Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / clocksource / sh_tmu.c
1 /*
2 * SuperH Timer Support - TMU
3 *
4 * Copyright (C) 2009 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_timer.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33
34 enum sh_tmu_model {
35 SH_TMU_LEGACY,
36 SH_TMU,
37 SH_TMU_SH3,
38 };
39
40 struct sh_tmu_device;
41
42 struct sh_tmu_channel {
43 struct sh_tmu_device *tmu;
44 unsigned int index;
45
46 void __iomem *base;
47 int irq;
48
49 unsigned long rate;
50 unsigned long periodic;
51 struct clock_event_device ced;
52 struct clocksource cs;
53 bool cs_enabled;
54 unsigned int enable_count;
55 };
56
57 struct sh_tmu_device {
58 struct platform_device *pdev;
59
60 void __iomem *mapbase;
61 struct clk *clk;
62
63 enum sh_tmu_model model;
64
65 struct sh_tmu_channel *channels;
66 unsigned int num_channels;
67
68 bool has_clockevent;
69 bool has_clocksource;
70 };
71
72 static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
73
74 #define TSTR -1 /* shared register */
75 #define TCOR 0 /* channel register */
76 #define TCNT 1 /* channel register */
77 #define TCR 2 /* channel register */
78
79 #define TCR_UNF (1 << 8)
80 #define TCR_UNIE (1 << 5)
81 #define TCR_TPSC_CLK4 (0 << 0)
82 #define TCR_TPSC_CLK16 (1 << 0)
83 #define TCR_TPSC_CLK64 (2 << 0)
84 #define TCR_TPSC_CLK256 (3 << 0)
85 #define TCR_TPSC_CLK1024 (4 << 0)
86 #define TCR_TPSC_MASK (7 << 0)
87
88 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
89 {
90 unsigned long offs;
91
92 if (reg_nr == TSTR) {
93 switch (ch->tmu->model) {
94 case SH_TMU_LEGACY:
95 return ioread8(ch->tmu->mapbase);
96 case SH_TMU_SH3:
97 return ioread8(ch->tmu->mapbase + 2);
98 case SH_TMU:
99 return ioread8(ch->tmu->mapbase + 4);
100 }
101 }
102
103 offs = reg_nr << 2;
104
105 if (reg_nr == TCR)
106 return ioread16(ch->base + offs);
107 else
108 return ioread32(ch->base + offs);
109 }
110
111 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
112 unsigned long value)
113 {
114 unsigned long offs;
115
116 if (reg_nr == TSTR) {
117 switch (ch->tmu->model) {
118 case SH_TMU_LEGACY:
119 return iowrite8(value, ch->tmu->mapbase);
120 case SH_TMU_SH3:
121 return iowrite8(value, ch->tmu->mapbase + 2);
122 case SH_TMU:
123 return iowrite8(value, ch->tmu->mapbase + 4);
124 }
125 }
126
127 offs = reg_nr << 2;
128
129 if (reg_nr == TCR)
130 iowrite16(value, ch->base + offs);
131 else
132 iowrite32(value, ch->base + offs);
133 }
134
135 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
136 {
137 unsigned long flags, value;
138
139 /* start stop register shared by multiple timer channels */
140 raw_spin_lock_irqsave(&sh_tmu_lock, flags);
141 value = sh_tmu_read(ch, TSTR);
142
143 if (start)
144 value |= 1 << ch->index;
145 else
146 value &= ~(1 << ch->index);
147
148 sh_tmu_write(ch, TSTR, value);
149 raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
150 }
151
152 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
153 {
154 int ret;
155
156 /* enable clock */
157 ret = clk_enable(ch->tmu->clk);
158 if (ret) {
159 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
160 ch->index);
161 return ret;
162 }
163
164 /* make sure channel is disabled */
165 sh_tmu_start_stop_ch(ch, 0);
166
167 /* maximum timeout */
168 sh_tmu_write(ch, TCOR, 0xffffffff);
169 sh_tmu_write(ch, TCNT, 0xffffffff);
170
171 /* configure channel to parent clock / 4, irq off */
172 ch->rate = clk_get_rate(ch->tmu->clk) / 4;
173 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
174
175 /* enable channel */
176 sh_tmu_start_stop_ch(ch, 1);
177
178 return 0;
179 }
180
181 static int sh_tmu_enable(struct sh_tmu_channel *ch)
182 {
183 if (ch->enable_count++ > 0)
184 return 0;
185
186 pm_runtime_get_sync(&ch->tmu->pdev->dev);
187 dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
188
189 return __sh_tmu_enable(ch);
190 }
191
192 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
193 {
194 /* disable channel */
195 sh_tmu_start_stop_ch(ch, 0);
196
197 /* disable interrupts in TMU block */
198 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
199
200 /* stop clock */
201 clk_disable(ch->tmu->clk);
202 }
203
204 static void sh_tmu_disable(struct sh_tmu_channel *ch)
205 {
206 if (WARN_ON(ch->enable_count == 0))
