Driver core: notify userspace of network device renames
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
42 static DEFINE_SPINLOCK(cpufreq_driver_lock);
43
44 /*
45 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
46 * all cpufreq/hotplug/workqueue/etc related lock issues.
47 *
48 * The rules for this semaphore:
49 * - Any routine that wants to read from the policy structure will
50 * do a down_read on this semaphore.
51 * - Any routine that will write to the policy structure and/or may take away
52 * the policy altogether (eg. CPU hotplug), will hold this lock in write
53 * mode before doing so.
54 *
55 * Additional rules:
56 * - All holders of the lock should check to make sure that the CPU they
57 * are concerned with are online after they get the lock.
58 * - Governor routines that can be called in cpufreq hotplug path should not
59 * take this sem as top level hotplug notifier handler takes this.
60 */
61 static DEFINE_PER_CPU(int, policy_cpu);
62 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
63
64 #define lock_policy_rwsem(mode, cpu) \
65 int lock_policy_rwsem_##mode \
66 (int cpu) \
67 { \
68 int policy_cpu = per_cpu(policy_cpu, cpu); \
69 BUG_ON(policy_cpu == -1); \
70 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
71 if (unlikely(!cpu_online(cpu))) { \
72 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
73 return -1; \
74 } \
75 \
76 return 0; \
77 }
78
79 lock_policy_rwsem(read, cpu);
80 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
81
82 lock_policy_rwsem(write, cpu);
83 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
84
85 void unlock_policy_rwsem_read(int cpu)
86 {
87 int policy_cpu = per_cpu(policy_cpu, cpu);
88 BUG_ON(policy_cpu == -1);
89 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
90 }
91 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
92
93 void unlock_policy_rwsem_write(int cpu)
94 {
95 int policy_cpu = per_cpu(policy_cpu, cpu);
96 BUG_ON(policy_cpu == -1);
97 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
98 }
99 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
100
101
102 /* internal prototypes */
103 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
104 static unsigned int __cpufreq_get(unsigned int cpu);
105 static void handle_update(struct work_struct *work);
106
107 /**
108 * Two notifier lists: the "policy" list is involved in the
109 * validation process for a new CPU frequency policy; the
110 * "transition" list for kernel code that needs to handle
111 * changes to devices when the CPU clock speed changes.
112 * The mutex locks both lists.
113 */
114 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
115 static struct srcu_notifier_head cpufreq_transition_notifier_list;
116
117 static int __init init_cpufreq_transition_notifier_list(void)
118 {
119 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
120 return 0;
121 }
122 pure_initcall(init_cpufreq_transition_notifier_list);
123
124 static LIST_HEAD(cpufreq_governor_list);
125 static DEFINE_MUTEX (cpufreq_governor_mutex);
126
127 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
128 {
129 struct cpufreq_policy *data;
130 unsigned long flags;
131
132 if (cpu >= NR_CPUS)
133 goto err_out;
134
135 /* get the cpufreq driver */
136 spin_lock_irqsave(&cpufreq_driver_lock, flags);
137
138 if (!cpufreq_driver)
139 goto err_out_unlock;
140
141 if (!try_module_get(cpufreq_driver->owner))
142 goto err_out_unlock;
143
144
145 /* get the CPU */
146 data = cpufreq_cpu_data[cpu];
147
148 if (!data)
149 goto err_out_put_module;
150
151 if (!kobject_get(&data->kobj))
152 goto err_out_put_module;
153
154 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
155 return data;
156
157 err_out_put_module:
158 module_put(cpufreq_driver->owner);
159 err_out_unlock:
160 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
161 err_out:
162 return NULL;
163 }
164 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
165
166
167 void cpufreq_cpu_put(struct cpufreq_policy *data)
168 {
169 kobject_put(&data->kobj);
170 module_put(cpufreq_driver->owner);
171 }
172 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
173
174
175 /*********************************************************************
176 * UNIFIED DEBUG HELPERS *
177 *********************************************************************/
178 #ifdef CONFIG_CPU_FREQ_DEBUG
179
180 /* what part(s) of the CPUfreq subsystem are debugged? */
181 static unsigned int debug;
182
183 /* is the debug output ratelimit'ed using printk_ratelimit? User can
184 * set or modify this value.
185 */
186 static unsigned int debug_ratelimit = 1;
187
188 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
189 * loading of a cpufreq driver, temporarily disabled when a new policy
190 * is set, and disabled upon cpufreq driver removal
191 */
192 static unsigned int disable_ratelimit = 1;
193 static DEFINE_SPINLOCK(disable_ratelimit_lock);
194
195 static void cpufreq_debug_enable_ratelimit(void)
196 {
197 unsigned long flags;
198
199 spin_lock_irqsave(&disable_ratelimit_lock, flags);
200 if (disable_ratelimit)
201 disable_ratelimit--;
202 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
203 }
204
205 static void cpufreq_debug_disable_ratelimit(void)
206 {
207 unsigned long flags;
208
209 spin_lock_irqsave(&disable_ratelimit_lock, flags);
210 disable_ratelimit++;
211 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
212 }
213
214 void cpufreq_debug_printk(unsigned int type, const char *prefix,
215 const char *fmt, ...)
216 {
217 char s[256];
218 va_list args;
219 unsigned int len;
220 unsigned long flags;
221
222 WARN_ON(!prefix);
223 if (type & debug) {
224 spin_lock_irqsave(&disable_ratelimit_lock, flags);
225 if (!disable_ratelimit && debug_ratelimit
226 && !printk_ratelimit()) {
227 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
228 return;
229 }
230 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
231
232 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
233
234 va_start(args, fmt);
235 len += vsnprintf(&s[len], (256 - len), fmt, args);
236 va_end(args);
237
238 printk(s);
239
240 WARN_ON(len < 5);
241 }
242 }
243 EXPORT_SYMBOL(cpufreq_debug_printk);
244
245
246 module_param(debug, uint, 0644);
247 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
248 " 2 to debug drivers, and 4 to debug governors.");
249
250 module_param(debug_ratelimit, uint, 0644);
251 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
252 " set to 0 to disable ratelimiting.");
253
254 #else /* !CONFIG_CPU_FREQ_DEBUG */
255
256 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
257 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
258
259 #endif /* CONFIG_CPU_FREQ_DEBUG */
260
261
262 /*********************************************************************
263 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
264 *********************************************************************/
265
266 /**
267 * adjust_jiffies - adjust the system "loops_per_jiffy"
268 *
269 * This function alters the system "loops_per_jiffy" for the clock
270 * speed change. Note that loops_per_jiffy cannot be updated on SMP
271 * systems as each CPU might be scaled differently. So, use the arch
272 * per-CPU loops_per_jiffy value wherever possible.
