Merge tag 'sound-4.7-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
79 static int cpufreq_start_governor(struct cpufreq_policy *policy);
80
81 static inline void cpufreq_exit_governor(struct cpufreq_policy *policy)
82 {
83 (void)cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
84 }
85
86 static inline void cpufreq_stop_governor(struct cpufreq_policy *policy)
87 {
88 (void)cpufreq_governor(policy, CPUFREQ_GOV_STOP);
89 }
90
91 /**
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 static struct srcu_notifier_head cpufreq_transition_notifier_list;
100
101 static bool init_cpufreq_transition_notifier_list_called;
102 static int __init init_cpufreq_transition_notifier_list(void)
103 {
104 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
105 init_cpufreq_transition_notifier_list_called = true;
106 return 0;
107 }
108 pure_initcall(init_cpufreq_transition_notifier_list);
109
110 static int off __read_mostly;
111 static int cpufreq_disabled(void)
112 {
113 return off;
114 }
115 void disable_cpufreq(void)
116 {
117 off = 1;
118 }
119 static DEFINE_MUTEX(cpufreq_governor_mutex);
120
121 bool have_governor_per_policy(void)
122 {
123 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
124 }
125 EXPORT_SYMBOL_GPL(have_governor_per_policy);
126
127 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
128 {
129 if (have_governor_per_policy())
130 return &policy->kobj;
131 else
132 return cpufreq_global_kobject;
133 }
134 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
135
136 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
137 {
138 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
139
140 return policy && !policy_is_inactive(policy) ?
141 policy->freq_table : NULL;
142 }
143 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
144
145 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
146 {
147 u64 idle_time;
148 u64 cur_wall_time;
149 u64 busy_time;
150
151 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
152
153 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
154 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
155 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
156 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
157 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
158 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
159
160 idle_time = cur_wall_time - busy_time;
161 if (wall)
162 *wall = cputime_to_usecs(cur_wall_time);
163
164 return cputime_to_usecs(idle_time);
165 }
166
167 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
168 {
169 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
170
171 if (idle_time == -1ULL)
172 return get_cpu_idle_time_jiffy(cpu, wall);
173 else if (!io_busy)
174 idle_time += get_cpu_iowait_time_us(cpu, wall);
175
176 return idle_time;
177 }
178 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
179
180 /*
181 * This is a generic cpufreq init() routine which can be used by cpufreq
182 * drivers of SMP systems. It will do following:
183 * - validate & show freq table passed
184 * - set policies transition latency
185 * - policy->cpus with all possible CPUs
186 */
187 int cpufreq_generic_init(struct cpufreq_policy *policy,
188 struct cpufreq_frequency_table *table,
189 unsigned int transition_latency)
190 {
191 int ret;
192
193 ret = cpufreq_table_validate_and_show(policy, table);
194 if (ret) {
195 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
196 return ret;
197 }
198
199 policy->cpuinfo.transition_latency = transition_latency;
200
201 /*
202 * The driver only supports the SMP configuration where all processors
203 * share the clock and voltage and clock.
204 */
205 cpumask_setall(policy->cpus);
206
207 return 0;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
210
211 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
212 {
213 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
214
215 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
216 }
217 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
218
219 unsigned int cpufreq_generic_get(unsigned int cpu)
220 {
221 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
222
223 if (!policy || IS_ERR(policy->clk)) {
224 pr_err("%s: No %s associated to cpu: %d\n",
225 __func__, policy ? "clk" : "policy", cpu);
226 return 0;
227 }
228
229 return clk_get_rate(policy->clk) / 1000;
230 }
231 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
232
233 /**
234 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
235 *
236 * @cpu: cpu to find policy for.
237 *
238 * This returns policy for 'cpu', returns NULL if it doesn't exist.
239 * It also increments the kobject reference count to mark it busy and so would
240 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
241 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
242 * freed as that depends on the kobj count.
243 *
244 * Return: A valid policy on success, otherwise NULL on failure.
245 */
246 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
247 {
248 struct cpufreq_policy *policy = NULL;
249 unsigned long flags;
250
251 if (WARN_ON(cpu >= nr_cpu_ids))
252 return NULL;
253
254 /* get the cpufreq driver */
255 read_lock_irqsave(&cpufreq_driver_lock, flags);
256
257 if (cpufreq_driver) {
258 /* get the CPU */
259 policy = cpufreq_cpu_get_raw(cpu);
260 if (policy)
261 kobject_get(&policy->kobj);
262 }
263
264 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
265
266 return policy;
267 }
268 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
269
270 /**
271 * cpufreq_cpu_put: Decrements the usage count of a policy
272 *
273 * @policy: policy earlier returned by cpufreq_cpu_get().
274 *
275 * This decrements the kobject reference count incremented earlier by calling
276 * cpufreq_cpu_get().
277 */
278 void cpufreq_cpu_put(struct cpufreq_policy *policy)
279 {
280 kobject_put(&policy->kobj);
281 }
282 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
283
284 /*********************************************************************
285 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
286 *********************************************************************/
287
288 /**
289 * adjust_jiffies - adjust the system "loops_per_jiffy"
290 *
291 * This function alters the system "loops_per_jiffy" for the clock
292 * speed change. Note that loops_per_jiffy cannot be updated on SMP
293 * systems as each CPU might be scaled differently. So, use the arch
294 * per-CPU loops_per_jiffy value wherever possible.
295 */
296 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
297 {
298 #ifndef CONFIG_SMP
299 static unsigned long l_p_j_ref;
300 static unsigned int l_p_j_ref_freq;
301
302 if (ci->flags & CPUFREQ_CONST_LOOPS)
303 return;
304
305 if (!l_p_j_ref_freq) {
306 l_p_j_ref = loops_per_jiffy;
307 l_p_j_ref_freq = ci->old;
308 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
309 l_p_j_ref, l_p_j_ref_freq);
310 }
311 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
312 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
313 ci->new);
314 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
315 loops_per_jiffy, ci->new);
316 }
317 #endif
318 }
319
320 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
321 struct cpufreq_freqs *freqs, unsigned int state)
322 {
323 BUG_ON(irqs_disabled());
324
325 if (cpufreq_disabled())
326 return;
327
328 freqs->flags = cpufreq_driver->flags;
329 pr_debug("notification %u of frequency transition to %u kHz\n",
330 state, freqs->new);
331
332 switch (state) {
333
334 case CPUFREQ_PRECHANGE:
335 /* detect if the driver reported a value as "old frequency"
336 * which is not equal to what the cpufreq core thinks is
337 * "old frequency".
338 */
339 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
340 if ((policy) && (policy->cpu == freqs->cpu) &&
341 (policy->cur) && (policy->cur != freqs->old)) {
342 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
343 freqs->old, policy->cur);
344 freqs->old = policy->cur;
345 }
346 }
347 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348 CPUFREQ_PRECHANGE, freqs);
349 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
350 break;
351
352 case CPUFREQ_POSTCHANGE:
353 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
354 pr_debug("FREQ: %lu - CPU: %lu\n",
355 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
356 trace_cpu_frequency(freqs->new, freqs->cpu);
357 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
358 CPUFREQ_POSTCHANGE, freqs);
359 if (likely(policy) && likely(policy->cpu == freqs->cpu))
360 policy->cur = freqs->new;
361 break;
362 }
363 }
364
365 /**
366 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
367 * on frequency transition.
368 *
369 * This function calls the transition notifiers and the "adjust_jiffies"
370 * function. It is called twice on all CPU frequency changes that have
371 * external effects.
372 */
373 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
374 struct cpufreq_freqs *freqs, unsigned int state)
375 {
376 for_each_cpu(freqs->cpu, policy->cpus)
377 __cpufreq_notify_transition(policy, freqs, state);
378 }
379
380 /* Do post notifications when there are chances that transition has failed */
381 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
382 struct cpufreq_freqs *freqs, int transition_failed)
383 {
384 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
385 if (!transition_failed)
386 return;
387
388 swap(freqs->old, freqs->new);
389 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
390 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
391 }
392
393 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
394 struct cpufreq_freqs *freqs)
395 {
396
397 /*
398 * Catch double invocations of _begin() which lead to self-deadlock.
399 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
400 * doesn't invoke _begin() on their behalf, and hence the chances of
401 * double invocations are very low. Moreover, there are scenarios
402 * where these checks can emit false-positive warnings in these
403 * drivers; so we avoid that by skipping them altogether.
