Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / drivers / cpufreq / cpufreq-dt.c
1 /*
2 * Copyright (C) 2012 Freescale Semiconductor, Inc.
3 *
4 * Copyright (C) 2014 Linaro.
5 * Viresh Kumar <viresh.kumar@linaro.org>
6 *
7 * The OPP code in function set_target() is reused from
8 * drivers/cpufreq/omap-cpufreq.c
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpufreq-dt.h>
22 #include <linux/cpumask.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pm_opp.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/thermal.h>
31
32 struct private_data {
33 struct device *cpu_dev;
34 struct regulator *cpu_reg;
35 struct thermal_cooling_device *cdev;
36 unsigned int voltage_tolerance; /* in percentage */
37 };
38
39 static int set_target(struct cpufreq_policy *policy, unsigned int index)
40 {
41 struct dev_pm_opp *opp;
42 struct cpufreq_frequency_table *freq_table = policy->freq_table;
43 struct clk *cpu_clk = policy->clk;
44 struct private_data *priv = policy->driver_data;
45 struct device *cpu_dev = priv->cpu_dev;
46 struct regulator *cpu_reg = priv->cpu_reg;
47 unsigned long volt = 0, volt_old = 0, tol = 0;
48 unsigned int old_freq, new_freq;
49 long freq_Hz, freq_exact;
50 int ret;
51
52 freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
53 if (freq_Hz <= 0)
54 freq_Hz = freq_table[index].frequency * 1000;
55
56 freq_exact = freq_Hz;
57 new_freq = freq_Hz / 1000;
58 old_freq = clk_get_rate(cpu_clk) / 1000;
59
60 if (!IS_ERR(cpu_reg)) {
61 unsigned long opp_freq;
62
63 rcu_read_lock();
64 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
65 if (IS_ERR(opp)) {
66 rcu_read_unlock();
67 dev_err(cpu_dev, "failed to find OPP for %ld\n",
68 freq_Hz);
69 return PTR_ERR(opp);
70 }
71 volt = dev_pm_opp_get_voltage(opp);
72 opp_freq = dev_pm_opp_get_freq(opp);
73 rcu_read_unlock();
74 tol = volt * priv->voltage_tolerance / 100;
75 volt_old = regulator_get_voltage(cpu_reg);
76 dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n",
77 opp_freq / 1000, volt);
78 }
79
80 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
81 old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1,
82 new_freq / 1000, volt ? volt / 1000 : -1);
83
84 /* scaling up? scale voltage before frequency */
85 if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
86 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
87 if (ret) {
88 dev_err(cpu_dev, "failed to scale voltage up: %d\n",
89 ret);
90 return ret;
91 }
92 }
93
94 ret = clk_set_rate(cpu_clk, freq_exact);
95 if (ret) {
96 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
97 if (!IS_ERR(cpu_reg) && volt_old > 0)
98 regulator_set_voltage_tol(cpu_reg, volt_old, tol);
99 return ret;
100 }
101
102 /* scaling down? scale voltage after frequency */
103 if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
104 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
105 if (ret) {
106 dev_err(cpu_dev, "failed to scale voltage down: %d\n",
107 ret);
108 clk_set_rate(cpu_clk, old_freq * 1000);
109 }
110 }
111
112 return ret;
113 }
114
115 static int allocate_resources(int cpu, struct device **cdev,
116 struct regulator **creg, struct clk **cclk)
117 {
118 struct device *cpu_dev;
119 struct regulator *cpu_reg;
120 struct clk *cpu_clk;
121 int ret = 0;
122 char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
123
124 cpu_dev = get_cpu_device(cpu);
125 if (!cpu_dev) {
126 pr_err("failed to get cpu%d device\n", cpu);
127 return -ENODEV;
128 }
129
130 /* Try "cpu0" for older DTs */
131 if (!cpu)
132 reg = reg_cpu0;
133 else
134 reg = reg_cpu;
135
136 try_again:
137 cpu_reg = regulator_get_optional(cpu_dev, reg);
138 if (IS_ERR(cpu_reg)) {
139 /*
140 * If cpu's regulator supply node is present, but regulator is
141 * not yet registered, we should try defering probe.