273 */
274 #ifndef CONFIG_SMP
275 static unsigned long l_p_j_ref;
276 static unsigned int l_p_j_ref_freq;
277
278 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
279 {
280 if (ci->flags & CPUFREQ_CONST_LOOPS)
281 return;
282
283 if (!l_p_j_ref_freq) {
284 l_p_j_ref = loops_per_jiffy;
285 l_p_j_ref_freq = ci->old;
286 dprintk("saving %lu as reference value for loops_per_jiffy;"
287 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
288 }
289 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
290 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
291 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
292 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
293 ci->new);
294 dprintk("scaling loops_per_jiffy to %lu"
295 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
296 }
297 }
298 #else
299 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
300 {
301 return;
302 }
303 #endif
304
305
306 /**
307 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
308 * on frequency transition.
309 *
310 * This function calls the transition notifiers and the "adjust_jiffies"
311 * function. It is called twice on all CPU frequency changes that have
312 * external effects.
313 */
314 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
315 {
316 struct cpufreq_policy *policy;
317
318 BUG_ON(irqs_disabled());
319
320 freqs->flags = cpufreq_driver->flags;
321 dprintk("notification %u of frequency transition to %u kHz\n",
322 state, freqs->new);
323
324 policy = cpufreq_cpu_data[freqs->cpu];
325 switch (state) {
326
327 case CPUFREQ_PRECHANGE:
328 /* detect if the driver reported a value as "old frequency"
329 * which is not equal to what the cpufreq core thinks is
330 * "old frequency".
331 */
332 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
333 if ((policy) && (policy->cpu == freqs->cpu) &&
334 (policy->cur) && (policy->cur != freqs->old)) {
335 dprintk("Warning: CPU frequency is"
336 " %u, cpufreq assumed %u kHz.\n",
337 freqs->old, policy->cur);
338 freqs->old = policy->cur;
339 }
340 }
341 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
342 CPUFREQ_PRECHANGE, freqs);
343 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
344 break;
345
346 case CPUFREQ_POSTCHANGE:
347 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
348 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349 CPUFREQ_POSTCHANGE, freqs);
350 if (likely(policy) && likely(policy->cpu == freqs->cpu))
351 policy->cur = freqs->new;
352 break;
353 }
354 }
355 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
356
357
358
359 /*********************************************************************
360 * SYSFS INTERFACE *
361 *********************************************************************/
362
363 static struct cpufreq_governor *__find_governor(const char *str_governor)
364 {
365 struct cpufreq_governor *t;
366
367 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
368 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN))
369 return t;
370
371 return NULL;
372 }
373
374 /**
375 * cpufreq_parse_governor - parse a governor string
376 */
377 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
378 struct cpufreq_governor **governor)
379 {
380 int err = -EINVAL;
381
382 if (!cpufreq_driver)
383 goto out;
384
385 if (cpufreq_driver->setpolicy) {
386 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
387 *policy = CPUFREQ_POLICY_PERFORMANCE;
388 err = 0;
389 } else if (!strnicmp(str_governor, "powersave",
390 CPUFREQ_NAME_LEN)) {
391 *policy = CPUFREQ_POLICY_POWERSAVE;
392 err = 0;
393 }
394 } else if (cpufreq_driver->target) {
395 struct cpufreq_governor *t;
396
397 mutex_lock(&cpufreq_governor_mutex);
398
399 t = __find_governor(str_governor);
400
401 if (t == NULL) {
402 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
403 str_governor);
404
405 if (name) {
406 int ret;
407
408 mutex_unlock(&cpufreq_governor_mutex);
409 ret = request_module(name);
410 mutex_lock(&cpufreq_governor_mutex);
411
412 if (ret == 0)
413 t = __find_governor(str_governor);
414 }
415
416 kfree(name);
417 }
418
419 if (t != NULL) {
420 *governor = t;
421 err = 0;
422 }
423
424 mutex_unlock(&cpufreq_governor_mutex);
425 }
426 out:
427 return err;
428 }
429
430
431 /* drivers/base/cpu.c */
432 extern struct sysdev_class cpu_sysdev_class;
433
434
435 /**
436 * cpufreq_per_cpu_attr_read() / show_##file_name() -
437 * print out cpufreq information
438 *
439 * Write out information from cpufreq_driver->policy[cpu]; object must be
440 * "unsigned int".
441 */
442
443 #define show_one(file_name, object) \
444 static ssize_t show_##file_name \
445 (struct cpufreq_policy * policy, char *buf) \
446 { \
447 return sprintf (buf, "%u\n", policy->object); \
448 }
449
450 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
451 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
452 show_one(scaling_min_freq, min);
453 show_one(scaling_max_freq, max);
454 show_one(scaling_cur_freq, cur);
455
456 static int __cpufreq_set_policy(struct cpufreq_policy *data,
457 struct cpufreq_policy *policy);
458
459 /**
460 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
461 */
462 #define store_one(file_name, object) \
463 static ssize_t store_##file_name \
464 (struct cpufreq_policy * policy, const char *buf, size_t count) \
465 { \
466 unsigned int ret = -EINVAL; \
467 struct cpufreq_policy new_policy; \
468 \
469 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
470 if (ret) \
471 return -EINVAL; \
472 \
473 ret = sscanf (buf, "%u", &new_policy.object); \
474 if (ret != 1) \
475 return -EINVAL; \
476 \
477 ret = __cpufreq_set_policy(policy, &new_policy); \
478 policy->user_policy.object = policy->object; \
479 \
480 return ret ? ret : count; \
481 }
482
483 store_one(scaling_min_freq,min);
484 store_one(scaling_max_freq,max);
485
486 /**
487 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