404 */
405 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
406 && current == policy->transition_task);
407
408 wait:
409 wait_event(policy->transition_wait, !policy->transition_ongoing);
410
411 spin_lock(&policy->transition_lock);
412
413 if (unlikely(policy->transition_ongoing)) {
414 spin_unlock(&policy->transition_lock);
415 goto wait;
416 }
417
418 policy->transition_ongoing = true;
419 policy->transition_task = current;
420
421 spin_unlock(&policy->transition_lock);
422
423 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
426
427 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
428 struct cpufreq_freqs *freqs, int transition_failed)
429 {
430 if (unlikely(WARN_ON(!policy->transition_ongoing)))
431 return;
432
433 cpufreq_notify_post_transition(policy, freqs, transition_failed);
434
435 policy->transition_ongoing = false;
436 policy->transition_task = NULL;
437
438 wake_up(&policy->transition_wait);
439 }
440 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
441
442 /*
443 * Fast frequency switching status count. Positive means "enabled", negative
444 * means "disabled" and 0 means "not decided yet".
445 */
446 static int cpufreq_fast_switch_count;
447 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
448
449 static void cpufreq_list_transition_notifiers(void)
450 {
451 struct notifier_block *nb;
452
453 pr_info("Registered transition notifiers:\n");
454
455 mutex_lock(&cpufreq_transition_notifier_list.mutex);
456
457 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
458 pr_info("%pF\n", nb->notifier_call);
459
460 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
461 }
462
463 /**
464 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
465 * @policy: cpufreq policy to enable fast frequency switching for.
466 *
467 * Try to enable fast frequency switching for @policy.
468 *
469 * The attempt will fail if there is at least one transition notifier registered
470 * at this point, as fast frequency switching is quite fundamentally at odds
471 * with transition notifiers. Thus if successful, it will make registration of
472 * transition notifiers fail going forward.
473 */
474 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
475 {
476 lockdep_assert_held(&policy->rwsem);
477
478 if (!policy->fast_switch_possible)
479 return;
480
481 mutex_lock(&cpufreq_fast_switch_lock);
482 if (cpufreq_fast_switch_count >= 0) {
483 cpufreq_fast_switch_count++;
484 policy->fast_switch_enabled = true;
485 } else {
486 pr_warn("CPU%u: Fast frequency switching not enabled\n",
487 policy->cpu);
488 cpufreq_list_transition_notifiers();
489 }
490 mutex_unlock(&cpufreq_fast_switch_lock);
491 }
492 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
493
494 /**
495 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
496 * @policy: cpufreq policy to disable fast frequency switching for.
497 */
498 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
499 {
500 mutex_lock(&cpufreq_fast_switch_lock);
501 if (policy->fast_switch_enabled) {
502 policy->fast_switch_enabled = false;
503 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
504 cpufreq_fast_switch_count--;
505 }
506 mutex_unlock(&cpufreq_fast_switch_lock);
507 }
508 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
509
510 /*********************************************************************
511 * SYSFS INTERFACE *
512 *********************************************************************/
513 static ssize_t show_boost(struct kobject *kobj,
514 struct attribute *attr, char *buf)
515 {
516 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
517 }
518
519 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
520 const char *buf, size_t count)
521 {
522 int ret, enable;
523
524 ret = sscanf(buf, "%d", &enable);
525 if (ret != 1 || enable < 0 || enable > 1)
526 return -EINVAL;
527
528 if (cpufreq_boost_trigger_state(enable)) {
529 pr_err("%s: Cannot %s BOOST!\n",
530 __func__, enable ? "enable" : "disable");
531 return -EINVAL;
532 }
533
534 pr_debug("%s: cpufreq BOOST %s\n",
535 __func__, enable ? "enabled" : "disabled");
536
537 return count;
538 }
539 define_one_global_rw(boost);
540
541 static struct cpufreq_governor *find_governor(const char *str_governor)
542 {
543 struct cpufreq_governor *t;
544
545 for_each_governor(t)
546 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
547 return t;
548
549 return NULL;
550 }
551
552 /**
553 * cpufreq_parse_governor - parse a governor string
554 */
555 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
556 struct cpufreq_governor **governor)
557 {
558 int err = -EINVAL;
559
560 if (cpufreq_driver->setpolicy) {
561 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
562 *policy = CPUFREQ_POLICY_PERFORMANCE;
563 err = 0;
564 } else if (!strncasecmp(str_governor, "powersave",
565 CPUFREQ_NAME_LEN)) {
566 *policy = CPUFREQ_POLICY_POWERSAVE;
567 err = 0;
568 }
569 } else {
570 struct cpufreq_governor *t;
571
572 mutex_lock(&cpufreq_governor_mutex);
573
574 t = find_governor(str_governor);
575
576 if (t == NULL) {
577 int ret;
578
579 mutex_unlock(&cpufreq_governor_mutex);
580 ret = request_module("cpufreq_%s", str_governor);
581 mutex_lock(&cpufreq_governor_mutex);
582
583 if (ret == 0)
584 t = find_governor(str_governor);
585 }
586
587 if (t != NULL) {
588 *governor = t;
589 err = 0;
590 }
591
592 mutex_unlock(&cpufreq_governor_mutex);
593 }
594 return err;
595 }
596
597 /**
598 * cpufreq_per_cpu_attr_read() / show_##file_name() -
599 * print out cpufreq information
600 *
601 * Write out information from cpufreq_driver->policy[cpu]; object must be
602 * "unsigned int".
603 */
604
605 #define show_one(file_name, object) \
606 static ssize_t show_##file_name \
607 (struct cpufreq_policy *policy, char *buf) \
608 { \
609 return sprintf(buf, "%u\n", policy->object); \
610 }
611
612 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
613 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
614 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
615 show_one(scaling_min_freq, min);
616 show_one(scaling_max_freq, max);
617
618 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
619 {
620 ssize_t ret;
621
622 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
623 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
624 else
625 ret = sprintf(buf, "%u\n", policy->cur);
626 return ret;
627 }
628
629 static int cpufreq_set_policy(struct cpufreq_policy *policy,
630 struct cpufreq_policy *new_policy);
631
632 /**
633 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
634 */
635 #define store_one(file_name, object) \
636 static ssize_t store_##file_name \
637 (struct cpufreq_policy *policy, const char *buf, size_t count) \
638 { \
639 int ret, temp; \
640 struct cpufreq_policy new_policy; \
641 \
642 memcpy(&new_policy, policy, sizeof(*policy)); \
643 \
644 ret = sscanf(buf, "%u", &new_policy.object); \
645 if (ret != 1) \
646 return -EINVAL; \
647 \
648 temp = new_policy.object; \
649 ret = cpufreq_set_policy(policy, &new_policy); \
650 if (!ret) \
651 policy->user_policy.object = temp; \
652 \
653 return ret ? ret : count; \
654 }
655
656 store_one(scaling_min_freq, min);
657 store_one(scaling_max_freq, max);
658
659 /**
660 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
661 */
662 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
663 char *buf)
664 {
665 unsigned int cur_freq = __cpufreq_get(policy);
666 if (!cur_freq)
667 return sprintf(buf, "<unknown>");
668 return sprintf(buf, "%u\n", cur_freq);
669 }
670
671 /**
672 * show_scaling_governor - show the current policy for the specified CPU
673 */
674 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
675 {
676 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
677 return sprintf(buf, "powersave\n");
678 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
679 return sprintf(buf, "performance\n");
680 else if (policy->governor)
681 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
682 policy->governor->name);
683 return -EINVAL;
684 }
685
686 /**
687 * store_scaling_governor - store policy for the specified CPU
688 */
689 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
690 const char *buf, size_t count)
691 {
692 int ret;
693 char str_governor[16];
694 struct cpufreq_policy new_policy;
695
696 memcpy(&new_policy, policy, sizeof(*policy));
697
698 ret = sscanf(buf, "%15s", str_governor);
699 if (ret != 1)
700 return -EINVAL;
701
702 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
703 &new_policy.governor))
704 return -EINVAL;
705
706 ret = cpufreq_set_policy(policy, &new_policy);
707 return ret ? ret : count;
708 }
709
710 /**
711 * show_scaling_driver - show the cpufreq driver currently loaded
712 */
713 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
714 {
715 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
716 }
717
718 /**
719 * show_scaling_available_governors - show the available CPUfreq governors
720 */
721 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
722 char *buf)
723 {
724 ssize_t i = 0;
725 struct cpufreq_governor *t;
726
727 if (!has_target()) {
728 i += sprintf(buf, "performance powersave");
729 goto out;
730 }
731
732 for_each_governor(t) {
733 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
734 - (CPUFREQ_NAME_LEN + 2)))
735 goto out;
736 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
737 }
738 out:
739 i += sprintf(&buf[i], "\n");
740 return i;
741 }
742
743 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
744 {
745 ssize_t i = 0;
746 unsigned int cpu;
747
748 for_each_cpu(cpu, mask) {
749 if (i)
750 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
751 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
752 if (i >= (PAGE_SIZE - 5))
753 break;
754 }
755 i += sprintf(&buf[i], "\n");
756 return i;
757 }
758 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
759
760 /**