207 return;
208
209 if (--ch->enable_count > 0)
210 return;
211
212 __sh_tmu_disable(ch);
213
214 dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
215 pm_runtime_put(&ch->tmu->pdev->dev);
216 }
217
218 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
219 int periodic)
220 {
221 /* stop timer */
222 sh_tmu_start_stop_ch(ch, 0);
223
224 /* acknowledge interrupt */
225 sh_tmu_read(ch, TCR);
226
227 /* enable interrupt */
228 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
229
230 /* reload delta value in case of periodic timer */
231 if (periodic)
232 sh_tmu_write(ch, TCOR, delta);
233 else
234 sh_tmu_write(ch, TCOR, 0xffffffff);
235
236 sh_tmu_write(ch, TCNT, delta);
237
238 /* start timer */
239 sh_tmu_start_stop_ch(ch, 1);
240 }
241
242 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
243 {
244 struct sh_tmu_channel *ch = dev_id;
245
246 /* disable or acknowledge interrupt */
247 if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
248 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
249 else
250 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
251
252 /* notify clockevent layer */
253 ch->ced.event_handler(&ch->ced);
254 return IRQ_HANDLED;
255 }
256
257 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
258 {
259 return container_of(cs, struct sh_tmu_channel, cs);
260 }
261
262 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
263 {
264 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
265
266 return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
267 }
268
269 static int sh_tmu_clocksource_enable(struct clocksource *cs)
270 {
271 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
272 int ret;
273
274 if (WARN_ON(ch->cs_enabled))
275 return 0;
276
277 ret = sh_tmu_enable(ch);
278 if (!ret) {
279 __clocksource_updatefreq_hz(cs, ch->rate);
280 ch->cs_enabled = true;
281 }
282
283 return ret;
284 }
285
286 static void sh_tmu_clocksource_disable(struct clocksource *cs)
287 {
288 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
289
290 if (WARN_ON(!ch->cs_enabled))
291 return;
292
293 sh_tmu_disable(ch);
294 ch->cs_enabled = false;
295 }
296
297 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
298 {
299 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
300
301 if (!ch->cs_enabled)
302 return;
303
304 if (--ch->enable_count == 0) {
305 __sh_tmu_disable(ch);
306 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
307 }
308 }
309
310 static void sh_tmu_clocksource_resume(struct clocksource *cs)
311 {
312 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
313
314 if (!ch->cs_enabled)
315 return;
316
317 if (ch->enable_count++ == 0) {
318 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
319 __sh_tmu_enable(ch);
320 }
321 }
322
323 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
324 const char *name)
325 {
326 struct clocksource *cs = &ch->cs;
327
328 cs->name = name;
329 cs->rating = 200;
330 cs->read = sh_tmu_clocksource_read;
331 cs->enable = sh_tmu_clocksource_enable;
332 cs->disable = sh_tmu_clocksource_disable;
333 cs->suspend = sh_tmu_clocksource_suspend;
334 cs->resume = sh_tmu_clocksource_resume;
335 cs->mask = CLOCKSOURCE_MASK(32);
336 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
337
338 dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
339 ch->index);
340
341 /* Register with dummy 1 Hz value, gets updated in ->enable() */
342 clocksource_register_hz(cs, 1);
343 return 0;
344 }
345
346 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
347 {
348 return container_of(ced, struct sh_tmu_channel, ced);
349 }
350
351 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
352 {
353 struct clock_event_device *ced = &ch->ced;
354
355 sh_tmu_enable(ch);
356
357 clockevents_config(ced, ch->rate);
358
359 if (periodic) {
360 ch->periodic = (ch->rate + HZ/2) / HZ;
361 sh_tmu_set_next(ch, ch->periodic, 1);
362 }
363 }
364
365 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
366 struct clock_event_device *ced)
367 {
368 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
369 int disabled = 0;
370
371 /* deal with old setting first */
372 switch (ced->mode) {
373 case CLOCK_EVT_MODE_PERIODIC:
374 case CLOCK_EVT_MODE_ONESHOT:
375 sh_tmu_disable(ch);
376 disabled = 1;
377 break;