488 */
489 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy,
490 char *buf)
491 {
492 unsigned int cur_freq = __cpufreq_get(policy->cpu);
493 if (!cur_freq)
494 return sprintf(buf, "<unknown>");
495 return sprintf(buf, "%u\n", cur_freq);
496 }
497
498
499 /**
500 * show_scaling_governor - show the current policy for the specified CPU
501 */
502 static ssize_t show_scaling_governor (struct cpufreq_policy * policy,
503 char *buf)
504 {
505 if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
506 return sprintf(buf, "powersave\n");
507 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
508 return sprintf(buf, "performance\n");
509 else if (policy->governor)
510 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
511 return -EINVAL;
512 }
513
514
515 /**
516 * store_scaling_governor - store policy for the specified CPU
517 */
518 static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
519 const char *buf, size_t count)
520 {
521 unsigned int ret = -EINVAL;
522 char str_governor[16];
523 struct cpufreq_policy new_policy;
524
525 ret = cpufreq_get_policy(&new_policy, policy->cpu);
526 if (ret)
527 return ret;
528
529 ret = sscanf (buf, "%15s", str_governor);
530 if (ret != 1)
531 return -EINVAL;
532
533 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
534 &new_policy.governor))
535 return -EINVAL;
536
537 /* Do not use cpufreq_set_policy here or the user_policy.max
538 will be wrongly overridden */
539 ret = __cpufreq_set_policy(policy, &new_policy);
540
541 policy->user_policy.policy = policy->policy;
542 policy->user_policy.governor = policy->governor;
543
544 if (ret)
545 return ret;
546 else
547 return count;
548 }
549
550 /**
551 * show_scaling_driver - show the cpufreq driver currently loaded
552 */
553 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
554 {
555 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
556 }
557
558 /**
559 * show_scaling_available_governors - show the available CPUfreq governors
560 */
561 static ssize_t show_scaling_available_governors (struct cpufreq_policy *policy,
562 char *buf)
563 {
564 ssize_t i = 0;
565 struct cpufreq_governor *t;
566
567 if (!cpufreq_driver->target) {
568 i += sprintf(buf, "performance powersave");
569 goto out;
570 }
571
572 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
573 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
574 goto out;
575 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
576 }
577 out:
578 i += sprintf(&buf[i], "\n");
579 return i;
580 }
581 /**
582 * show_affected_cpus - show the CPUs affected by each transition
583 */
584 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
585 {
586 ssize_t i = 0;
587 unsigned int cpu;
588
589 for_each_cpu_mask(cpu, policy->cpus) {
590 if (i)
591 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
592 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
593 if (i >= (PAGE_SIZE - 5))
594 break;
595 }
596 i += sprintf(&buf[i], "\n");
597 return i;
598 }
599
600
601 #define define_one_ro(_name) \
602 static struct freq_attr _name = \
603 __ATTR(_name, 0444, show_##_name, NULL)
604
605 #define define_one_ro0400(_name) \
606 static struct freq_attr _name = \
607 __ATTR(_name, 0400, show_##_name, NULL)
608
609 #define define_one_rw(_name) \
610 static struct freq_attr _name = \
611 __ATTR(_name, 0644, show_##_name, store_##_name)
612
613 define_one_ro0400(cpuinfo_cur_freq);
614 define_one_ro(cpuinfo_min_freq);
615 define_one_ro(cpuinfo_max_freq);
616 define_one_ro(scaling_available_governors);
617 define_one_ro(scaling_driver);
618 define_one_ro(scaling_cur_freq);
619 define_one_ro(affected_cpus);
620 define_one_rw(scaling_min_freq);
621 define_one_rw(scaling_max_freq);
622 define_one_rw(scaling_governor);
623
624 static struct attribute * default_attrs[] = {
625 &cpuinfo_min_freq.attr,
626 &cpuinfo_max_freq.attr,
627 &scaling_min_freq.attr,
628 &scaling_max_freq.attr,
629 &affected_cpus.attr,
630 &scaling_governor.attr,
631 &scaling_driver.attr,
632 &scaling_available_governors.attr,
633 NULL
634 };
635
636 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
637 #define to_attr(a) container_of(a,struct freq_attr,attr)
638
639 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
640 {
641 struct cpufreq_policy * policy = to_policy(kobj);
642 struct freq_attr * fattr = to_attr(attr);
643 ssize_t ret;
644 policy = cpufreq_cpu_get(policy->cpu);
645 if (!policy)
646 return -EINVAL;
647
648 if (lock_policy_rwsem_read(policy->cpu) < 0)
649 return -EINVAL;
650
651 if (fattr->show)
652 ret = fattr->show(policy, buf);
653 else
654 ret = -EIO;
655
656 unlock_policy_rwsem_read(policy->cpu);
657
658 cpufreq_cpu_put(policy);
659 return ret;
660 }
661
662 static ssize_t store(struct kobject * kobj, struct attribute * attr,
663 const char * buf, size_t count)
664 {
665 struct cpufreq_policy * policy = to_policy(kobj);
666 struct freq_attr * fattr = to_attr(attr);
667 ssize_t ret;
668 policy = cpufreq_cpu_get(policy->cpu);
669 if (!policy)
670 return -EINVAL;
671
672 if (lock_policy_rwsem_write(policy->cpu) < 0)
673 return -EINVAL;
674
675 if (fattr->store)
676 ret = fattr->store(policy, buf, count);
677 else
678 ret = -EIO;
679
680 unlock_policy_rwsem_write(policy->cpu);
681
682 cpufreq_cpu_put(policy);
683 return ret;
684 }
685
686 static void cpufreq_sysfs_release(struct kobject * kobj)
687 {
688 struct cpufreq_policy * policy = to_policy(kobj);
689 dprintk("last reference is dropped\n");
690 complete(&policy->kobj_unregister);
691 }
692
693 static struct sysfs_ops sysfs_ops = {
694 .show = show,
695 .store = store,
696 };
697
698 static struct kobj_type ktype_cpufreq = {
699 .sysfs_ops = &sysfs_ops,
700 .default_attrs = default_attrs,
701 .release = cpufreq_sysfs_release,
702 };
703
704
705 /**
706 * cpufreq_add_dev - add a CPU device
707 *
708 * Adds the cpufreq interface for a CPU device.