142 */
143 if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
144 dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
145 cpu);
146 return -EPROBE_DEFER;
147 }
148
149 /* Try with "cpu-supply" */
150 if (reg == reg_cpu0) {
151 reg = reg_cpu;
152 goto try_again;
153 }
154
155 dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
156 cpu, PTR_ERR(cpu_reg));
157 }
158
159 cpu_clk = clk_get(cpu_dev, NULL);
160 if (IS_ERR(cpu_clk)) {
161 /* put regulator */
162 if (!IS_ERR(cpu_reg))
163 regulator_put(cpu_reg);
164
165 ret = PTR_ERR(cpu_clk);
166
167 /*
168 * If cpu's clk node is present, but clock is not yet
169 * registered, we should try defering probe.
170 */
171 if (ret == -EPROBE_DEFER)
172 dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
173 else
174 dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
175 ret);
176 } else {
177 *cdev = cpu_dev;
178 *creg = cpu_reg;
179 *cclk = cpu_clk;
180 }
181
182 return ret;
183 }
184
185 static int cpufreq_init(struct cpufreq_policy *policy)
186 {
187 struct cpufreq_dt_platform_data *pd;
188 struct cpufreq_frequency_table *freq_table;
189 struct device_node *np;
190 struct private_data *priv;
191 struct device *cpu_dev;
192 struct regulator *cpu_reg;
193 struct clk *cpu_clk;
194 unsigned long min_uV = ~0, max_uV = 0;
195 unsigned int transition_latency;
196 int ret;
197
198 ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
199 if (ret) {
200 pr_err("%s: Failed to allocate resources: %d\n", __func__, ret);
201 return ret;
202 }
203
204 np = of_node_get(cpu_dev->of_node);
205 if (!np) {
206 dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
207 ret = -ENOENT;
208 goto out_put_reg_clk;
209 }
210
211 /* OPPs might be populated at runtime, don't check for error here */
212 of_init_opp_table(cpu_dev);
213
214 /*
215 * But we need OPP table to function so if it is not there let's
216 * give platform code chance to provide it for us.
217 */
218 ret = dev_pm_opp_get_opp_count(cpu_dev);
219 if (ret <= 0) {
220 pr_debug("OPP table is not ready, deferring probe\n");
221 ret = -EPROBE_DEFER;
222 goto out_free_opp;
223 }
224
225 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
226 if (!priv) {
227 ret = -ENOMEM;
228 goto out_free_opp;
229 }
230
231 of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
232
233 if (of_property_read_u32(np, "clock-latency", &transition_latency))
234 transition_latency = CPUFREQ_ETERNAL;
235
236 if (!IS_ERR(cpu_reg)) {
237 unsigned long opp_freq = 0;
238
239 /*
240 * Disable any OPPs where the connected regulator isn't able to
241 * provide the specified voltage and record minimum and maximum
242 * voltage levels.
243 */
244 while (1) {
245 struct dev_pm_opp *opp;
246 unsigned long opp_uV, tol_uV;
247
248 rcu_read_lock();
249 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
250 if (IS_ERR(opp)) {
251 rcu_read_unlock();
252 break;
253 }
254 opp_uV = dev_pm_opp_get_voltage(opp);
255 rcu_read_unlock();
256
257 tol_uV = opp_uV * priv->voltage_tolerance / 100;
258 if (regulator_is_supported_voltage(cpu_reg, opp_uV,
259 opp_uV + tol_uV)) {
260 if (opp_uV < min_uV)
261 min_uV = opp_uV;
262 if (opp_uV > max_uV)
263 max_uV = opp_uV;
264 } else {
265 dev_pm_opp_disable(cpu_dev, opp_freq);
266 }
267
268 opp_freq++;
269 }
270
271 ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
272 if (ret > 0)
273 transition_latency += ret * 1000;
274 }
275
276 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
277 if (ret) {
278 pr_err("failed to init cpufreq table: %d\n", ret);
279 goto out_free_priv;
280 }
281
282 priv->cpu_dev = cpu_dev;
283 priv->cpu_reg = cpu_reg;
284 policy->driver_data = priv;
285
286 policy->clk = cpu_clk;
