Merge tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm...
[deliverable/linux.git] / drivers / clocksource / cadence_ttc_timer.c
1 /*
2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
3 *
4 * Copyright (C) 2011-2013 Xilinx
5 *
6 * based on arch/mips/kernel/time.c timer driver
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/clk.h>
19 #include <linux/clk-provider.h>
20 #include <linux/interrupt.h>
21 #include <linux/clockchips.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/slab.h>
25 #include <linux/sched_clock.h>
26
27 /*
28 * This driver configures the 2 16/32-bit count-up timers as follows:
29 *
30 * T1: Timer 1, clocksource for generic timekeeping
31 * T2: Timer 2, clockevent source for hrtimers
32 * T3: Timer 3, <unused>
33 *
34 * The input frequency to the timer module for emulation is 2.5MHz which is
35 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
36 * the timers are clocked at 78.125KHz (12.8 us resolution).
37
38 * The input frequency to the timer module in silicon is configurable and
39 * obtained from device tree. The pre-scaler of 32 is used.
40 */
41
42 /*
43 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
44 * and use same offsets for Timer 2
45 */
46 #define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */
47 #define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */
48 #define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */
49 #define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */
50 #define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */
51 #define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */
52
53 #define TTC_CNT_CNTRL_DISABLE_MASK 0x1
54
55 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */
56 #define TTC_CLK_CNTRL_PSV_MASK 0x1e
57 #define TTC_CLK_CNTRL_PSV_SHIFT 1
58
59 /*
60 * Setup the timers to use pre-scaling, using a fixed value for now that will
61 * work across most input frequency, but it may need to be more dynamic
62 */
63 #define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
64 #define PRESCALE 2048 /* The exponent must match this */
65 #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
66 #define CLK_CNTRL_PRESCALE_EN 1
67 #define CNT_CNTRL_RESET (1 << 4)
68
69 #define MAX_F_ERR 50
70
71 /**
72 * struct ttc_timer - This definition defines local timer structure
73 *
74 * @base_addr: Base address of timer
75 * @freq: Timer input clock frequency
76 * @clk: Associated clock source
77 * @clk_rate_change_nb Notifier block for clock rate changes
78 */
79 struct ttc_timer {
80 void __iomem *base_addr;
81 unsigned long freq;
82 struct clk *clk;
83 struct notifier_block clk_rate_change_nb;
84 };
85
86 #define to_ttc_timer(x) \
87 container_of(x, struct ttc_timer, clk_rate_change_nb)
88
89 struct ttc_timer_clocksource {
90 u32 scale_clk_ctrl_reg_old;
91 u32 scale_clk_ctrl_reg_new;
92 struct ttc_timer ttc;
93 struct clocksource cs;
94 };
95
96 #define to_ttc_timer_clksrc(x) \
97 container_of(x, struct ttc_timer_clocksource, cs)
98
99 struct ttc_timer_clockevent {
100 struct ttc_timer ttc;
101 struct clock_event_device ce;
102 };
103
104 #define to_ttc_timer_clkevent(x) \
105 container_of(x, struct ttc_timer_clockevent, ce)
106
107 static void __iomem *ttc_sched_clock_val_reg;
108
109 /**
110 * ttc_set_interval - Set the timer interval value
111 *
112 * @timer: Pointer to the timer instance
113 * @cycles: Timer interval ticks
114 **/
115 static void ttc_set_interval(struct ttc_timer *timer,
116 unsigned long cycles)
117 {
118 u32 ctrl_reg;
119
120 /* Disable the counter, set the counter value and re-enable counter */
121 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124
125 writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126
127 /*
128 * Reset the counter (0x10) so that it starts from 0, one-shot
129 * mode makes this needed for timing to be right.
