Merge tag 'trace-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[deliverable/linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29
30 #include <clocksource/arm_arch_timer.h>
31
32 #define CNTTIDR 0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
34
35 #define CNTACR(n) (0x40 + ((n) * 4))
36 #define CNTACR_RPCT BIT(0)
37 #define CNTACR_RVCT BIT(1)
38 #define CNTACR_RFRQ BIT(2)
39 #define CNTACR_RVOFF BIT(3)
40 #define CNTACR_RWVT BIT(4)
41 #define CNTACR_RWPT BIT(5)
42
43 #define CNTVCT_LO 0x08
44 #define CNTVCT_HI 0x0c
45 #define CNTFRQ 0x10
46 #define CNTP_TVAL 0x28
47 #define CNTP_CTL 0x2c
48 #define CNTV_TVAL 0x38
49 #define CNTV_CTL 0x3c
50
51 #define ARCH_CP15_TIMER BIT(0)
52 #define ARCH_MEM_TIMER BIT(1)
53 static unsigned arch_timers_present __initdata;
54
55 static void __iomem *arch_counter_base;
56
57 struct arch_timer {
58 void __iomem *base;
59 struct clock_event_device evt;
60 };
61
62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63
64 static u32 arch_timer_rate;
65
66 enum ppi_nr {
67 PHYS_SECURE_PPI,
68 PHYS_NONSECURE_PPI,
69 VIRT_PPI,
70 HYP_PPI,
71 MAX_TIMER_PPI
72 };
73
74 static int arch_timer_ppi[MAX_TIMER_PPI];
75
76 static struct clock_event_device __percpu *arch_timer_evt;
77
78 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79 static bool arch_timer_c3stop;
80 static bool arch_timer_mem_use_virtual;
81
82 /*
83 * Architected system timer support.
84 */
85
86 static __always_inline
87 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
88 struct clock_event_device *clk)
89 {
90 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
91 struct arch_timer *timer = to_arch_timer(clk);
92 switch (reg) {
93 case ARCH_TIMER_REG_CTRL:
94 writel_relaxed(val, timer->base + CNTP_CTL);
95 break;
96 case ARCH_TIMER_REG_TVAL:
97 writel_relaxed(val, timer->base + CNTP_TVAL);
98 break;
99 }
100 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
101 struct arch_timer *timer = to_arch_timer(clk);
102 switch (reg) {
103 case ARCH_TIMER_REG_CTRL:
104 writel_relaxed(val, timer->base + CNTV_CTL);
105 break;
106 case ARCH_TIMER_REG_TVAL:
107 writel_relaxed(val, timer->base + CNTV_TVAL);
108 break;
109 }
110 } else {
111 arch_timer_reg_write_cp15(access, reg, val);
112 }
113 }
114
115 static __always_inline
116 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
117 struct clock_event_device *clk)
118 {
119 u32 val;
120
121 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
122 struct arch_timer *timer = to_arch_timer(clk);
123 switch (reg) {
124 case ARCH_TIMER_REG_CTRL:
125 val = readl_relaxed(timer->base + CNTP_CTL);
126 break;
127 case ARCH_TIMER_REG_TVAL:
128 val = readl_relaxed(timer->base + CNTP_TVAL);
129 break;
130 }
131 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
132 struct arch_timer *timer = to_arch_timer(clk);
133 switch (reg) {
134 case ARCH_TIMER_REG_CTRL:
135 val = readl_relaxed(timer->base + CNTV_CTL);
136 break;
137 case ARCH_TIMER_REG_TVAL:
138 val = readl_relaxed(timer->base + CNTV_TVAL);
139 break;
140 }
141 } else {
142 val = arch_timer_reg_read_cp15(access, reg);
143 }
144
145 return val;
146 }
147
148 static __always_inline irqreturn_t timer_handler(const int access,
149 struct clock_event_device *evt)
150 {
151 unsigned long ctrl;
152
153 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
154 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
155 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
157 evt->event_handler(evt);
158 return IRQ_HANDLED;
159 }
160
161 return IRQ_NONE;
162 }
163
164 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
165 {
166 struct clock_event_device *evt = dev_id;
167
168 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
169 }
170
171 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
172 {
173 struct clock_event_device *evt = dev_id;
174
175 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
176 }
177
178 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
179 {
180 struct clock_event_device *evt = dev_id;
181
182 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
183 }
184
185 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
186 {
187 struct clock_event_device *evt = dev_id;
188
189 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
190 }
191
192 static __always_inline int timer_shutdown(const int access,
193 struct clock_event_device *clk)
194 {
195 unsigned long ctrl;
196
197 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
