Merge commit 'v2.6.30-rc1' into sched/urgent
[deliverable/linux.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26
27 /*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
34
35 /*
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
40 * rate.
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
44 */
45 static unsigned int def_sampling_rate;
46 #define MIN_SAMPLING_RATE_RATIO (2)
47 /* for correct statistics, we need at least 10 ticks between each measure */
48 #define MIN_STAT_SAMPLING_RATE \
49 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
50 #define MIN_SAMPLING_RATE \
51 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
52 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
53 * Define the minimal settable sampling rate to the greater of:
54 * - "HW transition latency" * 100 (same as default sampling / 10)
55 * - MIN_STAT_SAMPLING_RATE
56 * To avoid that userspace shoots itself.
57 */
58 static unsigned int minimum_sampling_rate(void)
59 {
60 return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
61 }
62
63 /* This will also vanish soon with removing sampling_rate_max */
64 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
65 #define LATENCY_MULTIPLIER (1000)
66 #define DEF_SAMPLING_DOWN_FACTOR (1)
67 #define MAX_SAMPLING_DOWN_FACTOR (10)
68 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
69
70 static void do_dbs_timer(struct work_struct *work);
71
72 struct cpu_dbs_info_s {
73 cputime64_t prev_cpu_idle;
74 cputime64_t prev_cpu_wall;
75 cputime64_t prev_cpu_nice;
76 struct cpufreq_policy *cur_policy;
77 struct delayed_work work;
78 unsigned int down_skip;
79 unsigned int requested_freq;
80 int cpu;
81 unsigned int enable:1;
82 };
83 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
84
85 static unsigned int dbs_enable; /* number of CPUs using this policy */
86
87 /*
88 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
89 * lock and dbs_mutex. cpu_hotplug lock should always be held before
90 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
91 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
92 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
93 * is recursive for the same process. -Venki
94 */
95 static DEFINE_MUTEX(dbs_mutex);
96
97 static struct workqueue_struct *kconservative_wq;
98
99 static struct dbs_tuners {
100 unsigned int sampling_rate;
101 unsigned int sampling_down_factor;
102 unsigned int up_threshold;
103 unsigned int down_threshold;
104 unsigned int ignore_nice;
105 unsigned int freq_step;
106 } dbs_tuners_ins = {
107 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
108 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
109 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
110 .ignore_nice = 0,
111 .freq_step = 5,
112 };
113
114 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
115 cputime64_t *wall)
116 {
117 cputime64_t idle_time;
118 cputime64_t cur_wall_time;
119 cputime64_t busy_time;
120
121 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
122 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
123 kstat_cpu(cpu).cpustat.system);
124
125 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
126 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
127 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
128 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
129
130 idle_time = cputime64_sub(cur_wall_time, busy_time);
131 if (wall)
132 *wall = cur_wall_time;
133
134 return idle_time;
135 }
136
137 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
138 {
139 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
140
141 if (idle_time == -1ULL)
142 return get_cpu_idle_time_jiffy(cpu, wall);
143
144 return idle_time;
145 }
146
147 /* keep track of frequency transitions */
148 static int
149 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
150 void *data)
151 {
152 struct cpufreq_freqs *freq = data;
153 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
154 freq->cpu);
155
156 struct cpufreq_policy *policy;
157
158 if (!this_dbs_info->enable)
159 return 0;
160
161 policy = this_dbs_info->cur_policy;
162
163 /*
164 * we only care if our internally tracked freq moves outside
165 * the 'valid' ranges of freqency available to us otherwise
166 * we do not change it
167 */
168 if (this_dbs_info->requested_freq > policy->max
169 || this_dbs_info->requested_freq < policy->min)
170 this_dbs_info->requested_freq = freq->new;
171
172 return 0;
173 }
174
175 static struct notifier_block dbs_cpufreq_notifier_block = {
176 .notifier_call = dbs_cpufreq_notifier
177 };
178
179 /************************** sysfs interface ************************/
180 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
181 {
182 static int print_once;
183
184 if (!print_once) {
185 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
186 "sysfs file is deprecated - used by: %s\n",
187 current->comm);
188 print_once = 1;
189 }
190 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
191 }
192
193 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
194 {
195 static int print_once;
196
197 if (!print_once) {
198 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
199 "sysfs file is deprecated - used by: %s\n", current->comm);
200 print_once = 1;
201 }
202 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
