Merge tag 'nfs-for-4.5-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
29
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31
32 static struct od_ops od_ops;
33
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37
38 static unsigned int default_powersave_bias;
39
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43
44 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 dbs_info->freq_lo = 0;
46 }
47
48 /*
49 * Not all CPUs want IO time to be accounted as busy; this depends on how
50 * efficient idling at a higher frequency/voltage is.
51 * Pavel Machek says this is not so for various generations of AMD and old
52 * Intel systems.
53 * Mike Chan (android.com) claims this is also not true for ARM.
54 * Because of this, whitelist specific known (series) of CPUs by default, and
55 * leave all others up to the user.
56 */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 /*
61 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 */
63 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 boot_cpu_data.x86 == 6 &&
65 boot_cpu_data.x86_model >= 15)
66 return 1;
67 #endif
68 return 0;
69 }
70
71 /*
72 * Find right freq to be set now with powersave_bias on.
73 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75 */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 unsigned int freq_next, unsigned int relation)
78 {
79 unsigned int freq_req, freq_reduc, freq_avg;
80 unsigned int freq_hi, freq_lo;
81 unsigned int index = 0;
82 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 policy->cpu);
85 struct dbs_data *dbs_data = policy->governor_data;
86 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87
88 if (!dbs_info->freq_table) {
89 dbs_info->freq_lo = 0;
90 dbs_info->freq_lo_jiffies = 0;
91 return freq_next;
92 }
93
94 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 relation, &index);
96 freq_req = dbs_info->freq_table[index].frequency;
97 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 freq_avg = freq_req - freq_reduc;
99
100 /* Find freq bounds for freq_avg in freq_table */
101 index = 0;
102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 CPUFREQ_RELATION_H, &index);
104 freq_lo = dbs_info->freq_table[index].frequency;
105 index = 0;
106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 CPUFREQ_RELATION_L, &index);
108 freq_hi = dbs_info->freq_table[index].frequency;
109
110 /* Find out how long we have to be in hi and lo freqs */
111 if (freq_hi == freq_lo) {
112 dbs_info->freq_lo = 0;
113 dbs_info->freq_lo_jiffies = 0;
114 return freq_lo;
115 }
116 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 jiffies_hi += ((freq_hi - freq_lo) / 2);
119 jiffies_hi /= (freq_hi - freq_lo);
120 jiffies_lo = jiffies_total - jiffies_hi;
121 dbs_info->freq_lo = freq_lo;
122 dbs_info->freq_lo_jiffies = jiffies_lo;
123 dbs_info->freq_hi_jiffies = jiffies_hi;
124 return freq_hi;
125 }
126
127 static void ondemand_powersave_bias_init(void)
128 {
129 int i;
130 for_each_online_cpu(i) {
131 ondemand_powersave_bias_init_cpu(i);
132 }
133 }
134
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 struct dbs_data *dbs_data = policy->governor_data;
138 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139
140 if (od_tuners->powersave_bias)
141 freq = od_ops.powersave_bias_target(policy, freq,
142 CPUFREQ_RELATION_H);
143 else if (policy->cur == policy->max)
144 return;
145
146 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149
150 /*
151 * Every sampling_rate, we check, if current idle time is less than 20%
152 * (default), then we try to increase frequency. Else, we adjust the frequency
153 * proportional to load.
