Merge master.kernel.org:/pub/scm/linux/kernel/git/kyle/parisc-2.6
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21
22 /*
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
25 */
26
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30
31 /*
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
40 */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE \
45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE \
47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
50 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
51
52 static void do_dbs_timer(struct work_struct *work);
53
54 /* Sampling types */
55 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
56
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 struct cpufreq_policy *cur_policy;
61 struct delayed_work work;
62 struct cpufreq_frequency_table *freq_table;
63 unsigned int freq_lo;
64 unsigned int freq_lo_jiffies;
65 unsigned int freq_hi_jiffies;
66 int cpu;
67 unsigned int enable:1,
68 sample_type:1;
69 };
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
73
74 /*
75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76 * lock and dbs_mutex. cpu_hotplug lock should always be held before
77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80 * is recursive for the same process. -Venki
81 */
82 static DEFINE_MUTEX(dbs_mutex);
83
84 static struct workqueue_struct *kondemand_wq;
85
86 static struct dbs_tuners {
87 unsigned int sampling_rate;
88 unsigned int up_threshold;
89 unsigned int ignore_nice;
90 unsigned int powersave_bias;
91 } dbs_tuners_ins = {
92 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
93 .ignore_nice = 0,
94 .powersave_bias = 0,
95 };
96
97 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
98 {
99 cputime64_t retval;
100
101 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
102 kstat_cpu(cpu).cpustat.iowait);
103
104 if (dbs_tuners_ins.ignore_nice)
105 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
106
107 return retval;
108 }
109
110 /*
111 * Find right freq to be set now with powersave_bias on.
112 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
113 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
114 */
115 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
116 unsigned int freq_next,
117 unsigned int relation)
118 {
119 unsigned int freq_req, freq_reduc, freq_avg;
120 unsigned int freq_hi, freq_lo;
121 unsigned int index = 0;
122 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
123 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
124
125 if (!dbs_info->freq_table) {
126 dbs_info->freq_lo = 0;
127 dbs_info->freq_lo_jiffies = 0;
128 return freq_next;
129 }
130
131 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
132 relation, &index);
133 freq_req = dbs_info->freq_table[index].frequency;
134 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
135 freq_avg = freq_req - freq_reduc;
136
137 /* Find freq bounds for freq_avg in freq_table */
138 index = 0;
139 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
140 CPUFREQ_RELATION_H, &index);
141 freq_lo = dbs_info->freq_table[index].frequency;
142 index = 0;
143 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
144 CPUFREQ_RELATION_L, &index);
145 freq_hi = dbs_info->freq_table[index].frequency;
146
147 /* Find out how long we have to be in hi and lo freqs */
148 if (freq_hi == freq_lo) {
149 dbs_info->freq_lo = 0;
150 dbs_info->freq_lo_jiffies = 0;
151 return freq_lo;
152 }
153 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
154 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
155 jiffies_hi += ((freq_hi - freq_lo) / 2);
156 jiffies_hi /= (freq_hi - freq_lo);
157 jiffies_lo = jiffies_total - jiffies_hi;
158 dbs_info->freq_lo = freq_lo;
159 dbs_info->freq_lo_jiffies = jiffies_lo;
160 dbs_info->freq_hi_jiffies = jiffies_hi;
161 return freq_hi;
162 }
163
164 static void ondemand_powersave_bias_init(void)
165 {
166 int i;
167 for_each_online_cpu(i) {
168 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
169 dbs_info->freq_table = cpufreq_frequency_get_table(i);
170 dbs_info->freq_lo = 0;
171 }
172 }
173
174 /************************** sysfs interface ************************/
175 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
176 {
177 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
178 }
179
180 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
181 {
182 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