378 default:
379 break;
380 }
381
382 switch (mode) {
383 case CLOCK_EVT_MODE_PERIODIC:
384 dev_info(&ch->tmu->pdev->dev,
385 "ch%u: used for periodic clock events\n", ch->index);
386 sh_tmu_clock_event_start(ch, 1);
387 break;
388 case CLOCK_EVT_MODE_ONESHOT:
389 dev_info(&ch->tmu->pdev->dev,
390 "ch%u: used for oneshot clock events\n", ch->index);
391 sh_tmu_clock_event_start(ch, 0);
392 break;
393 case CLOCK_EVT_MODE_UNUSED:
394 if (!disabled)
395 sh_tmu_disable(ch);
396 break;
397 case CLOCK_EVT_MODE_SHUTDOWN:
398 default:
399 break;
400 }
401 }
402
403 static int sh_tmu_clock_event_next(unsigned long delta,
404 struct clock_event_device *ced)
405 {
406 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
407
408 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
409
410 /* program new delta value */
411 sh_tmu_set_next(ch, delta, 0);
412 return 0;
413 }
414
415 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
416 {
417 pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
418 }
419
420 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
421 {
422 pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
423 }
424
425 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
426 const char *name)
427 {
428 struct clock_event_device *ced = &ch->ced;
429 int ret;
430
431 ced->name = name;
432 ced->features = CLOCK_EVT_FEAT_PERIODIC;
433 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
434 ced->rating = 200;
435 ced->cpumask = cpumask_of(0);
436 ced->set_next_event = sh_tmu_clock_event_next;
437 ced->set_mode = sh_tmu_clock_event_mode;
438 ced->suspend = sh_tmu_clock_event_suspend;
439 ced->resume = sh_tmu_clock_event_resume;
440
441 dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
442 ch->index);
443
444 clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
445
446 ret = request_irq(ch->irq, sh_tmu_interrupt,
447 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
448 dev_name(&ch->tmu->pdev->dev), ch);
449 if (ret) {
450 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
451 ch->index, ch->irq);
452 return;
453 }
454 }
455
456 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
457 bool clockevent, bool clocksource)
458 {
459 if (clockevent) {
460 ch->tmu->has_clockevent = true;
461 sh_tmu_register_clockevent(ch, name);
462 } else if (clocksource) {
463 ch->tmu->has_clocksource = true;
464 sh_tmu_register_clocksource(ch, name);
465 }
466
467 return 0;
468 }
469
470 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
471 bool clockevent, bool clocksource,
472 struct sh_tmu_device *tmu)
473 {
474 /* Skip unused channels. */
475 if (!clockevent && !clocksource)
476 return 0;
477
478 ch->tmu = tmu;
479
480 if (tmu->model == SH_TMU_LEGACY) {
481 struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
482
483 /*
484 * The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps
485 * channel registers blocks at base + 2 + 12 * index, while all
486 * other variants map them at base + 4 + 12 * index. We can
487 * compute the index by just dividing by 12, the 2 bytes or 4
488 * bytes offset being hidden by the integer division.
489 */
490 ch->index = cfg->channel_offset / 12;
491 ch->base = tmu->mapbase + cfg->channel_offset;
492 } else {
493 ch->index = index;
494
495 if (tmu->model == SH_TMU_SH3)
496 ch->base = tmu->mapbase + 4 + ch->index * 12;
497 else
498 ch->base = tmu->mapbase + 8 + ch->index * 12;
499 }
500
501 ch->irq = platform_get_irq(tmu->pdev, index);
502 if (ch->irq < 0) {
503 dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
504 ch->index);
505 return ch->irq;
506 }
507
508 ch->cs_enabled = false;
509 ch->enable_count = 0;
510
511 return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
512 clockevent, clocksource);
513 }
514
515 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
516 {
517 struct resource *res;
518
519 res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
520 if (!res) {
521 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
522 return -ENXIO;
523 }
524
525 tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
526 if (tmu->mapbase == NULL)
527 return -ENXIO;
528
529 /*
530 * In legacy platform device configuration (with one device per channel)
531 * the resource points to the channel base address.
