Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / char / xillybus / xillybus_core.c
1 /*
2 * linux/drivers/misc/xillybus_core.c
3 *
4 * Copyright 2011 Xillybus Ltd, http://xillybus.com
5 *
6 * Driver for the Xillybus FPGA/host framework.
7 *
8 * This driver interfaces with a special IP core in an FPGA, setting up
9 * a pipe between a hardware FIFO in the programmable logic and a device
10 * file in the host. The number of such pipes and their attributes are
11 * set up on the logic. This driver detects these automatically and
12 * creates the device files accordingly.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the smems of the GNU General Public License as published by
16 * the Free Software Foundation; version 2 of the License.
17 */
18
19 #include <linux/list.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/fs.h>
27 #include <linux/cdev.h>
28 #include <linux/spinlock.h>
29 #include <linux/mutex.h>
30 #include <linux/crc32.h>
31 #include <linux/poll.h>
32 #include <linux/delay.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
35 #include "xillybus.h"
36
37 MODULE_DESCRIPTION("Xillybus core functions");
38 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
39 MODULE_VERSION("1.07");
40 MODULE_ALIAS("xillybus_core");
41 MODULE_LICENSE("GPL v2");
42
43 /* General timeout is 100 ms, rx timeout is 10 ms */
44 #define XILLY_RX_TIMEOUT (10*HZ/1000)
45 #define XILLY_TIMEOUT (100*HZ/1000)
46
47 #define fpga_msg_ctrl_reg 0x0008
48 #define fpga_dma_control_reg 0x0020
49 #define fpga_dma_bufno_reg 0x0024
50 #define fpga_dma_bufaddr_lowaddr_reg 0x0028
51 #define fpga_dma_bufaddr_highaddr_reg 0x002c
52 #define fpga_buf_ctrl_reg 0x0030
53 #define fpga_buf_offset_reg 0x0034
54 #define fpga_endian_reg 0x0040
55
56 #define XILLYMSG_OPCODE_RELEASEBUF 1
57 #define XILLYMSG_OPCODE_QUIESCEACK 2
58 #define XILLYMSG_OPCODE_FIFOEOF 3
59 #define XILLYMSG_OPCODE_FATAL_ERROR 4
60 #define XILLYMSG_OPCODE_NONEMPTY 5
61
62 static const char xillyname[] = "xillybus";
63
64 static struct class *xillybus_class;
65
66 /*
67 * ep_list_lock is the last lock to be taken; No other lock requests are
68 * allowed while holding it. It merely protects list_of_endpoints, and not
69 * the endpoints listed in it.
70 */
71
72 static LIST_HEAD(list_of_endpoints);
73 static struct mutex ep_list_lock;
74 static struct workqueue_struct *xillybus_wq;
75
76 /*
77 * Locking scheme: Mutexes protect invocations of character device methods.
78 * If both locks are taken, wr_mutex is taken first, rd_mutex second.
79 *
80 * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
81 * buffers' end_offset fields against changes made by IRQ handler (and in
82 * theory, other file request handlers, but the mutex handles that). Nothing
83 * else.
84 * They are held for short direct memory manipulations. Needless to say,
85 * no mutex locking is allowed when a spinlock is held.
86 *
87 * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
88 *
89 * register_mutex is endpoint-specific, and is held when non-atomic
90 * register operations are performed. wr_mutex and rd_mutex may be
91 * held when register_mutex is taken, but none of the spinlocks. Note that
92 * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
93 * which are unrelated to buf_offset_reg, since they are harmless.
94 *
95 * Blocking on the wait queues is allowed with mutexes held, but not with
96 * spinlocks.
97 *
98 * Only interruptible blocking is allowed on mutexes and wait queues.
99 *
100 * All in all, the locking order goes (with skips allowed, of course):
101 * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
102 */
103
104 static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
105 {
106 int opcode;
107 int msg_channel, msg_bufno, msg_data, msg_dir;
108
109 opcode = (buf[0] >> 24) & 0xff;
110 msg_dir = buf[0] & 1;
111 msg_channel = (buf[0] >> 1) & 0x7ff;
112 msg_bufno = (buf[0] >> 12) & 0x3ff;
113 msg_data = buf[1] & 0xfffffff;
114
115 dev_warn(endpoint->dev,
116 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
117 opcode, msg_channel, msg_dir, msg_bufno, msg_data);
118 }
119
120 /*
121 * xillybus_isr assumes the interrupt is allocated exclusively to it,
122 * which is the natural case MSI and several other hardware-oriented
123 * interrupts. Sharing is not allowed.
124 */
125
126 irqreturn_t xillybus_isr(int irq, void *data)
127 {
128 struct xilly_endpoint *ep = data;
129 u32 *buf;
130 unsigned int buf_size;
131 int i;
132 int opcode;
133 unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
134 struct xilly_channel *channel;
135
136 buf = ep->msgbuf_addr;
137 buf_size = ep->msg_buf_size/sizeof(u32);
138
139 ep->ephw->hw_sync_sgl_for_cpu(ep,
140 ep->msgbuf_dma_addr,
141 ep->msg_buf_size,
142 DMA_FROM_DEVICE);
143
144 for (i = 0; i < buf_size; i += 2) {
145 if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
146 malformed_message(ep, &buf[i]);
147 dev_warn(ep->dev,
148 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
149 ((buf[i+1] >> 28) & 0xf),
150 ep->msg_counter,
151 i/2);
152
153 if (++ep->failed_messages > 10) {
154 dev_err(ep->dev,
155 "Lost sync with interrupt messages. Stopping.\n");
156 } else {
157 ep->ephw->hw_sync_sgl_for_device(
158 ep,
159 ep->msgbuf_dma_addr,
160 ep->msg_buf_size,
161 DMA_FROM_DEVICE);
162
163 iowrite32(0x01, /* Message NACK */
164 ep->registers + fpga_msg_ctrl_reg);
165 }
166 return IRQ_HANDLED;
167 } else if (buf[i] & (1 << 22)) /* Last message */
168 break;
169 }
170
171 if (i >= buf_size) {
172 dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
173 return IRQ_HANDLED;
174 }
175
176 buf_size = i + 2;
177
178 for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
179 opcode = (buf[i] >> 24) & 0xff;
180
181 msg_dir = buf[i] & 1;
182 msg_channel = (buf[i] >> 1) & 0x7ff;
183 msg_bufno = (buf[i] >> 12) & 0x3ff;
184 msg_data = buf[i+1] & 0xfffffff;
185
186 switch (opcode) {
187 case XILLYMSG_OPCODE_RELEASEBUF:
188 if ((msg_channel > ep->num_channels) ||
189 (msg_channel == 0)) {
190 malformed_message(ep, &buf[i]);
191 break;
192 }
193
194 channel = ep->channels[msg_channel];
195
196 if (msg_dir) { /* Write channel */
197 if (msg_bufno >= channel->num_wr_buffers) {
198 malformed_message(ep, &buf[i]);
199 break;
200 }
201 spin_lock(&channel->wr_spinlock);
202 channel->wr_buffers[msg_bufno]->end_offset =
203 msg_data;
204 channel->wr_fpga_buf_idx = msg_bufno;
205 channel->wr_empty = 0;
206 channel->wr_sleepy = 0;
207 spin_unlock(&channel->wr_spinlock);
208
209 wake_up_interruptible(&channel->wr_wait);
210
211 } else {
212 /* Read channel */
213
214 if (msg_bufno >= channel->num_rd_buffers) {
215 malformed_message(ep, &buf[i]);
216 break;
217 }
218
219 spin_lock(&channel->rd_spinlock);
220 channel->rd_fpga_buf_idx = msg_bufno;
221 channel->rd_full = 0;
222 spin_unlock(&channel->rd_spinlock);
223
224 wake_up_interruptible(&channel->rd_wait);
225 if (!channel->rd_synchronous)
226 queue_delayed_work(
227 xillybus_wq,
228 &channel->rd_workitem,
229 XILLY_RX_TIMEOUT);
230 }
231
232 break;
233 case XILLYMSG_OPCODE_NONEMPTY:
234 if ((msg_channel > ep->num_channels) ||
235 (msg_channel == 0) || (!msg_dir) ||
236 !ep->channels[msg_channel]->wr_supports_nonempty) {
237 malformed_message(ep, &buf[i]);
238 break;
239 }
240
241 channel = ep->channels[msg_channel];
242
243 if (msg_bufno >= channel->num_wr_buffers) {
244 malformed_message(ep, &buf[i]);
245 break;
246 }
247 spin_lock(&channel->wr_spinlock);
248 if (msg_bufno == channel->wr_host_buf_idx)
249 channel->wr_ready = 1;
250 spin_unlock(&channel->wr_spinlock);
251
252 wake_up_interruptible(&channel->wr_ready_wait);
253
254 break;
255 case XILLYMSG_OPCODE_QUIESCEACK:
256 ep->idtlen = msg_data;
257 wake_up_interruptible(&ep->ep_wait);
258
259 break;
260 case XILLYMSG_OPCODE_FIFOEOF:
261 if ((msg_channel > ep->num_channels) ||
262 (msg_channel == 0) || (!msg_dir) ||
263 !ep->channels[msg_channel]->num_wr_buffers) {
264 malformed_message(ep, &buf[i]);
265 break;
266 }
267 channel = ep->channels[msg_channel];
268 spin_lock(&channel->wr_spinlock);
269 channel->wr_eof = msg_bufno;
270 channel->wr_sleepy = 0;
271
272 channel->wr_hangup = channel->wr_empty &&
273 (channel->wr_host_buf_idx == msg_bufno);
274
275 spin_unlock(&channel->wr_spinlock);
276
277 wake_up_interruptible(&channel->wr_wait);
278
279 break;
280 case XILLYMSG_OPCODE_FATAL_ERROR:
281 ep->fatal_error = 1;
282 wake_up_interruptible(&ep->ep_wait); /* For select() */
283 dev_err(ep->dev,
284 "FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
285 break;
286 default:
287 malformed_message(ep, &buf[i]);
288 break;
289 }
290 }
291
292 ep->ephw->hw_sync_sgl_for_device(ep,
293 ep->msgbuf_dma_addr,
294 ep->msg_buf_size,
295 DMA_FROM_DEVICE);
296
297 ep->msg_counter = (ep->msg_counter + 1) & 0xf;
298 ep->failed_messages = 0;
299 iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
300
301 return IRQ_HANDLED;
302 }
303 EXPORT_SYMBOL(xillybus_isr);
304
305 /*
306 * A few trivial memory management functions.