709 */
710 static int cpufreq_add_dev (struct sys_device * sys_dev)
711 {
712 unsigned int cpu = sys_dev->id;
713 int ret = 0;
714 struct cpufreq_policy new_policy;
715 struct cpufreq_policy *policy;
716 struct freq_attr **drv_attr;
717 struct sys_device *cpu_sys_dev;
718 unsigned long flags;
719 unsigned int j;
720 #ifdef CONFIG_SMP
721 struct cpufreq_policy *managed_policy;
722 #endif
723
724 if (cpu_is_offline(cpu))
725 return 0;
726
727 cpufreq_debug_disable_ratelimit();
728 dprintk("adding CPU %u\n", cpu);
729
730 #ifdef CONFIG_SMP
731 /* check whether a different CPU already registered this
732 * CPU because it is in the same boat. */
733 policy = cpufreq_cpu_get(cpu);
734 if (unlikely(policy)) {
735 cpufreq_cpu_put(policy);
736 cpufreq_debug_enable_ratelimit();
737 return 0;
738 }
739 #endif
740
741 if (!try_module_get(cpufreq_driver->owner)) {
742 ret = -EINVAL;
743 goto module_out;
744 }
745
746 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
747 if (!policy) {
748 ret = -ENOMEM;
749 goto nomem_out;
750 }
751
752 policy->cpu = cpu;
753 policy->cpus = cpumask_of_cpu(cpu);
754
755 /* Initially set CPU itself as the policy_cpu */
756 per_cpu(policy_cpu, cpu) = cpu;
757 lock_policy_rwsem_write(cpu);
758
759 init_completion(&policy->kobj_unregister);
760 INIT_WORK(&policy->update, handle_update);
761
762 /* call driver. From then on the cpufreq must be able
763 * to accept all calls to ->verify and ->setpolicy for this CPU
764 */
765 ret = cpufreq_driver->init(policy);
766 if (ret) {
767 dprintk("initialization failed\n");
768 unlock_policy_rwsem_write(cpu);
769 goto err_out;
770 }
771
772 #ifdef CONFIG_SMP
773 for_each_cpu_mask(j, policy->cpus) {
774 if (cpu == j)
775 continue;
776
777 /* check for existing affected CPUs. They may not be aware
778 * of it due to CPU Hotplug.
779 */
780 managed_policy = cpufreq_cpu_get(j);
781 if (unlikely(managed_policy)) {
782
783 /* Set proper policy_cpu */
784 unlock_policy_rwsem_write(cpu);
785 per_cpu(policy_cpu, cpu) = managed_policy->cpu;
786
787 if (lock_policy_rwsem_write(cpu) < 0)
788 goto err_out_driver_exit;
789
790 spin_lock_irqsave(&cpufreq_driver_lock, flags);
791 managed_policy->cpus = policy->cpus;
792 cpufreq_cpu_data[cpu] = managed_policy;
793 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
794
795 dprintk("CPU already managed, adding link\n");
796 ret = sysfs_create_link(&sys_dev->kobj,
797 &managed_policy->kobj,
798 "cpufreq");
799 if (ret) {
800 unlock_policy_rwsem_write(cpu);
801 goto err_out_driver_exit;
802 }
803
804 cpufreq_debug_enable_ratelimit();
805 ret = 0;
806 unlock_policy_rwsem_write(cpu);
807 goto err_out_driver_exit; /* call driver->exit() */
808 }
809 }
810 #endif
811 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
812
813 /* prepare interface data */
814 policy->kobj.parent = &sys_dev->kobj;
815 policy->kobj.ktype = &ktype_cpufreq;
816 strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN);
817
818 ret = kobject_register(&policy->kobj);
819 if (ret) {
820 unlock_policy_rwsem_write(cpu);
821 goto err_out_driver_exit;
822 }
823 /* set up files for this cpu device */
824 drv_attr = cpufreq_driver->attr;
825 while ((drv_attr) && (*drv_attr)) {
826 sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
827 drv_attr++;
828 }
829 if (cpufreq_driver->get)
830 sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
831 if (cpufreq_driver->target)
832 sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
833
834 spin_lock_irqsave(&cpufreq_driver_lock, flags);
835 for_each_cpu_mask(j, policy->cpus) {
836 cpufreq_cpu_data[j] = policy;
837 per_cpu(policy_cpu, j) = policy->cpu;
838 }
839 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
840
841 /* symlink affected CPUs */
842 for_each_cpu_mask(j, policy->cpus) {
843 if (j == cpu)
844 continue;
845 if (!cpu_online(j))
846 continue;
847
848 dprintk("CPU %u already managed, adding link\n", j);
849 cpufreq_cpu_get(cpu);
850 cpu_sys_dev = get_cpu_sysdev(j);
851 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
852 "cpufreq");
853 if (ret) {
854 unlock_policy_rwsem_write(cpu);
855 goto err_out_unregister;
856 }
857 }
858
859 policy->governor = NULL; /* to assure that the starting sequence is
860 * run in cpufreq_set_policy */
861 unlock_policy_rwsem_write(cpu);
862
863 /* set default policy */
864 ret = cpufreq_set_policy(&new_policy);
865 if (ret) {
866 dprintk("setting policy failed\n");
867 goto err_out_unregister;
868 }
869
870 module_put(cpufreq_driver->owner);
871 dprintk("initialization complete\n");
872 cpufreq_debug_enable_ratelimit();
873
874 return 0;
875
876
877 err_out_unregister:
878 spin_lock_irqsave(&cpufreq_driver_lock, flags);
879 for_each_cpu_mask(j, policy->cpus)
880 cpufreq_cpu_data[j] = NULL;
881 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
882
883 kobject_unregister(&policy->kobj);
884 wait_for_completion(&policy->kobj_unregister);
885
886 err_out_driver_exit:
887 if (cpufreq_driver->exit)
888 cpufreq_driver->exit(policy);
889
890 err_out:
891 kfree(policy);
892
893 nomem_out:
894 module_put(cpufreq_driver->owner);
895 module_out:
896 cpufreq_debug_enable_ratelimit();
897 return ret;
898 }
899
900
901 /**
902 * __cpufreq_remove_dev - remove a CPU device
903 *
904 * Removes the cpufreq interface for a CPU device.
905 * Caller should already have policy_rwsem in write mode for this CPU.
906 * This routine frees the rwsem before returning.
907 */
908 static int __cpufreq_remove_dev (struct sys_device * sys_dev)
909 {
910 unsigned int cpu = sys_dev->id;
911 unsigned long flags;
912 struct cpufreq_policy *data;
913 #ifdef CONFIG_SMP
914 struct sys_device *cpu_sys_dev;
915 unsigned int j;
916 #endif
917
918 cpufreq_debug_disable_ratelimit();
919 dprintk("unregistering CPU %u\n", cpu);
920
921 spin_lock_irqsave(&cpufreq_driver_lock, flags);
922 data = cpufreq_cpu_data[cpu];
923
924 if (!data) {
925 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
926 cpufreq_debug_enable_ratelimit();
927 unlock_policy_rwsem_write(cpu);
928 return -EINVAL;
929 }
930 cpufreq_cpu_data[cpu] = NULL;
931
932
933 #ifdef CONFIG_SMP
934 /* if this isn't the CPU which is the parent of the kobj, we
935 * only need to unlink, put and exit
936 */
937 if (unlikely(cpu != data->cpu)) {
938 dprintk("removing link\n");
939 cpu_clear(cpu, data->cpus);
940 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
941 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
942 cpufreq_cpu_put(data);
943 cpufreq_debug_enable_ratelimit();
944 unlock_policy_rwsem_write(cpu);
945 return 0;
946 }
947 #endif
948
949
950 if (!kobject_get(&data->kobj)) {
951 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
952 cpufreq_debug_enable_ratelimit();
953 unlock_policy_rwsem_write(cpu);
954 return -EFAULT;
955 }
956
957 #ifdef CONFIG_SMP
958 /* if we have other CPUs still registered, we need to unlink them,
959 * or else wait_for_completion below will lock up. Clean the
960 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
961 * links afterwards.