761 * show_related_cpus - show the CPUs affected by each transition even if
762 * hw coordination is in use
763 */
764 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
765 {
766 return cpufreq_show_cpus(policy->related_cpus, buf);
767 }
768
769 /**
770 * show_affected_cpus - show the CPUs affected by each transition
771 */
772 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
773 {
774 return cpufreq_show_cpus(policy->cpus, buf);
775 }
776
777 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
778 const char *buf, size_t count)
779 {
780 unsigned int freq = 0;
781 unsigned int ret;
782
783 if (!policy->governor || !policy->governor->store_setspeed)
784 return -EINVAL;
785
786 ret = sscanf(buf, "%u", &freq);
787 if (ret != 1)
788 return -EINVAL;
789
790 policy->governor->store_setspeed(policy, freq);
791
792 return count;
793 }
794
795 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
796 {
797 if (!policy->governor || !policy->governor->show_setspeed)
798 return sprintf(buf, "<unsupported>\n");
799
800 return policy->governor->show_setspeed(policy, buf);
801 }
802
803 /**
804 * show_bios_limit - show the current cpufreq HW/BIOS limitation
805 */
806 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
807 {
808 unsigned int limit;
809 int ret;
810 if (cpufreq_driver->bios_limit) {
811 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
812 if (!ret)
813 return sprintf(buf, "%u\n", limit);
814 }
815 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
816 }
817
818 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
819 cpufreq_freq_attr_ro(cpuinfo_min_freq);
820 cpufreq_freq_attr_ro(cpuinfo_max_freq);
821 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
822 cpufreq_freq_attr_ro(scaling_available_governors);
823 cpufreq_freq_attr_ro(scaling_driver);
824 cpufreq_freq_attr_ro(scaling_cur_freq);
825 cpufreq_freq_attr_ro(bios_limit);
826 cpufreq_freq_attr_ro(related_cpus);
827 cpufreq_freq_attr_ro(affected_cpus);
828 cpufreq_freq_attr_rw(scaling_min_freq);
829 cpufreq_freq_attr_rw(scaling_max_freq);
830 cpufreq_freq_attr_rw(scaling_governor);
831 cpufreq_freq_attr_rw(scaling_setspeed);
832
833 static struct attribute *default_attrs[] = {
834 &cpuinfo_min_freq.attr,
835 &cpuinfo_max_freq.attr,
836 &cpuinfo_transition_latency.attr,
837 &scaling_min_freq.attr,
838 &scaling_max_freq.attr,
839 &affected_cpus.attr,
840 &related_cpus.attr,
841 &scaling_governor.attr,
842 &scaling_driver.attr,
843 &scaling_available_governors.attr,
844 &scaling_setspeed.attr,
845 NULL
846 };
847
848 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
849 #define to_attr(a) container_of(a, struct freq_attr, attr)
850
851 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
852 {
853 struct cpufreq_policy *policy = to_policy(kobj);
854 struct freq_attr *fattr = to_attr(attr);
855 ssize_t ret;
856
857 down_read(&policy->rwsem);
858 ret = fattr->show(policy, buf);
859 up_read(&policy->rwsem);
860
861 return ret;
862 }
863
864 static ssize_t store(struct kobject *kobj, struct attribute *attr,
865 const char *buf, size_t count)
866 {
867 struct cpufreq_policy *policy = to_policy(kobj);
868 struct freq_attr *fattr = to_attr(attr);
869 ssize_t ret = -EINVAL;
870
871 get_online_cpus();
872
873 if (cpu_online(policy->cpu)) {
874 down_write(&policy->rwsem);
875 ret = fattr->store(policy, buf, count);
876 up_write(&policy->rwsem);
877 }
878
879 put_online_cpus();
880
881 return ret;
882 }
883
884 static void cpufreq_sysfs_release(struct kobject *kobj)
885 {
886 struct cpufreq_policy *policy = to_policy(kobj);
887 pr_debug("last reference is dropped\n");
888 complete(&policy->kobj_unregister);
889 }
890
891 static const struct sysfs_ops sysfs_ops = {
892 .show = show,
893 .store = store,
894 };
895
896 static struct kobj_type ktype_cpufreq = {
897 .sysfs_ops = &sysfs_ops,
898 .default_attrs = default_attrs,
899 .release = cpufreq_sysfs_release,
900 };
901
902 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
903 {
904 struct device *cpu_dev;
905
906 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
907
908 if (!policy)
909 return 0;
910
911 cpu_dev = get_cpu_device(cpu);
912 if (WARN_ON(!cpu_dev))
913 return 0;
914
915 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
916 }
917
918 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
919 {
920 struct device *cpu_dev;
921
922 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
923
924 cpu_dev = get_cpu_device(cpu);
925 if (WARN_ON(!cpu_dev))
926 return;
927
928 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
929 }
930
931 /* Add/remove symlinks for all related CPUs */
932 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
933 {
934 unsigned int j;
935 int ret = 0;
936
937 /* Some related CPUs might not be present (physically hotplugged) */
938 for_each_cpu(j, policy->real_cpus) {
939 ret = add_cpu_dev_symlink(policy, j);
940 if (ret)
941 break;
942 }
943
944 return ret;
945 }
946
947 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
948 {
949 unsigned int j;
950
951 /* Some related CPUs might not be present (physically hotplugged) */
952 for_each_cpu(j, policy->real_cpus)
953 remove_cpu_dev_symlink(policy, j);
954 }
955
956 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
957 {
958 struct freq_attr **drv_attr;
959 int ret = 0;
960
961 /* set up files for this cpu device */
962 drv_attr = cpufreq_driver->attr;
963 while (drv_attr && *drv_attr) {
964 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
965 if (ret)
966 return ret;
967 drv_attr++;
968 }
969 if (cpufreq_driver->get) {
970 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
971 if (ret)
972 return ret;
973 }
974
975 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
976 if (ret)
977 return ret;
978
979 if (cpufreq_driver->bios_limit) {
980 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
981 if (ret)
982 return ret;
983 }
984
985 return cpufreq_add_dev_symlink(policy);
986 }
987
988 __weak struct cpufreq_governor *cpufreq_default_governor(void)
989 {
990 return NULL;
991 }
992
993 static int cpufreq_init_policy(struct cpufreq_policy *policy)
994 {
995 struct cpufreq_governor *gov = NULL;
996 struct cpufreq_policy new_policy;
997
998 memcpy(&new_policy, policy, sizeof(*policy));
999
1000 /* Update governor of new_policy to the governor used before hotplug */
1001 gov = find_governor(policy->last_governor);
1002 if (gov) {
1003 pr_debug("Restoring governor %s for cpu %d\n",
1004 policy->governor->name, policy->cpu);
1005 } else {
1006 gov = cpufreq_default_governor();
1007 if (!gov)
1008 return -ENODATA;
1009 }
1010
1011 new_policy.governor = gov;
1012
1013 /* Use the default policy if there is no last_policy. */
1014 if (cpufreq_driver->setpolicy) {
1015 if (policy->last_policy)
1016 new_policy.policy = policy->last_policy;
1017 else
1018 cpufreq_parse_governor(gov->name, &new_policy.policy,
1019 NULL);
1020 }
1021 /* set default policy */
1022 return cpufreq_set_policy(policy, &new_policy);
1023 }
1024
1025 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1026 {
1027 int ret = 0;
1028
1029 /* Has this CPU been taken care of already? */
1030 if (cpumask_test_cpu(cpu, policy->cpus))
1031 return 0;
1032
1033 down_write(&policy->rwsem);
1034 if (has_target())
1035 cpufreq_stop_governor(policy);
1036
1037 cpumask_set_cpu(cpu, policy->cpus);
1038
1039 if (has_target()) {
1040 ret = cpufreq_start_governor(policy);
1041 if (ret)
1042 pr_err("%s: Failed to start governor\n", __func__);
1043 }
1044 up_write(&policy->rwsem);
1045 return ret;
1046 }
1047
1048 static void handle_update(struct work_struct *work)
1049 {
1050 struct cpufreq_policy *policy =
1051 container_of(work, struct cpufreq_policy, update);
1052 unsigned int cpu = policy->cpu;
1053 pr_debug("handle_update for cpu %u called\n", cpu);
1054 cpufreq_update_policy(cpu);
1055 }
1056
1057 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1058 {
1059 struct device *dev = get_cpu_device(cpu);
1060 struct cpufreq_policy *policy;
1061 int ret;
1062
1063 if (WARN_ON(!dev))
1064 return NULL;
1065
1066 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1067 if (!policy)
1068 return NULL;
1069
1070 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1071 goto err_free_policy;
1072
1073 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1074 goto err_free_cpumask;
1075
1076 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1077 goto err_free_rcpumask;
1078
1079 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1080 cpufreq_global_kobject, "policy%u", cpu);
1081 if (ret) {
1082 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1083 goto err_free_real_cpus;
1084 }
1085
1086 INIT_LIST_HEAD(&policy->policy_list);
1087 init_rwsem(&policy->rwsem);
1088 spin_lock_init(&policy->transition_lock);
1089 init_waitqueue_head(&policy->transition_wait);
1090 init_completion(&policy->kobj_unregister);
1091 INIT_WORK(&policy->update, handle_update);
1092
1093 policy->cpu = cpu;
1094 return policy;
1095
1096 err_free_real_cpus:
1097 free_cpumask_var(policy->real_cpus);
1098 err_free_rcpumask:
1099 free_cpumask_var(policy->related_cpus);
1100 err_free_cpumask:
1101 free_cpumask_var(policy->cpus);
1102 err_free_policy:
1103 kfree(policy);
1104
1105 return NULL;
1106 }
1107
1108 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1109 {
1110 struct kobject *kobj;
1111 struct completion *cmp;
1112
1113 if (notify)
1114 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1115 CPUFREQ_REMOVE_POLICY, policy);
1116
1117 down_write(&policy->rwsem);
1118 cpufreq_remove_dev_symlink(policy);
1119 kobj = &policy->kobj;
1120 cmp = &policy->kobj_unregister;
1121 up_write(&policy->rwsem);
1122 kobject_put(kobj);
1123
1124 /*
1125 * We need to make sure that the underlying kobj is
1126 * actually not referenced anymore by anybody before we
1127 * proceed with unloading.
