clocksource: arch_arm_timer: Fix age-old arch timer C3STOP detection issue
[deliverable/linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/sched_clock.h>
24
25 #include <asm/arch_timer.h>
26 #include <asm/virt.h>
27
28 #include <clocksource/arm_arch_timer.h>
29
30 #define CNTTIDR 0x08
31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
32
33 #define CNTVCT_LO 0x08
34 #define CNTVCT_HI 0x0c
35 #define CNTFRQ 0x10
36 #define CNTP_TVAL 0x28
37 #define CNTP_CTL 0x2c
38 #define CNTV_TVAL 0x38
39 #define CNTV_CTL 0x3c
40
41 #define ARCH_CP15_TIMER BIT(0)
42 #define ARCH_MEM_TIMER BIT(1)
43 static unsigned arch_timers_present __initdata;
44
45 static void __iomem *arch_counter_base;
46
47 struct arch_timer {
48 void __iomem *base;
49 struct clock_event_device evt;
50 };
51
52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
53
54 static u32 arch_timer_rate;
55
56 enum ppi_nr {
57 PHYS_SECURE_PPI,
58 PHYS_NONSECURE_PPI,
59 VIRT_PPI,
60 HYP_PPI,
61 MAX_TIMER_PPI
62 };
63
64 static int arch_timer_ppi[MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static bool arch_timer_use_virtual = true;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71
72 /*
73 * Architected system timer support.
74 */
75
76 static __always_inline
77 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
78 struct clock_event_device *clk)
79 {
80 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
81 struct arch_timer *timer = to_arch_timer(clk);
82 switch (reg) {
83 case ARCH_TIMER_REG_CTRL:
84 writel_relaxed(val, timer->base + CNTP_CTL);
85 break;
86 case ARCH_TIMER_REG_TVAL:
87 writel_relaxed(val, timer->base + CNTP_TVAL);
88 break;
89 }
90 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
91 struct arch_timer *timer = to_arch_timer(clk);
92 switch (reg) {
93 case ARCH_TIMER_REG_CTRL:
94 writel_relaxed(val, timer->base + CNTV_CTL);
95 break;
96 case ARCH_TIMER_REG_TVAL:
97 writel_relaxed(val, timer->base + CNTV_TVAL);
98 break;
99 }
100 } else {
101 arch_timer_reg_write_cp15(access, reg, val);
102 }
103 }
104
105 static __always_inline
106 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
107 struct clock_event_device *clk)
108 {
109 u32 val;
110
111 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
112 struct arch_timer *timer = to_arch_timer(clk);
113 switch (reg) {
114 case ARCH_TIMER_REG_CTRL:
115 val = readl_relaxed(timer->base + CNTP_CTL);
116 break;
117 case ARCH_TIMER_REG_TVAL:
118 val = readl_relaxed(timer->base + CNTP_TVAL);
119 break;
120 }
121 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
122 struct arch_timer *timer = to_arch_timer(clk);
123 switch (reg) {
124 case ARCH_TIMER_REG_CTRL:
125 val = readl_relaxed(timer->base + CNTV_CTL);
126 break;
127 case ARCH_TIMER_REG_TVAL:
128 val = readl_relaxed(timer->base + CNTV_TVAL);
129 break;
130 }
131 } else {
132 val = arch_timer_reg_read_cp15(access, reg);
133 }
134
135 return val;
136 }
137
138 static __always_inline irqreturn_t timer_handler(const int access,
139 struct clock_event_device *evt)
140 {
141 unsigned long ctrl;
142
143 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
144 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
145 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
146 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
147 evt->event_handler(evt);
148 return IRQ_HANDLED;
149 }
150
151 return IRQ_NONE;
152 }
153
154 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
155 {
156 struct clock_event_device *evt = dev_id;
157
158 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
159 }
160
161 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
162 {
163 struct clock_event_device *evt = dev_id;
164
165 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
166 }
167
168 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
169 {
170 struct clock_event_device *evt = dev_id;
171
172 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
173 }
174
175 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
176 {
177 struct clock_event_device *evt = dev_id;
178
179 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
180 }
181
182 static __always_inline void timer_set_mode(const int access, int mode,
183 struct clock_event_device *clk)
184 {
185 unsigned long ctrl;
186 switch (mode) {
187 case CLOCK_EVT_MODE_UNUSED:
188 case CLOCK_EVT_MODE_SHUTDOWN:
189 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192 break;
193 default:
194 break;
195 }
196 }
197
198 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
199 struct clock_event_device *clk)
200 {
201 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
202 }
203
204 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
205 struct clock_event_device *clk)
206 {
207 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
208 }
209
210 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
211 struct clock_event_device *clk)
212 {
213 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
214 }
215
216 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
217 struct clock_event_device *clk)
218 {
219 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
220 }
221
222 static __always_inline void set_next_event(const int access, unsigned long evt,
223 struct clock_event_device *clk)