130 */
131 ctrl_reg |= CNT_CNTRL_RESET;
132 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134 }
135
136 /**
137 * ttc_clock_event_interrupt - Clock event timer interrupt handler
138 *
139 * @irq: IRQ number of the Timer
140 * @dev_id: void pointer to the ttc_timer instance
141 *
142 * returns: Always IRQ_HANDLED - success
143 **/
144 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145 {
146 struct ttc_timer_clockevent *ttce = dev_id;
147 struct ttc_timer *timer = &ttce->ttc;
148
149 /* Acknowledge the interrupt and call event handler */
150 readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151
152 ttce->ce.event_handler(&ttce->ce);
153
154 return IRQ_HANDLED;
155 }
156
157 /**
158 * __ttc_clocksource_read - Reads the timer counter register
159 *
160 * returns: Current timer counter register value
161 **/
162 static cycle_t __ttc_clocksource_read(struct clocksource *cs)
163 {
164 struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165
166 return (cycle_t)readl_relaxed(timer->base_addr +
167 TTC_COUNT_VAL_OFFSET);
168 }
169
170 static u64 notrace ttc_sched_clock_read(void)
171 {
172 return readl_relaxed(ttc_sched_clock_val_reg);
173 }
174
175 /**
176 * ttc_set_next_event - Sets the time interval for next event
177 *
178 * @cycles: Timer interval ticks
179 * @evt: Address of clock event instance
180 *
181 * returns: Always 0 - success
182 **/
183 static int ttc_set_next_event(unsigned long cycles,
184 struct clock_event_device *evt)
185 {
186 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
187 struct ttc_timer *timer = &ttce->ttc;
188
189 ttc_set_interval(timer, cycles);
190 return 0;
191 }
192
193 /**
194 * ttc_set_mode - Sets the mode of timer
195 *
196 * @mode: Mode to be set
197 * @evt: Address of clock event instance
198 **/
199 static void ttc_set_mode(enum clock_event_mode mode,
200 struct clock_event_device *evt)
201 {
202 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
203 struct ttc_timer *timer = &ttce->ttc;
204 u32 ctrl_reg;
205
206 switch (mode) {
207 case CLOCK_EVT_MODE_PERIODIC:
208 ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq,
209 PRESCALE * HZ));
210 break;
211 case CLOCK_EVT_MODE_ONESHOT:
212 case CLOCK_EVT_MODE_UNUSED:
213 case CLOCK_EVT_MODE_SHUTDOWN:
214 ctrl_reg = readl_relaxed(timer->base_addr +
215 TTC_CNT_CNTRL_OFFSET);
216 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
217 writel_relaxed(ctrl_reg,
218 timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219 break;
220 case CLOCK_EVT_MODE_RESUME:
221 ctrl_reg = readl_relaxed(timer->base_addr +
222 TTC_CNT_CNTRL_OFFSET);
223 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
224 writel_relaxed(ctrl_reg,
225 timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226 break;
227 }
228 }
229
230 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
231 unsigned long event, void *data)
232 {
233 struct clk_notifier_data *ndata = data;
234 struct ttc_timer *ttc = to_ttc_timer(nb);
235 struct ttc_timer_clocksource *ttccs = container_of(ttc,
236 struct ttc_timer_clocksource, ttc);
237
238 switch (event) {
239 case PRE_RATE_CHANGE:
240 {
241 u32 psv;
242 unsigned long factor, rate_low, rate_high;
243
244 if (ndata->new_rate > ndata->old_rate) {
245 factor = DIV_ROUND_CLOSEST(ndata->new_rate,
246 ndata->old_rate);
247 rate_low = ndata->old_rate;
248 rate_high = ndata->new_rate;
249 } else {
250 factor = DIV_ROUND_CLOSEST(ndata->old_rate,
251 ndata->new_rate);
252 rate_low = ndata->new_rate;
253 rate_high = ndata->old_rate;
254 }
255
256 if (!is_power_of_2(factor))
257 return NOTIFY_BAD;
258
259 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
260 return NOTIFY_BAD;
261
262 factor = __ilog2_u32(factor);
263
264 /*
265 * store timer clock ctrl register so we can restore it in case
266 * of an abort.
267 */
268 ttccs->scale_clk_ctrl_reg_old =
269 readl_relaxed(ttccs->ttc.base_addr +
270 TTC_CLK_CNTRL_OFFSET);
271
272 psv = (ttccs->scale_clk_ctrl_reg_old &
273 TTC_CLK_CNTRL_PSV_MASK) >>
274 TTC_CLK_CNTRL_PSV_SHIFT;
275 if (ndata->new_rate < ndata->old_rate)
276 psv -= factor;
277 else
278 psv += factor;
279
280 /* prescaler within legal range? */
281 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
282 return NOTIFY_BAD;
283
284 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
285 ~TTC_CLK_CNTRL_PSV_MASK;
286 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
287
288
289 /* scale down: adjust divider in post-change notification */
290 if (ndata->new_rate < ndata->old_rate)
291 return NOTIFY_DONE;
292
293 /* scale up: adjust divider now - before frequency change */
294 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
295 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
296 break;
297 }
298 case POST_RATE_CHANGE:
299 /* scale up: pre-change notification did the adjustment */
300 if (ndata->new_rate > ndata->old_rate)
301 return NOTIFY_OK;
302
303 /* scale down: adjust divider now - after frequency change */
304 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
305 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
306 break;
307
308 case ABORT_RATE_CHANGE:
309 /* we have to undo the adjustment in case we scale up */
310 if (ndata->new_rate < ndata->old_rate)
311 return NOTIFY_OK;
312
313 /* restore original register value */
314 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
315 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
316 /* fall through */
317 default:
318 return NOTIFY_DONE;
319 }
320
321 return NOTIFY_DONE;
322 }
323
324 static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
325 u32 timer_width)
326 {
327 struct ttc_timer_clocksource *ttccs;
328 int err;
329
330 ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
331 if (WARN_ON(!ttccs))
332 return;
333
334 ttccs->ttc.clk = clk;
335
336 err = clk_prepare_enable(ttccs->ttc.clk);
337 if (WARN_ON(err)) {
338 kfree(ttccs);
339 return;
340 }
341
342 ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
343
344 ttccs->ttc.clk_rate_change_nb.notifier_call =
345 ttc_rate_change_clocksource_cb;
346 ttccs->ttc.clk_rate_change_nb.next = NULL;
347 if (clk_notifier_register(ttccs->ttc.clk,
348 &ttccs->ttc.clk_rate_change_nb))
349 pr_warn("Unable to register clock notifier.\n");
350
351 ttccs->ttc.base_addr = base;
352 ttccs->cs.name = "ttc_clocksource";
353 ttccs->cs.rating = 200;
354 ttccs->cs.read = __ttc_clocksource_read;
355 ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
356 ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
357
358 /*
359 * Setup the clock source counter to be an incrementing counter
360 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
361 * it by 32 also. Let it start running now.
