clocksource/drivers/oxnas-rps: Convert init function to return error
[deliverable/linux.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28
29 #define EXYNOS4_MCTREG(x) (x)
30 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK (0xffffff00)
43
44 #define MCT_L_TCNTB_OFFSET (0x00)
45 #define MCT_L_ICNTB_OFFSET (0x08)
46 #define MCT_L_TCON_OFFSET (0x20)
47 #define MCT_L_INT_CSTAT_OFFSET (0x30)
48 #define MCT_L_INT_ENB_OFFSET (0x34)
49 #define MCT_L_WSTAT_OFFSET (0x40)
50 #define MCT_G_TCON_START (1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
54 #define MCT_L_TCON_INT_START (1 << 1)
55 #define MCT_L_TCON_TIMER_START (1 << 0)
56
57 #define TICK_BASE_CNT 1
58
59 enum {
60 MCT_INT_SPI,
61 MCT_INT_PPI
62 };
63
64 enum {
65 MCT_G0_IRQ,
66 MCT_G1_IRQ,
67 MCT_G2_IRQ,
68 MCT_G3_IRQ,
69 MCT_L0_IRQ,
70 MCT_L1_IRQ,
71 MCT_L2_IRQ,
72 MCT_L3_IRQ,
73 MCT_L4_IRQ,
74 MCT_L5_IRQ,
75 MCT_L6_IRQ,
76 MCT_L7_IRQ,
77 MCT_NR_IRQS,
78 };
79
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84
85 struct mct_clock_event_device {
86 struct clock_event_device evt;
87 unsigned long base;
88 char name[10];
89 };
90
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93 unsigned long stat_addr;
94 u32 mask;
95 u32 i;
96
97 writel_relaxed(value, reg_base + offset);
98
99 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 switch (offset & ~EXYNOS4_MCT_L_MASK) {
102 case MCT_L_TCON_OFFSET:
103 mask = 1 << 3; /* L_TCON write status */
104 break;
105 case MCT_L_ICNTB_OFFSET:
106 mask = 1 << 1; /* L_ICNTB write status */
107 break;
108 case MCT_L_TCNTB_OFFSET:
109 mask = 1 << 0; /* L_TCNTB write status */
110 break;
111 default:
112 return;
113 }
114 } else {
115 switch (offset) {
116 case EXYNOS4_MCT_G_TCON:
117 stat_addr = EXYNOS4_MCT_G_WSTAT;
118 mask = 1 << 16; /* G_TCON write status */
119 break;
120 case EXYNOS4_MCT_G_COMP0_L:
121 stat_addr = EXYNOS4_MCT_G_WSTAT;
122 mask = 1 << 0; /* G_COMP0_L write status */
123 break;
124 case EXYNOS4_MCT_G_COMP0_U:
125 stat_addr = EXYNOS4_MCT_G_WSTAT;
126 mask = 1 << 1; /* G_COMP0_U write status */
127 break;
128 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129 stat_addr = EXYNOS4_MCT_G_WSTAT;
130 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
131 break;
132 case EXYNOS4_MCT_G_CNT_L:
133 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 mask = 1 << 0; /* G_CNT_L write status */
135 break;
136 case EXYNOS4_MCT_G_CNT_U:
137 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 mask = 1 << 1; /* G_CNT_U write status */
139 break;
140 default:
141 return;
142 }
143 }
144
145 /* Wait maximum 1 ms until written values are applied */
146 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147 if (readl_relaxed(reg_base + stat_addr) & mask) {
148 writel_relaxed(mask, reg_base + stat_addr);
149 return;
150 }
151
152 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158 u32 reg;
159
160 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161 reg |= MCT_G_TCON_START;
162 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164
165 /**
166 * exynos4_read_count_64 - Read all 64-bits of the global counter
167 *
168 * This will read all 64-bits of the global counter taking care to make sure
169 * that the upper and lower half match. Note that reading the MCT can be quite
170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171 * only) version when possible.
172 *
173 * Returns the number of cycles in the global counter.
