clocksource: exynos_mct: Use readl_relaxed/writel_relaxed
[deliverable/linux.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28
29 #define EXYNOS4_MCTREG(x) (x)
30 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK (0xffffff00)
43
44 #define MCT_L_TCNTB_OFFSET (0x00)
45 #define MCT_L_ICNTB_OFFSET (0x08)
46 #define MCT_L_TCON_OFFSET (0x20)
47 #define MCT_L_INT_CSTAT_OFFSET (0x30)
48 #define MCT_L_INT_ENB_OFFSET (0x34)
49 #define MCT_L_WSTAT_OFFSET (0x40)
50 #define MCT_G_TCON_START (1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
54 #define MCT_L_TCON_INT_START (1 << 1)
55 #define MCT_L_TCON_TIMER_START (1 << 0)
56
57 #define TICK_BASE_CNT 1
58
59 enum {
60 MCT_INT_SPI,
61 MCT_INT_PPI
62 };
63
64 enum {
65 MCT_G0_IRQ,
66 MCT_G1_IRQ,
67 MCT_G2_IRQ,
68 MCT_G3_IRQ,
69 MCT_L0_IRQ,
70 MCT_L1_IRQ,
71 MCT_L2_IRQ,
72 MCT_L3_IRQ,
73 MCT_L4_IRQ,
74 MCT_L5_IRQ,
75 MCT_L6_IRQ,
76 MCT_L7_IRQ,
77 MCT_NR_IRQS,
78 };
79
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84
85 struct mct_clock_event_device {
86 struct clock_event_device evt;
87 unsigned long base;
88 char name[10];
89 };
90
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93 unsigned long stat_addr;
94 u32 mask;
95 u32 i;
96
97 writel_relaxed(value, reg_base + offset);
98
99 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100 stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 switch (offset & EXYNOS4_MCT_L_MASK) {
102 case MCT_L_TCON_OFFSET:
103 mask = 1 << 3; /* L_TCON write status */
104 break;
105 case MCT_L_ICNTB_OFFSET:
106 mask = 1 << 1; /* L_ICNTB write status */
107 break;
108 case MCT_L_TCNTB_OFFSET:
109 mask = 1 << 0; /* L_TCNTB write status */
110 break;
111 default:
112 return;
113 }
114 } else {
115 switch (offset) {
116 case EXYNOS4_MCT_G_TCON:
117 stat_addr = EXYNOS4_MCT_G_WSTAT;
118 mask = 1 << 16; /* G_TCON write status */
119 break;
120 case EXYNOS4_MCT_G_COMP0_L:
121 stat_addr = EXYNOS4_MCT_G_WSTAT;
122 mask = 1 << 0; /* G_COMP0_L write status */
123 break;
124 case EXYNOS4_MCT_G_COMP0_U:
125 stat_addr = EXYNOS4_MCT_G_WSTAT;
126 mask = 1 << 1; /* G_COMP0_U write status */
127 break;
128 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129 stat_addr = EXYNOS4_MCT_G_WSTAT;
130 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
131 break;
132 case EXYNOS4_MCT_G_CNT_L:
133 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 mask = 1 << 0; /* G_CNT_L write status */
135 break;
136 case EXYNOS4_MCT_G_CNT_U:
137 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 mask = 1 << 1; /* G_CNT_U write status */
139 break;
140 default:
141 return;
142 }
143 }
144
145 /* Wait maximum 1 ms until written values are applied */
146 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147 if (readl_relaxed(reg_base + stat_addr) & mask) {
148 writel_relaxed(mask, reg_base + stat_addr);
149 return;
150 }
151
152 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158 u32 reg;
159
160 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161 reg |= MCT_G_TCON_START;
162 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164
165 static cycle_t notrace _exynos4_frc_read(void)
166 {
167 unsigned int lo, hi;
168 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
169
170 do {
171 hi = hi2;
172 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
173 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
174 } while (hi != hi2);
175
176 return ((cycle_t)hi << 32) | lo;
177 }
178
179 static cycle_t exynos4_frc_read(struct clocksource *cs)
180 {
181 return _exynos4_frc_read();
182 }
183
184 static void exynos4_frc_resume(struct clocksource *cs)
185 {
186 exynos4_mct_frc_start();
187 }
188
189 struct clocksource mct_frc = {
190 .name = "mct-frc",
191 .rating = 400,
192 .read = exynos4_frc_read,
193 .mask = CLOCKSOURCE_MASK(64),
194 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
195 .resume = exynos4_frc_resume,
196 };
197
198 static u64 notrace exynos4_read_sched_clock(void)
199 {
200 return _exynos4_frc_read();
201 }
202
203 static struct delay_timer exynos4_delay_timer;
204
205 static cycles_t exynos4_read_current_timer(void)
206 {
207 return _exynos4_frc_read();
208 }
209
210 static void __init exynos4_clocksource_init(void)
211 {
212 exynos4_mct_frc_start();
213
214 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
215 exynos4_delay_timer.freq = clk_rate;
216 register_current_timer_delay(&exynos4_delay_timer);
217
218 if (clocksource_register_hz(&mct_frc, clk_rate))
219 panic("%s: can't register clocksource\n", mct_frc.name);
220
221 sched_clock_register(exynos4_read_sched_clock, 64, clk_rate);
222 }
223
224 static void exynos4_mct_comp0_stop(void)
225 {
226 unsigned int tcon;
227
228 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