203 }
204
205 #define define_one_ro(_name) \
206 static struct freq_attr _name = \
207 __ATTR(_name, 0444, show_##_name, NULL)
208
209 define_one_ro(sampling_rate_max);
210 define_one_ro(sampling_rate_min);
211
212 /* cpufreq_conservative Governor Tunables */
213 #define show_one(file_name, object) \
214 static ssize_t show_##file_name \
215 (struct cpufreq_policy *unused, char *buf) \
216 { \
217 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
218 }
219 show_one(sampling_rate, sampling_rate);
220 show_one(sampling_down_factor, sampling_down_factor);
221 show_one(up_threshold, up_threshold);
222 show_one(down_threshold, down_threshold);
223 show_one(ignore_nice_load, ignore_nice);
224 show_one(freq_step, freq_step);
225
226 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
227 const char *buf, size_t count)
228 {
229 unsigned int input;
230 int ret;
231 ret = sscanf(buf, "%u", &input);
232
233 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
234 return -EINVAL;
235
236 mutex_lock(&dbs_mutex);
237 dbs_tuners_ins.sampling_down_factor = input;
238 mutex_unlock(&dbs_mutex);
239
240 return count;
241 }
242
243 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
244 const char *buf, size_t count)
245 {
246 unsigned int input;
247 int ret;
248 ret = sscanf(buf, "%u", &input);
249
250 if (ret != 1)
251 return -EINVAL;
252
253 mutex_lock(&dbs_mutex);
254 dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
255 mutex_unlock(&dbs_mutex);
256
257 return count;
258 }
259
260 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
261 const char *buf, size_t count)
262 {
263 unsigned int input;
264 int ret;
265 ret = sscanf(buf, "%u", &input);
266
267 mutex_lock(&dbs_mutex);
268 if (ret != 1 || input > 100 ||
269 input <= dbs_tuners_ins.down_threshold) {
270 mutex_unlock(&dbs_mutex);
271 return -EINVAL;
272 }
273
274 dbs_tuners_ins.up_threshold = input;
275 mutex_unlock(&dbs_mutex);
276
277 return count;
278 }
279
280 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
281 const char *buf, size_t count)
282 {
283 unsigned int input;
284 int ret;
285 ret = sscanf(buf, "%u", &input);
286
287 mutex_lock(&dbs_mutex);
288 /* cannot be lower than 11 otherwise freq will not fall */
289 if (ret != 1 || input < 11 || input > 100 ||
290 input >= dbs_tuners_ins.up_threshold) {
291 mutex_unlock(&dbs_mutex);
292 return -EINVAL;
293 }
294
295 dbs_tuners_ins.down_threshold = input;
296 mutex_unlock(&dbs_mutex);
297
298 return count;
299 }
300
301 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
302 const char *buf, size_t count)
303 {
304 unsigned int input;
305 int ret;
306
307 unsigned int j;
308
309 ret = sscanf(buf, "%u", &input);
310 if (ret != 1)
311 return -EINVAL;
312
313 if (input > 1)
314 input = 1;
315
316 mutex_lock(&dbs_mutex);
317 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
318 mutex_unlock(&dbs_mutex);
319 return count;
320 }
321 dbs_tuners_ins.ignore_nice = input;
322
323 /* we need to re-evaluate prev_cpu_idle */
324 for_each_online_cpu(j) {
325 struct cpu_dbs_info_s *dbs_info;
326 dbs_info = &per_cpu(cpu_dbs_info, j);
327 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
328 &dbs_info->prev_cpu_wall);
329 if (dbs_tuners_ins.ignore_nice)
330 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
331 }
332 mutex_unlock(&dbs_mutex);
333
334 return count;
335 }
336
337 static ssize_t store_freq_step(struct cpufreq_policy *policy,
338 const char *buf, size_t count)
339 {
340 unsigned int input;
341 int ret;
342 ret = sscanf(buf, "%u", &input);
343
344 if (ret != 1)
345 return -EINVAL;
346
347 if (input > 100)
348 input = 100;
349
350 /* no need to test here if freq_step is zero as the user might actually
351 * want this, they would be crazy though :) */
352 mutex_lock(&dbs_mutex);
353 dbs_tuners_ins.freq_step = input;
354 mutex_unlock(&dbs_mutex);
355
356 return count;
357 }
358
359 #define define_one_rw(_name) \
360 static struct freq_attr _name = \
361 __ATTR(_name, 0644, show_##_name, store_##_name)
362
363 define_one_rw(sampling_rate);
364 define_one_rw(sampling_down_factor);
365 define_one_rw(up_threshold);
366 define_one_rw(down_threshold);
367 define_one_rw(ignore_nice_load);
368 define_one_rw(freq_step);
369
370 static struct attribute *dbs_attributes[] = {
371 &sampling_rate_max.attr,
372 &sampling_rate_min.attr,
373 &sampling_rate.attr,
374 &sampling_down_factor.attr,
375 &up_threshold.attr,
376 &down_threshold.attr,
377 &ignore_nice_load.attr,
378 &freq_step.attr,
379 NULL
380 };
381
382 static struct attribute_group dbs_attr_group = {
383 .attrs = dbs_attributes,
384 .name = "conservative",
385 };
386
387 /************************** sysfs end ************************/
388
389 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
390 {
391 unsigned int load = 0;
392 unsigned int freq_target;
393
394 struct cpufreq_policy *policy;
395 unsigned int j;
396
397 policy = this_dbs_info->cur_policy;
398
399 /*
400 * Every sampling_rate, we check, if current idle time is less
401 * than 20% (default), then we try to increase frequency
402 * Every sampling_rate*sampling_down_factor, we check, if current
403 * idle time is more than 80%, then we try to decrease frequency
404 *
405 * Any frequency increase takes it to the maximum frequency.