174 */
175 static u64 exynos4_read_count_64(void)
176 {
177 unsigned int lo, hi;
178 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179
180 do {
181 hi = hi2;
182 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184 } while (hi != hi2);
185
186 return ((cycle_t)hi << 32) | lo;
187 }
188
189 /**
190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191 *
192 * This will read just the lower 32-bits of the global counter. This is marked
193 * as notrace so it can be used by the scheduler clock.
194 *
195 * Returns the number of cycles in the global counter (lower 32 bits).
196 */
197 static u32 notrace exynos4_read_count_32(void)
198 {
199 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200 }
201
202 static cycle_t exynos4_frc_read(struct clocksource *cs)
203 {
204 return exynos4_read_count_32();
205 }
206
207 static void exynos4_frc_resume(struct clocksource *cs)
208 {
209 exynos4_mct_frc_start();
210 }
211
212 static struct clocksource mct_frc = {
213 .name = "mct-frc",
214 .rating = 400,
215 .read = exynos4_frc_read,
216 .mask = CLOCKSOURCE_MASK(32),
217 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
218 .resume = exynos4_frc_resume,
219 };
220
221 static u64 notrace exynos4_read_sched_clock(void)
222 {
223 return exynos4_read_count_32();
224 }
225
226 static struct delay_timer exynos4_delay_timer;
227
228 static cycles_t exynos4_read_current_timer(void)
229 {
230 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231 "cycles_t needs to move to 32-bit for ARM64 usage");
232 return exynos4_read_count_32();
233 }
234
235 static int __init exynos4_clocksource_init(void)
236 {
237 exynos4_mct_frc_start();
238
239 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240 exynos4_delay_timer.freq = clk_rate;
241 register_current_timer_delay(&exynos4_delay_timer);
242
243 if (clocksource_register_hz(&mct_frc, clk_rate))
244 panic("%s: can't register clocksource\n", mct_frc.name);
245
246 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
247
248 return 0;
249 }
250
251 static void exynos4_mct_comp0_stop(void)
252 {
253 unsigned int tcon;
254
255 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
256 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
257
258 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
259 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
260 }
261
262 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
263 {
264 unsigned int tcon;
265 cycle_t comp_cycle;
266
267 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
268
269 if (periodic) {
270 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
271 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
272 }
273
274 comp_cycle = exynos4_read_count_64() + cycles;
275 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
276 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
277
278 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
279
280 tcon |= MCT_G_TCON_COMP0_ENABLE;
281 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
282 }
283
284 static int exynos4_comp_set_next_event(unsigned long cycles,
285 struct clock_event_device *evt)
286 {
287 exynos4_mct_comp0_start(false, cycles);
288
289 return 0;
290 }
291
292 static int mct_set_state_shutdown(struct clock_event_device *evt)
293 {
294 exynos4_mct_comp0_stop();
295 return 0;
296 }
297
298 static int mct_set_state_periodic(struct clock_event_device *evt)
299 {
300 unsigned long cycles_per_jiffy;
301
302 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
303 >> evt->shift);
304 exynos4_mct_comp0_stop();
305 exynos4_mct_comp0_start(true, cycles_per_jiffy);
306 return 0;
307 }
308
309 static struct clock_event_device mct_comp_device = {
310 .name = "mct-comp",
311 .features = CLOCK_EVT_FEAT_PERIODIC |
312 CLOCK_EVT_FEAT_ONESHOT,
313 .rating = 250,
314 .set_next_event = exynos4_comp_set_next_event,
315 .set_state_periodic = mct_set_state_periodic,
316 .set_state_shutdown = mct_set_state_shutdown,
317 .set_state_oneshot = mct_set_state_shutdown,
318 .set_state_oneshot_stopped = mct_set_state_shutdown,
319 .tick_resume = mct_set_state_shutdown,
320 };
321
322 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
323 {
324 struct clock_event_device *evt = dev_id;
325
326 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
327