307 * NOTE: These functions are used only on probe and remove, and therefore
308 * no locks are applied!
309 */
310
311 static void xillybus_autoflush(struct work_struct *work);
312
313 struct xilly_alloc_state {
314 void *salami;
315 int left_of_salami;
316 int nbuffer;
317 enum dma_data_direction direction;
318 u32 regdirection;
319 };
320
321 static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
322 struct xilly_alloc_state *s,
323 struct xilly_buffer **buffers,
324 int bufnum, int bytebufsize)
325 {
326 int i, rc;
327 dma_addr_t dma_addr;
328 struct device *dev = ep->dev;
329 struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
330
331 if (buffers) { /* Not the message buffer */
332 this_buffer = devm_kcalloc(dev, bufnum,
333 sizeof(struct xilly_buffer),
334 GFP_KERNEL);
335 if (!this_buffer)
336 return -ENOMEM;
337 }
338
339 for (i = 0; i < bufnum; i++) {
340 /*
341 * Buffers are expected in descending size order, so there
342 * is either enough space for this buffer or none at all.
343 */
344
345 if ((s->left_of_salami < bytebufsize) &&
346 (s->left_of_salami > 0)) {
347 dev_err(ep->dev,
348 "Corrupt buffer allocation in IDT. Aborting.\n");
349 return -ENODEV;
350 }
351
352 if (s->left_of_salami == 0) {
353 int allocorder, allocsize;
354
355 allocsize = PAGE_SIZE;
356 allocorder = 0;
357 while (bytebufsize > allocsize) {
358 allocsize *= 2;
359 allocorder++;
360 }
361
362 s->salami = (void *) devm_get_free_pages(
363 dev,
364 GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
365 allocorder);
366 if (!s->salami)
367 return -ENOMEM;
368
369 s->left_of_salami = allocsize;
370 }
371
372 rc = ep->ephw->map_single(ep, s->salami,
373 bytebufsize, s->direction,
374 &dma_addr);
375 if (rc)
376 return rc;
377
378 iowrite32((u32) (dma_addr & 0xffffffff),
379 ep->registers + fpga_dma_bufaddr_lowaddr_reg);
380 iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
381 ep->registers + fpga_dma_bufaddr_highaddr_reg);
382
383 if (buffers) { /* Not the message buffer */
384 this_buffer->addr = s->salami;
385 this_buffer->dma_addr = dma_addr;
386 buffers[i] = this_buffer++;
387
388 iowrite32(s->regdirection | s->nbuffer++,
389 ep->registers + fpga_dma_bufno_reg);
390 } else {
391 ep->msgbuf_addr = s->salami;
392 ep->msgbuf_dma_addr = dma_addr;
393 ep->msg_buf_size = bytebufsize;
394
395 iowrite32(s->regdirection,
396 ep->registers + fpga_dma_bufno_reg);
397 }
398
399 s->left_of_salami -= bytebufsize;
400 s->salami += bytebufsize;
401 }
402 return 0;
403 }
404
405 static int xilly_setupchannels(struct xilly_endpoint *ep,
406 unsigned char *chandesc,
407 int entries)
408 {
409 struct device *dev = ep->dev;
410 int i, entry, rc;
411 struct xilly_channel *channel;
412 int channelnum, bufnum, bufsize, format, is_writebuf;
413 int bytebufsize;
414 int synchronous, allowpartial, exclusive_open, seekable;
415 int supports_nonempty;
416 int msg_buf_done = 0;
417
418 struct xilly_alloc_state rd_alloc = {
419 .salami = NULL,
420 .left_of_salami = 0,
421 .nbuffer = 1,
422 .direction = DMA_TO_DEVICE,
423 .regdirection = 0,
424 };
425
426 struct xilly_alloc_state wr_alloc = {
427 .salami = NULL,
428 .left_of_salami = 0,
429 .nbuffer = 1,
430 .direction = DMA_FROM_DEVICE,
431 .regdirection = 0x80000000,
432 };
433
434 channel = devm_kcalloc(dev, ep->num_channels,
435 sizeof(struct xilly_channel), GFP_KERNEL);
436 if (!channel)
437 return -ENOMEM;
438
439 ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
440 sizeof(struct xilly_channel *),
441 GFP_KERNEL);
442 if (!ep->channels)
443 return -ENOMEM;
444
445 ep->channels[0] = NULL; /* Channel 0 is message buf. */
446
447 /* Initialize all channels with defaults */
448
449 for (i = 1; i <= ep->num_channels; i++) {
450 channel->wr_buffers = NULL;
451 channel->rd_buffers = NULL;
452 channel->num_wr_buffers = 0;
453 channel->num_rd_buffers = 0;
454 channel->wr_fpga_buf_idx = -1;
455 channel->wr_host_buf_idx = 0;
456 channel->wr_host_buf_pos = 0;
457 channel->wr_empty = 1;
458 channel->wr_ready = 0;
459 channel->wr_sleepy = 1;
460 channel->rd_fpga_buf_idx = 0;
461 channel->rd_host_buf_idx = 0;
462 channel->rd_host_buf_pos = 0;
463 channel->rd_full = 0;
464 channel->wr_ref_count = 0;
465 channel->rd_ref_count = 0;
466
467 spin_lock_init(&channel->wr_spinlock);
468 spin_lock_init(&channel->rd_spinlock);
469 mutex_init(&channel->wr_mutex);
470 mutex_init(&channel->rd_mutex);
471 init_waitqueue_head(&channel->rd_wait);
472 init_waitqueue_head(&channel->wr_wait);
473 init_waitqueue_head(&channel->wr_ready_wait);
474
475 INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
476
477 channel->endpoint = ep;
478 channel->chan_num = i;
479
480 channel->log2_element_size = 0;
481
482 ep->channels[i] = channel++;
483 }
484
485 for (entry = 0; entry < entries; entry++, chandesc += 4) {
486 struct xilly_buffer **buffers = NULL;
487
488 is_writebuf = chandesc[0] & 0x01;
489 channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
490 format = (chandesc[1] >> 4) & 0x03;
491 allowpartial = (chandesc[1] >> 6) & 0x01;
492 synchronous = (chandesc[1] >> 7) & 0x01;
493 bufsize = 1 << (chandesc[2] & 0x1f);
494 bufnum = 1 << (chandesc[3] & 0x0f);
495 exclusive_open = (chandesc[2] >> 7) & 0x01;
496 seekable = (chandesc[2] >> 6) & 0x01;
497 supports_nonempty = (chandesc[2] >> 5) & 0x01;
498
499 if ((channelnum > ep->num_channels) ||
500 ((channelnum == 0) && !is_writebuf)) {
501 dev_err(ep->dev,
502 "IDT requests channel out of range. Aborting.\n");
503 return -ENODEV;
504 }
505
506 channel = ep->channels[channelnum]; /* NULL for msg channel */
507
508 if (!is_writebuf || channelnum > 0) {
509 channel->log2_element_size = ((format > 2) ?