406 * Frequency reduction happens at minimum steps of
407 * 5% (default) of maximum frequency
408 */
409
410 /* Get Absolute Load */
411 for_each_cpu(j, policy->cpus) {
412 struct cpu_dbs_info_s *j_dbs_info;
413 cputime64_t cur_wall_time, cur_idle_time;
414 unsigned int idle_time, wall_time;
415
416 j_dbs_info = &per_cpu(cpu_dbs_info, j);
417
418 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
419
420 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
421 j_dbs_info->prev_cpu_wall);
422 j_dbs_info->prev_cpu_wall = cur_wall_time;
423
424 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
425 j_dbs_info->prev_cpu_idle);
426 j_dbs_info->prev_cpu_idle = cur_idle_time;
427
428 if (dbs_tuners_ins.ignore_nice) {
429 cputime64_t cur_nice;
430 unsigned long cur_nice_jiffies;
431
432 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
433 j_dbs_info->prev_cpu_nice);
434 /*
435 * Assumption: nice time between sampling periods will
436 * be less than 2^32 jiffies for 32 bit sys
437 */
438 cur_nice_jiffies = (unsigned long)
439 cputime64_to_jiffies64(cur_nice);
440
441 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
442 idle_time += jiffies_to_usecs(cur_nice_jiffies);
443 }
444
445 if (unlikely(!wall_time || wall_time < idle_time))
446 continue;
447
448 load = 100 * (wall_time - idle_time) / wall_time;
449 }
450
451 /*
452 * break out if we 'cannot' reduce the speed as the user might
453 * want freq_step to be zero
454 */
455 if (dbs_tuners_ins.freq_step == 0)
456 return;
457
458 /* Check for frequency increase */
459 if (load > dbs_tuners_ins.up_threshold) {
460 this_dbs_info->down_skip = 0;
461
462 /* if we are already at full speed then break out early */
463 if (this_dbs_info->requested_freq == policy->max)
464 return;
465
466 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
467
468 /* max freq cannot be less than 100. But who knows.... */
469 if (unlikely(freq_target == 0))
470 freq_target = 5;
471
472 this_dbs_info->requested_freq += freq_target;
473 if (this_dbs_info->requested_freq > policy->max)
474 this_dbs_info->requested_freq = policy->max;
475
476 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
477 CPUFREQ_RELATION_H);
478 return;
479 }
480
481 /*
482 * The optimal frequency is the frequency that is the lowest that
483 * can support the current CPU usage without triggering the up
484 * policy. To be safe, we focus 10 points under the threshold.
485 */
486 if (load < (dbs_tuners_ins.down_threshold - 10)) {
487 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
488
489 this_dbs_info->requested_freq -= freq_target;
490 if (this_dbs_info->requested_freq < policy->min)
491 this_dbs_info->requested_freq = policy->min;
492
493 /*
494 * if we cannot reduce the frequency anymore, break out early
495 */
496 if (policy->cur == policy->min)
497 return;
498
499 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
500 CPUFREQ_RELATION_H);
501 return;
502 }
503 }
504
505 static void do_dbs_timer(struct work_struct *work)
506 {
507 struct cpu_dbs_info_s *dbs_info =
508 container_of(work, struct cpu_dbs_info_s, work.work);
509 unsigned int cpu = dbs_info->cpu;
510
511 /* We want all CPUs to do sampling nearly on same jiffy */
512 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
513
514 delay -= jiffies % delay;
515
516 if (lock_policy_rwsem_write(cpu) < 0)
517 return;
518
519 if (!dbs_info->enable) {
520 unlock_policy_rwsem_write(cpu);
521 return;
522 }
523
524 dbs_check_cpu(dbs_info);
525
526 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
527 unlock_policy_rwsem_write(cpu);
528 }
529
530 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
531 {
532 /* We want all CPUs to do sampling nearly on same jiffy */
533 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
534 delay -= jiffies % delay;
535
536 dbs_info->enable = 1;
537 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
538 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
539 delay);
540 }
541
542 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
543 {
544 dbs_info->enable = 0;