962 */
963 if (unlikely(cpus_weight(data->cpus) > 1)) {
964 for_each_cpu_mask(j, data->cpus) {
965 if (j == cpu)
966 continue;
967 cpufreq_cpu_data[j] = NULL;
968 }
969 }
970
971 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
972
973 if (unlikely(cpus_weight(data->cpus) > 1)) {
974 for_each_cpu_mask(j, data->cpus) {
975 if (j == cpu)
976 continue;
977 dprintk("removing link for cpu %u\n", j);
978 cpu_sys_dev = get_cpu_sysdev(j);
979 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
980 cpufreq_cpu_put(data);
981 }
982 }
983 #else
984 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
985 #endif
986
987 if (cpufreq_driver->target)
988 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
989
990 unlock_policy_rwsem_write(cpu);
991
992 kobject_unregister(&data->kobj);
993
994 kobject_put(&data->kobj);
995
996 /* we need to make sure that the underlying kobj is actually
997 * not referenced anymore by anybody before we proceed with
998 * unloading.
999 */
1000 dprintk("waiting for dropping of refcount\n");
1001 wait_for_completion(&data->kobj_unregister);
1002 dprintk("wait complete\n");
1003
1004 if (cpufreq_driver->exit)
1005 cpufreq_driver->exit(data);
1006
1007 kfree(data);
1008
1009 cpufreq_debug_enable_ratelimit();
1010 return 0;
1011 }
1012
1013
1014 static int cpufreq_remove_dev (struct sys_device * sys_dev)
1015 {
1016 unsigned int cpu = sys_dev->id;
1017 int retval;
1018
1019 if (cpu_is_offline(cpu))
1020 return 0;
1021
1022 if (unlikely(lock_policy_rwsem_write(cpu)))
1023 BUG();
1024
1025 retval = __cpufreq_remove_dev(sys_dev);
1026 return retval;
1027 }
1028
1029
1030 static void handle_update(struct work_struct *work)
1031 {
1032 struct cpufreq_policy *policy =
1033 container_of(work, struct cpufreq_policy, update);
1034 unsigned int cpu = policy->cpu;
1035 dprintk("handle_update for cpu %u called\n", cpu);
1036 cpufreq_update_policy(cpu);
1037 }
1038
1039 /**
1040 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1041 * @cpu: cpu number
1042 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1043 * @new_freq: CPU frequency the CPU actually runs at
1044 *
1045 * We adjust to current frequency first, and need to clean up later. So either call
1046 * to cpufreq_update_policy() or schedule handle_update()).
1047 */
1048 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1049 unsigned int new_freq)
1050 {
1051 struct cpufreq_freqs freqs;
1052
1053 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1054 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1055
1056 freqs.cpu = cpu;
1057 freqs.old = old_freq;
1058 freqs.new = new_freq;
1059 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1060 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1061 }
1062
1063
1064 /**
1065 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1066 * @cpu: CPU number
1067 *
1068 * This is the last known freq, without actually getting it from the driver.
1069 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1070 */
1071 unsigned int cpufreq_quick_get(unsigned int cpu)
1072 {
1073 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1074 unsigned int ret_freq = 0;
1075
1076 if (policy) {
1077 if (unlikely(lock_policy_rwsem_read(cpu)))
1078 return ret_freq;
1079
1080 ret_freq = policy->cur;
1081
1082 unlock_policy_rwsem_read(cpu);
1083 cpufreq_cpu_put(policy);
1084 }
1085
1086 return (ret_freq);
1087 }
1088 EXPORT_SYMBOL(cpufreq_quick_get);
1089
1090
1091 static unsigned int __cpufreq_get(unsigned int cpu)
1092 {
1093 struct cpufreq_policy *policy = cpufreq_cpu_data[cpu];
1094 unsigned int ret_freq = 0;
1095
1096 if (!cpufreq_driver->get)
1097 return (ret_freq);
1098
1099 ret_freq = cpufreq_driver->get(cpu);
1100
1101 if (ret_freq && policy->cur &&
1102 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1103 /* verify no discrepancy between actual and
1104 saved value exists */
1105 if (unlikely(ret_freq != policy->cur)) {
1106 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1107 schedule_work(&policy->update);
1108 }
1109 }
1110
1111 return (ret_freq);
1112 }
1113
1114 /**
1115 * cpufreq_get - get the current CPU frequency (in kHz)
1116 * @cpu: CPU number
1117 *
1118 * Get the CPU current (static) CPU frequency
1119 */
1120 unsigned int cpufreq_get(unsigned int cpu)
1121 {
1122 unsigned int ret_freq = 0;
1123 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1124
1125 if (!policy)
1126 goto out;
1127
1128 if (unlikely(lock_policy_rwsem_read(cpu)))
1129 goto out_policy;
1130
1131 ret_freq = __cpufreq_get(cpu);
1132
1133 unlock_policy_rwsem_read(cpu);
1134
1135 out_policy:
1136 cpufreq_cpu_put(policy);
1137 out:
1138 return (ret_freq);
1139 }
1140 EXPORT_SYMBOL(cpufreq_get);
1141
1142
1143 /**
1144 * cpufreq_suspend - let the low level driver prepare for suspend
1145 */
1146
1147 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
1148 {
1149 int cpu = sysdev->id;
1150 int ret = 0;
1151 unsigned int cur_freq = 0;
1152 struct cpufreq_policy *cpu_policy;
1153
1154 dprintk("suspending cpu %u\n", cpu);
1155
1156 if (!cpu_online(cpu))
1157 return 0;
1158
1159 /* we may be lax here as interrupts are off. Nonetheless
1160 * we need to grab the correct cpu policy, as to check
1161 * whether we really run on this CPU.