510 2 : format);
511
512 bytebufsize = channel->rd_buf_size = bufsize *
513 (1 << channel->log2_element_size);
514
515 buffers = devm_kcalloc(dev, bufnum,
516 sizeof(struct xilly_buffer *),
517 GFP_KERNEL);
518 if (!buffers)
519 return -ENOMEM;
520 } else {
521 bytebufsize = bufsize << 2;
522 }
523
524 if (!is_writebuf) {
525 channel->num_rd_buffers = bufnum;
526 channel->rd_allow_partial = allowpartial;
527 channel->rd_synchronous = synchronous;
528 channel->rd_exclusive_open = exclusive_open;
529 channel->seekable = seekable;
530
531 channel->rd_buffers = buffers;
532 rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
533 bufnum, bytebufsize);
534 } else if (channelnum > 0) {
535 channel->num_wr_buffers = bufnum;
536
537 channel->seekable = seekable;
538 channel->wr_supports_nonempty = supports_nonempty;
539
540 channel->wr_allow_partial = allowpartial;
541 channel->wr_synchronous = synchronous;
542 channel->wr_exclusive_open = exclusive_open;
543
544 channel->wr_buffers = buffers;
545 rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
546 bufnum, bytebufsize);
547 } else {
548 rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
549 bufnum, bytebufsize);
550 msg_buf_done++;
551 }
552
553 if (rc)
554 return -ENOMEM;
555 }
556
557 if (!msg_buf_done) {
558 dev_err(ep->dev,
559 "Corrupt IDT: No message buffer. Aborting.\n");
560 return -ENODEV;
561 }
562 return 0;
563 }
564
565 static int xilly_scan_idt(struct xilly_endpoint *endpoint,
566 struct xilly_idt_handle *idt_handle)
567 {
568 int count = 0;
569 unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
570 unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
571 unsigned char *scan;
572 int len;
573
574 scan = idt;
575 idt_handle->idt = idt;
576
577 scan++; /* Skip version number */
578
579 while ((scan <= end_of_idt) && *scan) {
580 while ((scan <= end_of_idt) && *scan++)
581 /* Do nothing, just scan thru string */;
582 count++;
583 }
584
585 scan++;
586
587 if (scan > end_of_idt) {
588 dev_err(endpoint->dev,
589 "IDT device name list overflow. Aborting.\n");
590 return -ENODEV;
591 }
592 idt_handle->chandesc = scan;
593
594 len = endpoint->idtlen - (3 + ((int) (scan - idt)));
595
596 if (len & 0x03) {
597 dev_err(endpoint->dev,
598 "Corrupt IDT device name list. Aborting.\n");
599 return -ENODEV;
600 }
601
602 idt_handle->entries = len >> 2;
603 endpoint->num_channels = count;
604
605 return 0;
606 }
607
608 static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
609 {
610 struct xilly_channel *channel;
611 unsigned char *version;
612 long t;
613
614 channel = endpoint->channels[1]; /* This should be generated ad-hoc */
615
616 channel->wr_sleepy = 1;
617
618 iowrite32(1 |
619 (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
620 endpoint->registers + fpga_buf_ctrl_reg);
621
622 t = wait_event_interruptible_timeout(channel->wr_wait,
623 (!channel->wr_sleepy),
624 XILLY_TIMEOUT);
625
626 if (t <= 0) {
627 dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
628
629 if (endpoint->fatal_error)
630 return -EIO;
631
632 return -ENODEV;
633 }
634
635 endpoint->ephw->hw_sync_sgl_for_cpu(
636 channel->endpoint,
637 channel->wr_buffers[0]->dma_addr,
638 channel->wr_buf_size,
639 DMA_FROM_DEVICE);
640
641 if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
642 dev_err(endpoint->dev,
643 "IDT length mismatch (%d != %d). Aborting.\n",
644 channel->wr_buffers[0]->end_offset, endpoint->idtlen);
645 return -ENODEV;
646 }
647
648 if (crc32_le(~0, channel->wr_buffers[0]->addr,
649 endpoint->idtlen+1) != 0) {
650 dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
651 return -ENODEV;
652 }
653
654 version = channel->wr_buffers[0]->addr;
655
656 /* Check version number. Accept anything below 0x82 for now. */
657 if (*version > 0x82) {
658 dev_err(endpoint->dev,
659 "No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgarde. Aborting.\n",
660 *version);
661 return -ENODEV;
662 }
663
664 return 0;
665 }
666
667 static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
668 size_t count, loff_t *f_pos)
669 {
670 ssize_t rc;
671 unsigned long flags;
672 int bytes_done = 0;
673 int no_time_left = 0;
674 long deadline, left_to_sleep;
675 struct xilly_channel *channel = filp->private_data;
676
677 int empty, reached_eof, exhausted, ready;
678 /* Initializations are there only to silence warnings */
679
680 int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
681 int waiting_bufidx;
682
683 if (channel->endpoint->fatal_error)
684 return -EIO;
685
686 deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
687
688 rc = mutex_lock_interruptible(&channel->wr_mutex);
689 if (rc)
690 return rc;
691
692 while (1) { /* Note that we may drop mutex within this loop */
693 int bytes_to_do = count - bytes_done;
694
695 spin_lock_irqsave(&channel->wr_spinlock, flags);
696
697 empty = channel->wr_empty;
698 ready = !empty || channel->wr_ready;
699
700 if (!empty) {
701 bufidx = channel->wr_host_buf_idx;
702 bufpos = channel->wr_host_buf_pos;
703 howmany = ((channel->wr_buffers[bufidx]->end_offset
704 + 1) << channel->log2_element_size)
705 - bufpos;
706
707 /* Update wr_host_* to its post-operation state */
708 if (howmany > bytes_to_do) {
709 bufferdone = 0;
710
711 howmany = bytes_to_do;
712 channel->wr_host_buf_pos += howmany;
713 } else {
714 bufferdone = 1;
715
716 channel->wr_host_buf_pos = 0;
717
718 if (bufidx == channel->wr_fpga_buf_idx) {
719 channel->wr_empty = 1;
720 channel->wr_sleepy = 1;
721 channel->wr_ready = 0;
722 }
723
724 if (bufidx >= (channel->num_wr_buffers - 1))
725 channel->wr_host_buf_idx = 0;
726 else
727 channel->wr_host_buf_idx++;
728 }
729 }
730
731 /*
732 * Marking our situation after the possible changes above,
733 * for use after releasing the spinlock.
734 *
735 * empty = empty before change
736 * exhasted = empty after possible change
737 */
738
739 reached_eof = channel->wr_empty &&
740 (channel->wr_host_buf_idx == channel->wr_eof);
741 channel->wr_hangup = reached_eof;
742 exhausted = channel->wr_empty;
743 waiting_bufidx = channel->wr_host_buf_idx;
744
745 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
746
747 if (!empty) { /* Go on, now without the spinlock */
748
749 if (bufpos == 0) /* Position zero means it's virgin */
750 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
751 channel->endpoint,
752 channel->wr_buffers[bufidx]->dma_addr,
753 channel->wr_buf_size,
754 DMA_FROM_DEVICE);
755
756 if (copy_to_user(
757 userbuf,
758 channel->wr_buffers[bufidx]->addr
759 + bufpos, howmany))
760 rc = -EFAULT;
761
762 userbuf += howmany;
763 bytes_done += howmany;
764
765 if (bufferdone) {
766 channel->endpoint->ephw->hw_sync_sgl_for_device(
767 channel->endpoint,
768 channel->wr_buffers[bufidx]->dma_addr,
769 channel->wr_buf_size,
770 DMA_FROM_DEVICE);
771
772 /*
773 * Tell FPGA the buffer is done with. It's an
774 * atomic operation to the FPGA, so what
775 * happens with other channels doesn't matter,
776 * and the certain channel is protected with
777 * the channel-specific mutex.
