cpufreq: governors: remove redundant code
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/tick.h>
25 #include <linux/types.h>
26
27 #include "cpufreq_governor.h"
28
29 /* On-demand governor macors */
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
31 #define DEF_FREQUENCY_UP_THRESHOLD (80)
32 #define DEF_SAMPLING_DOWN_FACTOR (1)
33 #define MAX_SAMPLING_DOWN_FACTOR (100000)
34 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
35 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
36 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
37 #define MIN_FREQUENCY_UP_THRESHOLD (11)
38 #define MAX_FREQUENCY_UP_THRESHOLD (100)
39
40 static struct dbs_data od_dbs_data;
41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
42
43 static struct od_dbs_tuners od_tuners = {
44 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
45 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
46 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
47 .ignore_nice = 0,
48 .powersave_bias = 0,
49 };
50
51 static void ondemand_powersave_bias_init_cpu(int cpu)
52 {
53 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
54
55 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
56 dbs_info->freq_lo = 0;
57 }
58
59 /*
60 * Not all CPUs want IO time to be accounted as busy; this depends on how
61 * efficient idling at a higher frequency/voltage is.
62 * Pavel Machek says this is not so for various generations of AMD and old
63 * Intel systems.
64 * Mike Chan (androidlcom) calis this is also not true for ARM.
65 * Because of this, whitelist specific known (series) of CPUs by default, and
66 * leave all others up to the user.
67 */
68 static int should_io_be_busy(void)
69 {
70 #if defined(CONFIG_X86)
71 /*
72 * For Intel, Core 2 (model 15) andl later have an efficient idle.
73 */
74 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
75 boot_cpu_data.x86 == 6 &&
76 boot_cpu_data.x86_model >= 15)
77 return 1;
78 #endif
79 return 0;
80 }
81
82 /*
83 * Find right freq to be set now with powersave_bias on.
84 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
85 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
86 */
87 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
88 unsigned int freq_next, unsigned int relation)
89 {
90 unsigned int freq_req, freq_reduc, freq_avg;
91 unsigned int freq_hi, freq_lo;
92 unsigned int index = 0;
93 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
94 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
95 policy->cpu);
96
97 if (!dbs_info->freq_table) {
98 dbs_info->freq_lo = 0;
99 dbs_info->freq_lo_jiffies = 0;
100 return freq_next;
101 }
102
103 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
104 relation, &index);
105 freq_req = dbs_info->freq_table[index].frequency;
106 freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
107 freq_avg = freq_req - freq_reduc;
108
109 /* Find freq bounds for freq_avg in freq_table */
110 index = 0;
111 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
112 CPUFREQ_RELATION_H, &index);
113 freq_lo = dbs_info->freq_table[index].frequency;
114 index = 0;
115 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
116 CPUFREQ_RELATION_L, &index);
117 freq_hi = dbs_info->freq_table[index].frequency;
118
119 /* Find out how long we have to be in hi and lo freqs */
120 if (freq_hi == freq_lo) {
121 dbs_info->freq_lo = 0;
122 dbs_info->freq_lo_jiffies = 0;
123 return freq_lo;
124 }
125 jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
126 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
127 jiffies_hi += ((freq_hi - freq_lo) / 2);
128 jiffies_hi /= (freq_hi - freq_lo);
129 jiffies_lo = jiffies_total - jiffies_hi;
130 dbs_info->freq_lo = freq_lo;
131 dbs_info->freq_lo_jiffies = jiffies_lo;
132 dbs_info->freq_hi_jiffies = jiffies_hi;
133 return freq_hi;
134 }
135
136 static void ondemand_powersave_bias_init(void)
137 {
138 int i;
139 for_each_online_cpu(i) {
140 ondemand_powersave_bias_init_cpu(i);
141 }
142 }
143
144 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
145 {
146 if (od_tuners.powersave_bias)
147 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
148 else if (p->cur == p->max)
149 return;
150
151 __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
152 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
153 }
154
155 /*
156 * Every sampling_rate, we check, if current idle time is less than 20%
157 * (default), then we try to increase frequency Every sampling_rate, we look for
158 * a the lowest frequency which can sustain the load while keeping idle time
159 * over 30%. If such a frequency exist, we try to decrease to this frequency.