224 {
225 unsigned long ctrl;
226 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
227 ctrl |= ARCH_TIMER_CTRL_ENABLE;
228 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
229 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
230 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
231 }
232
233 static int arch_timer_set_next_event_virt(unsigned long evt,
234 struct clock_event_device *clk)
235 {
236 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
237 return 0;
238 }
239
240 static int arch_timer_set_next_event_phys(unsigned long evt,
241 struct clock_event_device *clk)
242 {
243 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
244 return 0;
245 }
246
247 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
248 struct clock_event_device *clk)
249 {
250 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
251 return 0;
252 }
253
254 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
255 struct clock_event_device *clk)
256 {
257 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
258 return 0;
259 }
260
261 static void __arch_timer_setup(unsigned type,
262 struct clock_event_device *clk)
263 {
264 clk->features = CLOCK_EVT_FEAT_ONESHOT;
265
266 if (type == ARCH_CP15_TIMER) {
267 if (arch_timer_c3stop)
268 clk->features |= CLOCK_EVT_FEAT_C3STOP;
269 clk->name = "arch_sys_timer";
270 clk->rating = 450;
271 clk->cpumask = cpumask_of(smp_processor_id());
272 if (arch_timer_use_virtual) {
273 clk->irq = arch_timer_ppi[VIRT_PPI];
274 clk->set_mode = arch_timer_set_mode_virt;
275 clk->set_next_event = arch_timer_set_next_event_virt;
276 } else {
277 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
278 clk->set_mode = arch_timer_set_mode_phys;
279 clk->set_next_event = arch_timer_set_next_event_phys;
280 }
281 } else {
282 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
283 clk->name = "arch_mem_timer";
284 clk->rating = 400;
285 clk->cpumask = cpu_all_mask;
286 if (arch_timer_mem_use_virtual) {
287 clk->set_mode = arch_timer_set_mode_virt_mem;
288 clk->set_next_event =
289 arch_timer_set_next_event_virt_mem;
290 } else {
291 clk->set_mode = arch_timer_set_mode_phys_mem;
292 clk->set_next_event =
293 arch_timer_set_next_event_phys_mem;
294 }
295 }
296
297 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
298
299 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
300 }
301
302 static void arch_timer_configure_evtstream(void)
303 {
304 int evt_stream_div, pos;
305
306 /* Find the closest power of two to the divisor */
307 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
308 pos = fls(evt_stream_div);
309 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
310 pos--;
311 /* enable event stream */
312 arch_timer_evtstrm_enable(min(pos, 15));
313 }
314
315 static int arch_timer_setup(struct clock_event_device *clk)
316 {
317 __arch_timer_setup(ARCH_CP15_TIMER, clk);
318
319 if (arch_timer_use_virtual)
320 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
321 else {
322 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
323 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
324 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
325 }
326
327 arch_counter_set_user_access();
328 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
329 arch_timer_configure_evtstream();
330
331 return 0;
332 }
333
334 static void
335 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
336 {
337 /* Who has more than one independent system counter? */
338 if (arch_timer_rate)
339 return;
340
341 /* Try to determine the frequency from the device tree or CNTFRQ */
342 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
343 if (cntbase)
344 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
345 else
346 arch_timer_rate = arch_timer_get_cntfrq();
347 }
348
349 /* Check the timer frequency. */
350 if (arch_timer_rate == 0)
351 pr_warn("Architected timer frequency not available\n");
352 }
353
354 static void arch_timer_banner(unsigned type)
355 {
356 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
357 type & ARCH_CP15_TIMER ? "cp15" : "",
358 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
359 type & ARCH_MEM_TIMER ? "mmio" : "",
360 (unsigned long)arch_timer_rate / 1000000,
361 (unsigned long)(arch_timer_rate / 10000) % 100,
362 type & ARCH_CP15_TIMER ?
363 arch_timer_use_virtual ? "virt" : "phys" :
364 "",
365 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
366 type & ARCH_MEM_TIMER ?
367 arch_timer_mem_use_virtual ? "virt" : "phys" :
368 "");
369 }
370
371 u32 arch_timer_get_rate(void)
372 {
373 return arch_timer_rate;
374 }
375
376 static u64 arch_counter_get_cntvct_mem(void)
377 {
378 u32 vct_lo, vct_hi, tmp_hi;
379
380 do {
381 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
382 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
383 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
384 } while (vct_hi != tmp_hi);
385
386 return ((u64) vct_hi << 32) | vct_lo;
387 }
388
389 /*
390 * Default to cp15 based access because arm64 uses this function for
391 * sched_clock() before DT is probed and the cp15 method is guaranteed
392 * to exist on arm64. arm doesn't use this before DT is probed so even
393 * if we don't have the cp15 accessors we won't have a problem.