154 */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
159 struct dbs_data *dbs_data = policy->governor_data;
160 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161
162 dbs_info->freq_lo = 0;
163
164 /* Check for frequency increase */
165 if (load > od_tuners->up_threshold) {
166 /* If switching to max speed, apply sampling_down_factor */
167 if (policy->cur < policy->max)
168 dbs_info->rate_mult =
169 od_tuners->sampling_down_factor;
170 dbs_freq_increase(policy, policy->max);
171 } else {
172 /* Calculate the next frequency proportional to load */
173 unsigned int freq_next, min_f, max_f;
174
175 min_f = policy->cpuinfo.min_freq;
176 max_f = policy->cpuinfo.max_freq;
177 freq_next = min_f + load * (max_f - min_f) / 100;
178
179 /* No longer fully busy, reset rate_mult */
180 dbs_info->rate_mult = 1;
181
182 if (!od_tuners->powersave_bias) {
183 __cpufreq_driver_target(policy, freq_next,
184 CPUFREQ_RELATION_C);
185 return;
186 }
187
188 freq_next = od_ops.powersave_bias_target(policy, freq_next,
189 CPUFREQ_RELATION_L);
190 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
191 }
192 }
193
194 static unsigned int od_dbs_timer(struct cpufreq_policy *policy, bool modify_all)
195 {
196 struct dbs_data *dbs_data = policy->governor_data;
197 unsigned int cpu = policy->cpu;
198 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
199 cpu);
200 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
201 int delay = 0, sample_type = dbs_info->sample_type;
202
203 if (!modify_all)
204 goto max_delay;
205
206 /* Common NORMAL_SAMPLE setup */
207 dbs_info->sample_type = OD_NORMAL_SAMPLE;
208 if (sample_type == OD_SUB_SAMPLE) {
209 delay = dbs_info->freq_lo_jiffies;
210 __cpufreq_driver_target(policy, dbs_info->freq_lo,
211 CPUFREQ_RELATION_H);
212 } else {
213 dbs_check_cpu(dbs_data, cpu);
214 if (dbs_info->freq_lo) {
215 /* Setup timer for SUB_SAMPLE */
216 dbs_info->sample_type = OD_SUB_SAMPLE;
217 delay = dbs_info->freq_hi_jiffies;
218 }
219 }
220
221 max_delay:
222 if (!delay)
223 delay = delay_for_sampling_rate(od_tuners->sampling_rate
224 * dbs_info->rate_mult);
225
226 return delay;
227 }
228
229 /************************** sysfs interface ************************/
230 static struct common_dbs_data od_dbs_cdata;
231
232 /**
233 * update_sampling_rate - update sampling rate effective immediately if needed.
234 * @new_rate: new sampling rate
235 *
236 * If new rate is smaller than the old, simply updating
237 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
238 * original sampling_rate was 1 second and the requested new sampling rate is 10
239 * ms because the user needs immediate reaction from ondemand governor, but not
240 * sure if higher frequency will be required or not, then, the governor may
241 * change the sampling rate too late; up to 1 second later. Thus, if we are
242 * reducing the sampling rate, we need to make the new value effective
243 * immediately.
244 */
245 static void update_sampling_rate(struct dbs_data *dbs_data,
246 unsigned int new_rate)
247 {
248 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
249 struct cpumask cpumask;
250 int cpu;
251
252 od_tuners->sampling_rate = new_rate = max(new_rate,
253 dbs_data->min_sampling_rate);
254
255 /*
256 * Lock governor so that governor start/stop can't execute in parallel.
257 */
258 mutex_lock(&od_dbs_cdata.mutex);
259
260 cpumask_copy(&cpumask, cpu_online_mask);
261
262 for_each_cpu(cpu, &cpumask) {
263 struct cpufreq_policy *policy;
264 struct od_cpu_dbs_info_s *dbs_info;
265 struct cpu_dbs_info *cdbs;
266 struct cpu_common_dbs_info *shared;
267 unsigned long next_sampling, appointed_at;
268
269 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
270 cdbs = &dbs_info->cdbs;
271 shared = cdbs->shared;
272
273 /*
274 * A valid shared and shared->policy means governor hasn't
275 * stopped or exited yet.
276 */
277 if (!shared || !shared->policy)
278 continue;
279
280 policy = shared->policy;
281
282 /* clear all CPUs of this policy */
283 cpumask_andnot(&cpumask, &cpumask, policy->cpus);
284
285 /*
286 * Update sampling rate for CPUs whose policy is governed by
287 * dbs_data. In case of governor_per_policy, only a single
288 * policy will be governed by dbs_data, otherwise there can be
289 * multiple policies that are governed by the same dbs_data.
290 */
291 if (dbs_data != policy->governor_data)
292 continue;
293
294 /*
295 * Checking this for any CPU should be fine, timers for all of
296 * them are scheduled together.