160 *
161 * Any frequency increase takes it to the maximum frequency. Frequency reduction
162 * happens at minimum steps of 5% (default) of current frequency
163 */
164 static void od_check_cpu(int cpu, unsigned int load_freq)
165 {
166 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
167 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
168
169 dbs_info->freq_lo = 0;
170
171 /* Check for frequency increase */
172 if (load_freq > od_tuners.up_threshold * policy->cur) {
173 /* If switching to max speed, apply sampling_down_factor */
174 if (policy->cur < policy->max)
175 dbs_info->rate_mult =
176 od_tuners.sampling_down_factor;
177 dbs_freq_increase(policy, policy->max);
178 return;
179 }
180
181 /* Check for frequency decrease */
182 /* if we cannot reduce the frequency anymore, break out early */
183 if (policy->cur == policy->min)
184 return;
185
186 /*
187 * The optimal frequency is the frequency that is the lowest that can
188 * support the current CPU usage without triggering the up policy. To be
189 * safe, we focus 10 points under the threshold.
190 */
191 if (load_freq < (od_tuners.up_threshold - od_tuners.down_differential) *
192 policy->cur) {
193 unsigned int freq_next;
194 freq_next = load_freq / (od_tuners.up_threshold -
195 od_tuners.down_differential);
196
197 /* No longer fully busy, reset rate_mult */
198 dbs_info->rate_mult = 1;
199
200 if (freq_next < policy->min)
201 freq_next = policy->min;
202
203 if (!od_tuners.powersave_bias) {
204 __cpufreq_driver_target(policy, freq_next,
205 CPUFREQ_RELATION_L);
206 } else {
207 int freq = powersave_bias_target(policy, freq_next,
208 CPUFREQ_RELATION_L);
209 __cpufreq_driver_target(policy, freq,
210 CPUFREQ_RELATION_L);
211 }
212 }
213 }
214
215 static void od_dbs_timer(struct work_struct *work)
216 {
217 struct od_cpu_dbs_info_s *dbs_info =
218 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
219 unsigned int cpu = dbs_info->cdbs.cpu;
220 int delay, sample_type = dbs_info->sample_type;
221
222 mutex_lock(&dbs_info->cdbs.timer_mutex);
223
224 /* Common NORMAL_SAMPLE setup */
225 dbs_info->sample_type = OD_NORMAL_SAMPLE;
226 if (sample_type == OD_SUB_SAMPLE) {
227 delay = dbs_info->freq_lo_jiffies;
228 __cpufreq_driver_target(dbs_info->cdbs.cur_policy,
229 dbs_info->freq_lo, CPUFREQ_RELATION_H);
230 } else {
231 dbs_check_cpu(&od_dbs_data, cpu);
232 if (dbs_info->freq_lo) {
233 /* Setup timer for SUB_SAMPLE */
234 dbs_info->sample_type = OD_SUB_SAMPLE;
235 delay = dbs_info->freq_hi_jiffies;
236 } else {
237 delay = delay_for_sampling_rate(dbs_info->rate_mult);
238 }
239 }
240
241 schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay);
242 mutex_unlock(&dbs_info->cdbs.timer_mutex);
243 }
244
245 /************************** sysfs interface ************************/
246
247 static ssize_t show_sampling_rate_min(struct kobject *kobj,
248 struct attribute *attr, char *buf)
249 {
250 return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
251 }
252
253 /**
254 * update_sampling_rate - update sampling rate effective immediately if needed.
255 * @new_rate: new sampling rate
256 *
257 * If new rate is smaller than the old, simply updaing
258 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
259 * original sampling_rate was 1 second and the requested new sampling rate is 10
260 * ms because the user needs immediate reaction from ondemand governor, but not
261 * sure if higher frequency will be required or not, then, the governor may
262 * change the sampling rate too late; up to 1 second later. Thus, if we are
263 * reducing the sampling rate, we need to make the new value effective
264 * immediately.