198 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
199 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
200
201 return 0;
202 }
203
204 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
205 {
206 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
207 }
208
209 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
210 {
211 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
212 }
213
214 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
215 {
216 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
217 }
218
219 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
220 {
221 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
222 }
223
224 static __always_inline void set_next_event(const int access, unsigned long evt,
225 struct clock_event_device *clk)
226 {
227 unsigned long ctrl;
228 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
229 ctrl |= ARCH_TIMER_CTRL_ENABLE;
230 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
231 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
232 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
233 }
234
235 static int arch_timer_set_next_event_virt(unsigned long evt,
236 struct clock_event_device *clk)
237 {
238 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
239 return 0;
240 }
241
242 static int arch_timer_set_next_event_phys(unsigned long evt,
243 struct clock_event_device *clk)
244 {
245 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
246 return 0;
247 }
248
249 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
250 struct clock_event_device *clk)
251 {
252 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
253 return 0;
254 }
255
256 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
257 struct clock_event_device *clk)
258 {
259 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
260 return 0;
261 }
262
263 static void __arch_timer_setup(unsigned type,
264 struct clock_event_device *clk)
265 {
266 clk->features = CLOCK_EVT_FEAT_ONESHOT;
267
268 if (type == ARCH_CP15_TIMER) {
269 if (arch_timer_c3stop)
270 clk->features |= CLOCK_EVT_FEAT_C3STOP;
271 clk->name = "arch_sys_timer";
272 clk->rating = 450;
273 clk->cpumask = cpumask_of(smp_processor_id());
274 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
275 switch (arch_timer_uses_ppi) {
276 case VIRT_PPI:
277 clk->set_state_shutdown = arch_timer_shutdown_virt;
278 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
279 clk->set_next_event = arch_timer_set_next_event_virt;
280 break;
281 case PHYS_SECURE_PPI:
282 case PHYS_NONSECURE_PPI:
283 case HYP_PPI:
284 clk->set_state_shutdown = arch_timer_shutdown_phys;
285 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
286 clk->set_next_event = arch_timer_set_next_event_phys;
287 break;
288 default:
289 BUG();
290 }
291 } else {
292 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
293 clk->name = "arch_mem_timer";
294 clk->rating = 400;
295 clk->cpumask = cpu_all_mask;
296 if (arch_timer_mem_use_virtual) {
297 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
298 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
299 clk->set_next_event =
300 arch_timer_set_next_event_virt_mem;
301 } else {
302 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
303 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
304 clk->set_next_event =
305 arch_timer_set_next_event_phys_mem;
306 }
307 }
308
309 clk->set_state_shutdown(clk);
310
311 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
312 }
313
314 static void arch_timer_evtstrm_enable(int divider)
315 {
316 u32 cntkctl = arch_timer_get_cntkctl();
317
318 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
319 /* Set the divider and enable virtual event stream */
320 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
321 | ARCH_TIMER_VIRT_EVT_EN;
322 arch_timer_set_cntkctl(cntkctl);
323 elf_hwcap |= HWCAP_EVTSTRM;
324 #ifdef CONFIG_COMPAT
325 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
326 #endif
327 }
328
329 static void arch_timer_configure_evtstream(void)
330 {
331 int evt_stream_div, pos;
332
333 /* Find the closest power of two to the divisor */
334 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
335 pos = fls(evt_stream_div);
336 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
337 pos--;
338 /* enable event stream */
339 arch_timer_evtstrm_enable(min(pos, 15));
340 }
341
342 static void arch_counter_set_user_access(void)
343 {
344 u32 cntkctl = arch_timer_get_cntkctl();