778 */
779
780 iowrite32(1 | (channel->chan_num << 1) |
781 (bufidx << 12),
782 channel->endpoint->registers +
783 fpga_buf_ctrl_reg);
784 }
785
786 if (rc) {
787 mutex_unlock(&channel->wr_mutex);
788 return rc;
789 }
790 }
791
792 /* This includes a zero-count return = EOF */
793 if ((bytes_done >= count) || reached_eof)
794 break;
795
796 if (!exhausted)
797 continue; /* More in RAM buffer(s)? Just go on. */
798
799 if ((bytes_done > 0) &&
800 (no_time_left ||
801 (channel->wr_synchronous && channel->wr_allow_partial)))
802 break;
803
804 /*
805 * Nonblocking read: The "ready" flag tells us that the FPGA
806 * has data to send. In non-blocking mode, if it isn't on,
807 * just return. But if there is, we jump directly to the point
808 * where we ask for the FPGA to send all it has, and wait
809 * until that data arrives. So in a sense, we *do* block in
810 * nonblocking mode, but only for a very short time.
811 */
812
813 if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
814 if (bytes_done > 0)
815 break;
816
817 if (ready)
818 goto desperate;
819
820 rc = -EAGAIN;
821 break;
822 }
823
824 if (!no_time_left || (bytes_done > 0)) {
825 /*
826 * Note that in case of an element-misaligned read
827 * request, offsetlimit will include the last element,
828 * which will be partially read from.
829 */
830 int offsetlimit = ((count - bytes_done) - 1) >>
831 channel->log2_element_size;
832 int buf_elements = channel->wr_buf_size >>
833 channel->log2_element_size;
834
835 /*
836 * In synchronous mode, always send an offset limit.
837 * Just don't send a value too big.
838 */
839
840 if (channel->wr_synchronous) {
841 /* Don't request more than one buffer */
842 if (channel->wr_allow_partial &&
843 (offsetlimit >= buf_elements))
844 offsetlimit = buf_elements - 1;
845
846 /* Don't request more than all buffers */
847 if (!channel->wr_allow_partial &&
848 (offsetlimit >=
849 (buf_elements * channel->num_wr_buffers)))
850 offsetlimit = buf_elements *
851 channel->num_wr_buffers - 1;
852 }
853
854 /*
855 * In asynchronous mode, force early flush of a buffer
856 * only if that will allow returning a full count. The
857 * "offsetlimit < ( ... )" rather than "<=" excludes
858 * requesting a full buffer, which would obviously
859 * cause a buffer transmission anyhow
860 */
861
862 if (channel->wr_synchronous ||
863 (offsetlimit < (buf_elements - 1))) {
864 mutex_lock(&channel->endpoint->register_mutex);
865
866 iowrite32(offsetlimit,
867 channel->endpoint->registers +
868 fpga_buf_offset_reg);
869
870 iowrite32(1 | (channel->chan_num << 1) |
871 (2 << 24) | /* 2 = offset limit */
872 (waiting_bufidx << 12),
873 channel->endpoint->registers +
874 fpga_buf_ctrl_reg);
875
876 mutex_unlock(&channel->endpoint->
877 register_mutex);
878 }
879 }
880
881 /*
882 * If partial completion is disallowed, there is no point in
883 * timeout sleeping. Neither if no_time_left is set and
884 * there's no data.
885 */
886
887 if (!channel->wr_allow_partial ||
888 (no_time_left && (bytes_done == 0))) {
889 /*
890 * This do-loop will run more than once if another
891 * thread reasserted wr_sleepy before we got the mutex
892 * back, so we try again.
893 */
894
895 do {
896 mutex_unlock(&channel->wr_mutex);
897
898 if (wait_event_interruptible(
899 channel->wr_wait,
900 (!channel->wr_sleepy)))
901 goto interrupted;
902
903 if (mutex_lock_interruptible(
904 &channel->wr_mutex))
905 goto interrupted;
906 } while (channel->wr_sleepy);
907
908 continue;
909
910 interrupted: /* Mutex is not held if got here */
911 if (channel->endpoint->fatal_error)
912 return -EIO;
913 if (bytes_done)
914 return bytes_done;
915 if (filp->f_flags & O_NONBLOCK)
916 return -EAGAIN; /* Don't admit snoozing */
917 return -EINTR;
918 }
919
920 left_to_sleep = deadline - ((long) jiffies);
921
922 /*
923 * If our time is out, skip the waiting. We may miss wr_sleepy
924 * being deasserted but hey, almost missing the train is like
925 * missing it.
926 */
927
928 if (left_to_sleep > 0) {
929 left_to_sleep =
930 wait_event_interruptible_timeout(
931 channel->wr_wait,
932 (!channel->wr_sleepy),
933 left_to_sleep);
934
935 if (left_to_sleep > 0) /* wr_sleepy deasserted */
936 continue;
937
938 if (left_to_sleep < 0) { /* Interrupt */
939 mutex_unlock(&channel->wr_mutex);
940 if (channel->endpoint->fatal_error)
941 return -EIO;
942 if (bytes_done)
943 return bytes_done;
944 return -EINTR;
945 }
946 }
947
948 desperate:
949 no_time_left = 1; /* We're out of sleeping time. Desperate! */
950
951 if (bytes_done == 0) {
952 /*
953 * Reaching here means that we allow partial return,
954 * that we've run out of time, and that we have
955 * nothing to return.
956 * So tell the FPGA to send anything it has or gets.
957 */
958
959 iowrite32(1 | (channel->chan_num << 1) |
960 (3 << 24) | /* Opcode 3, flush it all! */
961 (waiting_bufidx << 12),
962 channel->endpoint->registers +
963 fpga_buf_ctrl_reg);
964 }
965
966 /*
967 * Reaching here means that we *do* have data in the buffer,
968 * but the "partial" flag disallows returning less than
969 * required. And we don't have as much. So loop again,
970 * which is likely to end up blocking indefinitely until
971 * enough data has arrived.
972 */
973 }
974
975 mutex_unlock(&channel->wr_mutex);
976
977 if (channel->endpoint->fatal_error)
978 return -EIO;
979
980 if (rc)
981 return rc;
982
983 return bytes_done;
984 }
985
986 /*
987 * The timeout argument takes values as follows:
988 * >0 : Flush with timeout
989 * ==0 : Flush, and wait idefinitely for the flush to complete
990 * <0 : Autoflush: Flush only if there's a single buffer occupied
991 */
992
993 static int xillybus_myflush(struct xilly_channel *channel, long timeout)
994 {
995 int rc;
996 unsigned long flags;
997
998 int end_offset_plus1;
999 int bufidx, bufidx_minus1;
1000 int i;
1001 int empty;
1002 int new_rd_host_buf_pos;
1003
1004 if (channel->endpoint->fatal_error)
1005 return -EIO;
1006 rc = mutex_lock_interruptible(&channel->rd_mutex);
1007 if (rc)
1008 return rc;
1009
1010 /*
1011 * Don't flush a closed channel. This can happen when the work queued
1012 * autoflush thread fires off after the file has closed. This is not
1013 * an error, just something to dismiss.
1014 */
1015
1016 if (!channel->rd_ref_count)
1017 goto done;
1018
1019 bufidx = channel->rd_host_buf_idx;
1020
1021 bufidx_minus1 = (bufidx == 0) ?
1022 channel->num_rd_buffers - 1 :
1023 bufidx - 1;
1024
1025 end_offset_plus1 = channel->rd_host_buf_pos >>
1026 channel->log2_element_size;
1027
1028 new_rd_host_buf_pos = channel->rd_host_buf_pos -
1029 (end_offset_plus1 << channel->log2_element_size);
1030
1031 /* Submit the current buffer if it's nonempty */
1032 if (end_offset_plus1) {
1033 unsigned char *tail = channel->rd_buffers[bufidx]->addr +
1034 (end_offset_plus1 << channel->log2_element_size);
1035
1036 /* Copy unflushed data, so we can put it in next buffer */
1037 for (i = 0; i < new_rd_host_buf_pos; i++)
1038 channel->rd_leftovers[i] = *tail++;
1039
1040 spin_lock_irqsave(&channel->rd_spinlock, flags);
1041
1042 /* Autoflush only if a single buffer is occupied */
1043
1044 if ((timeout < 0) &&
1045 (channel->rd_full ||
1046 (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
1047 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1048 /*
1049 * A new work item may be queued by the ISR exactly
1050 * now, since the execution of a work item allows the
1051 * queuing of a new one while it's running.
