty, &ch, 1);
3596 }
3597
3598 static struct class *tty_class;
3599
3600 /**
3601 * tty_register_device - register a tty device
3602 * @driver: the tty driver that describes the tty device
3603 * @index: the index in the tty driver for this tty device
3604 * @device: a struct device that is associated with this tty device.
3605 * This field is optional, if there is no known struct device
3606 * for this tty device it can be set to NULL safely.
3607 *
3608 * Returns a pointer to the struct device for this tty device
3609 * (or ERR_PTR(-EFOO) on error).
3610 *
3611 * This call is required to be made to register an individual tty device
3612 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3613 * that bit is not set, this function should not be called by a tty
3614 * driver.
3615 *
3616 * Locking: ??
3617 */
3618
3619 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3620 struct device *device)
3621 {
3622 char name[64];
3623 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3624
3625 if (index >= driver->num) {
3626 printk(KERN_ERR "Attempt to register invalid tty line number "
3627 " (%d).\n", index);
3628 return ERR_PTR(-EINVAL);
3629 }
3630
3631 if (driver->type == TTY_DRIVER_TYPE_PTY)
3632 pty_line_name(driver, index, name);
3633 else
3634 tty_line_name(driver, index, name);
3635
3636 return device_create(tty_class, device, dev, name);
3637 }
3638
3639 /**
3640 * tty_unregister_device - unregister a tty device
3641 * @driver: the tty driver that describes the tty device
3642 * @index: the index in the tty driver for this tty device
3643 *
3644 * If a tty device is registered with a call to tty_register_device() then
3645 * this function must be called when the tty device is gone.
3646 *
3647 * Locking: ??
3648 */
3649
3650 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3651 {
3652 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3653 }
3654
3655 EXPORT_SYMBOL(tty_register_device);
3656 EXPORT_SYMBOL(tty_unregister_device);
3657
3658 struct tty_driver *alloc_tty_driver(int lines)
3659 {
3660 struct tty_driver *driver;
3661
3662 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3663 if (driver) {
3664 memset(driver, 0, sizeof(struct tty_driver));
3665 driver->magic = TTY_DRIVER_MAGIC;
3666 driver->num = lines;
3667 /* later we'll move allocation of tables here */
3668 }
3669 return driver;
3670 }
3671
3672 void put_tty_driver(struct tty_driver *driver)
3673 {
3674 kfree(driver);
3675 }
3676
3677 void tty_set_operations(struct tty_driver *driver,
3678 const struct tty_operations *op)
3679 {
3680 driver->open = op->open;
3681 driver->close = op->close;
3682 driver->write = op->write;
3683 driver->put_char = op->put_char;
3684 driver->flush_chars = op->flush_chars;
3685 driver->write_room = op->write_room;
3686 driver->chars_in_buffer = op->chars_in_buffer;
3687 driver->ioctl = op->ioctl;
3688 driver->set_termios = op->set_termios;
3689 driver->throttle = op->throttle;
3690 driver->unthrottle = op->unthrottle;
3691 driver->stop = op->stop;
3692 driver->start = op->start;
3693 driver->hangup = op->hangup;
3694 driver->break_ctl = op->break_ctl;
3695 driver->flush_buffer = op->flush_buffer;
3696 driver->set_ldisc = op->set_ldisc;
3697 driver->wait_until_sent = op->wait_until_sent;
3698 driver->send_xchar = op->send_xchar;
3699 driver->read_proc = op->read_proc;
3700 driver->write_proc = op->write_proc;
3701 driver->tiocmget = op->tiocmget;
3702 driver->tiocmset = op->tiocmset;
3703 }
3704
3705
3706 EXPORT_SYMBOL(alloc_tty_driver);
3707 EXPORT_SYMBOL(put_tty_driver);
3708 EXPORT_SYMBOL(tty_set_operations);
3709
3710 /*
3711 * Called by a tty driver to register itself.