183 }
184
185 #define define_one_ro(_name) \
186 static struct freq_attr _name = \
187 __ATTR(_name, 0444, show_##_name, NULL)
188
189 define_one_ro(sampling_rate_max);
190 define_one_ro(sampling_rate_min);
191
192 /* cpufreq_ondemand Governor Tunables */
193 #define show_one(file_name, object) \
194 static ssize_t show_##file_name \
195 (struct cpufreq_policy *unused, char *buf) \
196 { \
197 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
198 }
199 show_one(sampling_rate, sampling_rate);
200 show_one(up_threshold, up_threshold);
201 show_one(ignore_nice_load, ignore_nice);
202 show_one(powersave_bias, powersave_bias);
203
204 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
205 const char *buf, size_t count)
206 {
207 unsigned int input;
208 int ret;
209 ret = sscanf(buf, "%u", &input);
210
211 mutex_lock(&dbs_mutex);
212 if (ret != 1 || input > MAX_SAMPLING_RATE
213 || input < MIN_SAMPLING_RATE) {
214 mutex_unlock(&dbs_mutex);
215 return -EINVAL;
216 }
217
218 dbs_tuners_ins.sampling_rate = input;
219 mutex_unlock(&dbs_mutex);
220
221 return count;
222 }
223
224 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
225 const char *buf, size_t count)
226 {
227 unsigned int input;
228 int ret;
229 ret = sscanf(buf, "%u", &input);
230
231 mutex_lock(&dbs_mutex);
232 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
233 input < MIN_FREQUENCY_UP_THRESHOLD) {
234 mutex_unlock(&dbs_mutex);
235 return -EINVAL;
236 }
237
238 dbs_tuners_ins.up_threshold = input;
239 mutex_unlock(&dbs_mutex);
240
241 return count;
242 }
243
244 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
245 const char *buf, size_t count)
246 {
247 unsigned int input;
248 int ret;
249
250 unsigned int j;
251
252 ret = sscanf(buf, "%u", &input);
253 if ( ret != 1 )
254 return -EINVAL;
255
256 if ( input > 1 )
257 input = 1;
258
259 mutex_lock(&dbs_mutex);
260 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
261 mutex_unlock(&dbs_mutex);
262 return count;
263 }
264 dbs_tuners_ins.ignore_nice = input;
265
266 /* we need to re-evaluate prev_cpu_idle */
267 for_each_online_cpu(j) {
268 struct cpu_dbs_info_s *dbs_info;
269 dbs_info = &per_cpu(cpu_dbs_info, j);
270 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
271 dbs_info->prev_cpu_wall = get_jiffies_64();
272 }
273 mutex_unlock(&dbs_mutex);
274
275 return count;
276 }
277
278 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
279 const char *buf, size_t count)
280 {
281 unsigned int input;
282 int ret;
283 ret = sscanf(buf, "%u", &input);
284
285 if (ret != 1)
286 return -EINVAL;
287
288 if (input > 1000)
289 input = 1000;
290
291 mutex_lock(&dbs_mutex);
292 dbs_tuners_ins.powersave_bias = input;
293 ondemand_powersave_bias_init();
294 mutex_unlock(&dbs_mutex);
295
296 return count;
297 }
298
299 #define define_one_rw(_name) \
300 static struct freq_attr _name = \
301 __ATTR(_name, 0644, show_##_name, store_##_name)
302
303 define_one_rw(sampling_rate);
304 define_one_rw(up_threshold);
305 define_one_rw(ignore_nice_load);
306 define_one_rw(powersave_bias);
307
308 static struct attribute * dbs_attributes[] = {
309 &sampling_rate_max.attr,
310 &sampling_rate_min.attr,
311 &sampling_rate.attr,
312 &up_threshold.attr,
313 &ignore_nice_load.attr,
314 &powersave_bias.attr,
315 NULL
316 };
317
318 static struct attribute_group dbs_attr_group = {
319 .attrs = dbs_attributes,
320 .name = "ondemand",
321 };
322
323 /************************** sysfs end ************************/
324
325 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
326 {
327 unsigned int idle_ticks, total_ticks;
328 unsigned int load;
329 cputime64_t cur_jiffies;
330
331 struct cpufreq_policy *policy;
332 unsigned int j;
333
334 if (!this_dbs_info->enable)
335 return;
336
337 this_dbs_info->freq_lo = 0;
338 policy = this_dbs_info->cur_policy;
339 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
340 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
341 this_dbs_info->prev_cpu_wall);
342 this_dbs_info->prev_cpu_wall = cur_jiffies;
343 if (!total_ticks)
344 return;
345 /*
346 * Every sampling_rate, we check, if current idle time is less
347 * than 20% (default), then we try to increase frequency
348 * Every sampling_rate, we look for a the lowest
349 * frequency which can sustain the load while keeping idle time over
350 * 30%. If such a frequency exist, we try to decrease to this frequency.