1052 */
1053 goto done;
1054 }
1055
1056 /* The 4th element is never needed for data, so it's a flag */
1057 channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
1058
1059 /* Set up rd_full to reflect a certain moment's state */
1060
1061 if (bufidx == channel->rd_fpga_buf_idx)
1062 channel->rd_full = 1;
1063 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1064
1065 if (bufidx >= (channel->num_rd_buffers - 1))
1066 channel->rd_host_buf_idx = 0;
1067 else
1068 channel->rd_host_buf_idx++;
1069
1070 channel->endpoint->ephw->hw_sync_sgl_for_device(
1071 channel->endpoint,
1072 channel->rd_buffers[bufidx]->dma_addr,
1073 channel->rd_buf_size,
1074 DMA_TO_DEVICE);
1075
1076 mutex_lock(&channel->endpoint->register_mutex);
1077
1078 iowrite32(end_offset_plus1 - 1,
1079 channel->endpoint->registers + fpga_buf_offset_reg);
1080
1081 iowrite32((channel->chan_num << 1) | /* Channel ID */
1082 (2 << 24) | /* Opcode 2, submit buffer */
1083 (bufidx << 12),
1084 channel->endpoint->registers + fpga_buf_ctrl_reg);
1085
1086 mutex_unlock(&channel->endpoint->register_mutex);
1087 } else if (bufidx == 0) {
1088 bufidx = channel->num_rd_buffers - 1;
1089 } else {
1090 bufidx--;
1091 }
1092
1093 channel->rd_host_buf_pos = new_rd_host_buf_pos;
1094
1095 if (timeout < 0)
1096 goto done; /* Autoflush */
1097
1098 /*
1099 * bufidx is now the last buffer written to (or equal to
1100 * rd_fpga_buf_idx if buffer was never written to), and
1101 * channel->rd_host_buf_idx the one after it.
1102 *
1103 * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1104 */
1105
1106 while (1) { /* Loop waiting for draining of buffers */
1107 spin_lock_irqsave(&channel->rd_spinlock, flags);
1108
1109 if (bufidx != channel->rd_fpga_buf_idx)
1110 channel->rd_full = 1; /*
1111 * Not really full,
1112 * but needs waiting.
1113 */
1114
1115 empty = !channel->rd_full;
1116
1117 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1118
1119 if (empty)
1120 break;
1121
1122 /*
1123 * Indefinite sleep with mutex taken. With data waiting for
1124 * flushing user should not be surprised if open() for write
1125 * sleeps.
1126 */
1127 if (timeout == 0)
1128 wait_event_interruptible(channel->rd_wait,
1129 (!channel->rd_full));
1130
1131 else if (wait_event_interruptible_timeout(
1132 channel->rd_wait,
1133 (!channel->rd_full),
1134 timeout) == 0) {
1135 dev_warn(channel->endpoint->dev,
1136 "Timed out while flushing. Output data may be lost.\n");
1137
1138 rc = -ETIMEDOUT;
1139 break;
1140 }
1141
1142 if (channel->rd_full) {
1143 rc = -EINTR;
1144 break;
1145 }
1146 }
1147
1148 done:
1149 mutex_unlock(&channel->rd_mutex);
1150
1151 if (channel->endpoint->fatal_error)
1152 return -EIO;
1153
1154 return rc;
1155 }
1156
1157 static int xillybus_flush(struct file *filp, fl_owner_t id)
1158 {
1159 if (!(filp->f_mode & FMODE_WRITE))
1160 return 0;
1161
1162 return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
1163 }
1164
1165 static void xillybus_autoflush(struct work_struct *work)
1166 {
1167 struct delayed_work *workitem = container_of(
1168 work, struct delayed_work, work);
1169 struct xilly_channel *channel = container_of(
1170 workitem, struct xilly_channel, rd_workitem);
1171 int rc;
1172
1173 rc = xillybus_myflush(channel, -1);
1174 if (rc == -EINTR)
1175 dev_warn(channel->endpoint->dev,
1176 "Autoflush failed because work queue thread got a signal.\n");
1177 else if (rc)
1178 dev_err(channel->endpoint->dev,
1179 "Autoflush failed under weird circumstances.\n");
1180 }
1181
1182 static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
1183 size_t count, loff_t *f_pos)
1184 {
1185 ssize_t rc;
1186 unsigned long flags;
1187 int bytes_done = 0;
1188 struct xilly_channel *channel = filp->private_data;
1189
1190 int full, exhausted;
1191 /* Initializations are there only to silence warnings */
1192
1193 int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
1194 int end_offset_plus1 = 0;
1195
1196 if (channel->endpoint->fatal_error)
1197 return -EIO;
1198
1199 rc = mutex_lock_interruptible(&channel->rd_mutex);
1200 if (rc)
1201 return rc;
1202
1203 while (1) {
1204 int bytes_to_do = count - bytes_done;
1205
1206 spin_lock_irqsave(&channel->rd_spinlock, flags);
1207
1208 full = channel->rd_full;
1209
1210 if (!full) {
1211 bufidx = channel->rd_host_buf_idx;
1212 bufpos = channel->rd_host_buf_pos;
1213 howmany = channel->rd_buf_size - bufpos;
1214
1215 /*
1216 * Update rd_host_* to its state after this operation.
1217 * count=0 means committing the buffer immediately,
1218 * which is like flushing, but not necessarily block.
1219 */
1220
1221 if ((howmany > bytes_to_do) &&
1222 (count ||
1223 ((bufpos >> channel->log2_element_size) == 0))) {
1224 bufferdone = 0;
1225
1226 howmany = bytes_to_do;
1227 channel->rd_host_buf_pos += howmany;
1228 } else {
1229 bufferdone = 1;
1230
1231 if (count) {
1232 end_offset_plus1 =
1233 channel->rd_buf_size >>
1234 channel->log2_element_size;
1235 channel->rd_host_buf_pos = 0;
1236 } else {
1237 unsigned char *tail;
1238 int i;
1239
1240 howmany = 0;
1241
1242 end_offset_plus1 = bufpos >>
1243 channel->log2_element_size;
1244
1245 channel->rd_host_buf_pos -=
1246 end_offset_plus1 <<
1247 channel->log2_element_size;
1248
1249 tail = channel->
1250 rd_buffers[bufidx]->addr +
1251 (end_offset_plus1 <<
1252 channel->log2_element_size);
1253
1254 for (i = 0;
1255 i < channel->rd_host_buf_pos;
1256 i++)
1257 channel->rd_leftovers[i] =
1258 *tail++;
1259 }
1260
1261 if (bufidx == channel->rd_fpga_buf_idx)
1262 channel->rd_full = 1;
1263
1264 if (bufidx >= (channel->num_rd_buffers - 1))
1265 channel->rd_host_buf_idx = 0;
1266 else
1267 channel->rd_host_buf_idx++;
1268 }
1269 }
1270
1271 /*
1272 * Marking our situation after the possible changes above,
1273 * for use after releasing the spinlock.