265 */
266 static void update_sampling_rate(unsigned int new_rate)
267 {
268 int cpu;
269
270 od_tuners.sampling_rate = new_rate = max(new_rate,
271 od_dbs_data.min_sampling_rate);
272
273 for_each_online_cpu(cpu) {
274 struct cpufreq_policy *policy;
275 struct od_cpu_dbs_info_s *dbs_info;
276 unsigned long next_sampling, appointed_at;
277
278 policy = cpufreq_cpu_get(cpu);
279 if (!policy)
280 continue;
281 dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
282 cpufreq_cpu_put(policy);
283
284 mutex_lock(&dbs_info->cdbs.timer_mutex);
285
286 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
287 mutex_unlock(&dbs_info->cdbs.timer_mutex);
288 continue;
289 }
290
291 next_sampling = jiffies + usecs_to_jiffies(new_rate);
292 appointed_at = dbs_info->cdbs.work.timer.expires;
293
294 if (time_before(next_sampling, appointed_at)) {
295
296 mutex_unlock(&dbs_info->cdbs.timer_mutex);
297 cancel_delayed_work_sync(&dbs_info->cdbs.work);
298 mutex_lock(&dbs_info->cdbs.timer_mutex);
299
300 schedule_delayed_work_on(dbs_info->cdbs.cpu,
301 &dbs_info->cdbs.work,
302 usecs_to_jiffies(new_rate));
303
304 }
305 mutex_unlock(&dbs_info->cdbs.timer_mutex);
306 }
307 }
308
309 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
310 const char *buf, size_t count)
311 {
312 unsigned int input;
313 int ret;
314 ret = sscanf(buf, "%u", &input);
315 if (ret != 1)
316 return -EINVAL;
317 update_sampling_rate(input);
318 return count;
319 }
320
321 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
322 const char *buf, size_t count)
323 {
324 unsigned int input;
325 int ret;
326
327 ret = sscanf(buf, "%u", &input);
328 if (ret != 1)
329 return -EINVAL;
330 od_tuners.io_is_busy = !!input;
331 return count;
332 }
333
334 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
335 const char *buf, size_t count)
336 {
337 unsigned int input;
338 int ret;
339 ret = sscanf(buf, "%u", &input);
340
341 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
342 input < MIN_FREQUENCY_UP_THRESHOLD) {
343 return -EINVAL;
344 }
345 od_tuners.up_threshold = input;
346 return count;
347 }
348
349 static ssize_t store_sampling_down_factor(struct kobject *a,
350 struct attribute *b, const char *buf, size_t count)
351 {
352 unsigned int input, j;
353 int ret;
354 ret = sscanf(buf, "%u", &input);
355
356 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
357 return -EINVAL;
358 od_tuners.sampling_down_factor = input;
359
360 /* Reset down sampling multiplier in case it was active */
361 for_each_online_cpu(j) {
362 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
363 j);
364 dbs_info->rate_mult = 1;
365 }
366 return count;
367 }
368
369 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
370 const char *buf, size_t count)
371 {
372 unsigned int input;
373 int ret;
374
375 unsigned int j;
376
377 ret = sscanf(buf, "%u", &input);
378 if (ret != 1)
379 return -EINVAL;
380
381 if (input > 1)
382 input = 1;
383
384 if (input == od_tuners.ignore_nice) { /* nothing to do */
385 return count;
386 }
387 od_tuners.ignore_nice = input;
388
389 /* we need to re-evaluate prev_cpu_idle */
390 for_each_online_cpu(j) {
391 struct od_cpu_dbs_info_s *dbs_info;
392 dbs_info = &per_cpu(od_cpu_dbs_info, j);
393 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
394 &dbs_info->cdbs.prev_cpu_wall);
395 if (od_tuners.ignore_nice)
396 dbs_info->cdbs.prev_cpu_nice =
397 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
398
399 }
400 return count;
401 }
402
403 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
404 const char *buf, size_t count)
405 {
406 unsigned int input;
407 int ret;
408 ret = sscanf(buf, "%u", &input);
409
410 if (ret != 1)
411 return -EINVAL;
412
413 if (input > 1000)
414 input = 1000;
415
416 od_tuners.powersave_bias = input;