297 */
298 next_sampling = jiffies + usecs_to_jiffies(new_rate);
299 appointed_at = dbs_info->cdbs.timer.expires;
300
301 if (time_before(next_sampling, appointed_at)) {
302 gov_cancel_work(shared);
303 gov_add_timers(policy, usecs_to_jiffies(new_rate));
304
305 }
306 }
307
308 mutex_unlock(&od_dbs_cdata.mutex);
309 }
310
311 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
312 size_t count)
313 {
314 unsigned int input;
315 int ret;
316 ret = sscanf(buf, "%u", &input);
317 if (ret != 1)
318 return -EINVAL;
319
320 update_sampling_rate(dbs_data, input);
321 return count;
322 }
323
324 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
325 size_t count)
326 {
327 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
328 unsigned int input;
329 int ret;
330 unsigned int j;
331
332 ret = sscanf(buf, "%u", &input);
333 if (ret != 1)
334 return -EINVAL;
335 od_tuners->io_is_busy = !!input;
336
337 /* we need to re-evaluate prev_cpu_idle */
338 for_each_online_cpu(j) {
339 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
340 j);
341 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
342 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
343 }
344 return count;
345 }
346
347 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
348 size_t count)
349 {
350 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
351 unsigned int input;
352 int ret;
353 ret = sscanf(buf, "%u", &input);
354
355 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
356 input < MIN_FREQUENCY_UP_THRESHOLD) {
357 return -EINVAL;
358 }
359
360 od_tuners->up_threshold = input;
361 return count;
362 }
363
364 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
365 const char *buf, size_t count)
366 {
367 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
368 unsigned int input, j;
369 int ret;
370 ret = sscanf(buf, "%u", &input);
371
372 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
373 return -EINVAL;
374 od_tuners->sampling_down_factor = input;
375
376 /* Reset down sampling multiplier in case it was active */
377 for_each_online_cpu(j) {
378 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
379 j);
380 dbs_info->rate_mult = 1;
381 }
382 return count;
383 }
384
385 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
386 const char *buf, size_t count)
387 {
388 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
389 unsigned int input;
390 int ret;
391
392 unsigned int j;
393
394 ret = sscanf(buf, "%u", &input);
395 if (ret != 1)
396 return -EINVAL;
397
398 if (input > 1)
399 input = 1;
400
401 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
402 return count;
403 }
404 od_tuners->ignore_nice_load = input;
405
406 /* we need to re-evaluate prev_cpu_idle */
407 for_each_online_cpu(j) {
408 struct od_cpu_dbs_info_s *dbs_info;
409 dbs_info = &per_cpu(od_cpu_dbs_info, j);
410 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
411 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
412 if (od_tuners->ignore_nice_load)
413 dbs_info->cdbs.prev_cpu_nice =
414 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
415
416 }
417 return count;
418 }
419
420 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
421 size_t count)
422 {
423 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
424 unsigned int input;
425 int ret;
426 ret = sscanf(buf, "%u", &input);
427
428 if (ret != 1)
429 return -EINVAL;
430
431 if (input > 1000)
432 input = 1000;
433
434 od_tuners->powersave_bias = input;
435 ondemand_powersave_bias_init();
436 return count;
437 }
438
439 show_store_one(od, sampling_rate);
440 show_store_one(od, io_is_busy);
441 show_store_one(od, up_threshold);
442 show_store_one(od, sampling_down_factor);
443 show_store_one(od, ignore_nice_load);
444 show_store_one(od, powersave_bias);
445 declare_show_sampling_rate_min(od);
446
447 gov_sys_pol_attr_rw(sampling_rate);
448 gov_sys_pol_attr_rw(io_is_busy);
449 gov_sys_pol_attr_rw(up_threshold);
450 gov_sys_pol_attr_rw(sampling_down_factor);
451 gov_sys_pol_attr_rw(ignore_nice_load);
452 gov_sys_pol_attr_rw(powersave_bias);
453 gov_sys_pol_attr_ro(sampling_rate_min);
454
455 static struct attribute *dbs_attributes_gov_sys[] = {
456 &sampling_rate_min_gov_sys.attr,
457 &sampling_rate_gov_sys.attr,
458 &up_threshold_gov_sys.attr,
459 &sampling_down_factor_gov_sys.attr,
460 &ignore_nice_load_gov_sys.attr,
461 &powersave_bias_gov_sys.attr,
462 &io_is_busy_gov_sys.attr,
463 NULL
464 };
465
466 static struct attribute_group od_attr_group_gov_sys = {
467 .attrs = dbs_attributes_gov_sys,
468 .name = "ondemand",
469 };
470
471 static struct attribute *dbs_attributes_gov_pol[] = {
472 &sampling_rate_min_gov_pol.attr,
473 &sampling_rate_gov_pol.attr,
474 &up_threshold_gov_pol.attr,
475 &sampling_down_factor_gov_pol.attr,
476 &ignore_nice_load_gov_pol.attr,
477 &powersave_bias_gov_pol.attr,
478 &io_is_busy_gov_pol.attr,
479 NULL
480 };
481
482 static struct attribute_group od_attr_group_gov_pol = {
483 .attrs = dbs_attributes_gov_pol,
484 .name = "ondemand",
485 };
486
487 /************************** sysfs end ************************/
488
489 static int od_init(struct dbs_data *dbs_data, bool notify)
490 {
491 struct od_dbs_tuners *tuners;
492 u64 idle_time;
493 int cpu;
494
495 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
496 if (!tuners) {
497 pr_err("%s: kzalloc failed\n", __func__);
498 return -ENOMEM;
499 }
500
501 cpu = get_cpu();
502 idle_time = get_cpu_idle_time_us(cpu, NULL);
503 put_cpu();
504 if (idle_time != -1ULL) {
505 /* Idle micro accounting is supported. Use finer thresholds */
506 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
507 /*
508 * In nohz/micro accounting case we set the minimum frequency
509 * not depending on HZ, but fixed (very low). The deferred
510 * timer might skip some samples if idle/sleeping as needed.