229 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
230
231 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
232 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
233 }
234
235 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
236 unsigned long cycles)
237 {
238 unsigned int tcon;
239 cycle_t comp_cycle;
240
241 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
242
243 if (mode == CLOCK_EVT_MODE_PERIODIC) {
244 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
245 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
246 }
247
248 comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
249 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
250 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
251
252 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
253
254 tcon |= MCT_G_TCON_COMP0_ENABLE;
255 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
256 }
257
258 static int exynos4_comp_set_next_event(unsigned long cycles,
259 struct clock_event_device *evt)
260 {
261 exynos4_mct_comp0_start(evt->mode, cycles);
262
263 return 0;
264 }
265
266 static void exynos4_comp_set_mode(enum clock_event_mode mode,
267 struct clock_event_device *evt)
268 {
269 unsigned long cycles_per_jiffy;
270 exynos4_mct_comp0_stop();
271
272 switch (mode) {
273 case CLOCK_EVT_MODE_PERIODIC:
274 cycles_per_jiffy =
275 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
276 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
277 break;
278
279 case CLOCK_EVT_MODE_ONESHOT:
280 case CLOCK_EVT_MODE_UNUSED:
281 case CLOCK_EVT_MODE_SHUTDOWN:
282 case CLOCK_EVT_MODE_RESUME:
283 break;
284 }
285 }
286
287 static struct clock_event_device mct_comp_device = {
288 .name = "mct-comp",
289 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
290 .rating = 250,
291 .set_next_event = exynos4_comp_set_next_event,
292 .set_mode = exynos4_comp_set_mode,
293 };
294
295 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
296 {
297 struct clock_event_device *evt = dev_id;
298
299 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
300
301 evt->event_handler(evt);
302
303 return IRQ_HANDLED;
304 }
305
306 static struct irqaction mct_comp_event_irq = {
307 .name = "mct_comp_irq",
308 .flags = IRQF_TIMER | IRQF_IRQPOLL,
309 .handler = exynos4_mct_comp_isr,
310 .dev_id = &mct_comp_device,
311 };
312
313 static void exynos4_clockevent_init(void)
314 {
315 mct_comp_device.cpumask = cpumask_of(0);
316 clockevents_config_and_register(&mct_comp_device, clk_rate,
317 0xf, 0xffffffff);
318 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
319 }
320
321 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
322
323 /* Clock event handling */
324 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
325 {
326 unsigned long tmp;
327 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
328 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
329
330 tmp = readl_relaxed(reg_base + offset);
331 if (tmp & mask) {
332 tmp &= ~mask;
333 exynos4_mct_write(tmp, offset);
334 }
335 }
336
337 static void exynos4_mct_tick_start(unsigned long cycles,
338 struct mct_clock_event_device *mevt)
339 {
340 unsigned long tmp;
341
342 exynos4_mct_tick_stop(mevt);
343
344 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
345
346 /* update interrupt count buffer */
347 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
348
349 /* enable MCT tick interrupt */
350 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
351
352 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
353 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
354 MCT_L_TCON_INTERVAL_MODE;
355 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
356 }
357
358 static int exynos4_tick_set_next_event(unsigned long cycles,
359 struct clock_event_device *evt)
360 {
361 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
362
363 exynos4_mct_tick_start(cycles, mevt);
364
365 return 0;
366 }
367
368 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
369 struct clock_event_device *evt)
370 {
371 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
372 unsigned long cycles_per_jiffy;
373
374 exynos4_mct_tick_stop(mevt);
375
376 switch (mode) {
377 case CLOCK_EVT_MODE_PERIODIC:
378 cycles_per_jiffy =
379 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
380 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
381 break;
382
383 case CLOCK_EVT_MODE_ONESHOT:
384 case CLOCK_EVT_MODE_UNUSED:
385 case CLOCK_EVT_MODE_SHUTDOWN:
386 case CLOCK_EVT_MODE_RESUME:
387 break;
388 }
389 }
390
391 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
392 {
393 struct clock_event_device *evt = &mevt->evt;
394
395 /*
396 * This is for supporting oneshot mode.
397 * Mct would generate interrupt periodically
398 * without explicit stopping.
