Merge branch 'topic/livepatch' of git://git.kernel.org/pub/scm/linux/kernel/git/power...
[deliverable/linux.git] / drivers / clocksource / dw_apb_timer.c
1 /*
2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
4 *
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Support for the Synopsys DesignWare APB Timers.
12 */
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20
21 #define APBT_MIN_PERIOD 4
22 #define APBT_MIN_DELTA_USEC 200
23
24 #define APBTMR_N_LOAD_COUNT 0x00
25 #define APBTMR_N_CURRENT_VALUE 0x04
26 #define APBTMR_N_CONTROL 0x08
27 #define APBTMR_N_EOI 0x0c
28 #define APBTMR_N_INT_STATUS 0x10
29
30 #define APBTMRS_INT_STATUS 0xa0
31 #define APBTMRS_EOI 0xa4
32 #define APBTMRS_RAW_INT_STATUS 0xa8
33 #define APBTMRS_COMP_VERSION 0xac
34
35 #define APBTMR_CONTROL_ENABLE (1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38 #define APBTMR_CONTROL_INT (1 << 2)
39
40 static inline struct dw_apb_clock_event_device *
41 ced_to_dw_apb_ced(struct clock_event_device *evt)
42 {
43 return container_of(evt, struct dw_apb_clock_event_device, ced);
44 }
45
46 static inline struct dw_apb_clocksource *
47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
48 {
49 return container_of(cs, struct dw_apb_clocksource, cs);
50 }
51
52 static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
53 {
54 return readl(timer->base + offs);
55 }
56
57 static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
58 unsigned long offs)
59 {
60 writel(val, timer->base + offs);
61 }
62
63 static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
64 {
65 return readl_relaxed(timer->base + offs);
66 }
67
68 static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
69 unsigned long offs)
70 {
71 writel_relaxed(val, timer->base + offs);
72 }
73
74 static void apbt_disable_int(struct dw_apb_timer *timer)
75 {
76 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
77
78 ctrl |= APBTMR_CONTROL_INT;
79 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
80 }
81
82 /**
83 * dw_apb_clockevent_pause() - stop the clock_event_device from running
84 *
85 * @dw_ced: The APB clock to stop generating events.
86 */
87 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
88 {
89 disable_irq(dw_ced->timer.irq);
90 apbt_disable_int(&dw_ced->timer);
91 }
92
93 static void apbt_eoi(struct dw_apb_timer *timer)
94 {
95 apbt_readl_relaxed(timer, APBTMR_N_EOI);
96 }
97
98 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
99 {
100 struct clock_event_device *evt = data;
101 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
102
103 if (!evt->event_handler) {
104 pr_info("Spurious APBT timer interrupt %d", irq);
105 return IRQ_NONE;
106 }
107
108 if (dw_ced->eoi)
109 dw_ced->eoi(&dw_ced->timer);
110
111 evt->event_handler(evt);
112 return IRQ_HANDLED;
113 }
114
115 static void apbt_enable_int(struct dw_apb_timer *timer)
116 {
117 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
118 /* clear pending intr */
119 apbt_readl(timer, APBTMR_N_EOI);
120 ctrl &= ~APBTMR_CONTROL_INT;
121 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
122 }
123
124 static int apbt_shutdown(struct clock_event_device *evt)
125 {
126 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
127 u32 ctrl;
128
129 pr_debug("%s CPU %d state=shutdown\n", __func__,
130 cpumask_first(evt->cpumask));
131
132 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
133 ctrl &= ~APBTMR_CONTROL_ENABLE;
134 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
135 return 0;
136 }
137
138 static int apbt_set_oneshot(struct clock_event_device *evt)
139 {
140 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
141 u32 ctrl;
142
143 pr_debug("%s CPU %d state=oneshot\n", __func__,
144 cpumask_first(evt->cpumask));
145
146 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
147 /*
148 * set free running mode, this mode will let timer reload max
149 * timeout which will give time (3min on 25MHz clock) to rearm
150 * the next event, therefore emulate the one-shot mode.
151 */
152 ctrl &= ~APBTMR_CONTROL_ENABLE;
153 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
154
155 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
156 /* write again to set free running mode */
157 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
158
159 /*
160 * DW APB p. 46, load counter with all 1s before starting free
161 * running mode.
162 */
163 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
164 ctrl &= ~APBTMR_CONTROL_INT;
165 ctrl |= APBTMR_CONTROL_ENABLE;
166 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
167 return 0;
168 }
169
170 static int apbt_set_periodic(struct clock_event_device *evt)
171 {
172 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
173 unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
174 u32 ctrl;
175
176 pr_debug("%s CPU %d state=periodic\n", __func__,
177 cpumask_first(evt->cpumask));
178
179 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
180 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
181 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
182 /*
183 * DW APB p. 46, have to disable timer before load counter,
184 * may cause sync problem.
185 */
186 ctrl &= ~APBTMR_CONTROL_ENABLE;
187 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
188 udelay(1);
189 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
190 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
191 ctrl |= APBTMR_CONTROL_ENABLE;
192 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
193 return 0;
194 }
195
196 static int apbt_resume(struct clock_event_device *evt)
197 {
198 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
199
200 pr_debug("%s CPU %d state=resume\n", __func__,
201 cpumask_first(evt->cpumask));
202
203 apbt_enable_int(&dw_ced->timer);
204 return 0;
205 }
206
207 static int apbt_next_event(unsigned long delta,
208 struct clock_event_device *evt)
209 {
210 u32 ctrl;
211 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
212
213 /* Disable timer */
214 ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
215 ctrl &= ~APBTMR_CONTROL_ENABLE;
216 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
217 /* write new count */
218 apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
219 ctrl |= APBTMR_CONTROL_ENABLE;
220 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
221
222 return 0;
223 }
224
225 /**
226 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
227 *
228 * @cpu: The CPU the events will be targeted at.