511 */
512 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
513 } else {
514 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
515
516 /* For correct statistics, we need 10 ticks for each measure */
517 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
518 jiffies_to_usecs(10);
519 }
520
521 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
522 tuners->ignore_nice_load = 0;
523 tuners->powersave_bias = default_powersave_bias;
524 tuners->io_is_busy = should_io_be_busy();
525
526 dbs_data->tuners = tuners;
527 return 0;
528 }
529
530 static void od_exit(struct dbs_data *dbs_data, bool notify)
531 {
532 kfree(dbs_data->tuners);
533 }
534
535 define_get_cpu_dbs_routines(od_cpu_dbs_info);
536
537 static struct od_ops od_ops = {
538 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
539 .powersave_bias_target = generic_powersave_bias_target,
540 .freq_increase = dbs_freq_increase,
541 };
542
543 static struct common_dbs_data od_dbs_cdata = {
544 .governor = GOV_ONDEMAND,
545 .attr_group_gov_sys = &od_attr_group_gov_sys,
546 .attr_group_gov_pol = &od_attr_group_gov_pol,
547 .get_cpu_cdbs = get_cpu_cdbs,
548 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
549 .gov_dbs_timer = od_dbs_timer,
550 .gov_check_cpu = od_check_cpu,
551 .gov_ops = &od_ops,
552 .init = od_init,
553 .exit = od_exit,
554 .mutex = __MUTEX_INITIALIZER(od_dbs_cdata.mutex),
555 };
556
557 static void od_set_powersave_bias(unsigned int powersave_bias)
558 {
559 struct cpufreq_policy *policy;
560 struct dbs_data *dbs_data;
561 struct od_dbs_tuners *od_tuners;
562 unsigned int cpu;
563 cpumask_t done;
564
565 default_powersave_bias = powersave_bias;
566 cpumask_clear(&done);
567
568 get_online_cpus();
569 for_each_online_cpu(cpu) {
570 struct cpu_common_dbs_info *shared;
571
572 if (cpumask_test_cpu(cpu, &done))
573 continue;
574
575 shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
576 if (!shared)
577 continue;
578
579 policy = shared->policy;
580 cpumask_or(&done, &done, policy->cpus);
581
582 if (policy->governor != &cpufreq_gov_ondemand)
583 continue;
584
585 dbs_data = policy->governor_data;
586 od_tuners = dbs_data->tuners;
587 od_tuners->powersave_bias = default_powersave_bias;
588 }
589 put_online_cpus();
590 }
591
592 void od_register_powersave_bias_handler(unsigned int (*f)
593 (struct cpufreq_policy *, unsigned int, unsigned int),
594 unsigned int powersave_bias)
595 {
596 od_ops.powersave_bias_target = f;
597 od_set_powersave_bias(powersave_bias);
598 }
599 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
600
601 void od_unregister_powersave_bias_handler(void)
602 {
603 od_ops.powersave_bias_target = generic_powersave_bias_target;
604 od_set_powersave_bias(0);
605 }
606 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
607
608 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
609 unsigned int event)
610 {
611 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
612 }
613
614 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
615 static
616 #endif
617 struct cpufreq_governor cpufreq_gov_ondemand = {
618 .name = "ondemand",
619 .governor = od_cpufreq_governor_dbs,
620 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
621 .owner = THIS_MODULE,
622 };
623
624 static int __init cpufreq_gov_dbs_init(void)
625 {
626 return cpufreq_register_governor(&cpufreq_gov_ondemand);
627 }
628
629 static void __exit cpufreq_gov_dbs_exit(void)
630 {
631 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
632 }
633
634 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
635 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
636 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
637 "Low Latency Frequency Transition capable processors");
638 MODULE_LICENSE("GPL");
639
640 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
641 fs_initcall(cpufreq_gov_dbs_init);
642 #else
643 module_init(cpufreq_gov_dbs_init);
644 #endif
645 module_exit(cpufreq_gov_dbs_exit);
This page took 0.066862 seconds and 5 git commands to generate.