3712 */
3713 int tty_register_driver(struct tty_driver *driver)
3714 {
3715 int error;
3716 int i;
3717 dev_t dev;
3718 void **p = NULL;
3719
3720 if (driver->flags & TTY_DRIVER_INSTALLED)
3721 return 0;
3722
3723 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3724 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3725 if (!p)
3726 return -ENOMEM;
3727 }
3728
3729 if (!driver->major) {
3730 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3731 driver->name);
3732 if (!error) {
3733 driver->major = MAJOR(dev);
3734 driver->minor_start = MINOR(dev);
3735 }
3736 } else {
3737 dev = MKDEV(driver->major, driver->minor_start);
3738 error = register_chrdev_region(dev, driver->num, driver->name);
3739 }
3740 if (error < 0) {
3741 kfree(p);
3742 return error;
3743 }
3744
3745 if (p) {
3746 driver->ttys = (struct tty_struct **)p;
3747 driver->termios = (struct ktermios **)(p + driver->num);
3748 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3749 } else {
3750 driver->ttys = NULL;
3751 driver->termios = NULL;
3752 driver->termios_locked = NULL;
3753 }
3754
3755 cdev_init(&driver->cdev, &tty_fops);
3756 driver->cdev.owner = driver->owner;
3757 error = cdev_add(&driver->cdev, dev, driver->num);
3758 if (error) {
3759 unregister_chrdev_region(dev, driver->num);
3760 driver->ttys = NULL;
3761 driver->termios = driver->termios_locked = NULL;
3762 kfree(p);
3763 return error;
3764 }
3765
3766 if (!driver->put_char)
3767 driver->put_char = tty_default_put_char;
3768
3769 list_add(&driver->tty_drivers, &tty_drivers);
3770
3771 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3772 for(i = 0; i < driver->num; i++)
3773 tty_register_device(driver, i, NULL);
3774 }
3775 proc_tty_register_driver(driver);
3776 return 0;
3777 }
3778
3779 EXPORT_SYMBOL(tty_register_driver);
3780
3781 /*
3782 * Called by a tty driver to unregister itself.
3783 */
3784 int tty_unregister_driver(struct tty_driver *driver)
3785 {
3786 int i;
3787 struct ktermios *tp;
3788 void *p;
3789
3790 if (driver->refcount)
3791 return -EBUSY;
3792
3793 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3794 driver->num);
3795
3796 list_del(&driver->tty_drivers);
3797
3798 /*
3799 * Free the termios and termios_locked structures because
3800 * we don't want to get memory leaks when modular tty
3801 * drivers are removed from the kernel.
3802 */
3803 for (i = 0; i < driver->num; i++) {
3804 tp = driver->termios[i];
3805 if (tp) {
3806 driver->termios[i] = NULL;
3807 kfree(tp);
3808 }
3809 tp = driver->termios_locked[i];
3810 if (tp) {
3811 driver->termios_locked[i] = NULL;
3812 kfree(tp);
3813 }
3814 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3815 tty_unregister_device(driver, i);
3816 }
3817 p = driver->ttys;
3818 proc_tty_unregister_driver(driver);
3819 driver->ttys = NULL;
3820 driver->termios = driver->termios_locked = NULL;
3821 kfree(p);
3822 cdev_del(&driver->cdev);
3823 return 0;
3824 }
3825 EXPORT_SYMBOL(tty_unregister_driver);
3826
3827 dev_t tty_devnum(struct tty_struct *tty)
3828 {
3829 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3830 }
3831 EXPORT_SYMBOL(tty_devnum);
3832
3833 void proc_clear_tty(struct task_struct *p)
3834 {
3835 spin_lock_irq(&p->sighand->siglock);
3836 p->signal->tty = NULL;
3837 spin_unlock_irq(&p->sighand->siglock);
3838 }
3839 EXPORT_SYMBOL(proc_clear_tty);
3840
3841 static struct pid *__proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3842 {
3843 struct pid *old_pgrp;
3844 if (tty) {
3845 /* We should not have a session or pgrp to here but.... */
3846 put_pid(tty->session);
3847 put_pid(tty->pgrp);
3848 tty->session = get_pid(task_session(tsk));
3849 tty->pgrp = get_pid(task_pgrp(tsk));
3850 }
3851 old_pgrp = tsk->signal->tty_old_pgrp;
3852 tsk->signal->tty = tty;
3853 tsk->signal->tty_old_pgrp = NULL;
3854 return old_pgrp;
3855 }
3856
3857 void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3858 {
3859 struct pid *old_pgrp;
3860
3861 spin_lock_irq(&tsk->sighand->siglock);
3862 old_pgrp = __proc_set_tty(tsk, tty);
3863 spin_unlock_irq(&tsk->sighand->siglock);
3864
3865 put_pid(old_pgrp);
3866 }
3867
3868 struct tty_struct *get_current_tty(void)
3869 {
3870 struct tty_struct *tty;
3871 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3872 tty = current->signal->tty;
3873 /*
3874 * session->tty can be changed/cleared from under us, make sure we
3875 * issue the load. The obtained pointer, when not NULL, is valid as
3876 * long as we hold tty_mutex.