229 * @name: The name used for the timer and the IRQ for it.
230 * @rating: The rating to give the timer.
231 * @base: I/O base for the timer registers.
232 * @irq: The interrupt number to use for the timer.
233 * @freq: The frequency that the timer counts at.
234 *
235 * This creates a clock_event_device for using with the generic clock layer
236 * but does not start and register it. This should be done with
237 * dw_apb_clockevent_register() as the next step. If this is the first time
238 * it has been called for a timer then the IRQ will be requested, if not it
239 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
240 * releasing the IRQ.
241 */
242 struct dw_apb_clock_event_device *
243 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
244 void __iomem *base, int irq, unsigned long freq)
245 {
246 struct dw_apb_clock_event_device *dw_ced =
247 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
248 int err;
249
250 if (!dw_ced)
251 return NULL;
252
253 dw_ced->timer.base = base;
254 dw_ced->timer.irq = irq;
255 dw_ced->timer.freq = freq;
256
257 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
258 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
259 &dw_ced->ced);
260 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
261 dw_ced->ced.cpumask = cpumask_of(cpu);
262 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
263 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
264 dw_ced->ced.set_state_shutdown = apbt_shutdown;
265 dw_ced->ced.set_state_periodic = apbt_set_periodic;
266 dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
267 dw_ced->ced.tick_resume = apbt_resume;
268 dw_ced->ced.set_next_event = apbt_next_event;
269 dw_ced->ced.irq = dw_ced->timer.irq;
270 dw_ced->ced.rating = rating;
271 dw_ced->ced.name = name;
272
273 dw_ced->irqaction.name = dw_ced->ced.name;
274 dw_ced->irqaction.handler = dw_apb_clockevent_irq;
275 dw_ced->irqaction.dev_id = &dw_ced->ced;
276 dw_ced->irqaction.irq = irq;
277 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
278 IRQF_NOBALANCING;
279
280 dw_ced->eoi = apbt_eoi;
281 err = setup_irq(irq, &dw_ced->irqaction);
282 if (err) {
283 pr_err("failed to request timer irq\n");
284 kfree(dw_ced);
285 dw_ced = NULL;
286 }
287
288 return dw_ced;
289 }
290
291 /**
292 * dw_apb_clockevent_resume() - resume a clock that has been paused.
293 *
294 * @dw_ced: The APB clock to resume.
295 */
296 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
297 {
298 enable_irq(dw_ced->timer.irq);
299 }
300
301 /**
302 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
303 *
304 * @dw_ced: The APB clock to stop generating the events.
305 */
306 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
307 {
308 free_irq(dw_ced->timer.irq, &dw_ced->ced);
309 }
310
311 /**
312 * dw_apb_clockevent_register() - register the clock with the generic layer
313 *
314 * @dw_ced: The APB clock to register as a clock_event_device.
315 */
316 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
317 {
318 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
319 clockevents_register_device(&dw_ced->ced);
320 apbt_enable_int(&dw_ced->timer);
321 }
322
323 /**
324 * dw_apb_clocksource_start() - start the clocksource counting.
325 *
326 * @dw_cs: The clocksource to start.
327 *
328 * This is used to start the clocksource before registration and can be used
329 * to enable calibration of timers.
330 */
331 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
332 {
333 /*
334 * start count down from 0xffff_ffff. this is done by toggling the
335 * enable bit then load initial load count to ~0.
336 */
337 u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
338
339 ctrl &= ~APBTMR_CONTROL_ENABLE;
340 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
341 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
342 /* enable, mask interrupt */
343 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
344 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
345 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
346 /* read it once to get cached counter value initialized */
347 dw_apb_clocksource_read(dw_cs);
348 }
349
350 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
351 {
352 u32 current_count;
353 struct dw_apb_clocksource *dw_cs =
354 clocksource_to_dw_apb_clocksource(cs);
355
356 current_count = apbt_readl_relaxed(&dw_cs->timer,
357 APBTMR_N_CURRENT_VALUE);
358
359 return (cycle_t)~current_count;
360 }
361
362 static void apbt_restart_clocksource(struct clocksource *cs)
363 {
364 struct dw_apb_clocksource *dw_cs =
365 clocksource_to_dw_apb_clocksource(cs);
366
367 dw_apb_clocksource_start(dw_cs);
368 }
369
370 /**
371 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
372 *
373 * @rating: The rating to give the clocksource.
374 * @name: The name for the clocksource.
375 * @base: The I/O base for the timer registers.
376 * @freq: The frequency that the timer counts at.
377 *
378 * This creates a clocksource using an APB timer but does not yet register it
379 * with the clocksource system. This should be done with
380 * dw_apb_clocksource_register() as the next step.
381 */
382 struct dw_apb_clocksource *
383 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
384 unsigned long freq)
385 {
386 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
387
388 if (!dw_cs)
389 return NULL;
390
391 dw_cs->timer.base = base;
392 dw_cs->timer.freq = freq;
393 dw_cs->cs.name = name;
394 dw_cs->cs.rating = rating;
395 dw_cs->cs.read = __apbt_read_clocksource;
396 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
397 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
398 dw_cs->cs.resume = apbt_restart_clocksource;
399
400 return dw_cs;
401 }
402
403 /**
404 * dw_apb_clocksource_register() - register the APB clocksource.
405 *
406 * @dw_cs: The clocksource to register.
407 */
408 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
409 {
410 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
411 }
412
413 /**
414 * dw_apb_clocksource_read() - read the current value of a clocksource.
415 *
416 * @dw_cs: The clocksource to read.
417 */
418 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
419 {
420 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
421 }
This page took 0.038821 seconds and 5 git commands to generate.