Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / clocksource / sh_mtu2.c
1 /*
2 * SuperH Timer Support - MTU2
3 *
4 * Copyright (C) 2009 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/ioport.h>
24 #include <linux/irq.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_domain.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32
33 struct sh_mtu2_device;
34
35 struct sh_mtu2_channel {
36 struct sh_mtu2_device *mtu;
37 unsigned int index;
38
39 void __iomem *base;
40 int irq;
41
42 struct clock_event_device ced;
43 };
44
45 struct sh_mtu2_device {
46 struct platform_device *pdev;
47
48 void __iomem *mapbase;
49 struct clk *clk;
50
51 struct sh_mtu2_channel *channels;
52 unsigned int num_channels;
53
54 bool legacy;
55 bool has_clockevent;
56 };
57
58 static DEFINE_RAW_SPINLOCK(sh_mtu2_lock);
59
60 #define TSTR -1 /* shared register */
61 #define TCR 0 /* channel register */
62 #define TMDR 1 /* channel register */
63 #define TIOR 2 /* channel register */
64 #define TIER 3 /* channel register */
65 #define TSR 4 /* channel register */
66 #define TCNT 5 /* channel register */
67 #define TGR 6 /* channel register */
68
69 #define TCR_CCLR_NONE (0 << 5)
70 #define TCR_CCLR_TGRA (1 << 5)
71 #define TCR_CCLR_TGRB (2 << 5)
72 #define TCR_CCLR_SYNC (3 << 5)
73 #define TCR_CCLR_TGRC (5 << 5)
74 #define TCR_CCLR_TGRD (6 << 5)
75 #define TCR_CCLR_MASK (7 << 5)
76 #define TCR_CKEG_RISING (0 << 3)
77 #define TCR_CKEG_FALLING (1 << 3)
78 #define TCR_CKEG_BOTH (2 << 3)
79 #define TCR_CKEG_MASK (3 << 3)
80 /* Values 4 to 7 are channel-dependent */
81 #define TCR_TPSC_P1 (0 << 0)
82 #define TCR_TPSC_P4 (1 << 0)
83 #define TCR_TPSC_P16 (2 << 0)
84 #define TCR_TPSC_P64 (3 << 0)
85 #define TCR_TPSC_CH0_TCLKA (4 << 0)
86 #define TCR_TPSC_CH0_TCLKB (5 << 0)
87 #define TCR_TPSC_CH0_TCLKC (6 << 0)
88 #define TCR_TPSC_CH0_TCLKD (7 << 0)
89 #define TCR_TPSC_CH1_TCLKA (4 << 0)
90 #define TCR_TPSC_CH1_TCLKB (5 << 0)
91 #define TCR_TPSC_CH1_P256 (6 << 0)
92 #define TCR_TPSC_CH1_TCNT2 (7 << 0)
93 #define TCR_TPSC_CH2_TCLKA (4 << 0)
94 #define TCR_TPSC_CH2_TCLKB (5 << 0)
95 #define TCR_TPSC_CH2_TCLKC (6 << 0)
96 #define TCR_TPSC_CH2_P1024 (7 << 0)
97 #define TCR_TPSC_CH34_P256 (4 << 0)
98 #define TCR_TPSC_CH34_P1024 (5 << 0)
99 #define TCR_TPSC_CH34_TCLKA (6 << 0)
100 #define TCR_TPSC_CH34_TCLKB (7 << 0)
101 #define TCR_TPSC_MASK (7 << 0)
102
103 #define TMDR_BFE (1 << 6)
104 #define TMDR_BFB (1 << 5)
105 #define TMDR_BFA (1 << 4)
106 #define TMDR_MD_NORMAL (0 << 0)
107 #define TMDR_MD_PWM_1 (2 << 0)
108 #define TMDR_MD_PWM_2 (3 << 0)
109 #define TMDR_MD_PHASE_1 (4 << 0)
110 #define TMDR_MD_PHASE_2 (5 << 0)
111 #define TMDR_MD_PHASE_3 (6 << 0)
112 #define TMDR_MD_PHASE_4 (7 << 0)
113 #define TMDR_MD_PWM_SYNC (8 << 0)
114 #define TMDR_MD_PWM_COMP_CREST (13 << 0)
115 #define TMDR_MD_PWM_COMP_TROUGH (14 << 0)
116 #define TMDR_MD_PWM_COMP_BOTH (15 << 0)
117 #define TMDR_MD_MASK (15 << 0)
118
119 #define TIOC_IOCH(n) ((n) << 4)
120 #define TIOC_IOCL(n) ((n) << 0)
121 #define TIOR_OC_RETAIN (0 << 0)
122 #define TIOR_OC_0_CLEAR (1 << 0)