287 ret = cpufreq_table_validate_and_show(policy, freq_table);
288 if (ret) {
289 dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
290 ret);
291 goto out_free_cpufreq_table;
292 }
293
294 policy->cpuinfo.transition_latency = transition_latency;
295
296 pd = cpufreq_get_driver_data();
297 if (!pd || !pd->independent_clocks)
298 cpumask_setall(policy->cpus);
299
300 of_node_put(np);
301
302 return 0;
303
304 out_free_cpufreq_table:
305 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
306 out_free_priv:
307 kfree(priv);
308 out_free_opp:
309 of_free_opp_table(cpu_dev);
310 of_node_put(np);
311 out_put_reg_clk:
312 clk_put(cpu_clk);
313 if (!IS_ERR(cpu_reg))
314 regulator_put(cpu_reg);
315
316 return ret;
317 }
318
319 static int cpufreq_exit(struct cpufreq_policy *policy)
320 {
321 struct private_data *priv = policy->driver_data;
322
323 cpufreq_cooling_unregister(priv->cdev);
324 dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
325 of_free_opp_table(priv->cpu_dev);
326 clk_put(policy->clk);
327 if (!IS_ERR(priv->cpu_reg))
328 regulator_put(priv->cpu_reg);
329 kfree(priv);
330
331 return 0;
332 }
333
334 static void cpufreq_ready(struct cpufreq_policy *policy)
335 {
336 struct private_data *priv = policy->driver_data;
337 struct device_node *np = of_node_get(priv->cpu_dev->of_node);
338
339 if (WARN_ON(!np))
340 return;
341
342 /*
343 * For now, just loading the cooling device;
344 * thermal DT code takes care of matching them.
345 */
346 if (of_find_property(np, "#cooling-cells", NULL)) {
347 priv->cdev = of_cpufreq_cooling_register(np,
348 policy->related_cpus);
349 if (IS_ERR(priv->cdev)) {
350 dev_err(priv->cpu_dev,
351 "running cpufreq without cooling device: %ld\n",
352 PTR_ERR(priv->cdev));
353
354 priv->cdev = NULL;
355 }
356 }
357
358 of_node_put(np);
359 }
360
361 static struct cpufreq_driver dt_cpufreq_driver = {
362 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
363 .verify = cpufreq_generic_frequency_table_verify,
364 .target_index = set_target,
365 .get = cpufreq_generic_get,
366 .init = cpufreq_init,
367 .exit = cpufreq_exit,
368 .ready = cpufreq_ready,
369 .name = "cpufreq-dt",
370 .attr = cpufreq_generic_attr,
371 };
372
373 static int dt_cpufreq_probe(struct platform_device *pdev)
374 {
375 struct device *cpu_dev;
376 struct regulator *cpu_reg;
377 struct clk *cpu_clk;
378 int ret;
379
380 /*
381 * All per-cluster (CPUs sharing clock/voltages) initialization is done
382 * from ->init(). In probe(), we just need to make sure that clk and
383 * regulators are available. Else defer probe and retry.
384 *
385 * FIXME: Is checking this only for CPU0 sufficient ?
386 */
387 ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
388 if (ret)
389 return ret;
390
391 clk_put(cpu_clk);
392 if (!IS_ERR(cpu_reg))
393 regulator_put(cpu_reg);
394
395 dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
396
397 ret = cpufreq_register_driver(&dt_cpufreq_driver);
398 if (ret)
399 dev_err(cpu_dev, "failed register driver: %d\n", ret);
400
401 return ret;
402 }
403
404 static int dt_cpufreq_remove(struct platform_device *pdev)
405 {
406 cpufreq_unregister_driver(&dt_cpufreq_driver);
407 return 0;
408 }
409
410 static struct platform_driver dt_cpufreq_platdrv = {
411 .driver = {
412 .name = "cpufreq-dt",
413 },
414 .probe = dt_cpufreq_probe,
415 .remove = dt_cpufreq_remove,
416 };
417 module_platform_driver(dt_cpufreq_platdrv);
418
419 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
420 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
421 MODULE_DESCRIPTION("Generic cpufreq driver");
422 MODULE_LICENSE("GPL");
This page took 0.040606 seconds and 5 git commands to generate.