3877 */
3878 barrier();
3879 return tty;
3880 }
3881 EXPORT_SYMBOL_GPL(get_current_tty);
3882
3883 /*
3884 * Initialize the console device. This is called *early*, so
3885 * we can't necessarily depend on lots of kernel help here.
3886 * Just do some early initializations, and do the complex setup
3887 * later.
3888 */
3889 void __init console_init(void)
3890 {
3891 initcall_t *call;
3892
3893 /* Setup the default TTY line discipline. */
3894 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3895
3896 /*
3897 * set up the console device so that later boot sequences can
3898 * inform about problems etc..
3899 */
3900 #ifdef CONFIG_EARLY_PRINTK
3901 disable_early_printk();
3902 #endif
3903 call = __con_initcall_start;
3904 while (call < __con_initcall_end) {
3905 (*call)();
3906 call++;
3907 }
3908 }
3909
3910 #ifdef CONFIG_VT
3911 extern int vty_init(void);
3912 #endif
3913
3914 static int __init tty_class_init(void)
3915 {
3916 tty_class = class_create(THIS_MODULE, "tty");
3917 if (IS_ERR(tty_class))
3918 return PTR_ERR(tty_class);
3919 return 0;
3920 }
3921
3922 postcore_initcall(tty_class_init);
3923
3924 /* 3/2004 jmc: why do these devices exist? */
3925
3926 static struct cdev tty_cdev, console_cdev;
3927 #ifdef CONFIG_UNIX98_PTYS
3928 static struct cdev ptmx_cdev;
3929 #endif
3930 #ifdef CONFIG_VT
3931 static struct cdev vc0_cdev;
3932 #endif
3933
3934 /*
3935 * Ok, now we can initialize the rest of the tty devices and can count
3936 * on memory allocations, interrupts etc..
3937 */
3938 static int __init tty_init(void)
3939 {
3940 cdev_init(&tty_cdev, &tty_fops);
3941 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3942 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3943 panic("Couldn't register /dev/tty driver\n");
3944 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3945
3946 cdev_init(&console_cdev, &console_fops);
3947 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3948 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3949 panic("Couldn't register /dev/console driver\n");
3950 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3951
3952 #ifdef CONFIG_UNIX98_PTYS
3953 cdev_init(&ptmx_cdev, &ptmx_fops);
3954 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3955 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3956 panic("Couldn't register /dev/ptmx driver\n");
3957 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3958 #endif
3959
3960 #ifdef CONFIG_VT
3961 cdev_init(&vc0_cdev, &console_fops);
3962 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3963 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3964 panic("Couldn't register /dev/tty0 driver\n");
3965 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3966
3967 vty_init();
3968 #endif
3969 return 0;
3970 }
3971 module_init(tty_init);
This page took 0.113153 seconds and 6 git commands to generate.