328 evt->event_handler(evt);
329
330 return IRQ_HANDLED;
331 }
332
333 static struct irqaction mct_comp_event_irq = {
334 .name = "mct_comp_irq",
335 .flags = IRQF_TIMER | IRQF_IRQPOLL,
336 .handler = exynos4_mct_comp_isr,
337 .dev_id = &mct_comp_device,
338 };
339
340 static int exynos4_clockevent_init(void)
341 {
342 mct_comp_device.cpumask = cpumask_of(0);
343 clockevents_config_and_register(&mct_comp_device, clk_rate,
344 0xf, 0xffffffff);
345 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
346
347 return 0;
348 }
349
350 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
351
352 /* Clock event handling */
353 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
354 {
355 unsigned long tmp;
356 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
357 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
358
359 tmp = readl_relaxed(reg_base + offset);
360 if (tmp & mask) {
361 tmp &= ~mask;
362 exynos4_mct_write(tmp, offset);
363 }
364 }
365
366 static void exynos4_mct_tick_start(unsigned long cycles,
367 struct mct_clock_event_device *mevt)
368 {
369 unsigned long tmp;
370
371 exynos4_mct_tick_stop(mevt);
372
373 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
374
375 /* update interrupt count buffer */
376 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
377
378 /* enable MCT tick interrupt */
379 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
380
381 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
382 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
383 MCT_L_TCON_INTERVAL_MODE;
384 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
385 }
386
387 static int exynos4_tick_set_next_event(unsigned long cycles,
388 struct clock_event_device *evt)
389 {
390 struct mct_clock_event_device *mevt;
391
392 mevt = container_of(evt, struct mct_clock_event_device, evt);
393 exynos4_mct_tick_start(cycles, mevt);
394 return 0;
395 }
396
397 static int set_state_shutdown(struct clock_event_device *evt)
398 {
399 struct mct_clock_event_device *mevt;
400
401 mevt = container_of(evt, struct mct_clock_event_device, evt);
402 exynos4_mct_tick_stop(mevt);
403 return 0;
404 }
405
406 static int set_state_periodic(struct clock_event_device *evt)
407 {
408 struct mct_clock_event_device *mevt;
409 unsigned long cycles_per_jiffy;
410
411 mevt = container_of(evt, struct mct_clock_event_device, evt);
412 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
413 >> evt->shift);
414 exynos4_mct_tick_stop(mevt);
415 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
416 return 0;
417 }
418
419 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
420 {
421 /*
422 * This is for supporting oneshot mode.
423 * Mct would generate interrupt periodically
424 * without explicit stopping.
425 */
426 if (!clockevent_state_periodic(&mevt->evt))
427 exynos4_mct_tick_stop(mevt);
428
429 /* Clear the MCT tick interrupt */
430 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
431 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
432 }
433
434 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
435 {
436 struct mct_clock_event_device *mevt = dev_id;
437 struct clock_event_device *evt = &mevt->evt;
438
439 exynos4_mct_tick_clear(mevt);
440
441 evt->event_handler(evt);
442
443 return IRQ_HANDLED;
444 }
445
446 static int exynos4_local_timer_setup(struct mct_clock_event_device *mevt)
447 {
448 struct clock_event_device *evt = &mevt->evt;
449 unsigned int cpu = smp_processor_id();
450
451 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
452 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
453
454 evt->name = mevt->name;
455 evt->cpumask = cpumask_of(cpu);
456 evt->set_next_event = exynos4_tick_set_next_event;
457 evt->set_state_periodic = set_state_periodic;
458 evt->set_state_shutdown = set_state_shutdown;
459 evt->set_state_oneshot = set_state_shutdown;
460 evt->set_state_oneshot_stopped = set_state_shutdown;
461 evt->tick_resume = set_state_shutdown;
462 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
463 evt->rating = 450;
464
465 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
466
467 if (mct_int_type == MCT_INT_SPI) {
468
469 if (evt->irq == -1)
470 return -EIO;
471
472 irq_force_affinity(evt->irq, cpumask_of(cpu));
473 enable_irq(evt->irq);
474 } else {