123 #define TIOR_OC_0_SET (2 << 0)
124 #define TIOR_OC_0_TOGGLE (3 << 0)
125 #define TIOR_OC_1_CLEAR (5 << 0)
126 #define TIOR_OC_1_SET (6 << 0)
127 #define TIOR_OC_1_TOGGLE (7 << 0)
128 #define TIOR_IC_RISING (8 << 0)
129 #define TIOR_IC_FALLING (9 << 0)
130 #define TIOR_IC_BOTH (10 << 0)
131 #define TIOR_IC_TCNT (12 << 0)
132 #define TIOR_MASK (15 << 0)
133
134 #define TIER_TTGE (1 << 7)
135 #define TIER_TTGE2 (1 << 6)
136 #define TIER_TCIEU (1 << 5)
137 #define TIER_TCIEV (1 << 4)
138 #define TIER_TGIED (1 << 3)
139 #define TIER_TGIEC (1 << 2)
140 #define TIER_TGIEB (1 << 1)
141 #define TIER_TGIEA (1 << 0)
142
143 #define TSR_TCFD (1 << 7)
144 #define TSR_TCFU (1 << 5)
145 #define TSR_TCFV (1 << 4)
146 #define TSR_TGFD (1 << 3)
147 #define TSR_TGFC (1 << 2)
148 #define TSR_TGFB (1 << 1)
149 #define TSR_TGFA (1 << 0)
150
151 static unsigned long mtu2_reg_offs[] = {
152 [TCR] = 0,
153 [TMDR] = 1,
154 [TIOR] = 2,
155 [TIER] = 4,
156 [TSR] = 5,
157 [TCNT] = 6,
158 [TGR] = 8,
159 };
160
161 static inline unsigned long sh_mtu2_read(struct sh_mtu2_channel *ch, int reg_nr)
162 {
163 unsigned long offs;
164
165 if (reg_nr == TSTR) {
166 if (ch->mtu->legacy)
167 return ioread8(ch->mtu->mapbase);
168 else
169 return ioread8(ch->mtu->mapbase + 0x280);
170 }
171
172 offs = mtu2_reg_offs[reg_nr];
173
174 if ((reg_nr == TCNT) || (reg_nr == TGR))
175 return ioread16(ch->base + offs);
176 else
177 return ioread8(ch->base + offs);
178 }
179
180 static inline void sh_mtu2_write(struct sh_mtu2_channel *ch, int reg_nr,
181 unsigned long value)
182 {
183 unsigned long offs;
184
185 if (reg_nr == TSTR) {
186 if (ch->mtu->legacy)
187 return iowrite8(value, ch->mtu->mapbase);
188 else
189 return iowrite8(value, ch->mtu->mapbase + 0x280);
190 }
191
192 offs = mtu2_reg_offs[reg_nr];
193
194 if ((reg_nr == TCNT) || (reg_nr == TGR))
195 iowrite16(value, ch->base + offs);
196 else
197 iowrite8(value, ch->base + offs);
198 }
199
200 static void sh_mtu2_start_stop_ch(struct sh_mtu2_channel *ch, int start)
201 {
202 unsigned long flags, value;
203
204 /* start stop register shared by multiple timer channels */
205 raw_spin_lock_irqsave(&sh_mtu2_lock, flags);
206 value = sh_mtu2_read(ch, TSTR);
207
208 if (start)
209 value |= 1 << ch->index;
210 else
211 value &= ~(1 << ch->index);
212
213 sh_mtu2_write(ch, TSTR, value);
214 raw_spin_unlock_irqrestore(&sh_mtu2_lock, flags);
215 }
216
217 static int sh_mtu2_enable(struct sh_mtu2_channel *ch)
218 {
219 unsigned long periodic;
220 unsigned long rate;
221 int ret;
222
223 pm_runtime_get_sync(&ch->mtu->pdev->dev);
224 dev_pm_syscore_device(&ch->mtu->pdev->dev, true);
225
226 /* enable clock */
227 ret = clk_enable(ch->mtu->clk);
228 if (ret) {
229 dev_err(&ch->mtu->pdev->dev, "ch%u: cannot enable clock\n",
230 ch->index);
231 return ret;
232 }
233
234 /* make sure channel is disabled */
235 sh_mtu2_start_stop_ch(ch, 0);
236
237 rate = clk_get_rate(ch->mtu->clk) / 64;
238 periodic = (rate + HZ/2) / HZ;
239
240 /*
241 * "Periodic Counter Operation"
242 * Clear on TGRA compare match, divide clock by 64.