1274 *
1275 * full = full before change
1276 * exhasted = full after possible change
1277 */
1278
1279 exhausted = channel->rd_full;
1280
1281 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1282
1283 if (!full) { /* Go on, now without the spinlock */
1284 unsigned char *head =
1285 channel->rd_buffers[bufidx]->addr;
1286 int i;
1287
1288 if ((bufpos == 0) || /* Zero means it's virgin */
1289 (channel->rd_leftovers[3] != 0)) {
1290 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
1291 channel->endpoint,
1292 channel->rd_buffers[bufidx]->dma_addr,
1293 channel->rd_buf_size,
1294 DMA_TO_DEVICE);
1295
1296 /* Virgin, but leftovers are due */
1297 for (i = 0; i < bufpos; i++)
1298 *head++ = channel->rd_leftovers[i];
1299
1300 channel->rd_leftovers[3] = 0; /* Clear flag */
1301 }
1302
1303 if (copy_from_user(
1304 channel->rd_buffers[bufidx]->addr + bufpos,
1305 userbuf, howmany))
1306 rc = -EFAULT;
1307
1308 userbuf += howmany;
1309 bytes_done += howmany;
1310
1311 if (bufferdone) {
1312 channel->endpoint->ephw->hw_sync_sgl_for_device(
1313 channel->endpoint,
1314 channel->rd_buffers[bufidx]->dma_addr,
1315 channel->rd_buf_size,
1316 DMA_TO_DEVICE);
1317
1318 mutex_lock(&channel->endpoint->register_mutex);
1319
1320 iowrite32(end_offset_plus1 - 1,
1321 channel->endpoint->registers +
1322 fpga_buf_offset_reg);
1323
1324 iowrite32((channel->chan_num << 1) |
1325 (2 << 24) | /* 2 = submit buffer */
1326 (bufidx << 12),
1327 channel->endpoint->registers +
1328 fpga_buf_ctrl_reg);
1329
1330 mutex_unlock(&channel->endpoint->
1331 register_mutex);
1332
1333 channel->rd_leftovers[3] =
1334 (channel->rd_host_buf_pos != 0);
1335 }
1336
1337 if (rc) {
1338 mutex_unlock(&channel->rd_mutex);
1339
1340 if (channel->endpoint->fatal_error)
1341 return -EIO;
1342
1343 if (!channel->rd_synchronous)
1344 queue_delayed_work(
1345 xillybus_wq,
1346 &channel->rd_workitem,
1347 XILLY_RX_TIMEOUT);
1348
1349 return rc;
1350 }
1351 }
1352
1353 if (bytes_done >= count)
1354 break;
1355
1356 if (!exhausted)
1357 continue; /* If there's more space, just go on */
1358
1359 if ((bytes_done > 0) && channel->rd_allow_partial)
1360 break;
1361
1362 /*
1363 * Indefinite sleep with mutex taken. With data waiting for
1364 * flushing, user should not be surprised if open() for write
1365 * sleeps.
1366 */
1367
1368 if (filp->f_flags & O_NONBLOCK) {
1369 rc = -EAGAIN;
1370 break;
1371 }
1372
1373 if (wait_event_interruptible(channel->rd_wait,
1374 (!channel->rd_full))) {
1375 mutex_unlock(&channel->rd_mutex);
1376
1377 if (channel->endpoint->fatal_error)
1378 return -EIO;
1379
1380 if (bytes_done)
1381 return bytes_done;
1382 return -EINTR;
1383 }
1384 }
1385
1386 mutex_unlock(&channel->rd_mutex);
1387
1388 if (!channel->rd_synchronous)
1389 queue_delayed_work(xillybus_wq,
1390 &channel->rd_workitem,
1391 XILLY_RX_TIMEOUT);
1392
1393 if (channel->endpoint->fatal_error)
1394 return -EIO;
1395
1396 if (rc)
1397 return rc;
1398
1399 if ((channel->rd_synchronous) && (bytes_done > 0)) {
1400 rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
1401
1402 if (rc && (rc != -EINTR))
1403 return rc;
1404 }
1405
1406 return bytes_done;
1407 }
1408
1409 static int xillybus_open(struct inode *inode, struct file *filp)
1410 {
1411 int rc = 0;
1412 unsigned long flags;
1413 int minor = iminor(inode);
1414 int major = imajor(inode);
1415 struct xilly_endpoint *ep_iter, *endpoint = NULL;
1416 struct xilly_channel *channel;
1417
1418 mutex_lock(&ep_list_lock);
1419
1420 list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
1421 if ((ep_iter->major == major) &&
1422 (minor >= ep_iter->lowest_minor) &&
1423 (minor < (ep_iter->lowest_minor +
1424 ep_iter->num_channels))) {
1425 endpoint = ep_iter;
1426 break;
1427 }
1428 }
1429 mutex_unlock(&ep_list_lock);
1430
1431 if (!endpoint) {
1432 pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1433 major, minor);
1434 return -ENODEV;
1435 }
1436
1437 if (endpoint->fatal_error)
1438 return -EIO;
1439
1440 channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
1441 filp->private_data = channel;
1442
1443 /*
1444 * It gets complicated because:
1445 * 1. We don't want to take a mutex we don't have to
1446 * 2. We don't want to open one direction if the other will fail.
1447 */
1448
1449 if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
1450 return -ENODEV;
1451
1452 if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
1453 return -ENODEV;
1454
1455 if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
1456 (channel->wr_synchronous || !channel->wr_allow_partial ||
1457 !channel->wr_supports_nonempty)) {
1458 dev_err(endpoint->dev,
1459 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1460 return -ENODEV;
1461 }
1462
1463 if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
1464 (channel->rd_synchronous || !channel->rd_allow_partial)) {
1465 dev_err(endpoint->dev,
1466 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1467 return -ENODEV;
1468 }
1469
1470 /*
1471 * Note: open() may block on getting mutexes despite O_NONBLOCK.
1472 * This shouldn't occur normally, since multiple open of the same
1473 * file descriptor is almost always prohibited anyhow
1474 * (*_exclusive_open is normally set in real-life systems).
1475 */
1476
1477 if (filp->f_mode & FMODE_READ) {
1478 rc = mutex_lock_interruptible(&channel->wr_mutex);
1479 if (rc)
1480 return rc;
1481 }
1482
1483 if (filp->f_mode & FMODE_WRITE) {
1484 rc = mutex_lock_interruptible(&channel->rd_mutex);
1485 if (rc)
1486 goto unlock_wr;
1487 }
1488
1489 if ((filp->f_mode & FMODE_READ) &&
1490 (channel->wr_ref_count != 0) &&
1491 (channel->wr_exclusive_open)) {
1492 rc = -EBUSY;
1493 goto unlock;
1494 }
1495
1496 if ((filp->f_mode & FMODE_WRITE) &&
1497 (channel->rd_ref_count != 0) &&
1498 (channel->rd_exclusive_open)) {
1499 rc = -EBUSY;
1500 goto unlock;
1501 }
1502
1503 if (filp->f_mode & FMODE_READ) {
1504 if (channel->wr_ref_count == 0) { /* First open of file */
1505 /* Move the host to first buffer */
1506 spin_lock_irqsave(&channel->wr_spinlock, flags);
1507 channel->wr_host_buf_idx = 0;
1508 channel->wr_host_buf_pos = 0;
1509 channel->wr_fpga_buf_idx = -1;
1510 channel->wr_empty = 1;
1511 channel->wr_ready = 0;
1512 channel->wr_sleepy = 1;
1513 channel->wr_eof = -1;
1514 channel->wr_hangup = 0;
1515
1516 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1517
1518 iowrite32(1 | (channel->chan_num << 1) |
1519 (4 << 24) | /* Opcode 4, open channel */
1520 ((channel->wr_synchronous & 1) << 23),
1521 channel->endpoint->registers +
1522 fpga_buf_ctrl_reg);
1523 }
1524
1525 channel->wr_ref_count++;
1526 }
1527
1528 if (filp->f_mode & FMODE_WRITE) {
1529 if (channel->rd_ref_count == 0) { /* First open of file */
1530 /* Move the host to first buffer */
1531 spin_lock_irqsave(&channel->rd_spinlock, flags);
1532 channel->rd_host_buf_idx = 0;
1533 channel->rd_host_buf_pos = 0;
1534 channel->rd_leftovers[3] = 0; /* No leftovers. */
1535 channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
1536 channel->rd_full = 0;
1537
1538 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1539
1540 iowrite32((channel->chan_num << 1) |
1541 (4 << 24), /* Opcode 4, open channel */
1542 channel->endpoint->registers +
1543 fpga_buf_ctrl_reg);
1544 }
1545
1546 channel->rd_ref_count++;
1547 }
1548
1549 unlock:
1550 if (filp->f_mode & FMODE_WRITE)
1551 mutex_unlock(&channel->rd_mutex);
1552 unlock_wr:
1553 if (filp->f_mode & FMODE_READ)
1554 mutex_unlock(&channel->wr_mutex);
1555
1556 if (!rc && (!channel->seekable))
1557 return nonseekable_open(inode, filp);
1558
1559 return rc;
1560 }
1561
1562 static int xillybus_release(struct inode *inode, struct file *filp)
1563 {
1564 unsigned long flags;
1565 struct xilly_channel *channel = filp->private_data;
1566
1567 int buf_idx;
1568 int eof;
1569
1570 if (channel->endpoint->fatal_error)
1571 return -EIO;
1572
1573 if (filp->f_mode & FMODE_WRITE) {
1574 mutex_lock(&channel->rd_mutex);
1575
1576 channel->rd_ref_count--;
1577
1578 if (channel->rd_ref_count == 0) {
1579 /*
1580 * We rely on the kernel calling flush()
1581 * before we get here.