1128 */
1129 pr_debug("waiting for dropping of refcount\n");
1130 wait_for_completion(cmp);
1131 pr_debug("wait complete\n");
1132 }
1133
1134 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1135 {
1136 unsigned long flags;
1137 int cpu;
1138
1139 /* Remove policy from list */
1140 write_lock_irqsave(&cpufreq_driver_lock, flags);
1141 list_del(&policy->policy_list);
1142
1143 for_each_cpu(cpu, policy->related_cpus)
1144 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1145 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1146
1147 cpufreq_policy_put_kobj(policy, notify);
1148 free_cpumask_var(policy->real_cpus);
1149 free_cpumask_var(policy->related_cpus);
1150 free_cpumask_var(policy->cpus);
1151 kfree(policy);
1152 }
1153
1154 static int cpufreq_online(unsigned int cpu)
1155 {
1156 struct cpufreq_policy *policy;
1157 bool new_policy;
1158 unsigned long flags;
1159 unsigned int j;
1160 int ret;
1161
1162 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1163
1164 /* Check if this CPU already has a policy to manage it */
1165 policy = per_cpu(cpufreq_cpu_data, cpu);
1166 if (policy) {
1167 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1168 if (!policy_is_inactive(policy))
1169 return cpufreq_add_policy_cpu(policy, cpu);
1170
1171 /* This is the only online CPU for the policy. Start over. */
1172 new_policy = false;
1173 down_write(&policy->rwsem);
1174 policy->cpu = cpu;
1175 policy->governor = NULL;
1176 up_write(&policy->rwsem);
1177 } else {
1178 new_policy = true;
1179 policy = cpufreq_policy_alloc(cpu);
1180 if (!policy)
1181 return -ENOMEM;
1182 }
1183
1184 cpumask_copy(policy->cpus, cpumask_of(cpu));
1185
1186 /* call driver. From then on the cpufreq must be able
1187 * to accept all calls to ->verify and ->setpolicy for this CPU
1188 */
1189 ret = cpufreq_driver->init(policy);
1190 if (ret) {
1191 pr_debug("initialization failed\n");
1192 goto out_free_policy;
1193 }
1194
1195 down_write(&policy->rwsem);
1196
1197 if (new_policy) {
1198 /* related_cpus should at least include policy->cpus. */
1199 cpumask_copy(policy->related_cpus, policy->cpus);
1200 /* Remember CPUs present at the policy creation time. */
1201 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1202 }
1203
1204 /*
1205 * affected cpus must always be the one, which are online. We aren't
1206 * managing offline cpus here.
1207 */
1208 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1209
1210 if (new_policy) {
1211 policy->user_policy.min = policy->min;
1212 policy->user_policy.max = policy->max;
1213
1214 write_lock_irqsave(&cpufreq_driver_lock, flags);
1215 for_each_cpu(j, policy->related_cpus)
1216 per_cpu(cpufreq_cpu_data, j) = policy;
1217 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1218 }
1219
1220 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1221 policy->cur = cpufreq_driver->get(policy->cpu);
1222 if (!policy->cur) {
1223 pr_err("%s: ->get() failed\n", __func__);
1224 goto out_exit_policy;
1225 }
1226 }
1227
1228 /*
1229 * Sometimes boot loaders set CPU frequency to a value outside of
1230 * frequency table present with cpufreq core. In such cases CPU might be
1231 * unstable if it has to run on that frequency for long duration of time
1232 * and so its better to set it to a frequency which is specified in
1233 * freq-table. This also makes cpufreq stats inconsistent as
1234 * cpufreq-stats would fail to register because current frequency of CPU
1235 * isn't found in freq-table.
1236 *
1237 * Because we don't want this change to effect boot process badly, we go
1238 * for the next freq which is >= policy->cur ('cur' must be set by now,
1239 * otherwise we will end up setting freq to lowest of the table as 'cur'
1240 * is initialized to zero).
1241 *
1242 * We are passing target-freq as "policy->cur - 1" otherwise
1243 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1244 * equal to target-freq.
1245 */
1246 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1247 && has_target()) {
1248 /* Are we running at unknown frequency ? */
1249 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1250 if (ret == -EINVAL) {
1251 /* Warn user and fix it */
1252 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1253 __func__, policy->cpu, policy->cur);
1254 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1255 CPUFREQ_RELATION_L);
1256
1257 /*
1258 * Reaching here after boot in a few seconds may not
1259 * mean that system will remain stable at "unknown"
1260 * frequency for longer duration. Hence, a BUG_ON().
1261 */
1262 BUG_ON(ret);
1263 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1264 __func__, policy->cpu, policy->cur);
1265 }
1266 }
1267
1268 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1269 CPUFREQ_START, policy);
1270
1271 if (new_policy) {
1272 ret = cpufreq_add_dev_interface(policy);
1273 if (ret)
1274 goto out_exit_policy;
1275 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1276 CPUFREQ_CREATE_POLICY, policy);
1277
1278 write_lock_irqsave(&cpufreq_driver_lock, flags);
1279 list_add(&policy->policy_list, &cpufreq_policy_list);
1280 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1281 }
1282
1283 ret = cpufreq_init_policy(policy);
1284 if (ret) {
1285 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1286 __func__, cpu, ret);
1287 /* cpufreq_policy_free() will notify based on this */
1288 new_policy = false;
1289 goto out_exit_policy;
1290 }
1291
1292 up_write(&policy->rwsem);
1293
1294 kobject_uevent(&policy->kobj, KOBJ_ADD);
1295
1296 /* Callback for handling stuff after policy is ready */
1297 if (cpufreq_driver->ready)
1298 cpufreq_driver->ready(policy);
1299
1300 pr_debug("initialization complete\n");
1301
1302 return 0;
1303
1304 out_exit_policy:
1305 up_write(&policy->rwsem);
1306
1307 if (cpufreq_driver->exit)
1308 cpufreq_driver->exit(policy);
1309 out_free_policy:
1310 cpufreq_policy_free(policy, !new_policy);
1311 return ret;
1312 }
1313
1314 /**
1315 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1316 * @dev: CPU device.
1317 * @sif: Subsystem interface structure pointer (not used)
1318 */
1319 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1320 {
1321 struct cpufreq_policy *policy;
1322 unsigned cpu = dev->id;
1323
1324 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1325
1326 if (cpu_online(cpu))
1327 return cpufreq_online(cpu);
1328
1329 /*
1330 * A hotplug notifier will follow and we will handle it as CPU online
1331 * then. For now, just create the sysfs link, unless there is no policy
1332 * or the link is already present.