394 */
395 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
396
397 static cycle_t arch_counter_read(struct clocksource *cs)
398 {
399 return arch_timer_read_counter();
400 }
401
402 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
403 {
404 return arch_timer_read_counter();
405 }
406
407 static struct clocksource clocksource_counter = {
408 .name = "arch_sys_counter",
409 .rating = 400,
410 .read = arch_counter_read,
411 .mask = CLOCKSOURCE_MASK(56),
412 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
413 };
414
415 static struct cyclecounter cyclecounter = {
416 .read = arch_counter_read_cc,
417 .mask = CLOCKSOURCE_MASK(56),
418 };
419
420 static struct timecounter timecounter;
421
422 struct timecounter *arch_timer_get_timecounter(void)
423 {
424 return &timecounter;
425 }
426
427 static void __init arch_counter_register(unsigned type)
428 {
429 u64 start_count;
430
431 /* Register the CP15 based counter if we have one */
432 if (type & ARCH_CP15_TIMER)
433 arch_timer_read_counter = arch_counter_get_cntvct;
434 else
435 arch_timer_read_counter = arch_counter_get_cntvct_mem;
436
437 start_count = arch_timer_read_counter();
438 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
439 cyclecounter.mult = clocksource_counter.mult;
440 cyclecounter.shift = clocksource_counter.shift;
441 timecounter_init(&timecounter, &cyclecounter, start_count);
442
443 /* 56 bits minimum, so we assume worst case rollover */
444 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
445 }
446
447 static void arch_timer_stop(struct clock_event_device *clk)
448 {
449 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
450 clk->irq, smp_processor_id());
451
452 if (arch_timer_use_virtual)
453 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
454 else {
455 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
456 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
457 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
458 }
459
460 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
461 }
462
463 static int arch_timer_cpu_notify(struct notifier_block *self,
464 unsigned long action, void *hcpu)
465 {
466 /*
467 * Grab cpu pointer in each case to avoid spurious
468 * preemptible warnings
469 */
470 switch (action & ~CPU_TASKS_FROZEN) {
471 case CPU_STARTING:
472 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
473 break;
474 case CPU_DYING:
475 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
476 break;
477 }
478
479 return NOTIFY_OK;
480 }
481
482 static struct notifier_block arch_timer_cpu_nb = {
483 .notifier_call = arch_timer_cpu_notify,
484 };
485
486 #ifdef CONFIG_CPU_PM
487 static unsigned int saved_cntkctl;
488 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
489 unsigned long action, void *hcpu)
490 {
491 if (action == CPU_PM_ENTER)
492 saved_cntkctl = arch_timer_get_cntkctl();
493 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
494 arch_timer_set_cntkctl(saved_cntkctl);
495 return NOTIFY_OK;
496 }
497
498 static struct notifier_block arch_timer_cpu_pm_notifier = {
499 .notifier_call = arch_timer_cpu_pm_notify,
500 };
501
502 static int __init arch_timer_cpu_pm_init(void)
503 {
504 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
505 }
506 #else
507 static int __init arch_timer_cpu_pm_init(void)
508 {
509 return 0;
510 }
511 #endif
512
513 static int __init arch_timer_register(void)
514 {
515 int err;
516 int ppi;
517
518 arch_timer_evt = alloc_percpu(struct clock_event_device);
519 if (!arch_timer_evt) {
520 err = -ENOMEM;
521 goto out;
522 }
523
524 if (arch_timer_use_virtual) {
525 ppi = arch_timer_ppi[VIRT_PPI];
526 err = request_percpu_irq(ppi, arch_timer_handler_virt,
527 "arch_timer", arch_timer_evt);
528 } else {
529 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
530 err = request_percpu_irq(ppi, arch_timer_handler_phys,
531 "arch_timer", arch_timer_evt);
532 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
533 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
534 err = request_percpu_irq(ppi, arch_timer_handler_phys,
535 "arch_timer", arch_timer_evt);
536 if (err)
537 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
538 arch_timer_evt);
539 }
540 }
541
542 if (err) {
543 pr_err("arch_timer: can't register interrupt %d (%d)\n",
544 ppi, err);
545 goto out_free;
546 }
547
548 err = register_cpu_notifier(&arch_timer_cpu_nb);
549 if (err)
550 goto out_free_irq;
551
552 err = arch_timer_cpu_pm_init();
553 if (err)
554 goto out_unreg_notify;
555
556 /* Immediately configure the timer on the boot CPU */
557 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
558
559 return 0;
560
561 out_unreg_notify:
562 unregister_cpu_notifier(&arch_timer_cpu_nb);
563 out_free_irq:
564 if (arch_timer_use_virtual)
565 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
566 else {
567 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