362 */
363 writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET);
364 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
365 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
366 writel_relaxed(CNT_CNTRL_RESET,
367 ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
368
369 err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
370 if (WARN_ON(err)) {
371 kfree(ttccs);
372 return;
373 }
374
375 ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
376 sched_clock_register(ttc_sched_clock_read, timer_width,
377 ttccs->ttc.freq / PRESCALE);
378 }
379
380 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
381 unsigned long event, void *data)
382 {
383 struct clk_notifier_data *ndata = data;
384 struct ttc_timer *ttc = to_ttc_timer(nb);
385 struct ttc_timer_clockevent *ttcce = container_of(ttc,
386 struct ttc_timer_clockevent, ttc);
387
388 switch (event) {
389 case POST_RATE_CHANGE:
390 /* update cached frequency */
391 ttc->freq = ndata->new_rate;
392
393 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
394
395 /* fall through */
396 case PRE_RATE_CHANGE:
397 case ABORT_RATE_CHANGE:
398 default:
399 return NOTIFY_DONE;
400 }
401 }
402
403 static void __init ttc_setup_clockevent(struct clk *clk,
404 void __iomem *base, u32 irq)
405 {
406 struct ttc_timer_clockevent *ttcce;
407 int err;
408
409 ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
410 if (WARN_ON(!ttcce))
411 return;
412
413 ttcce->ttc.clk = clk;
414
415 err = clk_prepare_enable(ttcce->ttc.clk);
416 if (WARN_ON(err)) {
417 kfree(ttcce);
418 return;
419 }
420
421 ttcce->ttc.clk_rate_change_nb.notifier_call =
422 ttc_rate_change_clockevent_cb;
423 ttcce->ttc.clk_rate_change_nb.next = NULL;
424 if (clk_notifier_register(ttcce->ttc.clk,
425 &ttcce->ttc.clk_rate_change_nb))
426 pr_warn("Unable to register clock notifier.\n");
427 ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
428
429 ttcce->ttc.base_addr = base;
430 ttcce->ce.name = "ttc_clockevent";
431 ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
432 ttcce->ce.set_next_event = ttc_set_next_event;
433 ttcce->ce.set_mode = ttc_set_mode;
434 ttcce->ce.rating = 200;
435 ttcce->ce.irq = irq;
436 ttcce->ce.cpumask = cpu_possible_mask;
437
438 /*
439 * Setup the clock event timer to be an interval timer which
440 * is prescaled by 32 using the interval interrupt. Leave it
441 * disabled for now.
442 */
443 writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
444 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
445 ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
446 writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET);
447
448 err = request_irq(irq, ttc_clock_event_interrupt,
449 IRQF_TIMER, ttcce->ce.name, ttcce);
450 if (WARN_ON(err)) {
451 kfree(ttcce);
452 return;
453 }
454
455 clockevents_config_and_register(&ttcce->ce,
456 ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
457 }
458
459 /**
460 * ttc_timer_init - Initialize the timer
461 *
462 * Initializes the timer hardware and register the clock source and clock event
463 * timers with Linux kernal timer framework
464 */
465 static void __init ttc_timer_init(struct device_node *timer)
466 {
467 unsigned int irq;
468 void __iomem *timer_baseaddr;
469 struct clk *clk_cs, *clk_ce;
470 static int initialized;
471 int clksel;
472 u32 timer_width = 16;
473
474 if (initialized)
475 return;
476
477 initialized = 1;
478
479 /*
480 * Get the 1st Triple Timer Counter (TTC) block from the device tree
481 * and use it. Note that the event timer uses the interrupt and it's the
482 * 2nd TTC hence the irq_of_parse_and_map(,1)
483 */
484 timer_baseaddr = of_iomap(timer, 0);
485 if (!timer_baseaddr) {
486 pr_err("ERROR: invalid timer base address\n");
487 BUG();
488 }
489
490 irq = irq_of_parse_and_map(timer, 1);
491 if (irq <= 0) {
492 pr_err("ERROR: invalid interrupt number\n");
493 BUG();
494 }
495
496 of_property_read_u32(timer, "timer-width", &timer_width);
497
498 clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
499 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
500 clk_cs = of_clk_get(timer, clksel);
501 if (IS_ERR(clk_cs)) {
502 pr_err("ERROR: timer input clock not found\n");
503 BUG();
504 }
505
506 clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
507 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
508 clk_ce = of_clk_get(timer, clksel);
509 if (IS_ERR(clk_ce)) {
510 pr_err("ERROR: timer input clock not found\n");
511 BUG();
512 }
513
514 ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
515 ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
516
517 pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
518 }
519
520 CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);
This page took 0.042505 seconds and 5 git commands to generate.