345
346 /* Disable user access to the timers and the physical counter */
347 /* Also disable virtual event stream */
348 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
349 | ARCH_TIMER_USR_VT_ACCESS_EN
350 | ARCH_TIMER_VIRT_EVT_EN
351 | ARCH_TIMER_USR_PCT_ACCESS_EN);
352
353 /* Enable user access to the virtual counter */
354 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
355
356 arch_timer_set_cntkctl(cntkctl);
357 }
358
359 static bool arch_timer_has_nonsecure_ppi(void)
360 {
361 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
362 arch_timer_ppi[PHYS_NONSECURE_PPI]);
363 }
364
365 static int arch_timer_setup(struct clock_event_device *clk)
366 {
367 __arch_timer_setup(ARCH_CP15_TIMER, clk);
368
369 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);
370
371 if (arch_timer_has_nonsecure_ppi())
372 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
373
374 arch_counter_set_user_access();
375 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
376 arch_timer_configure_evtstream();
377
378 return 0;
379 }
380
381 static void
382 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
383 {
384 /* Who has more than one independent system counter? */
385 if (arch_timer_rate)
386 return;
387
388 /*
389 * Try to determine the frequency from the device tree or CNTFRQ,
390 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
391 */
392 if (!acpi_disabled ||
393 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
394 if (cntbase)
395 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
396 else
397 arch_timer_rate = arch_timer_get_cntfrq();
398 }
399
400 /* Check the timer frequency. */
401 if (arch_timer_rate == 0)
402 pr_warn("Architected timer frequency not available\n");
403 }
404
405 static void arch_timer_banner(unsigned type)
406 {
407 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
408 type & ARCH_CP15_TIMER ? "cp15" : "",
409 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
410 type & ARCH_MEM_TIMER ? "mmio" : "",
411 (unsigned long)arch_timer_rate / 1000000,
412 (unsigned long)(arch_timer_rate / 10000) % 100,
413 type & ARCH_CP15_TIMER ?
414 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
415 "",
416 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
417 type & ARCH_MEM_TIMER ?
418 arch_timer_mem_use_virtual ? "virt" : "phys" :
419 "");
420 }
421
422 u32 arch_timer_get_rate(void)
423 {
424 return arch_timer_rate;
425 }
426
427 static u64 arch_counter_get_cntvct_mem(void)
428 {
429 u32 vct_lo, vct_hi, tmp_hi;
430
431 do {
432 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
433 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
434 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
435 } while (vct_hi != tmp_hi);
436
437 return ((u64) vct_hi << 32) | vct_lo;
438 }
439
440 /*
441 * Default to cp15 based access because arm64 uses this function for
442 * sched_clock() before DT is probed and the cp15 method is guaranteed
443 * to exist on arm64. arm doesn't use this before DT is probed so even
444 * if we don't have the cp15 accessors we won't have a problem.
445 */
446 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
447
448 static cycle_t arch_counter_read(struct clocksource *cs)
449 {
450 return arch_timer_read_counter();
451 }
452
453 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
454 {
455 return arch_timer_read_counter();
456 }
457
458 static struct clocksource clocksource_counter = {
459 .name = "arch_sys_counter",
460 .rating = 400,
461 .read = arch_counter_read,
462 .mask = CLOCKSOURCE_MASK(56),
463 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
464 };
465
466 static struct cyclecounter cyclecounter = {
467 .read = arch_counter_read_cc,
468 .mask = CLOCKSOURCE_MASK(56),
469 };
470
471 static struct timecounter timecounter;
472
473 struct timecounter *arch_timer_get_timecounter(void)
474 {
475 return &timecounter;
476 }
477
478 static void __init arch_counter_register(unsigned type)
479 {
480 u64 start_count;
481
482 /* Register the CP15 based counter if we have one */
483 if (type & ARCH_CP15_TIMER) {
484 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
485 arch_timer_read_counter = arch_counter_get_cntvct;
486 else
487 arch_timer_read_counter = arch_counter_get_cntpct;
488 } else {
489 arch_timer_read_counter = arch_counter_get_cntvct_mem;
490
491 /* If the clocksource name is "arch_sys_counter" the
492 * VDSO will attempt to read the CP15-based counter.