351 *
352 * Any frequency increase takes it to the maximum frequency.
353 * Frequency reduction happens at minimum steps of
354 * 5% (default) of current frequency
355 */
356
357 /* Get Idle Time */
358 idle_ticks = UINT_MAX;
359 for_each_cpu_mask(j, policy->cpus) {
360 cputime64_t total_idle_ticks;
361 unsigned int tmp_idle_ticks;
362 struct cpu_dbs_info_s *j_dbs_info;
363
364 j_dbs_info = &per_cpu(cpu_dbs_info, j);
365 total_idle_ticks = get_cpu_idle_time(j);
366 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
367 j_dbs_info->prev_cpu_idle);
368 j_dbs_info->prev_cpu_idle = total_idle_ticks;
369
370 if (tmp_idle_ticks < idle_ticks)
371 idle_ticks = tmp_idle_ticks;
372 }
373 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
374
375 /* Check for frequency increase */
376 if (load > dbs_tuners_ins.up_threshold) {
377 /* if we are already at full speed then break out early */
378 if (!dbs_tuners_ins.powersave_bias) {
379 if (policy->cur == policy->max)
380 return;
381
382 __cpufreq_driver_target(policy, policy->max,
383 CPUFREQ_RELATION_H);
384 } else {
385 int freq = powersave_bias_target(policy, policy->max,
386 CPUFREQ_RELATION_H);
387 __cpufreq_driver_target(policy, freq,
388 CPUFREQ_RELATION_L);
389 }
390 return;
391 }
392
393 /* Check for frequency decrease */
394 /* if we cannot reduce the frequency anymore, break out early */
395 if (policy->cur == policy->min)
396 return;
397
398 /*
399 * The optimal frequency is the frequency that is the lowest that
400 * can support the current CPU usage without triggering the up
401 * policy. To be safe, we focus 10 points under the threshold.
402 */
403 if (load < (dbs_tuners_ins.up_threshold - 10)) {
404 unsigned int freq_next, freq_cur;
405
406 freq_cur = __cpufreq_driver_getavg(policy);
407 if (!freq_cur)
408 freq_cur = policy->cur;
409
410 freq_next = (freq_cur * load) /
411 (dbs_tuners_ins.up_threshold - 10);
412
413 if (!dbs_tuners_ins.powersave_bias) {
414 __cpufreq_driver_target(policy, freq_next,
415 CPUFREQ_RELATION_L);
416 } else {
417 int freq = powersave_bias_target(policy, freq_next,
418 CPUFREQ_RELATION_L);
419 __cpufreq_driver_target(policy, freq,
420 CPUFREQ_RELATION_L);
421 }
422 }
423 }
424
425 static void do_dbs_timer(struct work_struct *work)
426 {
427 struct cpu_dbs_info_s *dbs_info =
428 container_of(work, struct cpu_dbs_info_s, work.work);
429 unsigned int cpu = dbs_info->cpu;
430 int sample_type = dbs_info->sample_type;
431
432 /* We want all CPUs to do sampling nearly on same jiffy */
433 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
434
435 /* Permit rescheduling of this work item */
436 work_release(work);
437
438 delay -= jiffies % delay;
439
440 if (lock_policy_rwsem_write(cpu) < 0)
441 return;
442
443 if (!dbs_info->enable) {
444 unlock_policy_rwsem_write(cpu);
445 return;
446 }
447
448 /* Common NORMAL_SAMPLE setup */
449 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
450 if (!dbs_tuners_ins.powersave_bias ||
451 sample_type == DBS_NORMAL_SAMPLE) {
452 dbs_check_cpu(dbs_info);
453 if (dbs_info->freq_lo) {
454 /* Setup timer for SUB_SAMPLE */
455 dbs_info->sample_type = DBS_SUB_SAMPLE;
456 delay = dbs_info->freq_hi_jiffies;
457 }
458 } else {
459 __cpufreq_driver_target(dbs_info->cur_policy,
460 dbs_info->freq_lo,
461 CPUFREQ_RELATION_H);
462 }
463 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
464 unlock_policy_rwsem_write(cpu);
465 }
466
467 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
468 {
469 /* We want all CPUs to do sampling nearly on same jiffy */
470 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
471 delay -= jiffies % delay;
472
473 dbs_info->enable = 1;
474 ondemand_powersave_bias_init();
475 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
