ad3f38fd3eb9feefa12212362e1312884974d745
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
29
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31
32 static struct od_ops od_ops;
33
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37
38 static unsigned int default_powersave_bias;
39
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43
44 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 dbs_info->freq_lo = 0;
46 }
47
48 /*
49 * Not all CPUs want IO time to be accounted as busy; this depends on how
50 * efficient idling at a higher frequency/voltage is.
51 * Pavel Machek says this is not so for various generations of AMD and old
52 * Intel systems.
53 * Mike Chan (android.com) claims this is also not true for ARM.
54 * Because of this, whitelist specific known (series) of CPUs by default, and
55 * leave all others up to the user.
56 */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 /*
61 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 */
63 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 boot_cpu_data.x86 == 6 &&
65 boot_cpu_data.x86_model >= 15)
66 return 1;
67 #endif
68 return 0;
69 }
70
71 /*
72 * Find right freq to be set now with powersave_bias on.
73 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75 */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 unsigned int freq_next, unsigned int relation)
78 {
79 unsigned int freq_req, freq_reduc, freq_avg;
80 unsigned int freq_hi, freq_lo;
81 unsigned int index = 0;
82 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 policy->cpu);
85 struct dbs_data *dbs_data = policy->governor_data;
86 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87
88 if (!dbs_info->freq_table) {
89 dbs_info->freq_lo = 0;
90 dbs_info->freq_lo_jiffies = 0;
91 return freq_next;
92 }
93
94 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 relation, &index);
96 freq_req = dbs_info->freq_table[index].frequency;
97 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 freq_avg = freq_req - freq_reduc;
99
100 /* Find freq bounds for freq_avg in freq_table */
101 index = 0;
102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 CPUFREQ_RELATION_H, &index);
104 freq_lo = dbs_info->freq_table[index].frequency;
105 index = 0;
106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 CPUFREQ_RELATION_L, &index);
108 freq_hi = dbs_info->freq_table[index].frequency;
109
110 /* Find out how long we have to be in hi and lo freqs */
111 if (freq_hi == freq_lo) {
112 dbs_info->freq_lo = 0;
113 dbs_info->freq_lo_jiffies = 0;
114 return freq_lo;
115 }
116 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 jiffies_hi += ((freq_hi - freq_lo) / 2);
119 jiffies_hi /= (freq_hi - freq_lo);
120 jiffies_lo = jiffies_total - jiffies_hi;
121 dbs_info->freq_lo = freq_lo;
122 dbs_info->freq_lo_jiffies = jiffies_lo;
123 dbs_info->freq_hi_jiffies = jiffies_hi;
124 return freq_hi;
125 }
126
127 static void ondemand_powersave_bias_init(void)
128 {
129 int i;
130 for_each_online_cpu(i) {
131 ondemand_powersave_bias_init_cpu(i);
132 }
133 }
134
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 struct dbs_data *dbs_data = policy->governor_data;
138 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139
140 if (od_tuners->powersave_bias)
141 freq = od_ops.powersave_bias_target(policy, freq,
142 CPUFREQ_RELATION_H);
143 else if (policy->cur == policy->max)
144 return;
145
146 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149
150 /*
151 * Every sampling_rate, we check, if current idle time is less than 20%
152 * (default), then we try to increase frequency. Else, we adjust the frequency
153 * proportional to load.