1162 */
1163
1164 cpu_policy = cpufreq_cpu_get(cpu);
1165 if (!cpu_policy)
1166 return -EINVAL;
1167
1168 /* only handle each CPU group once */
1169 if (unlikely(cpu_policy->cpu != cpu)) {
1170 cpufreq_cpu_put(cpu_policy);
1171 return 0;
1172 }
1173
1174 if (cpufreq_driver->suspend) {
1175 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1176 if (ret) {
1177 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1178 "step on CPU %u\n", cpu_policy->cpu);
1179 cpufreq_cpu_put(cpu_policy);
1180 return ret;
1181 }
1182 }
1183
1184
1185 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1186 goto out;
1187
1188 if (cpufreq_driver->get)
1189 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1190
1191 if (!cur_freq || !cpu_policy->cur) {
1192 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1193 "frequency is what timing core thinks it is.\n");
1194 goto out;
1195 }
1196
1197 if (unlikely(cur_freq != cpu_policy->cur)) {
1198 struct cpufreq_freqs freqs;
1199
1200 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1201 dprintk("Warning: CPU frequency is %u, "
1202 "cpufreq assumed %u kHz.\n",
1203 cur_freq, cpu_policy->cur);
1204
1205 freqs.cpu = cpu;
1206 freqs.old = cpu_policy->cur;
1207 freqs.new = cur_freq;
1208
1209 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1210 CPUFREQ_SUSPENDCHANGE, &freqs);
1211 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1212
1213 cpu_policy->cur = cur_freq;
1214 }
1215
1216 out:
1217 cpufreq_cpu_put(cpu_policy);
1218 return 0;
1219 }
1220
1221 /**
1222 * cpufreq_resume - restore proper CPU frequency handling after resume
1223 *
1224 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1225 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1226 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1227 * restored.
1228 */
1229 static int cpufreq_resume(struct sys_device * sysdev)
1230 {
1231 int cpu = sysdev->id;
1232 int ret = 0;
1233 struct cpufreq_policy *cpu_policy;
1234
1235 dprintk("resuming cpu %u\n", cpu);
1236
1237 if (!cpu_online(cpu))
1238 return 0;
1239
1240 /* we may be lax here as interrupts are off. Nonetheless
1241 * we need to grab the correct cpu policy, as to check
1242 * whether we really run on this CPU.
1243 */
1244
1245 cpu_policy = cpufreq_cpu_get(cpu);
1246 if (!cpu_policy)
1247 return -EINVAL;
1248
1249 /* only handle each CPU group once */
1250 if (unlikely(cpu_policy->cpu != cpu)) {
1251 cpufreq_cpu_put(cpu_policy);
1252 return 0;
1253 }
1254
1255 if (cpufreq_driver->resume) {
1256 ret = cpufreq_driver->resume(cpu_policy);
1257 if (ret) {
1258 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1259 "step on CPU %u\n", cpu_policy->cpu);
1260 cpufreq_cpu_put(cpu_policy);
1261 return ret;
1262 }
1263 }
1264
1265 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1266 unsigned int cur_freq = 0;
1267
1268 if (cpufreq_driver->get)
1269 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1270
1271 if (!cur_freq || !cpu_policy->cur) {
1272 printk(KERN_ERR "cpufreq: resume failed to assert "
1273 "current frequency is what timing core "
1274 "thinks it is.\n");
1275 goto out;
1276 }
1277
1278 if (unlikely(cur_freq != cpu_policy->cur)) {
1279 struct cpufreq_freqs freqs;
1280
1281 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1282 dprintk("Warning: CPU frequency"
1283 "is %u, cpufreq assumed %u kHz.\n",
1284 cur_freq, cpu_policy->cur);
1285
1286 freqs.cpu = cpu;
1287 freqs.old = cpu_policy->cur;
1288 freqs.new = cur_freq;
1289
1290 srcu_notifier_call_chain(
1291 &cpufreq_transition_notifier_list,
1292 CPUFREQ_RESUMECHANGE, &freqs);
1293 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1294
1295 cpu_policy->cur = cur_freq;
1296 }
1297 }
1298
1299 out:
1300 schedule_work(&cpu_policy->update);
1301 cpufreq_cpu_put(cpu_policy);
1302 return ret;
1303 }
1304
1305 static struct sysdev_driver cpufreq_sysdev_driver = {
1306 .add = cpufreq_add_dev,
1307 .remove = cpufreq_remove_dev,
1308 .suspend = cpufreq_suspend,
1309 .resume = cpufreq_resume,
1310 };
1311
1312
1313 /*********************************************************************
1314 * NOTIFIER LISTS INTERFACE *
1315 *********************************************************************/
1316
1317 /**
1318 * cpufreq_register_notifier - register a driver with cpufreq
1319 * @nb: notifier function to register
1320 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1321 *
1322 * Add a driver to one of two lists: either a list of drivers that
1323 * are notified about clock rate changes (once before and once after
1324 * the transition), or a list of drivers that are notified about
1325 * changes in cpufreq policy.
1326 *
1327 * This function may sleep, and has the same return conditions as
1328 * blocking_notifier_chain_register.
1329 */
1330 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1331 {
1332 int ret;
1333
1334 switch (list) {
1335 case CPUFREQ_TRANSITION_NOTIFIER:
1336 ret = srcu_notifier_chain_register(
1337 &cpufreq_transition_notifier_list, nb);
1338 break;
1339 case CPUFREQ_POLICY_NOTIFIER:
1340 ret = blocking_notifier_chain_register(
1341 &cpufreq_policy_notifier_list, nb);
1342 break;
1343 default:
1344 ret = -EINVAL;
1345 }
1346
1347 return ret;
1348 }
1349 EXPORT_SYMBOL(cpufreq_register_notifier);
1350
1351
1352 /**
1353 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1354 * @nb: notifier block to be unregistered
1355 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1356 *
1357 * Remove a driver from the CPU frequency notifier list.
1358 *
1359 * This function may sleep, and has the same return conditions as
1360 * blocking_notifier_chain_unregister.