243 */
244 sh_mtu2_write(ch, TCR, TCR_CCLR_TGRA | TCR_TPSC_P64);
245 sh_mtu2_write(ch, TIOR, TIOC_IOCH(TIOR_OC_0_CLEAR) |
246 TIOC_IOCL(TIOR_OC_0_CLEAR));
247 sh_mtu2_write(ch, TGR, periodic);
248 sh_mtu2_write(ch, TCNT, 0);
249 sh_mtu2_write(ch, TMDR, TMDR_MD_NORMAL);
250 sh_mtu2_write(ch, TIER, TIER_TGIEA);
251
252 /* enable channel */
253 sh_mtu2_start_stop_ch(ch, 1);
254
255 return 0;
256 }
257
258 static void sh_mtu2_disable(struct sh_mtu2_channel *ch)
259 {
260 /* disable channel */
261 sh_mtu2_start_stop_ch(ch, 0);
262
263 /* stop clock */
264 clk_disable(ch->mtu->clk);
265
266 dev_pm_syscore_device(&ch->mtu->pdev->dev, false);
267 pm_runtime_put(&ch->mtu->pdev->dev);
268 }
269
270 static irqreturn_t sh_mtu2_interrupt(int irq, void *dev_id)
271 {
272 struct sh_mtu2_channel *ch = dev_id;
273
274 /* acknowledge interrupt */
275 sh_mtu2_read(ch, TSR);
276 sh_mtu2_write(ch, TSR, ~TSR_TGFA);
277
278 /* notify clockevent layer */
279 ch->ced.event_handler(&ch->ced);
280 return IRQ_HANDLED;
281 }
282
283 static struct sh_mtu2_channel *ced_to_sh_mtu2(struct clock_event_device *ced)
284 {
285 return container_of(ced, struct sh_mtu2_channel, ced);
286 }
287
288 static void sh_mtu2_clock_event_mode(enum clock_event_mode mode,
289 struct clock_event_device *ced)
290 {
291 struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced);
292 int disabled = 0;
293
294 /* deal with old setting first */
295 switch (ced->mode) {
296 case CLOCK_EVT_MODE_PERIODIC:
297 sh_mtu2_disable(ch);
298 disabled = 1;
299 break;
300 default:
301 break;
302 }
303
304 switch (mode) {
305 case CLOCK_EVT_MODE_PERIODIC:
306 dev_info(&ch->mtu->pdev->dev,
307 "ch%u: used for periodic clock events\n", ch->index);
308 sh_mtu2_enable(ch);
309 break;
310 case CLOCK_EVT_MODE_UNUSED:
311 if (!disabled)
312 sh_mtu2_disable(ch);
313 break;
314 case CLOCK_EVT_MODE_SHUTDOWN:
315 default:
316 break;
317 }
318 }
319
320 static void sh_mtu2_clock_event_suspend(struct clock_event_device *ced)
321 {
322 pm_genpd_syscore_poweroff(&ced_to_sh_mtu2(ced)->mtu->pdev->dev);
323 }
324
325 static void sh_mtu2_clock_event_resume(struct clock_event_device *ced)
326 {
327 pm_genpd_syscore_poweron(&ced_to_sh_mtu2(ced)->mtu->pdev->dev);
328 }
329
330 static void sh_mtu2_register_clockevent(struct sh_mtu2_channel *ch,
331 const char *name)
332 {
333 struct clock_event_device *ced = &ch->ced;
334 int ret;
335
336 ced->name = name;
337 ced->features = CLOCK_EVT_FEAT_PERIODIC;