493 * Ensure this does not happen when CP15-based
494 * counter is not available.
495 */
496 clocksource_counter.name = "arch_mem_counter";
497 }
498
499 start_count = arch_timer_read_counter();
500 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
501 cyclecounter.mult = clocksource_counter.mult;
502 cyclecounter.shift = clocksource_counter.shift;
503 timecounter_init(&timecounter, &cyclecounter, start_count);
504
505 /* 56 bits minimum, so we assume worst case rollover */
506 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
507 }
508
509 static void arch_timer_stop(struct clock_event_device *clk)
510 {
511 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
512 clk->irq, smp_processor_id());
513
514 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
515 if (arch_timer_has_nonsecure_ppi())
516 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
517
518 clk->set_state_shutdown(clk);
519 }
520
521 static int arch_timer_cpu_notify(struct notifier_block *self,
522 unsigned long action, void *hcpu)
523 {
524 /*
525 * Grab cpu pointer in each case to avoid spurious
526 * preemptible warnings
527 */
528 switch (action & ~CPU_TASKS_FROZEN) {
529 case CPU_STARTING:
530 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
531 break;
532 case CPU_DYING:
533 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
534 break;
535 }
536
537 return NOTIFY_OK;
538 }
539
540 static struct notifier_block arch_timer_cpu_nb = {
541 .notifier_call = arch_timer_cpu_notify,
542 };
543
544 #ifdef CONFIG_CPU_PM
545 static unsigned int saved_cntkctl;
546 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
547 unsigned long action, void *hcpu)
548 {
549 if (action == CPU_PM_ENTER)
550 saved_cntkctl = arch_timer_get_cntkctl();
551 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
552 arch_timer_set_cntkctl(saved_cntkctl);
553 return NOTIFY_OK;
554 }
555
556 static struct notifier_block arch_timer_cpu_pm_notifier = {
557 .notifier_call = arch_timer_cpu_pm_notify,
558 };
559
560 static int __init arch_timer_cpu_pm_init(void)
561 {
562 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
563 }
564 #else
565 static int __init arch_timer_cpu_pm_init(void)
566 {
567 return 0;
568 }
569 #endif
570
571 static int __init arch_timer_register(void)
572 {
573 int err;
574 int ppi;
575
576 arch_timer_evt = alloc_percpu(struct clock_event_device);
577 if (!arch_timer_evt) {
578 err = -ENOMEM;
579 goto out;
580 }
581
582 ppi = arch_timer_ppi[arch_timer_uses_ppi];
583 switch (arch_timer_uses_ppi) {
584 case VIRT_PPI:
585 err = request_percpu_irq(ppi, arch_timer_handler_virt,
586 "arch_timer", arch_timer_evt);
587 break;
588 case PHYS_SECURE_PPI:
589 case PHYS_NONSECURE_PPI:
590 err = request_percpu_irq(ppi, arch_timer_handler_phys,
591 "arch_timer", arch_timer_evt);
592 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
593 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
594 err = request_percpu_irq(ppi, arch_timer_handler_phys,
595 "arch_timer", arch_timer_evt);
596 if (err)
597 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
598 arch_timer_evt);
599 }
600 break;
601 case HYP_PPI:
602 err = request_percpu_irq(ppi, arch_timer_handler_phys,
603 "arch_timer", arch_timer_evt);
604 break;
605 default:
606 BUG();
607 }
608
609 if (err) {
610 pr_err("arch_timer: can't register interrupt %d (%d)\n",
611 ppi, err);
612 goto out_free;
613 }
614
615 err = register_cpu_notifier(&arch_timer_cpu_nb);
616 if (err)
617 goto out_free_irq;
618
619 err = arch_timer_cpu_pm_init();
620 if (err)
621 goto out_unreg_notify;
622
623 /* Immediately configure the timer on the boot CPU */
624 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
625
626 return 0;
627
628 out_unreg_notify:
629 unregister_cpu_notifier(&arch_timer_cpu_nb);
630 out_free_irq:
631 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
632 if (arch_timer_has_nonsecure_ppi())
633 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
634 arch_timer_evt);
635
636 out_free:
637 free_percpu(arch_timer_evt);
638 out:
639 return err;
640 }
641
642 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
643 {
644 int ret;
645 irq_handler_t func;
646 struct arch_timer *t;
647
648 t = kzalloc(sizeof(*t), GFP_KERNEL);
649 if (!t)
650 return -ENOMEM;
651
652 t->base = base;
653 t->evt.irq = irq;
654 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
655
656 if (arch_timer_mem_use_virtual)
657 func = arch_timer_handler_virt_mem;
658 else
659 func = arch_timer_handler_phys_mem;
660
661 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
662 if (ret) {
663 pr_err("arch_timer: Failed to request mem timer irq\n");
664 kfree(t);
665 }
666
667 return ret;
668 }
669
670 static const struct of_device_id arch_timer_of_match[] __initconst = {
671 { .compatible = "arm,armv7-timer", },
672 { .compatible = "arm,armv8-timer", },
673 {},
674 };
675
676 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
677 { .compatible = "arm,armv7-timer-mem", },
678 {},
679 };
680
681 static bool __init
682 arch_timer_needs_probing(int type, const struct of_device_id *matches)
683 {
684 struct device_node *dn;
685 bool needs_probing = false;
686
687 dn = of_find_matching_node(NULL, matches);
688 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
689 needs_probing = true;
690 of_node_put(dn);
691
692 return needs_probing;
693 }
694
695 static void __init arch_timer_common_init(void)
696 {
697 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
698
699 /* Wait until both nodes are probed if we have two timers */
700 if ((arch_timers_present & mask) != mask) {
701 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
702 return;
703 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
704 return;
705 }
706
707 arch_timer_banner(arch_timers_present);
708 arch_counter_register(arch_timers_present);
709 arch_timer_arch_init();
710 }
711
712 static void __init arch_timer_init(void)
713 {
714 /*
715 * If HYP mode is available, we know that the physical timer
716 * has been configured to be accessible from PL1. Use it, so
717 * that a guest can use the virtual timer instead.
718 *
719 * If no interrupt provided for virtual timer, we'll have to
720 * stick to the physical timer. It'd better be accessible...
721 *
722 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
723 * accesses to CNTP_*_EL1 registers are silently redirected to
724 * their CNTHP_*_EL2 counterparts, and use a different PPI
725 * number.
726 */
727 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
728 bool has_ppi;
729
730 if (is_kernel_in_hyp_mode()) {
731 arch_timer_uses_ppi = HYP_PPI;
732 has_ppi = !!arch_timer_ppi[HYP_PPI];
733 } else {
734 arch_timer_uses_ppi = PHYS_SECURE_PPI;
735 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
736 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
737 }
738
739 if (!has_ppi) {
740 pr_warn("arch_timer: No interrupt available, giving up\n");
741 return;
742 }
743 }
744
745 arch_timer_register();
746 arch_timer_common_init();
747 }
748
749 static void __init arch_timer_of_init(struct device_node *np)
750 {
751 int i;
752
753 if (arch_timers_present & ARCH_CP15_TIMER) {
754 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
755 return;
756 }
757
758 arch_timers_present |= ARCH_CP15_TIMER;
759 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
760 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
761
762 arch_timer_detect_rate(NULL, np);
763
764 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
765
766 /*
767 * If we cannot rely on firmware initializing the timer registers then
768 * we should use the physical timers instead.