1361 */
1362 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1363 {
1364 int ret;
1365
1366 switch (list) {
1367 case CPUFREQ_TRANSITION_NOTIFIER:
1368 ret = srcu_notifier_chain_unregister(
1369 &cpufreq_transition_notifier_list, nb);
1370 break;
1371 case CPUFREQ_POLICY_NOTIFIER:
1372 ret = blocking_notifier_chain_unregister(
1373 &cpufreq_policy_notifier_list, nb);
1374 break;
1375 default:
1376 ret = -EINVAL;
1377 }
1378
1379 return ret;
1380 }
1381 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1382
1383
1384 /*********************************************************************
1385 * GOVERNORS *
1386 *********************************************************************/
1387
1388
1389 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1390 unsigned int target_freq,
1391 unsigned int relation)
1392 {
1393 int retval = -EINVAL;
1394
1395 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1396 target_freq, relation);
1397 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1398 retval = cpufreq_driver->target(policy, target_freq, relation);
1399
1400 return retval;
1401 }
1402 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1403
1404 int cpufreq_driver_target(struct cpufreq_policy *policy,
1405 unsigned int target_freq,
1406 unsigned int relation)
1407 {
1408 int ret;
1409
1410 policy = cpufreq_cpu_get(policy->cpu);
1411 if (!policy)
1412 return -EINVAL;
1413
1414 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1415 return -EINVAL;
1416
1417 ret = __cpufreq_driver_target(policy, target_freq, relation);
1418
1419 unlock_policy_rwsem_write(policy->cpu);
1420
1421 cpufreq_cpu_put(policy);
1422 return ret;
1423 }
1424 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1425
1426 int __cpufreq_driver_getavg(struct cpufreq_policy *policy)
1427 {
1428 int ret = 0;
1429
1430 policy = cpufreq_cpu_get(policy->cpu);
1431 if (!policy)
1432 return -EINVAL;
1433
1434 if (cpu_online(policy->cpu) && cpufreq_driver->getavg)
1435 ret = cpufreq_driver->getavg(policy->cpu);
1436
1437 cpufreq_cpu_put(policy);
1438 return ret;
1439 }
1440 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1441
1442 /*
1443 * when "event" is CPUFREQ_GOV_LIMITS
1444 */
1445
1446 static int __cpufreq_governor(struct cpufreq_policy *policy,
1447 unsigned int event)
1448 {
1449 int ret;
1450
1451 if (!try_module_get(policy->governor->owner))
1452 return -EINVAL;
1453
1454 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1455 policy->cpu, event);
1456 ret = policy->governor->governor(policy, event);
1457
1458 /* we keep one module reference alive for
1459 each CPU governed by this CPU */
1460 if ((event != CPUFREQ_GOV_START) || ret)
1461 module_put(policy->governor->owner);
1462 if ((event == CPUFREQ_GOV_STOP) && !ret)
1463 module_put(policy->governor->owner);
1464
1465 return ret;
1466 }
1467
1468
1469 int cpufreq_register_governor(struct cpufreq_governor *governor)
1470 {
1471 int err;
1472
1473 if (!governor)
1474 return -EINVAL;
1475
1476 mutex_lock(&cpufreq_governor_mutex);
1477
1478 err = -EBUSY;
1479 if (__find_governor(governor->name) == NULL) {
1480 err = 0;
1481 list_add(&governor->governor_list, &cpufreq_governor_list);
1482 }
1483
1484 mutex_unlock(&cpufreq_governor_mutex);
1485 return err;
1486 }
1487 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1488
1489
1490 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1491 {
1492 if (!governor)
1493 return;
1494
1495 mutex_lock(&cpufreq_governor_mutex);
1496 list_del(&governor->governor_list);
1497 mutex_unlock(&cpufreq_governor_mutex);
1498 return;
1499 }
1500 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1501
1502
1503
1504 /*********************************************************************
1505 * POLICY INTERFACE *
1506 *********************************************************************/
1507
1508 /**
1509 * cpufreq_get_policy - get the current cpufreq_policy
1510 * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1511 *
1512 * Reads the current cpufreq policy.
1513 */
1514 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1515 {
1516 struct cpufreq_policy *cpu_policy;
1517 if (!policy)
1518 return -EINVAL;
1519
1520 cpu_policy = cpufreq_cpu_get(cpu);
1521 if (!cpu_policy)
1522 return -EINVAL;
1523
1524 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1525
1526 cpufreq_cpu_put(cpu_policy);
1527 return 0;
1528 }
1529 EXPORT_SYMBOL(cpufreq_get_policy);
1530
1531
1532 /*
1533 * data : current policy.
1534 * policy : policy to be set.
1535 */
1536 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1537 struct cpufreq_policy *policy)
1538 {
1539 int ret = 0;
1540
1541 cpufreq_debug_disable_ratelimit();
1542 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1543 policy->min, policy->max);
1544
1545 memcpy(&policy->cpuinfo, &data->cpuinfo,
1546 sizeof(struct cpufreq_cpuinfo));
1547
1548 if (policy->min > data->min && policy->min > policy->max) {
1549 ret = -EINVAL;
1550 goto error_out;
1551 }
1552
1553 /* verify the cpu speed can be set within this limit */
1554 ret = cpufreq_driver->verify(policy);
1555 if (ret)
1556 goto error_out;
1557
1558 /* adjust if necessary - all reasons */
1559 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1560 CPUFREQ_ADJUST, policy);
1561
1562 /* adjust if necessary - hardware incompatibility*/
1563 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1564 CPUFREQ_INCOMPATIBLE, policy);
1565
1566 /* verify the cpu speed can be set within this limit,
1567 which might be different to the first one */
1568 ret = cpufreq_driver->verify(policy);
1569 if (ret)
1570 goto error_out;
1571
1572 /* notification of the new policy */
1573 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1574 CPUFREQ_NOTIFY, policy);
1575
1576 data->min = policy->min;
1577 data->max = policy->max;
1578
1579 dprintk("new min and max freqs are %u - %u kHz\n",
1580 data->min, data->max);
1581
1582 if (cpufreq_driver->setpolicy) {
1583 data->policy = policy->policy;
1584 dprintk("setting range\n");
1585 ret = cpufreq_driver->setpolicy(policy);
1586 } else {
1587 if (policy->governor != data->governor) {
1588 /* save old, working values */
1589 struct cpufreq_governor *old_gov = data->governor;
1590
1591 dprintk("governor switch\n");
1592
1593 /* end old governor */
1594 if (data->governor)
1595 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1596
1597 /* start new governor */
1598 data->governor = policy->governor;
1599 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1600 /* new governor failed, so re-start old one */
1601 dprintk("starting governor %s failed\n",
1602 data->governor->name);
1603 if (old_gov) {
1604 data->governor = old_gov;
1605 __cpufreq_governor(data,
1606 CPUFREQ_GOV_START);
1607 }
1608 ret = -EINVAL;
1609 goto error_out;
1610 }
1611 /* might be a policy change, too, so fall through */
1612 }
1613 dprintk("governor: change or update limits\n");
1614 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1615 }
1616
1617 error_out:
1618 cpufreq_debug_enable_ratelimit();
1619 return ret;
1620 }
1621
1622 /**
1623 * cpufreq_set_policy - set a new CPUFreq policy
1624 * @policy: policy to be set.
1625 *
1626 * Sets a new CPU frequency and voltage scaling policy.