417 ondemand_powersave_bias_init();
418 return count;
419 }
420
421 show_one(od, sampling_rate, sampling_rate);
422 show_one(od, io_is_busy, io_is_busy);
423 show_one(od, up_threshold, up_threshold);
424 show_one(od, sampling_down_factor, sampling_down_factor);
425 show_one(od, ignore_nice_load, ignore_nice);
426 show_one(od, powersave_bias, powersave_bias);
427
428 define_one_global_rw(sampling_rate);
429 define_one_global_rw(io_is_busy);
430 define_one_global_rw(up_threshold);
431 define_one_global_rw(sampling_down_factor);
432 define_one_global_rw(ignore_nice_load);
433 define_one_global_rw(powersave_bias);
434 define_one_global_ro(sampling_rate_min);
435
436 static struct attribute *dbs_attributes[] = {
437 &sampling_rate_min.attr,
438 &sampling_rate.attr,
439 &up_threshold.attr,
440 &sampling_down_factor.attr,
441 &ignore_nice_load.attr,
442 &powersave_bias.attr,
443 &io_is_busy.attr,
444 NULL
445 };
446
447 static struct attribute_group od_attr_group = {
448 .attrs = dbs_attributes,
449 .name = "ondemand",
450 };
451
452 /************************** sysfs end ************************/
453
454 define_get_cpu_dbs_routines(od_cpu_dbs_info);
455
456 static struct od_ops od_ops = {
457 .io_busy = should_io_be_busy,
458 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
459 .powersave_bias_target = powersave_bias_target,
460 .freq_increase = dbs_freq_increase,
461 };
462
463 static struct dbs_data od_dbs_data = {
464 .governor = GOV_ONDEMAND,
465 .attr_group = &od_attr_group,
466 .tuners = &od_tuners,
467 .get_cpu_cdbs = get_cpu_cdbs,
468 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
469 .gov_dbs_timer = od_dbs_timer,
470 .gov_check_cpu = od_check_cpu,
471 .gov_ops = &od_ops,
472 };
473
474 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
475 unsigned int event)
476 {
477 return cpufreq_governor_dbs(&od_dbs_data, policy, event);
478 }
479
480 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
481 static
482 #endif
483 struct cpufreq_governor cpufreq_gov_ondemand = {
484 .name = "ondemand",
485 .governor = od_cpufreq_governor_dbs,
486 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
487 .owner = THIS_MODULE,
488 };
489
490 static int __init cpufreq_gov_dbs_init(void)
491 {
492 u64 idle_time;
493 int cpu = get_cpu();
494
495 mutex_init(&od_dbs_data.mutex);
496 idle_time = get_cpu_idle_time_us(cpu, NULL);
497 put_cpu();
498 if (idle_time != -1ULL) {
499 /* Idle micro accounting is supported. Use finer thresholds */
500 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
501 od_tuners.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
502 /*
503 * In nohz/micro accounting case we set the minimum frequency
504 * not depending on HZ, but fixed (very low). The deferred
505 * timer might skip some samples if idle/sleeping as needed.
506 */
507 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
508 } else {
509 /* For correct statistics, we need 10 ticks for each measure */
510 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
511 jiffies_to_usecs(10);
512 }
513
514 return cpufreq_register_governor(&cpufreq_gov_ondemand);
515 }
516
517 static void __exit cpufreq_gov_dbs_exit(void)
518 {
519 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
520 }
521
522 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
523 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
524 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
525 "Low Latency Frequency Transition capable processors");
526 MODULE_LICENSE("GPL");
527
528 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
529 fs_initcall(cpufreq_gov_dbs_init);
530 #else
531 module_init(cpufreq_gov_dbs_init);
532 #endif
533 module_exit(cpufreq_gov_dbs_exit);
This page took 0.041231 seconds and 5 git commands to generate.