1333 */
1334 policy = per_cpu(cpufreq_cpu_data, cpu);
1335 if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1336 return 0;
1337
1338 return add_cpu_dev_symlink(policy, cpu);
1339 }
1340
1341 static void cpufreq_offline(unsigned int cpu)
1342 {
1343 struct cpufreq_policy *policy;
1344 int ret;
1345
1346 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1347
1348 policy = cpufreq_cpu_get_raw(cpu);
1349 if (!policy) {
1350 pr_debug("%s: No cpu_data found\n", __func__);
1351 return;
1352 }
1353
1354 down_write(&policy->rwsem);
1355 if (has_target())
1356 cpufreq_stop_governor(policy);
1357
1358 cpumask_clear_cpu(cpu, policy->cpus);
1359
1360 if (policy_is_inactive(policy)) {
1361 if (has_target())
1362 strncpy(policy->last_governor, policy->governor->name,
1363 CPUFREQ_NAME_LEN);
1364 else
1365 policy->last_policy = policy->policy;
1366 } else if (cpu == policy->cpu) {
1367 /* Nominate new CPU */
1368 policy->cpu = cpumask_any(policy->cpus);
1369 }
1370
1371 /* Start governor again for active policy */
1372 if (!policy_is_inactive(policy)) {
1373 if (has_target()) {
1374 ret = cpufreq_start_governor(policy);
1375 if (ret)
1376 pr_err("%s: Failed to start governor\n", __func__);
1377 }
1378
1379 goto unlock;
1380 }
1381
1382 if (cpufreq_driver->stop_cpu)
1383 cpufreq_driver->stop_cpu(policy);
1384
1385 if (has_target())
1386 cpufreq_exit_governor(policy);
1387
1388 /*
1389 * Perform the ->exit() even during light-weight tear-down,
1390 * since this is a core component, and is essential for the
1391 * subsequent light-weight ->init() to succeed.
1392 */
1393 if (cpufreq_driver->exit) {
1394 cpufreq_driver->exit(policy);
1395 policy->freq_table = NULL;
1396 }
1397
1398 unlock:
1399 up_write(&policy->rwsem);
1400 }
1401
1402 /**
1403 * cpufreq_remove_dev - remove a CPU device
1404 *
1405 * Removes the cpufreq interface for a CPU device.
1406 */
1407 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1408 {
1409 unsigned int cpu = dev->id;
1410 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1411
1412 if (!policy)
1413 return;
1414
1415 if (cpu_online(cpu))
1416 cpufreq_offline(cpu);
1417
1418 cpumask_clear_cpu(cpu, policy->real_cpus);
1419 remove_cpu_dev_symlink(policy, cpu);
1420
1421 if (cpumask_empty(policy->real_cpus))
1422 cpufreq_policy_free(policy, true);
1423 }
1424
1425 /**
1426 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1427 * in deep trouble.
1428 * @policy: policy managing CPUs
1429 * @new_freq: CPU frequency the CPU actually runs at
1430 *
1431 * We adjust to current frequency first, and need to clean up later.
1432 * So either call to cpufreq_update_policy() or schedule handle_update()).
1433 */
1434 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1435 unsigned int new_freq)
1436 {
1437 struct cpufreq_freqs freqs;
1438
1439 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1440 policy->cur, new_freq);
1441
1442 freqs.old = policy->cur;
1443 freqs.new = new_freq;
1444
1445 cpufreq_freq_transition_begin(policy, &freqs);
1446 cpufreq_freq_transition_end(policy, &freqs, 0);
1447 }
1448
1449 /**
1450 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1451 * @cpu: CPU number
1452 *
1453 * This is the last known freq, without actually getting it from the driver.
1454 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1455 */
1456 unsigned int cpufreq_quick_get(unsigned int cpu)
1457 {
1458 struct cpufreq_policy *policy;
1459 unsigned int ret_freq = 0;
1460 unsigned long flags;
1461
1462 read_lock_irqsave(&cpufreq_driver_lock, flags);
1463
1464 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1465 ret_freq = cpufreq_driver->get(cpu);
1466 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1467 return ret_freq;
1468 }
1469
1470 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1471
1472 policy = cpufreq_cpu_get(cpu);
1473 if (policy) {
1474 ret_freq = policy->cur;
1475 cpufreq_cpu_put(policy);
1476 }
1477
1478 return ret_freq;
1479 }
1480 EXPORT_SYMBOL(cpufreq_quick_get);
1481
1482 /**
1483 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1484 * @cpu: CPU number
1485 *
1486 * Just return the max possible frequency for a given CPU.
1487 */
1488 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1489 {
1490 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1491 unsigned int ret_freq = 0;
1492
1493 if (policy) {
1494 ret_freq = policy->max;
1495 cpufreq_cpu_put(policy);
1496 }
1497
1498 return ret_freq;
1499 }
1500 EXPORT_SYMBOL(cpufreq_quick_get_max);
1501
1502 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1503 {
1504 unsigned int ret_freq = 0;
1505
1506 if (!cpufreq_driver->get)
1507 return ret_freq;
1508
1509 ret_freq = cpufreq_driver->get(policy->cpu);
1510
1511 /*
1512 * Updating inactive policies is invalid, so avoid doing that. Also
1513 * if fast frequency switching is used with the given policy, the check
1514 * against policy->cur is pointless, so skip it in that case too.
1515 */
1516 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1517 return ret_freq;
1518
1519 if (ret_freq && policy->cur &&
1520 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1521 /* verify no discrepancy between actual and
1522 saved value exists */
1523 if (unlikely(ret_freq != policy->cur)) {
1524 cpufreq_out_of_sync(policy, ret_freq);
1525 schedule_work(&policy->update);
1526 }
1527 }
1528
1529 return ret_freq;
1530 }
1531
1532 /**
1533 * cpufreq_get - get the current CPU frequency (in kHz)
1534 * @cpu: CPU number
1535 *
1536 * Get the CPU current (static) CPU frequency
1537 */
1538 unsigned int cpufreq_get(unsigned int cpu)
1539 {
1540 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1541 unsigned int ret_freq = 0;
1542
1543 if (policy) {
1544 down_read(&policy->rwsem);
1545 ret_freq = __cpufreq_get(policy);
1546 up_read(&policy->rwsem);
1547
1548 cpufreq_cpu_put(policy);
1549 }
1550
1551 return ret_freq;
1552 }
1553 EXPORT_SYMBOL(cpufreq_get);
1554
1555 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1556 {
1557 unsigned int new_freq;
1558
1559 if (cpufreq_suspended)
1560 return 0;
1561
1562 new_freq = cpufreq_driver->get(policy->cpu);
1563 if (!new_freq)
1564 return 0;
1565
1566 if (!policy->cur) {
1567 pr_debug("cpufreq: Driver did not initialize current freq\n");
1568 policy->cur = new_freq;
1569 } else if (policy->cur != new_freq && has_target()) {
1570 cpufreq_out_of_sync(policy, new_freq);
1571 }
1572
1573 return new_freq;
1574 }
1575
1576 static struct subsys_interface cpufreq_interface = {
1577 .name = "cpufreq",
1578 .subsys = &cpu_subsys,
1579 .add_dev = cpufreq_add_dev,
1580 .remove_dev = cpufreq_remove_dev,
1581 };
1582
1583 /*
1584 * In case platform wants some specific frequency to be configured
1585 * during suspend..
1586 */
1587 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1588 {
1589 int ret;
1590
1591 if (!policy->suspend_freq) {
1592 pr_debug("%s: suspend_freq not defined\n", __func__);
1593 return 0;
1594 }
1595
1596 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1597 policy->suspend_freq);
1598
1599 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1600 CPUFREQ_RELATION_H);
1601 if (ret)
1602 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1603 __func__, policy->suspend_freq, ret);
1604
1605 return ret;
1606 }
1607 EXPORT_SYMBOL(cpufreq_generic_suspend);
1608
1609 /**
1610 * cpufreq_suspend() - Suspend CPUFreq governors
1611 *
1612 * Called during system wide Suspend/Hibernate cycles for suspending governors
1613 * as some platforms can't change frequency after this point in suspend cycle.
1614 * Because some of the devices (like: i2c, regulators, etc) they use for
1615 * changing frequency are suspended quickly after this point.
1616 */
1617 void cpufreq_suspend(void)
1618 {
1619 struct cpufreq_policy *policy;
1620
1621 if (!cpufreq_driver)
1622 return;
1623
1624 if (!has_target() && !cpufreq_driver->suspend)
1625 goto suspend;
1626
1627 pr_debug("%s: Suspending Governors\n", __func__);
1628
1629 for_each_active_policy(policy) {
1630 if (has_target()) {
1631 down_write(&policy->rwsem);
1632 cpufreq_stop_governor(policy);
1633 up_write(&policy->rwsem);
1634 }
1635
1636 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1637 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1638 policy);
1639 }
1640
1641 suspend:
1642 cpufreq_suspended = true;
1643 }
1644
1645 /**
1646 * cpufreq_resume() - Resume CPUFreq governors
1647 *
1648 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1649 * are suspended with cpufreq_suspend().