476 INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer);
477 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
478 delay);
479 }
480
481 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
482 {
483 dbs_info->enable = 0;
484 cancel_delayed_work(&dbs_info->work);
485 }
486
487 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
488 unsigned int event)
489 {
490 unsigned int cpu = policy->cpu;
491 struct cpu_dbs_info_s *this_dbs_info;
492 unsigned int j;
493 int rc;
494
495 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
496
497 switch (event) {
498 case CPUFREQ_GOV_START:
499 if ((!cpu_online(cpu)) || (!policy->cur))
500 return -EINVAL;
501
502 if (policy->cpuinfo.transition_latency >
503 (TRANSITION_LATENCY_LIMIT * 1000)) {
504 printk(KERN_WARNING "ondemand governor failed to load "
505 "due to too long transition latency\n");
506 return -EINVAL;
507 }
508 if (this_dbs_info->enable) /* Already enabled */
509 break;
510
511 mutex_lock(&dbs_mutex);
512 dbs_enable++;
513
514 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
515 if (rc) {
516 dbs_enable--;
517 mutex_unlock(&dbs_mutex);
518 return rc;
519 }
520
521 for_each_cpu_mask(j, policy->cpus) {
522 struct cpu_dbs_info_s *j_dbs_info;
523 j_dbs_info = &per_cpu(cpu_dbs_info, j);
524 j_dbs_info->cur_policy = policy;
525
526 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
527 j_dbs_info->prev_cpu_wall = get_jiffies_64();
528 }
529 this_dbs_info->cpu = cpu;
530 /*
531 * Start the timerschedule work, when this governor
532 * is used for first time
533 */
534 if (dbs_enable == 1) {
535 unsigned int latency;
536 /* policy latency is in nS. Convert it to uS first */
537 latency = policy->cpuinfo.transition_latency / 1000;
538 if (latency == 0)
539 latency = 1;
540
541 def_sampling_rate = latency *
542 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
543
544 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
545 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
546
547 dbs_tuners_ins.sampling_rate = def_sampling_rate;
548 }
549 dbs_timer_init(this_dbs_info);
550
551 mutex_unlock(&dbs_mutex);
552 break;
553
554 case CPUFREQ_GOV_STOP:
555 mutex_lock(&dbs_mutex);
556 dbs_timer_exit(this_dbs_info);
557 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
558 dbs_enable--;
559 mutex_unlock(&dbs_mutex);
560
561 break;
562
563 case CPUFREQ_GOV_LIMITS:
564 mutex_lock(&dbs_mutex);
565 if (policy->max < this_dbs_info->cur_policy->cur)
566 __cpufreq_driver_target(this_dbs_info->cur_policy,
567 policy->max,
568 CPUFREQ_RELATION_H);
569 else if (policy->min > this_dbs_info->cur_policy->cur)
570 __cpufreq_driver_target(this_dbs_info->cur_policy,
571 policy->min,
572 CPUFREQ_RELATION_L);
573 mutex_unlock(&dbs_mutex);
574 break;
575 }
576 return 0;
577 }
578
579 static struct cpufreq_governor cpufreq_gov_dbs = {
580 .name = "ondemand",
581 .governor = cpufreq_governor_dbs,
582 .owner = THIS_MODULE,
583 };
584
585 static int __init cpufreq_gov_dbs_init(void)
586 {
587 kondemand_wq = create_workqueue("kondemand");
588 if (!kondemand_wq) {
589 printk(KERN_ERR "Creation of kondemand failed\n");
590 return -EFAULT;
591 }
592 return cpufreq_register_governor(&cpufreq_gov_dbs);
593 }
594
595 static void __exit cpufreq_gov_dbs_exit(void)
596 {
597 cpufreq_unregister_governor(&cpufreq_gov_dbs);
598 destroy_workqueue(kondemand_wq);
599 }
600
601
602 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
603 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
604 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
605 "Low Latency Frequency Transition capable processors");
606 MODULE_LICENSE("GPL");
607
608 module_init(cpufreq_gov_dbs_init);
609 module_exit(cpufreq_gov_dbs_exit);
610
This page took 0.053125 seconds and 6 git commands to generate.