338 ced->rating = 200;
339 ced->cpumask = cpu_possible_mask;
340 ced->set_mode = sh_mtu2_clock_event_mode;
341 ced->suspend = sh_mtu2_clock_event_suspend;
342 ced->resume = sh_mtu2_clock_event_resume;
343
344 dev_info(&ch->mtu->pdev->dev, "ch%u: used for clock events\n",
345 ch->index);
346 clockevents_register_device(ced);
347
348 ret = request_irq(ch->irq, sh_mtu2_interrupt,
349 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
350 dev_name(&ch->mtu->pdev->dev), ch);
351 if (ret) {
352 dev_err(&ch->mtu->pdev->dev, "ch%u: failed to request irq %d\n",
353 ch->index, ch->irq);
354 return;
355 }
356 }
357
358 static int sh_mtu2_register(struct sh_mtu2_channel *ch, const char *name,
359 bool clockevent)
360 {
361 if (clockevent) {
362 ch->mtu->has_clockevent = true;
363 sh_mtu2_register_clockevent(ch, name);
364 }
365
366 return 0;
367 }
368
369 static int sh_mtu2_setup_channel(struct sh_mtu2_channel *ch, unsigned int index,
370 struct sh_mtu2_device *mtu)
371 {
372 static const unsigned int channel_offsets[] = {
373 0x300, 0x380, 0x000,
374 };
375 bool clockevent;
376
377 ch->mtu = mtu;
378
379 if (mtu->legacy) {
380 struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
381
382 clockevent = cfg->clockevent_rating != 0;
383
384 ch->irq = platform_get_irq(mtu->pdev, 0);
385 ch->base = mtu->mapbase - cfg->channel_offset;
386 ch->index = cfg->timer_bit;
387 } else {
388 char name[6];
389
390 clockevent = true;
391
392 sprintf(name, "tgi%ua", index);
393 ch->irq = platform_get_irq_byname(mtu->pdev, name);
394 ch->base = mtu->mapbase + channel_offsets[index];
395 ch->index = index;
396 }
397
398 if (ch->irq < 0) {
399 /* Skip channels with no declared interrupt. */
400 if (!mtu->legacy)
401 return 0;
402
403 dev_err(&mtu->pdev->dev, "ch%u: failed to get irq\n",
404 ch->index);
405 return ch->irq;
406 }
407
408 return sh_mtu2_register(ch, dev_name(&mtu->pdev->dev), clockevent);
409 }
410
411 static int sh_mtu2_map_memory(struct sh_mtu2_device *mtu)
412 {
413 struct resource *res;
414
415 res = platform_get_resource(mtu->pdev, IORESOURCE_MEM, 0);
416 if (!res) {
417 dev_err(&mtu->pdev->dev, "failed to get I/O memory\n");
418 return -ENXIO;
419 }
420
421 mtu->mapbase = ioremap_nocache(res->start, resource_size(res));
422 if (mtu->mapbase == NULL)
423 return -ENXIO;
424
425 /*
426 * In legacy platform device configuration (with one device per channel)
427 * the resource points to the channel base address.