1650 */
1651 void cpufreq_resume(void)
1652 {
1653 struct cpufreq_policy *policy;
1654 int ret;
1655
1656 if (!cpufreq_driver)
1657 return;
1658
1659 cpufreq_suspended = false;
1660
1661 if (!has_target() && !cpufreq_driver->resume)
1662 return;
1663
1664 pr_debug("%s: Resuming Governors\n", __func__);
1665
1666 for_each_active_policy(policy) {
1667 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1668 pr_err("%s: Failed to resume driver: %p\n", __func__,
1669 policy);
1670 } else if (has_target()) {
1671 down_write(&policy->rwsem);
1672 ret = cpufreq_start_governor(policy);
1673 up_write(&policy->rwsem);
1674
1675 if (ret)
1676 pr_err("%s: Failed to start governor for policy: %p\n",
1677 __func__, policy);
1678 }
1679 }
1680 }
1681
1682 /**
1683 * cpufreq_get_current_driver - return current driver's name
1684 *
1685 * Return the name string of the currently loaded cpufreq driver
1686 * or NULL, if none.
1687 */
1688 const char *cpufreq_get_current_driver(void)
1689 {
1690 if (cpufreq_driver)
1691 return cpufreq_driver->name;
1692
1693 return NULL;
1694 }
1695 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1696
1697 /**
1698 * cpufreq_get_driver_data - return current driver data
1699 *
1700 * Return the private data of the currently loaded cpufreq
1701 * driver, or NULL if no cpufreq driver is loaded.
1702 */
1703 void *cpufreq_get_driver_data(void)
1704 {
1705 if (cpufreq_driver)
1706 return cpufreq_driver->driver_data;
1707
1708 return NULL;
1709 }
1710 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1711
1712 /*********************************************************************
1713 * NOTIFIER LISTS INTERFACE *
1714 *********************************************************************/
1715
1716 /**
1717 * cpufreq_register_notifier - register a driver with cpufreq
1718 * @nb: notifier function to register
1719 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1720 *
1721 * Add a driver to one of two lists: either a list of drivers that
1722 * are notified about clock rate changes (once before and once after
1723 * the transition), or a list of drivers that are notified about
1724 * changes in cpufreq policy.
1725 *
1726 * This function may sleep, and has the same return conditions as
1727 * blocking_notifier_chain_register.
1728 */
1729 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1730 {
1731 int ret;
1732
1733 if (cpufreq_disabled())
1734 return -EINVAL;
1735
1736 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1737
1738 switch (list) {
1739 case CPUFREQ_TRANSITION_NOTIFIER:
1740 mutex_lock(&cpufreq_fast_switch_lock);
1741
1742 if (cpufreq_fast_switch_count > 0) {
1743 mutex_unlock(&cpufreq_fast_switch_lock);
1744 return -EBUSY;
1745 }
1746 ret = srcu_notifier_chain_register(
1747 &cpufreq_transition_notifier_list, nb);
1748 if (!ret)
1749 cpufreq_fast_switch_count--;
1750
1751 mutex_unlock(&cpufreq_fast_switch_lock);
1752 break;
1753 case CPUFREQ_POLICY_NOTIFIER:
1754 ret = blocking_notifier_chain_register(
1755 &cpufreq_policy_notifier_list, nb);
1756 break;
1757 default:
1758 ret = -EINVAL;
1759 }
1760
1761 return ret;
1762 }
1763 EXPORT_SYMBOL(cpufreq_register_notifier);
1764
1765 /**
1766 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1767 * @nb: notifier block to be unregistered
1768 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1769 *
1770 * Remove a driver from the CPU frequency notifier list.
1771 *
1772 * This function may sleep, and has the same return conditions as
1773 * blocking_notifier_chain_unregister.
1774 */
1775 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1776 {
1777 int ret;
1778
1779 if (cpufreq_disabled())
1780 return -EINVAL;
1781
1782 switch (list) {
1783 case CPUFREQ_TRANSITION_NOTIFIER:
1784 mutex_lock(&cpufreq_fast_switch_lock);
1785
1786 ret = srcu_notifier_chain_unregister(
1787 &cpufreq_transition_notifier_list, nb);
1788 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1789 cpufreq_fast_switch_count++;
1790
1791 mutex_unlock(&cpufreq_fast_switch_lock);
1792 break;
1793 case CPUFREQ_POLICY_NOTIFIER:
1794 ret = blocking_notifier_chain_unregister(
1795 &cpufreq_policy_notifier_list, nb);
1796 break;
1797 default:
1798 ret = -EINVAL;
1799 }
1800
1801 return ret;
1802 }
1803 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1804
1805
1806 /*********************************************************************
1807 * GOVERNORS *
1808 *********************************************************************/
1809
1810 /**
1811 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1812 * @policy: cpufreq policy to switch the frequency for.
1813 * @target_freq: New frequency to set (may be approximate).
1814 *
1815 * Carry out a fast frequency switch without sleeping.
1816 *
1817 * The driver's ->fast_switch() callback invoked by this function must be
1818 * suitable for being called from within RCU-sched read-side critical sections
1819 * and it is expected to select the minimum available frequency greater than or
1820 * equal to @target_freq (CPUFREQ_RELATION_L).
1821 *
1822 * This function must not be called if policy->fast_switch_enabled is unset.
1823 *
1824 * Governors calling this function must guarantee that it will never be invoked
1825 * twice in parallel for the same policy and that it will never be called in
1826 * parallel with either ->target() or ->target_index() for the same policy.
1827 *
1828 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1829 * callback to indicate an error condition, the hardware configuration must be
1830 * preserved.
1831 */
1832 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1833 unsigned int target_freq)
1834 {
1835 target_freq = clamp_val(target_freq, policy->min, policy->max);
1836
1837 return cpufreq_driver->fast_switch(policy, target_freq);
1838 }
1839 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1840
1841 /* Must set freqs->new to intermediate frequency */
1842 static int __target_intermediate(struct cpufreq_policy *policy,
1843 struct cpufreq_freqs *freqs, int index)
1844 {
1845 int ret;
1846
1847 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1848
1849 /* We don't need to switch to intermediate freq */
1850 if (!freqs->new)
1851 return 0;
1852
1853 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1854 __func__, policy->cpu, freqs->old, freqs->new);
1855
1856 cpufreq_freq_transition_begin(policy, freqs);
1857 ret = cpufreq_driver->target_intermediate(policy, index);
1858 cpufreq_freq_transition_end(policy, freqs, ret);
1859
1860 if (ret)
1861 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1862 __func__, ret);
1863
1864 return ret;
1865 }
1866
1867 static int __target_index(struct cpufreq_policy *policy,
1868 struct cpufreq_frequency_table *freq_table, int index)
1869 {
1870 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1871 unsigned int intermediate_freq = 0;
1872 int retval = -EINVAL;
1873 bool notify;
1874
1875 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1876 if (notify) {
1877 /* Handle switching to intermediate frequency */
1878 if (cpufreq_driver->get_intermediate) {
1879 retval = __target_intermediate(policy, &freqs, index);
1880 if (retval)
1881 return retval;
1882
1883 intermediate_freq = freqs.new;
1884 /* Set old freq to intermediate */
1885 if (intermediate_freq)
1886 freqs.old = freqs.new;
1887 }
1888
1889 freqs.new = freq_table[index].frequency;
1890 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1891 __func__, policy->cpu, freqs.old, freqs.new);
1892
1893 cpufreq_freq_transition_begin(policy, &freqs);
1894 }
1895
1896 retval = cpufreq_driver->target_index(policy, index);
1897 if (retval)
1898 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1899 retval);
1900
1901 if (notify) {
1902 cpufreq_freq_transition_end(policy, &freqs, retval);
1903
1904 /*
1905 * Failed after setting to intermediate freq? Driver should have
1906 * reverted back to initial frequency and so should we. Check
1907 * here for intermediate_freq instead of get_intermediate, in
1908 * case we haven't switched to intermediate freq at all.
1909 */
1910 if (unlikely(retval && intermediate_freq)) {
1911 freqs.old = intermediate_freq;
1912 freqs.new = policy->restore_freq;
1913 cpufreq_freq_transition_begin(policy, &freqs);
1914 cpufreq_freq_transition_end(policy, &freqs, 0);
1915 }
1916 }
1917
1918 return retval;
1919 }
1920
1921 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1922 unsigned int target_freq,
1923 unsigned int relation)
1924 {
1925 unsigned int old_target_freq = target_freq;
1926 struct cpufreq_frequency_table *freq_table;
1927 int index, retval;
1928
1929 if (cpufreq_disabled())
1930 return -ENODEV;
1931
1932 /* Make sure that target_freq is within supported range */
1933 if (target_freq > policy->max)
1934 target_freq = policy->max;
1935 if (target_freq < policy->min)
1936 target_freq = policy->min;
1937
1938 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1939 policy->cpu, target_freq, relation, old_target_freq);
1940
1941 /*
1942 * This might look like a redundant call as we are checking it again
1943 * after finding index. But it is left intentionally for cases where
1944 * exactly same freq is called again and so we can save on few function
1945 * calls.