475 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
476 }
477 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
478 0xf, 0x7fffffff);
479
480 return 0;
481 }
482
483 static void exynos4_local_timer_stop(struct mct_clock_event_device *mevt)
484 {
485 struct clock_event_device *evt = &mevt->evt;
486
487 evt->set_state_shutdown(evt);
488 if (mct_int_type == MCT_INT_SPI) {
489 if (evt->irq != -1)
490 disable_irq_nosync(evt->irq);
491 } else {
492 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
493 }
494 }
495
496 static int exynos4_mct_cpu_notify(struct notifier_block *self,
497 unsigned long action, void *hcpu)
498 {
499 struct mct_clock_event_device *mevt;
500
501 /*
502 * Grab cpu pointer in each case to avoid spurious
503 * preemptible warnings
504 */
505 switch (action & ~CPU_TASKS_FROZEN) {
506 case CPU_STARTING:
507 mevt = this_cpu_ptr(&percpu_mct_tick);
508 exynos4_local_timer_setup(mevt);
509 break;
510 case CPU_DYING:
511 mevt = this_cpu_ptr(&percpu_mct_tick);
512 exynos4_local_timer_stop(mevt);
513 break;
514 }
515
516 return NOTIFY_OK;
517 }
518
519 static struct notifier_block exynos4_mct_cpu_nb = {
520 .notifier_call = exynos4_mct_cpu_notify,
521 };
522
523 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
524 {
525 int err, cpu;
526 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
527 struct clk *mct_clk, *tick_clk;
528
529 tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
530 clk_get(NULL, "fin_pll");
531 if (IS_ERR(tick_clk))
532 panic("%s: unable to determine tick clock rate\n", __func__);
533 clk_rate = clk_get_rate(tick_clk);
534
535 mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
536 if (IS_ERR(mct_clk))
537 panic("%s: unable to retrieve mct clock instance\n", __func__);
538 clk_prepare_enable(mct_clk);
539
540 reg_base = base;
541 if (!reg_base)
542 panic("%s: unable to ioremap mct address space\n", __func__);
543
544 if (mct_int_type == MCT_INT_PPI) {
545
546 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
547 exynos4_mct_tick_isr, "MCT",
548 &percpu_mct_tick);
549 WARN(err, "MCT: can't request IRQ %d (%d)\n",
550 mct_irqs[MCT_L0_IRQ], err);
551 } else {
552 for_each_possible_cpu(cpu) {
553 int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
554 struct mct_clock_event_device *pcpu_mevt =
555 per_cpu_ptr(&percpu_mct_tick, cpu);
556
557 pcpu_mevt->evt.irq = -1;
558
559 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
560 if (request_irq(mct_irq,
561 exynos4_mct_tick_isr,
562 IRQF_TIMER | IRQF_NOBALANCING,
563 pcpu_mevt->name, pcpu_mevt)) {
564 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
565 cpu);
566
567 continue;
568 }
569 pcpu_mevt->evt.irq = mct_irq;
570 }
571 }
572
573 err = register_cpu_notifier(&exynos4_mct_cpu_nb);
574 if (err)
575 goto out_irq;
576
577 /* Immediately configure the timer on the boot CPU */
578 exynos4_local_timer_setup(mevt);
579 return 0;
580
581 out_irq:
582 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
583 return err;
584 }
585
586 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
587 {
588 u32 nr_irqs, i;
589 int ret;
590
591 mct_int_type = int_type;
592
593 /* This driver uses only one global timer interrupt */
594 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
595
596 /*
597 * Find out the number of local irqs specified. The local
598 * timer irqs are specified after the four global timer
599 * irqs are specified.
600 */
601 #ifdef CONFIG_OF
602 nr_irqs = of_irq_count(np);
603 #else
604 nr_irqs = 0;
605 #endif
606 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
607 mct_irqs[i] = irq_of_parse_and_map(np, i);
608
609 ret = exynos4_timer_resources(np, of_iomap(np, 0));
610 if (ret)
611 return ret;
612
613 ret = exynos4_clocksource_init();
614 if (ret)
615 return ret;
616
617 return exynos4_clockevent_init();
618 }
619
620
621 static int __init mct_init_spi(struct device_node *np)
622 {
623 return mct_init_dt(np, MCT_INT_SPI);
624 }
625
626 static int __init mct_init_ppi(struct device_node *np)
627 {
628 return mct_init_dt(np, MCT_INT_PPI);
629 }
630 CLOCKSOURCE_OF_DECLARE_RET(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
631 CLOCKSOURCE_OF_DECLARE_RET(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
This page took 0.043775 seconds and 5 git commands to generate.