399 */
400 if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
401 exynos4_mct_tick_stop(mevt);
402
403 /* Clear the MCT tick interrupt */
404 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
405 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
406 return 1;
407 } else {
408 return 0;
409 }
410 }
411
412 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
413 {
414 struct mct_clock_event_device *mevt = dev_id;
415 struct clock_event_device *evt = &mevt->evt;
416
417 exynos4_mct_tick_clear(mevt);
418
419 evt->event_handler(evt);
420
421 return IRQ_HANDLED;
422 }
423
424 static int exynos4_local_timer_setup(struct clock_event_device *evt)
425 {
426 struct mct_clock_event_device *mevt;
427 unsigned int cpu = smp_processor_id();
428
429 mevt = container_of(evt, struct mct_clock_event_device, evt);
430
431 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
432 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
433
434 evt->name = mevt->name;
435 evt->cpumask = cpumask_of(cpu);
436 evt->set_next_event = exynos4_tick_set_next_event;
437 evt->set_mode = exynos4_tick_set_mode;
438 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
439 evt->rating = 450;
440
441 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
442
443 if (mct_int_type == MCT_INT_SPI) {
444 evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
445 if (request_irq(evt->irq, exynos4_mct_tick_isr,
446 IRQF_TIMER | IRQF_NOBALANCING,
447 evt->name, mevt)) {
448 pr_err("exynos-mct: cannot register IRQ %d\n",
449 evt->irq);
450 return -EIO;
451 }
452 irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
453 } else {
454 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
455 }
456 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
457 0xf, 0x7fffffff);
458
459 return 0;
460 }
461
462 static void exynos4_local_timer_stop(struct clock_event_device *evt)
463 {
464 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
465 if (mct_int_type == MCT_INT_SPI)
466 free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
467 else
468 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
469 }
470
471 static int exynos4_mct_cpu_notify(struct notifier_block *self,
472 unsigned long action, void *hcpu)
473 {
474 struct mct_clock_event_device *mevt;
475
476 /*
477 * Grab cpu pointer in each case to avoid spurious
478 * preemptible warnings
479 */
480 switch (action & ~CPU_TASKS_FROZEN) {
481 case CPU_STARTING:
482 mevt = this_cpu_ptr(&percpu_mct_tick);
483 exynos4_local_timer_setup(&mevt->evt);
484 break;
485 case CPU_DYING:
486 mevt = this_cpu_ptr(&percpu_mct_tick);
487 exynos4_local_timer_stop(&mevt->evt);
488 break;
489 }
490
491 return NOTIFY_OK;
492 }
493
494 static struct notifier_block exynos4_mct_cpu_nb = {
495 .notifier_call = exynos4_mct_cpu_notify,
496 };
497
498 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
499 {
500 int err;
501 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
502 struct clk *mct_clk, *tick_clk;
503
504 tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
505 clk_get(NULL, "fin_pll");
506 if (IS_ERR(tick_clk))
507 panic("%s: unable to determine tick clock rate\n", __func__);
508 clk_rate = clk_get_rate(tick_clk);
509
510 mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
511 if (IS_ERR(mct_clk))
512 panic("%s: unable to retrieve mct clock instance\n", __func__);
513 clk_prepare_enable(mct_clk);
514
515 reg_base = base;
516 if (!reg_base)
517 panic("%s: unable to ioremap mct address space\n", __func__);
518
519 if (mct_int_type == MCT_INT_PPI) {
520
521 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
522 exynos4_mct_tick_isr, "MCT",
523 &percpu_mct_tick);
524 WARN(err, "MCT: can't request IRQ %d (%d)\n",
525 mct_irqs[MCT_L0_IRQ], err);
526 } else {
527 irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
528 }
529
530 err = register_cpu_notifier(&exynos4_mct_cpu_nb);
531 if (err)
532 goto out_irq;
533
534 /* Immediately configure the timer on the boot CPU */
535 exynos4_local_timer_setup(&mevt->evt);
536 return;
537
538 out_irq:
539 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
540 }
541
542 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
543 {
544 mct_irqs[MCT_G0_IRQ] = irq_g0;
545 mct_irqs[MCT_L0_IRQ] = irq_l0;
546 mct_irqs[MCT_L1_IRQ] = irq_l1;
547 mct_int_type = MCT_INT_SPI;
548
549 exynos4_timer_resources(NULL, base);
550 exynos4_clocksource_init();
551 exynos4_clockevent_init();
552 }
553
554 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
555 {
556 u32 nr_irqs, i;
557
558 mct_int_type = int_type;
559
560 /* This driver uses only one global timer interrupt */
561 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
562
563 /*
564 * Find out the number of local irqs specified. The local
565 * timer irqs are specified after the four global timer
566 * irqs are specified.
567 */
568 #ifdef CONFIG_OF
569 nr_irqs = of_irq_count(np);
570 #else
571 nr_irqs = 0;
572 #endif
573 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
574 mct_irqs[i] = irq_of_parse_and_map(np, i);
575
576 exynos4_timer_resources(np, of_iomap(np, 0));
577 exynos4_clocksource_init();
578 exynos4_clockevent_init();
579 }
580
581
582 static void __init mct_init_spi(struct device_node *np)
583 {
584 return mct_init_dt(np, MCT_INT_SPI);
585 }
586
587 static void __init mct_init_ppi(struct device_node *np)
588 {
589 return mct_init_dt(np, MCT_INT_PPI);
590 }
591 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
592 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
This page took 0.064752 seconds and 5 git commands to generate.