428 */
429 if (mtu->legacy) {
430 struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
431 mtu->mapbase += cfg->channel_offset;
432 }
433
434 return 0;
435 }
436
437 static void sh_mtu2_unmap_memory(struct sh_mtu2_device *mtu)
438 {
439 if (mtu->legacy) {
440 struct sh_timer_config *cfg = mtu->pdev->dev.platform_data;
441 mtu->mapbase -= cfg->channel_offset;
442 }
443
444 iounmap(mtu->mapbase);
445 }
446
447 static int sh_mtu2_setup(struct sh_mtu2_device *mtu,
448 struct platform_device *pdev)
449 {
450 struct sh_timer_config *cfg = pdev->dev.platform_data;
451 const struct platform_device_id *id = pdev->id_entry;
452 unsigned int i;
453 int ret;
454
455 mtu->pdev = pdev;
456 mtu->legacy = id->driver_data;
457
458 if (mtu->legacy && !cfg) {
459 dev_err(&mtu->pdev->dev, "missing platform data\n");
460 return -ENXIO;
461 }
462
463 /* Get hold of clock. */
464 mtu->clk = clk_get(&mtu->pdev->dev, mtu->legacy ? "mtu2_fck" : "fck");
465 if (IS_ERR(mtu->clk)) {
466 dev_err(&mtu->pdev->dev, "cannot get clock\n");
467 return PTR_ERR(mtu->clk);
468 }
469
470 ret = clk_prepare(mtu->clk);
471 if (ret < 0)
472 goto err_clk_put;
473
474 /* Map the memory resource. */
475 ret = sh_mtu2_map_memory(mtu);
476 if (ret < 0) {
477 dev_err(&mtu->pdev->dev, "failed to remap I/O memory\n");
478 goto err_clk_unprepare;
479 }
480
481 /* Allocate and setup the channels. */
482 if (mtu->legacy)
483 mtu->num_channels = 1;
484 else
485 mtu->num_channels = 3;
486
487 mtu->channels = kzalloc(sizeof(*mtu->channels) * mtu->num_channels,
488 GFP_KERNEL);
489 if (mtu->channels == NULL) {
490 ret = -ENOMEM;
491 goto err_unmap;
492 }
493
494 if (mtu->legacy) {
495 ret = sh_mtu2_setup_channel(&mtu->channels[0], 0, mtu);
496 if (ret < 0)
497 goto err_unmap;
498 } else {
499 for (i = 0; i < mtu->num_channels; ++i) {
500 ret = sh_mtu2_setup_channel(&mtu->channels[i], i, mtu);
501 if (ret < 0)
502 goto err_unmap;
503 }
504 }
505
506 platform_set_drvdata(pdev, mtu);
507
508 return 0;
509
510 err_unmap:
511 kfree(mtu->channels);
512 sh_mtu2_unmap_memory(mtu);
513 err_clk_unprepare:
514 clk_unprepare(mtu->clk);
515 err_clk_put:
516 clk_put(mtu->clk);
517 return ret;
518 }
519
520 static int sh_mtu2_probe(struct platform_device *pdev)
521 {
522 struct sh_mtu2_device *mtu = platform_get_drvdata(pdev);
523 int ret;
524
525 if (!is_early_platform_device(pdev)) {
526 pm_runtime_set_active(&pdev->dev);
527 pm_runtime_enable(&pdev->dev);
528 }
529
530 if (mtu) {
531 dev_info(&pdev->dev, "kept as earlytimer\n");
532 goto out;
533 }
534
535 mtu = kzalloc(sizeof(*mtu), GFP_KERNEL);
536 if (mtu == NULL)
537 return -ENOMEM;
538
539 ret = sh_mtu2_setup(mtu, pdev);
540 if (ret) {
541 kfree(mtu);
542 pm_runtime_idle(&pdev->dev);
543 return ret;
544 }
545 if (is_early_platform_device(pdev))
546 return 0;
547
548 out:
549 if (mtu->has_clockevent)
550 pm_runtime_irq_safe(&pdev->dev);
551 else
552 pm_runtime_idle(&pdev->dev);
553
554 return 0;
555 }
556
557 static int sh_mtu2_remove(struct platform_device *pdev)
558 {
559 return -EBUSY; /* cannot unregister clockevent */
560 }
561
562 static const struct platform_device_id sh_mtu2_id_table[] = {
563 { "sh_mtu2", 1 },
564 { "sh-mtu2", 0 },
565 { },
566 };
567 MODULE_DEVICE_TABLE(platform, sh_mtu2_id_table);
568
569 static struct platform_driver sh_mtu2_device_driver = {
570 .probe = sh_mtu2_probe,
571 .remove = sh_mtu2_remove,
572 .driver = {
573 .name = "sh_mtu2",
574 },
575 .id_table = sh_mtu2_id_table,
576 };
577
578 static int __init sh_mtu2_init(void)
579 {
580 return platform_driver_register(&sh_mtu2_device_driver);
581 }
582
583 static void __exit sh_mtu2_exit(void)
584 {
585 platform_driver_unregister(&sh_mtu2_device_driver);
586 }
587
588 early_platform_init("earlytimer", &sh_mtu2_device_driver);
589 subsys_initcall(sh_mtu2_init);
590 module_exit(sh_mtu2_exit);
591
592 MODULE_AUTHOR("Magnus Damm");
593 MODULE_DESCRIPTION("SuperH MTU2 Timer Driver");
594 MODULE_LICENSE("GPL v2");
This page took 0.043703 seconds and 5 git commands to generate.