769 */
770 if (IS_ENABLED(CONFIG_ARM) &&
771 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
772 arch_timer_uses_ppi = PHYS_SECURE_PPI;
773
774 arch_timer_init();
775 }
776 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
777 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
778
779 static void __init arch_timer_mem_init(struct device_node *np)
780 {
781 struct device_node *frame, *best_frame = NULL;
782 void __iomem *cntctlbase, *base;
783 unsigned int irq;
784 u32 cnttidr;
785
786 arch_timers_present |= ARCH_MEM_TIMER;
787 cntctlbase = of_iomap(np, 0);
788 if (!cntctlbase) {
789 pr_err("arch_timer: Can't find CNTCTLBase\n");
790 return;
791 }
792
793 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
794
795 /*
796 * Try to find a virtual capable frame. Otherwise fall back to a
797 * physical capable frame.
798 */
799 for_each_available_child_of_node(np, frame) {
800 int n;
801 u32 cntacr;
802
803 if (of_property_read_u32(frame, "frame-number", &n)) {
804 pr_err("arch_timer: Missing frame-number\n");
805 of_node_put(frame);
806 goto out;
807 }
808
809 /* Try enabling everything, and see what sticks */
810 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
811 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
812 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
813 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
814
815 if ((cnttidr & CNTTIDR_VIRT(n)) &&
816 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
817 of_node_put(best_frame);
818 best_frame = frame;
819 arch_timer_mem_use_virtual = true;
820 break;
821 }
822
823 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
824 continue;
825
826 of_node_put(best_frame);
827 best_frame = of_node_get(frame);
828 }
829
830 base = arch_counter_base = of_iomap(best_frame, 0);
831 if (!base) {
832 pr_err("arch_timer: Can't map frame's registers\n");
833 goto out;
834 }
835
836 if (arch_timer_mem_use_virtual)
837 irq = irq_of_parse_and_map(best_frame, 1);
838 else
839 irq = irq_of_parse_and_map(best_frame, 0);
840
841 if (!irq) {
842 pr_err("arch_timer: Frame missing %s irq",
843 arch_timer_mem_use_virtual ? "virt" : "phys");
844 goto out;
845 }
846
847 arch_timer_detect_rate(base, np);
848 arch_timer_mem_register(base, irq);
849 arch_timer_common_init();
850 out:
851 iounmap(cntctlbase);
852 of_node_put(best_frame);
853 }
854 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
855 arch_timer_mem_init);
856
857 #ifdef CONFIG_ACPI
858 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
859 {
860 int trigger, polarity;
861
862 if (!interrupt)
863 return 0;
864
865 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
866 : ACPI_LEVEL_SENSITIVE;
867
868 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
869 : ACPI_ACTIVE_HIGH;
870
871 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
872 }
873
874 /* Initialize per-processor generic timer */
875 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
876 {
877 struct acpi_table_gtdt *gtdt;
878
879 if (arch_timers_present & ARCH_CP15_TIMER) {
880 pr_warn("arch_timer: already initialized, skipping\n");
881 return -EINVAL;
882 }
883
884 gtdt = container_of(table, struct acpi_table_gtdt, header);
885
886 arch_timers_present |= ARCH_CP15_TIMER;
887
888 arch_timer_ppi[PHYS_SECURE_PPI] =
889 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
890 gtdt->secure_el1_flags);
891
892 arch_timer_ppi[PHYS_NONSECURE_PPI] =
893 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
894 gtdt->non_secure_el1_flags);
895
896 arch_timer_ppi[VIRT_PPI] =
897 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
898 gtdt->virtual_timer_flags);
899
900 arch_timer_ppi[HYP_PPI] =
901 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
902 gtdt->non_secure_el2_flags);
903
904 /* Get the frequency from CNTFRQ */
905 arch_timer_detect_rate(NULL, NULL);
906
907 /* Always-on capability */
908 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
909
910 arch_timer_init();
911 return 0;
912 }
913 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
914 #endif
This page took 0.273952 seconds and 5 git commands to generate.