545 cancel_delayed_work(&dbs_info->work);
546 }
547
548 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
549 unsigned int event)
550 {
551 unsigned int cpu = policy->cpu;
552 struct cpu_dbs_info_s *this_dbs_info;
553 unsigned int j;
554 int rc;
555
556 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
557
558 switch (event) {
559 case CPUFREQ_GOV_START:
560 if ((!cpu_online(cpu)) || (!policy->cur))
561 return -EINVAL;
562
563 if (this_dbs_info->enable) /* Already enabled */
564 break;
565
566 mutex_lock(&dbs_mutex);
567
568 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
569 if (rc) {
570 mutex_unlock(&dbs_mutex);
571 return rc;
572 }
573
574 for_each_cpu(j, policy->cpus) {
575 struct cpu_dbs_info_s *j_dbs_info;
576 j_dbs_info = &per_cpu(cpu_dbs_info, j);
577 j_dbs_info->cur_policy = policy;
578
579 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
580 &j_dbs_info->prev_cpu_wall);
581 if (dbs_tuners_ins.ignore_nice) {
582 j_dbs_info->prev_cpu_nice =
583 kstat_cpu(j).cpustat.nice;
584 }
585 }
586 this_dbs_info->down_skip = 0;
587 this_dbs_info->requested_freq = policy->cur;
588
589 dbs_enable++;
590 /*
591 * Start the timerschedule work, when this governor
592 * is used for first time
593 */
594 if (dbs_enable == 1) {
595 unsigned int latency;
596 /* policy latency is in nS. Convert it to uS first */
597 latency = policy->cpuinfo.transition_latency / 1000;
598 if (latency == 0)
599 latency = 1;
600
601 def_sampling_rate =
602 max(latency * LATENCY_MULTIPLIER,
603 MIN_STAT_SAMPLING_RATE);
604
605 dbs_tuners_ins.sampling_rate = def_sampling_rate;
606
607 cpufreq_register_notifier(
608 &dbs_cpufreq_notifier_block,
609 CPUFREQ_TRANSITION_NOTIFIER);
610 }
611 dbs_timer_init(this_dbs_info);
612
613 mutex_unlock(&dbs_mutex);
614
615 break;
616
617 case CPUFREQ_GOV_STOP:
618 mutex_lock(&dbs_mutex);
619 dbs_timer_exit(this_dbs_info);
620 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
621 dbs_enable--;
622
623 /*
624 * Stop the timerschedule work, when this governor
625 * is used for first time
626 */
627 if (dbs_enable == 0)
628 cpufreq_unregister_notifier(
629 &dbs_cpufreq_notifier_block,
630 CPUFREQ_TRANSITION_NOTIFIER);
631
632 mutex_unlock(&dbs_mutex);
633
634 break;
635
636 case CPUFREQ_GOV_LIMITS:
637 mutex_lock(&dbs_mutex);
638 if (policy->max < this_dbs_info->cur_policy->cur)
639 __cpufreq_driver_target(
640 this_dbs_info->cur_policy,
641 policy->max, CPUFREQ_RELATION_H);
642 else if (policy->min > this_dbs_info->cur_policy->cur)
643 __cpufreq_driver_target(
644 this_dbs_info->cur_policy,
645 policy->min, CPUFREQ_RELATION_L);
646 mutex_unlock(&dbs_mutex);
647
648 break;
649 }
650 return 0;
651 }
652
653 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
654 static
655 #endif
656 struct cpufreq_governor cpufreq_gov_conservative = {
657 .name = "conservative",
658 .governor = cpufreq_governor_dbs,
659 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
660 .owner = THIS_MODULE,
661 };
662
663 static int __init cpufreq_gov_dbs_init(void)
664 {
665 int err;
666
667 kconservative_wq = create_workqueue("kconservative");
668 if (!kconservative_wq) {
669 printk(KERN_ERR "Creation of kconservative failed\n");
670 return -EFAULT;
671 }
672
673 err = cpufreq_register_governor(&cpufreq_gov_conservative);
674 if (err)
675 destroy_workqueue(kconservative_wq);
676
677 return err;
678 }
679
680 static void __exit cpufreq_gov_dbs_exit(void)
681 {
682 cpufreq_unregister_governor(&cpufreq_gov_conservative);
683 destroy_workqueue(kconservative_wq);
684 }
685
686
687 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
688 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
689 "Low Latency Frequency Transition capable processors "
690 "optimised for use in a battery environment");
691 MODULE_LICENSE("GPL");
692
693 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
694 fs_initcall(cpufreq_gov_dbs_init);
695 #else
696 module_init(cpufreq_gov_dbs_init);
697 #endif
698 module_exit(cpufreq_gov_dbs_exit);
This page took 0.045454 seconds and 6 git commands to generate.