1946 */
1947 if (target_freq == policy->cur)
1948 return 0;
1949
1950 /* Save last value to restore later on errors */
1951 policy->restore_freq = policy->cur;
1952
1953 if (cpufreq_driver->target)
1954 return cpufreq_driver->target(policy, target_freq, relation);
1955
1956 if (!cpufreq_driver->target_index)
1957 return -EINVAL;
1958
1959 freq_table = cpufreq_frequency_get_table(policy->cpu);
1960 if (unlikely(!freq_table)) {
1961 pr_err("%s: Unable to find freq_table\n", __func__);
1962 return -EINVAL;
1963 }
1964
1965 retval = cpufreq_frequency_table_target(policy, freq_table, target_freq,
1966 relation, &index);
1967 if (unlikely(retval)) {
1968 pr_err("%s: Unable to find matching freq\n", __func__);
1969 return retval;
1970 }
1971
1972 if (freq_table[index].frequency == policy->cur)
1973 return 0;
1974
1975 return __target_index(policy, freq_table, index);
1976 }
1977 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1978
1979 int cpufreq_driver_target(struct cpufreq_policy *policy,
1980 unsigned int target_freq,
1981 unsigned int relation)
1982 {
1983 int ret = -EINVAL;
1984
1985 down_write(&policy->rwsem);
1986
1987 ret = __cpufreq_driver_target(policy, target_freq, relation);
1988
1989 up_write(&policy->rwsem);
1990
1991 return ret;
1992 }
1993 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1994
1995 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1996 {
1997 return NULL;
1998 }
1999
2000 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
2001 {
2002 int ret;
2003
2004 /* Don't start any governor operations if we are entering suspend */
2005 if (cpufreq_suspended)
2006 return 0;
2007 /*
2008 * Governor might not be initiated here if ACPI _PPC changed
2009 * notification happened, so check it.
2010 */
2011 if (!policy->governor)
2012 return -EINVAL;
2013
2014 if (policy->governor->max_transition_latency &&
2015 policy->cpuinfo.transition_latency >
2016 policy->governor->max_transition_latency) {
2017 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2018
2019 if (gov) {
2020 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2021 policy->governor->name, gov->name);
2022 policy->governor = gov;
2023 } else {
2024 return -EINVAL;
2025 }
2026 }
2027
2028 if (event == CPUFREQ_GOV_POLICY_INIT)
2029 if (!try_module_get(policy->governor->owner))
2030 return -EINVAL;
2031
2032 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
2033
2034 ret = policy->governor->governor(policy, event);
2035
2036 if (event == CPUFREQ_GOV_POLICY_INIT) {
2037 if (ret)
2038 module_put(policy->governor->owner);
2039 else
2040 policy->governor->initialized++;
2041 } else if (event == CPUFREQ_GOV_POLICY_EXIT) {
2042 policy->governor->initialized--;
2043 module_put(policy->governor->owner);
2044 }
2045
2046 return ret;
2047 }
2048
2049 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2050 {
2051 int ret;
2052
2053 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2054 cpufreq_update_current_freq(policy);
2055
2056 ret = cpufreq_governor(policy, CPUFREQ_GOV_START);
2057 return ret ? ret : cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2058 }
2059
2060 int cpufreq_register_governor(struct cpufreq_governor *governor)
2061 {
2062 int err;
2063
2064 if (!governor)
2065 return -EINVAL;
2066
2067 if (cpufreq_disabled())
2068 return -ENODEV;
2069
2070 mutex_lock(&cpufreq_governor_mutex);
2071
2072 governor->initialized = 0;
2073 err = -EBUSY;
2074 if (!find_governor(governor->name)) {
2075 err = 0;
2076 list_add(&governor->governor_list, &cpufreq_governor_list);
2077 }
2078
2079 mutex_unlock(&cpufreq_governor_mutex);
2080 return err;
2081 }
2082 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2083
2084 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2085 {
2086 struct cpufreq_policy *policy;
2087 unsigned long flags;
2088
2089 if (!governor)
2090 return;
2091
2092 if (cpufreq_disabled())
2093 return;
2094
2095 /* clear last_governor for all inactive policies */
2096 read_lock_irqsave(&cpufreq_driver_lock, flags);
2097 for_each_inactive_policy(policy) {
2098 if (!strcmp(policy->last_governor, governor->name)) {
2099 policy->governor = NULL;
2100 strcpy(policy->last_governor, "\0");
2101 }
2102 }
2103 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2104
2105 mutex_lock(&cpufreq_governor_mutex);
2106 list_del(&governor->governor_list);
2107 mutex_unlock(&cpufreq_governor_mutex);
2108 return;
2109 }
2110 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2111
2112
2113 /*********************************************************************
2114 * POLICY INTERFACE *
2115 *********************************************************************/
2116
2117 /**
2118 * cpufreq_get_policy - get the current cpufreq_policy
2119 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2120 * is written
2121 *
2122 * Reads the current cpufreq policy.
2123 */
2124 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2125 {
2126 struct cpufreq_policy *cpu_policy;
2127 if (!policy)
2128 return -EINVAL;
2129
2130 cpu_policy = cpufreq_cpu_get(cpu);
2131 if (!cpu_policy)
2132 return -EINVAL;
2133
2134 memcpy(policy, cpu_policy, sizeof(*policy));
2135
2136 cpufreq_cpu_put(cpu_policy);
2137 return 0;
2138 }
2139 EXPORT_SYMBOL(cpufreq_get_policy);
2140
2141 /*
2142 * policy : current policy.
2143 * new_policy: policy to be set.
2144 */
2145 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2146 struct cpufreq_policy *new_policy)
2147 {
2148 struct cpufreq_governor *old_gov;
2149 int ret;
2150
2151 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2152 new_policy->cpu, new_policy->min, new_policy->max);
2153
2154 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2155
2156 /*
2157 * This check works well when we store new min/max freq attributes,
2158 * because new_policy is a copy of policy with one field updated.
2159 */
2160 if (new_policy->min > new_policy->max)
2161 return -EINVAL;
2162
2163 /* verify the cpu speed can be set within this limit */
2164 ret = cpufreq_driver->verify(new_policy);
2165 if (ret)
2166 return ret;
2167
2168 /* adjust if necessary - all reasons */
2169 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2170 CPUFREQ_ADJUST, new_policy);
2171
2172 /*
2173 * verify the cpu speed can be set within this limit, which might be
2174 * different to the first one
2175 */
2176 ret = cpufreq_driver->verify(new_policy);
2177 if (ret)
2178 return ret;
2179
2180 /* notification of the new policy */
2181 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2182 CPUFREQ_NOTIFY, new_policy);
2183
2184 policy->min = new_policy->min;
2185 policy->max = new_policy->max;
2186
2187 pr_debug("new min and max freqs are %u - %u kHz\n",
2188 policy->min, policy->max);
2189
2190 if (cpufreq_driver->setpolicy) {
2191 policy->policy = new_policy->policy;
2192 pr_debug("setting range\n");
2193 return cpufreq_driver->setpolicy(new_policy);
2194 }
2195
2196 if (new_policy->governor == policy->governor) {
2197 pr_debug("cpufreq: governor limits update\n");
2198 return cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2199 }
2200
2201 pr_debug("governor switch\n");
2202
2203 /* save old, working values */
2204 old_gov = policy->governor;
2205 /* end old governor */
2206 if (old_gov) {
2207 cpufreq_stop_governor(policy);
2208 cpufreq_exit_governor(policy);
2209 }
2210
2211 /* start new governor */
2212 policy->governor = new_policy->governor;
2213 ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2214 if (!ret) {
2215 ret = cpufreq_start_governor(policy);
2216 if (!ret) {
2217 pr_debug("cpufreq: governor change\n");
2218 return 0;
2219 }
2220 cpufreq_exit_governor(policy);
2221 }
2222
2223 /* new governor failed, so re-start old one */
2224 pr_debug("starting governor %s failed\n", policy->governor->name);
2225 if (old_gov) {
2226 policy->governor = old_gov;
2227 if (cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2228 policy->governor = NULL;
2229 else
2230 cpufreq_start_governor(policy);
2231 }
2232
2233 return ret;
2234 }
2235
2236 /**
2237 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2238 * @cpu: CPU which shall be re-evaluated
2239 *
2240 * Useful for policy notifiers which have different necessities
2241 * at different times.