154 */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
159 struct dbs_data *dbs_data = policy->governor_data;
160 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161
162 dbs_info->freq_lo = 0;
163
164 /* Check for frequency increase */
165 if (load > od_tuners->up_threshold) {
166 /* If switching to max speed, apply sampling_down_factor */
167 if (policy->cur < policy->max)
168 dbs_info->rate_mult =
169 od_tuners->sampling_down_factor;
170 dbs_freq_increase(policy, policy->max);
171 } else {
172 /* Calculate the next frequency proportional to load */
173 unsigned int freq_next, min_f, max_f;
174
175 min_f = policy->cpuinfo.min_freq;
176 max_f = policy->cpuinfo.max_freq;
177 freq_next = min_f + load * (max_f - min_f) / 100;
178
179 /* No longer fully busy, reset rate_mult */
180 dbs_info->rate_mult = 1;
181
182 if (!od_tuners->powersave_bias) {
183 __cpufreq_driver_target(policy, freq_next,
184 CPUFREQ_RELATION_C);
185 return;
186 }
187
188 freq_next = od_ops.powersave_bias_target(policy, freq_next,
189 CPUFREQ_RELATION_L);
190 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
191 }
192 }
193
194 static void od_dbs_timer(struct work_struct *work)
195 {
196 struct od_cpu_dbs_info_s *dbs_info =
197 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
198 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
199 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
200 cpu);
201 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
202 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
203 int delay = 0, sample_type = core_dbs_info->sample_type;
204 bool modify_all = true;
205
206 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
207 if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
208 modify_all = false;
209 goto max_delay;
210 }
211
212 /* Common NORMAL_SAMPLE setup */
213 core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
214 if (sample_type == OD_SUB_SAMPLE) {
215 delay = core_dbs_info->freq_lo_jiffies;
216 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
217 core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
218 } else {
219 dbs_check_cpu(dbs_data, cpu);
220 if (core_dbs_info->freq_lo) {
221 /* Setup timer for SUB_SAMPLE */
222 core_dbs_info->sample_type = OD_SUB_SAMPLE;
223 delay = core_dbs_info->freq_hi_jiffies;
224 }
225 }
226
227 max_delay:
228 if (!delay)
229 delay = delay_for_sampling_rate(od_tuners->sampling_rate
230 * core_dbs_info->rate_mult);
231
232 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
233 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
234 }
235
236 /************************** sysfs interface ************************/
237 static struct common_dbs_data od_dbs_cdata;
238
239 /**
240 * update_sampling_rate - update sampling rate effective immediately if needed.
241 * @new_rate: new sampling rate
242 *
243 * If new rate is smaller than the old, simply updating
244 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
245 * original sampling_rate was 1 second and the requested new sampling rate is 10
246 * ms because the user needs immediate reaction from ondemand governor, but not
247 * sure if higher frequency will be required or not, then, the governor may
248 * change the sampling rate too late; up to 1 second later. Thus, if we are
249 * reducing the sampling rate, we need to make the new value effective
250 * immediately.
251 */
252 static void update_sampling_rate(struct dbs_data *dbs_data,
253 unsigned int new_rate)
254 {
255 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
256 int cpu;
257
258 od_tuners->sampling_rate = new_rate = max(new_rate,
259 dbs_data->min_sampling_rate);
260
261 for_each_online_cpu(cpu) {
262 struct cpufreq_policy *policy;
263 struct od_cpu_dbs_info_s *dbs_info;
264 unsigned long next_sampling, appointed_at;
265
266 policy = cpufreq_cpu_get(cpu);
267 if (!policy)
268 continue;
269 if (policy->governor != &cpufreq_gov_ondemand) {
270 cpufreq_cpu_put(policy);
271 continue;
272 }
273 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
274 cpufreq_cpu_put(policy);
275
276 mutex_lock(&dbs_info->cdbs.timer_mutex);
277
278 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
279 mutex_unlock(&dbs_info->cdbs.timer_mutex);
280 continue;
281 }
282
283 next_sampling = jiffies + usecs_to_jiffies(new_rate);
284 appointed_at = dbs_info->cdbs.work.timer.expires;
285
286 if (time_before(next_sampling, appointed_at)) {
287
288 mutex_unlock(&dbs_info->cdbs.timer_mutex);
289 cancel_delayed_work_sync(&dbs_info->cdbs.work);
290 mutex_lock(&dbs_info->cdbs.timer_mutex);
291
292 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
293 usecs_to_jiffies(new_rate), true);
294
295 }
296 mutex_unlock(&dbs_info->cdbs.timer_mutex);
297 }
298 }
299
300 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
301 size_t count)
302 {
303 unsigned int input;
304 int ret;
305 ret = sscanf(buf, "%u", &input);
306 if (ret != 1)
307 return -EINVAL;
308
309 update_sampling_rate(dbs_data, input);
310 return count;
311 }
312
313 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
314 size_t count)
315 {