568 arch_timer_evt);
569 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
570 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
571 arch_timer_evt);
572 }
573
574 out_free:
575 free_percpu(arch_timer_evt);
576 out:
577 return err;
578 }
579
580 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
581 {
582 int ret;
583 irq_handler_t func;
584 struct arch_timer *t;
585
586 t = kzalloc(sizeof(*t), GFP_KERNEL);
587 if (!t)
588 return -ENOMEM;
589
590 t->base = base;
591 t->evt.irq = irq;
592 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
593
594 if (arch_timer_mem_use_virtual)
595 func = arch_timer_handler_virt_mem;
596 else
597 func = arch_timer_handler_phys_mem;
598
599 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
600 if (ret) {
601 pr_err("arch_timer: Failed to request mem timer irq\n");
602 kfree(t);
603 }
604
605 return ret;
606 }
607
608 static const struct of_device_id arch_timer_of_match[] __initconst = {
609 { .compatible = "arm,armv7-timer", },
610 { .compatible = "arm,armv8-timer", },
611 {},
612 };
613
614 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
615 { .compatible = "arm,armv7-timer-mem", },
616 {},
617 };
618
619 static void __init arch_timer_common_init(void)
620 {
621 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
622
623 /* Wait until both nodes are probed if we have two timers */
624 if ((arch_timers_present & mask) != mask) {
625 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
626 !(arch_timers_present & ARCH_MEM_TIMER))
627 return;
628 if (of_find_matching_node(NULL, arch_timer_of_match) &&
629 !(arch_timers_present & ARCH_CP15_TIMER))
630 return;
631 }
632
633 arch_timer_banner(arch_timers_present);
634 arch_counter_register(arch_timers_present);
635 arch_timer_arch_init();
636 }
637
638 static void __init arch_timer_init(struct device_node *np)
639 {
640 int i;
641
642 if (arch_timers_present & ARCH_CP15_TIMER) {
643 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
644 return;
645 }
646
647 arch_timers_present |= ARCH_CP15_TIMER;
648 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
649 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
650 arch_timer_detect_rate(NULL, np);
651
652 /*
653 * If HYP mode is available, we know that the physical timer
654 * has been configured to be accessible from PL1. Use it, so
655 * that a guest can use the virtual timer instead.
656 *
657 * If no interrupt provided for virtual timer, we'll have to
658 * stick to the physical timer. It'd better be accessible...
659 */
660 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
661 arch_timer_use_virtual = false;
662
663 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
664 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
665 pr_warn("arch_timer: No interrupt available, giving up\n");
666 return;
667 }
668 }
669
670 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
671
672 arch_timer_register();
673 arch_timer_common_init();
674 }
675 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
676 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
677
678 static void __init arch_timer_mem_init(struct device_node *np)
679 {
680 struct device_node *frame, *best_frame = NULL;
681 void __iomem *cntctlbase, *base;
682 unsigned int irq;
683 u32 cnttidr;
684
685 arch_timers_present |= ARCH_MEM_TIMER;
686 cntctlbase = of_iomap(np, 0);
687 if (!cntctlbase) {
688 pr_err("arch_timer: Can't find CNTCTLBase\n");
689 return;
690 }
691
692 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
693 iounmap(cntctlbase);
694
695 /*
696 * Try to find a virtual capable frame. Otherwise fall back to a
697 * physical capable frame.
698 */
699 for_each_available_child_of_node(np, frame) {
700 int n;
701
702 if (of_property_read_u32(frame, "frame-number", &n)) {
703 pr_err("arch_timer: Missing frame-number\n");
704 of_node_put(best_frame);
705 of_node_put(frame);
706 return;
707 }
708
709 if (cnttidr & CNTTIDR_VIRT(n)) {
710 of_node_put(best_frame);
711 best_frame = frame;
712 arch_timer_mem_use_virtual = true;
713 break;
714 }
715 of_node_put(best_frame);
716 best_frame = of_node_get(frame);
717 }
718
719 base = arch_counter_base = of_iomap(best_frame, 0);
720 if (!base) {
721 pr_err("arch_timer: Can't map frame's registers\n");
722 of_node_put(best_frame);
723 return;
724 }
725
726 if (arch_timer_mem_use_virtual)
727 irq = irq_of_parse_and_map(best_frame, 1);
728 else
729 irq = irq_of_parse_and_map(best_frame, 0);
730 of_node_put(best_frame);
731 if (!irq) {
732 pr_err("arch_timer: Frame missing %s irq",
733 arch_timer_mem_use_virtual ? "virt" : "phys");
734 return;
735 }
736
737 arch_timer_detect_rate(base, np);
738 arch_timer_mem_register(base, irq);
739 arch_timer_common_init();
740 }
741 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
742 arch_timer_mem_init);
This page took 0.056406 seconds and 5 git commands to generate.