1582 */
1583
1584 iowrite32((channel->chan_num << 1) | /* Channel ID */
1585 (5 << 24), /* Opcode 5, close channel */
1586 channel->endpoint->registers +
1587 fpga_buf_ctrl_reg);
1588 }
1589 mutex_unlock(&channel->rd_mutex);
1590 }
1591
1592 if (filp->f_mode & FMODE_READ) {
1593 mutex_lock(&channel->wr_mutex);
1594
1595 channel->wr_ref_count--;
1596
1597 if (channel->wr_ref_count == 0) {
1598 iowrite32(1 | (channel->chan_num << 1) |
1599 (5 << 24), /* Opcode 5, close channel */
1600 channel->endpoint->registers +
1601 fpga_buf_ctrl_reg);
1602
1603 /*
1604 * This is crazily cautious: We make sure that not
1605 * only that we got an EOF (be it because we closed
1606 * the channel or because of a user's EOF), but verify
1607 * that it's one beyond the last buffer arrived, so
1608 * we have no leftover buffers pending before wrapping
1609 * up (which can only happen in asynchronous channels,
1610 * BTW)
1611 */
1612
1613 while (1) {
1614 spin_lock_irqsave(&channel->wr_spinlock,
1615 flags);
1616 buf_idx = channel->wr_fpga_buf_idx;
1617 eof = channel->wr_eof;
1618 channel->wr_sleepy = 1;
1619 spin_unlock_irqrestore(&channel->wr_spinlock,
1620 flags);
1621
1622 /*
1623 * Check if eof points at the buffer after
1624 * the last one the FPGA submitted. Note that
1625 * no EOF is marked by negative eof.
1626 */
1627
1628 buf_idx++;
1629 if (buf_idx == channel->num_wr_buffers)
1630 buf_idx = 0;
1631
1632 if (buf_idx == eof)
1633 break;
1634
1635 /*
1636 * Steal extra 100 ms if awaken by interrupt.
1637 * This is a simple workaround for an
1638 * interrupt pending when entering, which would
1639 * otherwise result in declaring the hardware
1640 * non-responsive.
1641 */
1642
1643 if (wait_event_interruptible(
1644 channel->wr_wait,
1645 (!channel->wr_sleepy)))
1646 msleep(100);
1647
1648 if (channel->wr_sleepy) {
1649 mutex_unlock(&channel->wr_mutex);
1650 dev_warn(channel->endpoint->dev,
1651 "Hardware failed to respond to close command, therefore left in messy state.\n");
1652 return -EINTR;
1653 }
1654 }
1655 }
1656
1657 mutex_unlock(&channel->wr_mutex);
1658 }
1659
1660 return 0;
1661 }
1662
1663 static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
1664 {
1665 struct xilly_channel *channel = filp->private_data;
1666 loff_t pos = filp->f_pos;
1667 int rc = 0;
1668
1669 /*
1670 * Take both mutexes not allowing interrupts, since it seems like
1671 * common applications don't expect an -EINTR here. Besides, multiple
1672 * access to a single file descriptor on seekable devices is a mess
1673 * anyhow.
1674 */
1675
1676 if (channel->endpoint->fatal_error)
1677 return -EIO;
1678
1679 mutex_lock(&channel->wr_mutex);
1680 mutex_lock(&channel->rd_mutex);
1681
1682 switch (whence) {
1683 case SEEK_SET:
1684 pos = offset;
1685 break;
1686 case SEEK_CUR:
1687 pos += offset;
1688 break;
1689 case SEEK_END:
1690 pos = offset; /* Going to the end => to the beginning */
1691 break;
1692 default:
1693 rc = -EINVAL;
1694 goto end;
1695 }
1696
1697 /* In any case, we must finish on an element boundary */
1698 if (pos & ((1 << channel->log2_element_size) - 1)) {
1699 rc = -EINVAL;
1700 goto end;
1701 }
1702
1703 mutex_lock(&channel->endpoint->register_mutex);
1704
1705 iowrite32(pos >> channel->log2_element_size,
1706 channel->endpoint->registers + fpga_buf_offset_reg);
1707
1708 iowrite32((channel->chan_num << 1) |
1709 (6 << 24), /* Opcode 6, set address */
1710 channel->endpoint->registers + fpga_buf_ctrl_reg);
1711
1712 mutex_unlock(&channel->endpoint->register_mutex);
1713
1714 end:
1715 mutex_unlock(&channel->rd_mutex);
1716 mutex_unlock(&channel->wr_mutex);
1717
1718 if (rc) /* Return error after releasing mutexes */
1719 return rc;
1720
1721 filp->f_pos = pos;
1722
1723 /*
1724 * Since seekable devices are allowed only when the channel is
1725 * synchronous, we assume that there is no data pending in either
1726 * direction (which holds true as long as no concurrent access on the
1727 * file descriptor takes place).
1728 * The only thing we may need to throw away is leftovers from partial
1729 * write() flush.
1730 */
1731
1732 channel->rd_leftovers[3] = 0;
1733
1734 return pos;
1735 }
1736
1737 static unsigned int xillybus_poll(struct file *filp, poll_table *wait)
1738 {
1739 struct xilly_channel *channel = filp->private_data;
1740 unsigned int mask = 0;
1741 unsigned long flags;
1742
1743 poll_wait(filp, &channel->endpoint->ep_wait, wait);
1744
1745 /*
1746 * poll() won't play ball regarding read() channels which
1747 * aren't asynchronous and support the nonempty message. Allowing
1748 * that will create situations where data has been delivered at
1749 * the FPGA, and users expecting select() to wake up, which it may
1750 * not.
1751 */
1752
1753 if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
1754 poll_wait(filp, &channel->wr_wait, wait);
1755 poll_wait(filp, &channel->wr_ready_wait, wait);
1756
1757 spin_lock_irqsave(&channel->wr_spinlock, flags);
1758 if (!channel->wr_empty || channel->wr_ready)
1759 mask |= POLLIN | POLLRDNORM;
1760
1761 if (channel->wr_hangup)
1762 /*
1763 * Not POLLHUP, because its behavior is in the
1764 * mist, and POLLIN does what we want: Wake up
1765 * the read file descriptor so it sees EOF.
1766 */
1767 mask |= POLLIN | POLLRDNORM;
1768 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1769 }
1770
1771 /*
1772 * If partial data write is disallowed on a write() channel,
1773 * it's pointless to ever signal OK to write, because is could
1774 * block despite some space being available.