316 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
317 unsigned int input;
318 int ret;
319 unsigned int j;
320
321 ret = sscanf(buf, "%u", &input);
322 if (ret != 1)
323 return -EINVAL;
324 od_tuners->io_is_busy = !!input;
325
326 /* we need to re-evaluate prev_cpu_idle */
327 for_each_online_cpu(j) {
328 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
329 j);
330 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
331 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
332 }
333 return count;
334 }
335
336 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
337 size_t count)
338 {
339 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
340 unsigned int input;
341 int ret;
342 ret = sscanf(buf, "%u", &input);
343
344 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
345 input < MIN_FREQUENCY_UP_THRESHOLD) {
346 return -EINVAL;
347 }
348
349 od_tuners->up_threshold = input;
350 return count;
351 }
352
353 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
354 const char *buf, size_t count)
355 {
356 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
357 unsigned int input, j;
358 int ret;
359 ret = sscanf(buf, "%u", &input);
360
361 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
362 return -EINVAL;
363 od_tuners->sampling_down_factor = input;
364
365 /* Reset down sampling multiplier in case it was active */
366 for_each_online_cpu(j) {
367 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
368 j);
369 dbs_info->rate_mult = 1;
370 }
371 return count;
372 }
373
374 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
375 const char *buf, size_t count)
376 {
377 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
378 unsigned int input;
379 int ret;
380
381 unsigned int j;
382
383 ret = sscanf(buf, "%u", &input);
384 if (ret != 1)
385 return -EINVAL;
386
387 if (input > 1)
388 input = 1;
389
390 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
391 return count;
392 }
393 od_tuners->ignore_nice_load = input;
394
395 /* we need to re-evaluate prev_cpu_idle */
396 for_each_online_cpu(j) {
397 struct od_cpu_dbs_info_s *dbs_info;
398 dbs_info = &per_cpu(od_cpu_dbs_info, j);
399 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
400 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
401 if (od_tuners->ignore_nice_load)
402 dbs_info->cdbs.prev_cpu_nice =
403 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
404
405 }
406 return count;
407 }
408
409 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
410 size_t count)
411 {
412 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
413 unsigned int input;
414 int ret;
415 ret = sscanf(buf, "%u", &input);
416
417 if (ret != 1)
418 return -EINVAL;
419
420 if (input > 1000)
421 input = 1000;
422
423 od_tuners->powersave_bias = input;
424 ondemand_powersave_bias_init();
425 return count;
426 }
427
428 show_store_one(od, sampling_rate);
429 show_store_one(od, io_is_busy);
430 show_store_one(od, up_threshold);
431 show_store_one(od, sampling_down_factor);
432 show_store_one(od, ignore_nice_load);
433 show_store_one(od, powersave_bias);
434 declare_show_sampling_rate_min(od);
435
436 gov_sys_pol_attr_rw(sampling_rate);
437 gov_sys_pol_attr_rw(io_is_busy);
438 gov_sys_pol_attr_rw(up_threshold);
439 gov_sys_pol_attr_rw(sampling_down_factor);
440 gov_sys_pol_attr_rw(ignore_nice_load);
441 gov_sys_pol_attr_rw(powersave_bias);
442 gov_sys_pol_attr_ro(sampling_rate_min);
443
444 static struct attribute *dbs_attributes_gov_sys[] = {
445 &sampling_rate_min_gov_sys.attr,
446 &sampling_rate_gov_sys.attr,
447 &up_threshold_gov_sys.attr,
448 &sampling_down_factor_gov_sys.attr,
449 &ignore_nice_load_gov_sys.attr,
450 &powersave_bias_gov_sys.attr,
451 &io_is_busy_gov_sys.attr,
452 NULL
453 };
454
455 static struct attribute_group od_attr_group_gov_sys = {
456 .attrs = dbs_attributes_gov_sys,
457 .name = "ondemand",
458 };
459
460 static struct attribute *dbs_attributes_gov_pol[] = {
461 &sampling_rate_min_gov_pol.attr,
462 &sampling_rate_gov_pol.attr,
463 &up_threshold_gov_pol.attr,
464 &sampling_down_factor_gov_pol.attr,
465 &ignore_nice_load_gov_pol.attr,
466 &powersave_bias_gov_pol.attr,
467 &io_is_busy_gov_pol.attr,
468 NULL
469 };
470
471 static struct attribute_group od_attr_group_gov_pol = {
472 .attrs = dbs_attributes_gov_pol,
473 .name = "ondemand",
474 };
475
476 /************************** sysfs end ************************/
477
478 static int od_init(struct dbs_data *dbs_data)
479 {
480 struct od_dbs_tuners *tuners;
481 u64 idle_time;
482 int cpu;
483
484 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
485 if (!tuners) {
486 pr_err("%s: kzalloc failed\n", __func__);
487 return -ENOMEM;
488 }
489
490 cpu = get_cpu();
491 idle_time = get_cpu_idle_time_us(cpu, NULL);
492 put_cpu();
493 if (idle_time != -1ULL) {
494 /* Idle micro accounting is supported. Use finer thresholds */
495 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
496 /*
497 * In nohz/micro accounting case we set the minimum frequency
498 * not depending on HZ, but fixed (very low). The deferred
499 * timer might skip some samples if idle/sleeping as needed.