532 */
533 if (tmu->model == SH_TMU_LEGACY) {
534 struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
535 tmu->mapbase -= cfg->channel_offset;
536 }
537
538 return 0;
539 }
540
541 static void sh_tmu_unmap_memory(struct sh_tmu_device *tmu)
542 {
543 if (tmu->model == SH_TMU_LEGACY) {
544 struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
545 tmu->mapbase += cfg->channel_offset;
546 }
547
548 iounmap(tmu->mapbase);
549 }
550
551 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
552 {
553 struct sh_timer_config *cfg = pdev->dev.platform_data;
554 const struct platform_device_id *id = pdev->id_entry;
555 unsigned int i;
556 int ret;
557
558 if (!cfg) {
559 dev_err(&tmu->pdev->dev, "missing platform data\n");
560 return -ENXIO;
561 }
562
563 tmu->pdev = pdev;
564 tmu->model = id->driver_data;
565
566 /* Get hold of clock. */
567 tmu->clk = clk_get(&tmu->pdev->dev,
568 tmu->model == SH_TMU_LEGACY ? "tmu_fck" : "fck");
569 if (IS_ERR(tmu->clk)) {
570 dev_err(&tmu->pdev->dev, "cannot get clock\n");
571 return PTR_ERR(tmu->clk);
572 }
573
574 ret = clk_prepare(tmu->clk);
575 if (ret < 0)
576 goto err_clk_put;
577
578 /* Map the memory resource. */
579 ret = sh_tmu_map_memory(tmu);
580 if (ret < 0) {
581 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
582 goto err_clk_unprepare;
583 }
584
585 /* Allocate and setup the channels. */
586 if (tmu->model == SH_TMU_LEGACY)
587 tmu->num_channels = 1;
588 else
589 tmu->num_channels = hweight8(cfg->channels_mask);
590
591 tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
592 GFP_KERNEL);
593 if (tmu->channels == NULL) {
594 ret = -ENOMEM;
595 goto err_unmap;
596 }
597
598 if (tmu->model == SH_TMU_LEGACY) {
599 ret = sh_tmu_channel_setup(&tmu->channels[0], 0,
600 cfg->clockevent_rating != 0,
601 cfg->clocksource_rating != 0, tmu);
602 if (ret < 0)
603 goto err_unmap;
604 } else {
605 /*
606 * Use the first channel as a clock event device and the second
607 * channel as a clock source.
608 */
609 for (i = 0; i < tmu->num_channels; ++i) {
610 ret = sh_tmu_channel_setup(&tmu->channels[i], i,
611 i == 0, i == 1, tmu);
612 if (ret < 0)
613 goto err_unmap;
614 }
615 }
616
617 platform_set_drvdata(pdev, tmu);
618
619 return 0;
620
621 err_unmap:
622 kfree(tmu->channels);
623 sh_tmu_unmap_memory(tmu);
624 err_clk_unprepare:
625 clk_unprepare(tmu->clk);
626 err_clk_put:
627 clk_put(tmu->clk);
628 return ret;
629 }
630
631 static int sh_tmu_probe(struct platform_device *pdev)
632 {
633 struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
634 int ret;
635
636 if (!is_early_platform_device(pdev)) {
637 pm_runtime_set_active(&pdev->dev);
638 pm_runtime_enable(&pdev->dev);
639 }
640
641 if (tmu) {
642 dev_info(&pdev->dev, "kept as earlytimer\n");
643 goto out;
644 }
645
646 tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
647 if (tmu == NULL)
648 return -ENOMEM;
649
650 ret = sh_tmu_setup(tmu, pdev);
651 if (ret) {
652 kfree(tmu);
653 pm_runtime_idle(&pdev->dev);
654 return ret;
655 }
656 if (is_early_platform_device(pdev))
657 return 0;
658
659 out:
660 if (tmu->has_clockevent || tmu->has_clocksource)
661 pm_runtime_irq_safe(&pdev->dev);
662 else
663 pm_runtime_idle(&pdev->dev);
664
665 return 0;
666 }
667
668 static int sh_tmu_remove(struct platform_device *pdev)
669 {
670 return -EBUSY; /* cannot unregister clockevent and clocksource */
671 }
672
673 static const struct platform_device_id sh_tmu_id_table[] = {
674 { "sh_tmu", SH_TMU_LEGACY },
675 { "sh-tmu", SH_TMU },
676 { "sh-tmu-sh3", SH_TMU_SH3 },
677 { }
678 };
679 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
680
681 static struct platform_driver sh_tmu_device_driver = {
682 .probe = sh_tmu_probe,
683 .remove = sh_tmu_remove,
684 .driver = {
685 .name = "sh_tmu",
686 },
687 .id_table = sh_tmu_id_table,
688 };
689
690 static int __init sh_tmu_init(void)
691 {
692 return platform_driver_register(&sh_tmu_device_driver);
693 }
694
695 static void __exit sh_tmu_exit(void)
696 {
697 platform_driver_unregister(&sh_tmu_device_driver);
698 }
699
700 early_platform_init("earlytimer", &sh_tmu_device_driver);
701 subsys_initcall(sh_tmu_init);
702 module_exit(sh_tmu_exit);
703
704 MODULE_AUTHOR("Magnus Damm");
705 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
706 MODULE_LICENSE("GPL v2");
This page took 0.058829 seconds and 5 git commands to generate.