1775 */
1776
1777 if (channel->rd_allow_partial) {
1778 poll_wait(filp, &channel->rd_wait, wait);
1779
1780 spin_lock_irqsave(&channel->rd_spinlock, flags);
1781 if (!channel->rd_full)
1782 mask |= POLLOUT | POLLWRNORM;
1783 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1784 }
1785
1786 if (channel->endpoint->fatal_error)
1787 mask |= POLLERR;
1788
1789 return mask;
1790 }
1791
1792 static const struct file_operations xillybus_fops = {
1793 .owner = THIS_MODULE,
1794 .read = xillybus_read,
1795 .write = xillybus_write,
1796 .open = xillybus_open,
1797 .flush = xillybus_flush,
1798 .release = xillybus_release,
1799 .llseek = xillybus_llseek,
1800 .poll = xillybus_poll,
1801 };
1802
1803 static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
1804 const unsigned char *idt)
1805 {
1806 int rc;
1807 dev_t dev;
1808 int devnum, i, minor, major;
1809 char devname[48];
1810 struct device *device;
1811
1812 rc = alloc_chrdev_region(&dev, 0, /* minor start */
1813 endpoint->num_channels,
1814 xillyname);
1815 if (rc) {
1816 dev_warn(endpoint->dev, "Failed to obtain major/minors");
1817 return rc;
1818 }
1819
1820 endpoint->major = major = MAJOR(dev);
1821 endpoint->lowest_minor = minor = MINOR(dev);
1822
1823 cdev_init(&endpoint->cdev, &xillybus_fops);
1824 endpoint->cdev.owner = endpoint->ephw->owner;
1825 rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
1826 endpoint->num_channels);
1827 if (rc) {
1828 dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
1829 goto unregister_chrdev;
1830 }
1831
1832 idt++;
1833
1834 for (i = minor, devnum = 0;
1835 devnum < endpoint->num_channels;
1836 devnum++, i++) {
1837 snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
1838
1839 devname[sizeof(devname)-1] = 0; /* Should never matter */
1840
1841 while (*idt++)
1842 /* Skip to next */;
1843
1844 device = device_create(xillybus_class,
1845 NULL,
1846 MKDEV(major, i),
1847 NULL,
1848 "%s", devname);
1849
1850 if (IS_ERR(device)) {
1851 dev_warn(endpoint->dev,
1852 "Failed to create %s device. Aborting.\n",
1853 devname);
1854 rc = -ENODEV;
1855 goto unroll_device_create;
1856 }
1857 }
1858
1859 dev_info(endpoint->dev, "Created %d device files.\n",
1860 endpoint->num_channels);
1861 return 0; /* succeed */
1862
1863 unroll_device_create:
1864 devnum--; i--;
1865 for (; devnum >= 0; devnum--, i--)
1866 device_destroy(xillybus_class, MKDEV(major, i));
1867
1868 cdev_del(&endpoint->cdev);
1869 unregister_chrdev:
1870 unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
1871
1872 return rc;
1873 }
1874
1875 static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
1876 {
1877 int minor;
1878
1879 for (minor = endpoint->lowest_minor;
1880 minor < (endpoint->lowest_minor + endpoint->num_channels);
1881 minor++)
1882 device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
1883 cdev_del(&endpoint->cdev);
1884 unregister_chrdev_region(MKDEV(endpoint->major,
1885 endpoint->lowest_minor),
1886 endpoint->num_channels);
1887
1888 dev_info(endpoint->dev, "Removed %d device files.\n",
1889 endpoint->num_channels);
1890 }
1891
1892 struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
1893 struct device *dev,
1894 struct xilly_endpoint_hardware
1895 *ephw)
1896 {
1897 struct xilly_endpoint *endpoint;
1898
1899 endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
1900 if (!endpoint)
1901 return NULL;
1902
1903 endpoint->pdev = pdev;
1904 endpoint->dev = dev;
1905 endpoint->ephw = ephw;
1906 endpoint->msg_counter = 0x0b;
1907 endpoint->failed_messages = 0;
1908 endpoint->fatal_error = 0;
1909
1910 init_waitqueue_head(&endpoint->ep_wait);
1911 mutex_init(&endpoint->register_mutex);
1912
1913 return endpoint;
1914 }
1915 EXPORT_SYMBOL(xillybus_init_endpoint);
1916
1917 static int xilly_quiesce(struct xilly_endpoint *endpoint)
1918 {
1919 long t;
1920
1921 endpoint->idtlen = -1;
1922
1923 iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1924 endpoint->registers + fpga_dma_control_reg);
1925
1926 t = wait_event_interruptible_timeout(endpoint->ep_wait,
1927 (endpoint->idtlen >= 0),
1928 XILLY_TIMEOUT);
1929 if (t <= 0) {
1930 dev_err(endpoint->dev,
1931 "Failed to quiesce the device on exit.\n");
1932 return -ENODEV;
1933 }
1934 return 0;
1935 }
1936
1937 int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
1938 {
1939 int rc;
1940 long t;
1941
1942 void *bootstrap_resources;
1943 int idtbuffersize = (1 << PAGE_SHIFT);
1944 struct device *dev = endpoint->dev;
1945
1946 /*
1947 * The bogus IDT is used during bootstrap for allocating the initial
1948 * message buffer, and then the message buffer and space for the IDT
1949 * itself. The initial message buffer is of a single page's size, but
1950 * it's soon replaced with a more modest one (and memory is freed).
1951 */
1952
1953 unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
1954 3, 192, PAGE_SHIFT, 0 };
1955 struct xilly_idt_handle idt_handle;
1956
1957 /*
1958 * Writing the value 0x00000001 to Endianness register signals which
1959 * endianness this processor is using, so the FPGA can swap words as
1960 * necessary.
1961 */
1962
1963 iowrite32(1, endpoint->registers + fpga_endian_reg);
1964
1965 /* Bootstrap phase I: Allocate temporary message buffer */
1966
1967 bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
1968 if (!bootstrap_resources)
1969 return -ENOMEM;
1970
1971 endpoint->num_channels = 0;
1972
1973 rc = xilly_setupchannels(endpoint, bogus_idt, 1);
1974 if (rc)
1975 return rc;
1976
1977 /* Clear the message subsystem (and counter in particular) */
1978 iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
1979
1980 endpoint->idtlen = -1;
1981
1982 /*
1983 * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1984 * buffer size.
1985 */
1986 iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1987 endpoint->registers + fpga_dma_control_reg);
1988
1989 t = wait_event_interruptible_timeout(endpoint->ep_wait,
1990 (endpoint->idtlen >= 0),
1991 XILLY_TIMEOUT);
1992 if (t <= 0) {
1993 dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
1994 return -ENODEV;
1995 }
1996
1997 /* Enable DMA */
1998 iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
1999 endpoint->registers + fpga_dma_control_reg);
2000
2001 /* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2002 while (endpoint->idtlen >= idtbuffersize) {
2003 idtbuffersize *= 2;
2004 bogus_idt[6]++;
2005 }
2006
2007 endpoint->num_channels = 1;
2008
2009 rc = xilly_setupchannels(endpoint, bogus_idt, 2);
2010 if (rc)
2011 goto failed_idt;
2012
2013 rc = xilly_obtain_idt(endpoint);
2014 if (rc)
2015 goto failed_idt;
2016
2017 rc = xilly_scan_idt(endpoint, &idt_handle);
2018 if (rc)
2019 goto failed_idt;
2020
2021 devres_close_group(dev, bootstrap_resources);
2022
2023 /* Bootstrap phase III: Allocate buffers according to IDT */
2024
2025 rc = xilly_setupchannels(endpoint,
2026 idt_handle.chandesc,
2027 idt_handle.entries);
2028 if (rc)
2029 goto failed_idt;
2030
2031 /*
2032 * endpoint is now completely configured. We put it on the list
2033 * available to open() before registering the char device(s)
2034 */
2035
2036 mutex_lock(&ep_list_lock);
2037 list_add_tail(&endpoint->ep_list, &list_of_endpoints);
2038 mutex_unlock(&ep_list_lock);
2039
2040 rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
2041 if (rc)
2042 goto failed_chrdevs;
2043
2044 devres_release_group(dev, bootstrap_resources);
2045
2046 return 0;
2047
2048 failed_chrdevs:
2049 mutex_lock(&ep_list_lock);
2050 list_del(&endpoint->ep_list);
2051 mutex_unlock(&ep_list_lock);
2052
2053 failed_idt:
2054 xilly_quiesce(endpoint);
2055 flush_workqueue(xillybus_wq);
2056
2057 return rc;
2058 }
2059 EXPORT_SYMBOL(xillybus_endpoint_discovery);
2060
2061 void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
2062 {
2063 xillybus_cleanup_chrdev(endpoint);
2064
2065 mutex_lock(&ep_list_lock);
2066 list_del(&endpoint->ep_list);
2067 mutex_unlock(&ep_list_lock);
2068
2069 xilly_quiesce(endpoint);
2070
2071 /*
2072 * Flushing is done upon endpoint release to prevent access to memory
2073 * just about to be released. This makes the quiesce complete.
2074 */
2075 flush_workqueue(xillybus_wq);
2076 }
2077 EXPORT_SYMBOL(xillybus_endpoint_remove);
2078
2079 static int __init xillybus_init(void)
2080 {
2081 mutex_init(&ep_list_lock);
2082
2083 xillybus_class = class_create(THIS_MODULE, xillyname);
2084 if (IS_ERR(xillybus_class))
2085 return PTR_ERR(xillybus_class);
2086
2087 xillybus_wq = alloc_workqueue(xillyname, 0, 0);
2088 if (!xillybus_wq) {
2089 class_destroy(xillybus_class);
2090 return -ENOMEM;
2091 }
2092
2093 return 0;
2094 }
2095
2096 static void __exit xillybus_exit(void)
2097 {
2098 /* flush_workqueue() was called for each endpoint released */
2099 destroy_workqueue(xillybus_wq);
2100
2101 class_destroy(xillybus_class);
2102 }
2103
2104 module_init(xillybus_init);
2105 module_exit(xillybus_exit);
This page took 0.092052 seconds and 5 git commands to generate.