2242 */
2243 int cpufreq_update_policy(unsigned int cpu)
2244 {
2245 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2246 struct cpufreq_policy new_policy;
2247 int ret;
2248
2249 if (!policy)
2250 return -ENODEV;
2251
2252 down_write(&policy->rwsem);
2253
2254 pr_debug("updating policy for CPU %u\n", cpu);
2255 memcpy(&new_policy, policy, sizeof(*policy));
2256 new_policy.min = policy->user_policy.min;
2257 new_policy.max = policy->user_policy.max;
2258
2259 /*
2260 * BIOS might change freq behind our back
2261 * -> ask driver for current freq and notify governors about a change
2262 */
2263 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2264 new_policy.cur = cpufreq_update_current_freq(policy);
2265 if (WARN_ON(!new_policy.cur)) {
2266 ret = -EIO;
2267 goto unlock;
2268 }
2269 }
2270
2271 ret = cpufreq_set_policy(policy, &new_policy);
2272
2273 unlock:
2274 up_write(&policy->rwsem);
2275
2276 cpufreq_cpu_put(policy);
2277 return ret;
2278 }
2279 EXPORT_SYMBOL(cpufreq_update_policy);
2280
2281 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2282 unsigned long action, void *hcpu)
2283 {
2284 unsigned int cpu = (unsigned long)hcpu;
2285
2286 switch (action & ~CPU_TASKS_FROZEN) {
2287 case CPU_ONLINE:
2288 case CPU_DOWN_FAILED:
2289 cpufreq_online(cpu);
2290 break;
2291
2292 case CPU_DOWN_PREPARE:
2293 cpufreq_offline(cpu);
2294 break;
2295 }
2296 return NOTIFY_OK;
2297 }
2298
2299 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2300 .notifier_call = cpufreq_cpu_callback,
2301 };
2302
2303 /*********************************************************************
2304 * BOOST *
2305 *********************************************************************/
2306 static int cpufreq_boost_set_sw(int state)
2307 {
2308 struct cpufreq_frequency_table *freq_table;
2309 struct cpufreq_policy *policy;
2310 int ret = -EINVAL;
2311
2312 for_each_active_policy(policy) {
2313 freq_table = cpufreq_frequency_get_table(policy->cpu);
2314 if (freq_table) {
2315 ret = cpufreq_frequency_table_cpuinfo(policy,
2316 freq_table);
2317 if (ret) {
2318 pr_err("%s: Policy frequency update failed\n",
2319 __func__);
2320 break;
2321 }
2322
2323 down_write(&policy->rwsem);
2324 policy->user_policy.max = policy->max;
2325 cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2326 up_write(&policy->rwsem);
2327 }
2328 }
2329
2330 return ret;
2331 }
2332
2333 int cpufreq_boost_trigger_state(int state)
2334 {
2335 unsigned long flags;
2336 int ret = 0;
2337
2338 if (cpufreq_driver->boost_enabled == state)
2339 return 0;
2340
2341 write_lock_irqsave(&cpufreq_driver_lock, flags);
2342 cpufreq_driver->boost_enabled = state;
2343 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2344
2345 ret = cpufreq_driver->set_boost(state);
2346 if (ret) {
2347 write_lock_irqsave(&cpufreq_driver_lock, flags);
2348 cpufreq_driver->boost_enabled = !state;
2349 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2350
2351 pr_err("%s: Cannot %s BOOST\n",
2352 __func__, state ? "enable" : "disable");
2353 }
2354
2355 return ret;
2356 }
2357
2358 static bool cpufreq_boost_supported(void)
2359 {
2360 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2361 }
2362
2363 static int create_boost_sysfs_file(void)
2364 {
2365 int ret;
2366
2367 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2368 if (ret)
2369 pr_err("%s: cannot register global BOOST sysfs file\n",
2370 __func__);
2371
2372 return ret;
2373 }
2374
2375 static void remove_boost_sysfs_file(void)
2376 {
2377 if (cpufreq_boost_supported())
2378 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2379 }
2380
2381 int cpufreq_enable_boost_support(void)
2382 {
2383 if (!cpufreq_driver)
2384 return -EINVAL;
2385
2386 if (cpufreq_boost_supported())
2387 return 0;
2388
2389 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2390
2391 /* This will get removed on driver unregister */
2392 return create_boost_sysfs_file();
2393 }
2394 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2395
2396 int cpufreq_boost_enabled(void)
2397 {
2398 return cpufreq_driver->boost_enabled;
2399 }
2400 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2401
2402 /*********************************************************************
2403 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2404 *********************************************************************/
2405
2406 /**
2407 * cpufreq_register_driver - register a CPU Frequency driver
2408 * @driver_data: A struct cpufreq_driver containing the values#
2409 * submitted by the CPU Frequency driver.
2410 *
2411 * Registers a CPU Frequency driver to this core code. This code
2412 * returns zero on success, -EEXIST when another driver got here first
2413 * (and isn't unregistered in the meantime).
2414 *
2415 */
2416 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2417 {
2418 unsigned long flags;
2419 int ret;
2420
2421 if (cpufreq_disabled())
2422 return -ENODEV;
2423
2424 if (!driver_data || !driver_data->verify || !driver_data->init ||
2425 !(driver_data->setpolicy || driver_data->target_index ||
2426 driver_data->target) ||
2427 (driver_data->setpolicy && (driver_data->target_index ||
2428 driver_data->target)) ||
2429 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2430 return -EINVAL;
2431
2432 pr_debug("trying to register driver %s\n", driver_data->name);
2433
2434 /* Protect against concurrent CPU online/offline. */
2435 get_online_cpus();
2436
2437 write_lock_irqsave(&cpufreq_driver_lock, flags);
2438 if (cpufreq_driver) {
2439 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2440 ret = -EEXIST;
2441 goto out;
2442 }
2443 cpufreq_driver = driver_data;
2444 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2445
2446 if (driver_data->setpolicy)
2447 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2448
2449 if (cpufreq_boost_supported()) {
2450 ret = create_boost_sysfs_file();
2451 if (ret)
2452 goto err_null_driver;
2453 }
2454
2455 ret = subsys_interface_register(&cpufreq_interface);
2456 if (ret)
2457 goto err_boost_unreg;
2458
2459 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2460 list_empty(&cpufreq_policy_list)) {
2461 /* if all ->init() calls failed, unregister */
2462 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2463 driver_data->name);
2464 goto err_if_unreg;
2465 }
2466
2467 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2468 pr_debug("driver %s up and running\n", driver_data->name);
2469 goto out;
2470
2471 err_if_unreg:
2472 subsys_interface_unregister(&cpufreq_interface);
2473 err_boost_unreg:
2474 remove_boost_sysfs_file();
2475 err_null_driver:
2476 write_lock_irqsave(&cpufreq_driver_lock, flags);
2477 cpufreq_driver = NULL;
2478 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2479 out:
2480 put_online_cpus();
2481 return ret;
2482 }
2483 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2484
2485 /**
2486 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2487 *
2488 * Unregister the current CPUFreq driver. Only call this if you have
2489 * the right to do so, i.e. if you have succeeded in initialising before!
2490 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2491 * currently not initialised.
2492 */
2493 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2494 {
2495 unsigned long flags;
2496
2497 if (!cpufreq_driver || (driver != cpufreq_driver))
2498 return -EINVAL;
2499
2500 pr_debug("unregistering driver %s\n", driver->name);
2501
2502 /* Protect against concurrent cpu hotplug */
2503 get_online_cpus();
2504 subsys_interface_unregister(&cpufreq_interface);
2505 remove_boost_sysfs_file();
2506 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2507
2508 write_lock_irqsave(&cpufreq_driver_lock, flags);
2509
2510 cpufreq_driver = NULL;
2511
2512 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2513 put_online_cpus();
2514
2515 return 0;
2516 }
2517 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2518
2519 /*
2520 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2521 * or mutexes when secondary CPUs are halted.
2522 */
2523 static struct syscore_ops cpufreq_syscore_ops = {
2524 .shutdown = cpufreq_suspend,
2525 };
2526
2527 struct kobject *cpufreq_global_kobject;
2528 EXPORT_SYMBOL(cpufreq_global_kobject);
2529
2530 static int __init cpufreq_core_init(void)
2531 {
2532 if (cpufreq_disabled())
2533 return -ENODEV;
2534
2535 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2536 BUG_ON(!cpufreq_global_kobject);
2537
2538 register_syscore_ops(&cpufreq_syscore_ops);
2539
2540 return 0;
2541 }
2542 core_initcall(cpufreq_core_init);
This page took 0.122856 seconds and 6 git commands to generate.