500 */
501 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
502 } else {
503 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
504
505 /* For correct statistics, we need 10 ticks for each measure */
506 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
507 jiffies_to_usecs(10);
508 }
509
510 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
511 tuners->ignore_nice_load = 0;
512 tuners->powersave_bias = default_powersave_bias;
513 tuners->io_is_busy = should_io_be_busy();
514
515 dbs_data->tuners = tuners;
516 mutex_init(&dbs_data->mutex);
517 return 0;
518 }
519
520 static void od_exit(struct dbs_data *dbs_data)
521 {
522 kfree(dbs_data->tuners);
523 }
524
525 define_get_cpu_dbs_routines(od_cpu_dbs_info);
526
527 static struct od_ops od_ops = {
528 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
529 .powersave_bias_target = generic_powersave_bias_target,
530 .freq_increase = dbs_freq_increase,
531 };
532
533 static struct common_dbs_data od_dbs_cdata = {
534 .governor = GOV_ONDEMAND,
535 .attr_group_gov_sys = &od_attr_group_gov_sys,
536 .attr_group_gov_pol = &od_attr_group_gov_pol,
537 .get_cpu_cdbs = get_cpu_cdbs,
538 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
539 .gov_dbs_timer = od_dbs_timer,
540 .gov_check_cpu = od_check_cpu,
541 .gov_ops = &od_ops,
542 .init = od_init,
543 .exit = od_exit,
544 };
545
546 static void od_set_powersave_bias(unsigned int powersave_bias)
547 {
548 struct cpufreq_policy *policy;
549 struct dbs_data *dbs_data;
550 struct od_dbs_tuners *od_tuners;
551 unsigned int cpu;
552 cpumask_t done;
553
554 default_powersave_bias = powersave_bias;
555 cpumask_clear(&done);
556
557 get_online_cpus();
558 for_each_online_cpu(cpu) {
559 if (cpumask_test_cpu(cpu, &done))
560 continue;
561
562 policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
563 if (!policy)
564 continue;
565
566 cpumask_or(&done, &done, policy->cpus);
567
568 if (policy->governor != &cpufreq_gov_ondemand)
569 continue;
570
571 dbs_data = policy->governor_data;
572 od_tuners = dbs_data->tuners;
573 od_tuners->powersave_bias = default_powersave_bias;
574 }
575 put_online_cpus();
576 }
577
578 void od_register_powersave_bias_handler(unsigned int (*f)
579 (struct cpufreq_policy *, unsigned int, unsigned int),
580 unsigned int powersave_bias)
581 {
582 od_ops.powersave_bias_target = f;
583 od_set_powersave_bias(powersave_bias);
584 }
585 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
586
587 void od_unregister_powersave_bias_handler(void)
588 {
589 od_ops.powersave_bias_target = generic_powersave_bias_target;
590 od_set_powersave_bias(0);
591 }
592 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
593
594 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
595 unsigned int event)
596 {
597 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
598 }
599
600 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
601 static
602 #endif
603 struct cpufreq_governor cpufreq_gov_ondemand = {
604 .name = "ondemand",
605 .governor = od_cpufreq_governor_dbs,
606 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
607 .owner = THIS_MODULE,
608 };
609
610 static int __init cpufreq_gov_dbs_init(void)
611 {
612 return cpufreq_register_governor(&cpufreq_gov_ondemand);
613 }
614
615 static void __exit cpufreq_gov_dbs_exit(void)
616 {
617 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
618 }
619
620 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
621 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
622 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
623 "Low Latency Frequency Transition capable processors");
624 MODULE_LICENSE("GPL");
625
626 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
627 fs_initcall(cpufreq_gov_dbs_init);
628 #else
629 module_init(cpufreq_gov_dbs_init);
630 #endif
631 module_exit(cpufreq_gov_dbs_exit);
This page took 0.042388 seconds and 4 git commands to generate.