1627 */
1628 int cpufreq_set_policy(struct cpufreq_policy *policy)
1629 {
1630 int ret = 0;
1631 struct cpufreq_policy *data;
1632
1633 if (!policy)
1634 return -EINVAL;
1635
1636 data = cpufreq_cpu_get(policy->cpu);
1637 if (!data)
1638 return -EINVAL;
1639
1640 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1641 return -EINVAL;
1642
1643
1644 ret = __cpufreq_set_policy(data, policy);
1645 data->user_policy.min = data->min;
1646 data->user_policy.max = data->max;
1647 data->user_policy.policy = data->policy;
1648 data->user_policy.governor = data->governor;
1649
1650 unlock_policy_rwsem_write(policy->cpu);
1651
1652 cpufreq_cpu_put(data);
1653
1654 return ret;
1655 }
1656 EXPORT_SYMBOL(cpufreq_set_policy);
1657
1658
1659 /**
1660 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1661 * @cpu: CPU which shall be re-evaluated
1662 *
1663 * Usefull for policy notifiers which have different necessities
1664 * at different times.
1665 */
1666 int cpufreq_update_policy(unsigned int cpu)
1667 {
1668 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1669 struct cpufreq_policy policy;
1670 int ret = 0;
1671
1672 if (!data)
1673 return -ENODEV;
1674
1675 if (unlikely(lock_policy_rwsem_write(cpu)))
1676 return -EINVAL;
1677
1678 dprintk("updating policy for CPU %u\n", cpu);
1679 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1680 policy.min = data->user_policy.min;
1681 policy.max = data->user_policy.max;
1682 policy.policy = data->user_policy.policy;
1683 policy.governor = data->user_policy.governor;
1684
1685 /* BIOS might change freq behind our back
1686 -> ask driver for current freq and notify governors about a change */
1687 if (cpufreq_driver->get) {
1688 policy.cur = cpufreq_driver->get(cpu);
1689 if (!data->cur) {
1690 dprintk("Driver did not initialize current freq");
1691 data->cur = policy.cur;
1692 } else {
1693 if (data->cur != policy.cur)
1694 cpufreq_out_of_sync(cpu, data->cur,
1695 policy.cur);
1696 }
1697 }
1698
1699 ret = __cpufreq_set_policy(data, &policy);
1700
1701 unlock_policy_rwsem_write(cpu);
1702
1703 cpufreq_cpu_put(data);
1704 return ret;
1705 }
1706 EXPORT_SYMBOL(cpufreq_update_policy);
1707
1708 static int cpufreq_cpu_callback(struct notifier_block *nfb,
1709 unsigned long action, void *hcpu)
1710 {
1711 unsigned int cpu = (unsigned long)hcpu;
1712 struct sys_device *sys_dev;
1713 struct cpufreq_policy *policy;
1714
1715 sys_dev = get_cpu_sysdev(cpu);
1716 if (sys_dev) {
1717 switch (action) {
1718 case CPU_ONLINE:
1719 cpufreq_add_dev(sys_dev);
1720 break;
1721 case CPU_DOWN_PREPARE:
1722 if (unlikely(lock_policy_rwsem_write(cpu)))
1723 BUG();
1724
1725 policy = cpufreq_cpu_data[cpu];
1726 if (policy) {
1727 __cpufreq_driver_target(policy, policy->min,
1728 CPUFREQ_RELATION_H);
1729 }
1730 __cpufreq_remove_dev(sys_dev);
1731 break;
1732 case CPU_DOWN_FAILED:
1733 cpufreq_add_dev(sys_dev);
1734 break;
1735 }
1736 }
1737 return NOTIFY_OK;
1738 }
1739
1740 static struct notifier_block __cpuinitdata cpufreq_cpu_notifier =
1741 {
1742 .notifier_call = cpufreq_cpu_callback,
1743 };
1744
1745 /*********************************************************************
1746 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1747 *********************************************************************/
1748
1749 /**
1750 * cpufreq_register_driver - register a CPU Frequency driver
1751 * @driver_data: A struct cpufreq_driver containing the values#
1752 * submitted by the CPU Frequency driver.
1753 *
1754 * Registers a CPU Frequency driver to this core code. This code
1755 * returns zero on success, -EBUSY when another driver got here first
1756 * (and isn't unregistered in the meantime).
1757 *
1758 */
1759 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1760 {
1761 unsigned long flags;
1762 int ret;
1763
1764 if (!driver_data || !driver_data->verify || !driver_data->init ||
1765 ((!driver_data->setpolicy) && (!driver_data->target)))
1766 return -EINVAL;
1767
1768 dprintk("trying to register driver %s\n", driver_data->name);
1769
1770 if (driver_data->setpolicy)
1771 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1772
1773 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1774 if (cpufreq_driver) {
1775 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1776 return -EBUSY;
1777 }
1778 cpufreq_driver = driver_data;
1779 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1780
1781 ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1782
1783 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1784 int i;
1785 ret = -ENODEV;
1786
1787 /* check for at least one working CPU */
1788 for (i=0; i<NR_CPUS; i++)
1789 if (cpufreq_cpu_data[i])
1790 ret = 0;
1791
1792 /* if all ->init() calls failed, unregister */
1793 if (ret) {
1794 dprintk("no CPU initialized for driver %s\n",
1795 driver_data->name);
1796 sysdev_driver_unregister(&cpu_sysdev_class,
1797 &cpufreq_sysdev_driver);
1798
1799 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1800 cpufreq_driver = NULL;
1801 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1802 }
1803 }
1804
1805 if (!ret) {
1806 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1807 dprintk("driver %s up and running\n", driver_data->name);
1808 cpufreq_debug_enable_ratelimit();
1809 }
1810
1811 return (ret);
1812 }
1813 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1814
1815
1816 /**
1817 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1818 *
1819 * Unregister the current CPUFreq driver. Only call this if you have
1820 * the right to do so, i.e. if you have succeeded in initialising before!
1821 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1822 * currently not initialised.
1823 */
1824 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1825 {
1826 unsigned long flags;
1827
1828 cpufreq_debug_disable_ratelimit();
1829
1830 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1831 cpufreq_debug_enable_ratelimit();
1832 return -EINVAL;
1833 }
1834
1835 dprintk("unregistering driver %s\n", driver->name);
1836
1837 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1838 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1839
1840 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1841 cpufreq_driver = NULL;
1842 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1843
1844 return 0;
1845 }
1846 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1847
1848 static int __init cpufreq_core_init(void)
1849 {
1850 int cpu;
1851
1852 for_each_possible_cpu(cpu) {
1853 per_cpu(policy_cpu, cpu) = -1;
1854 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1855 }
1856 return 0;
1857 }
1858
1859 core_initcall(cpufreq_core_init);
This page took 0.099026 seconds and 5 git commands to generate.