Merge tag 'writeback-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg...
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/tick.h>
25 #include <linux/types.h>
26
27 #include "cpufreq_governor.h"
28
29 /* On-demand governor macros */
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
31 #define DEF_FREQUENCY_UP_THRESHOLD (80)
32 #define DEF_SAMPLING_DOWN_FACTOR (1)
33 #define MAX_SAMPLING_DOWN_FACTOR (100000)
34 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
35 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
36 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
37 #define MIN_FREQUENCY_UP_THRESHOLD (11)
38 #define MAX_FREQUENCY_UP_THRESHOLD (100)
39
40 static struct dbs_data od_dbs_data;
41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
42
43 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44 static struct cpufreq_governor cpufreq_gov_ondemand;
45 #endif
46
47 static struct od_dbs_tuners od_tuners = {
48 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
49 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
50 .adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
51 DEF_FREQUENCY_DOWN_DIFFERENTIAL,
52 .ignore_nice = 0,
53 .powersave_bias = 0,
54 };
55
56 static void ondemand_powersave_bias_init_cpu(int cpu)
57 {
58 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
59
60 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
61 dbs_info->freq_lo = 0;
62 }
63
64 /*
65 * Not all CPUs want IO time to be accounted as busy; this depends on how
66 * efficient idling at a higher frequency/voltage is.
67 * Pavel Machek says this is not so for various generations of AMD and old
68 * Intel systems.
69 * Mike Chan (android.com) claims this is also not true for ARM.
70 * Because of this, whitelist specific known (series) of CPUs by default, and
71 * leave all others up to the user.
72 */
73 static int should_io_be_busy(void)
74 {
75 #if defined(CONFIG_X86)
76 /*
77 * For Intel, Core 2 (model 15) and later have an efficient idle.
78 */
79 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
80 boot_cpu_data.x86 == 6 &&
81 boot_cpu_data.x86_model >= 15)
82 return 1;
83 #endif
84 return 0;
85 }
86
87 /*
88 * Find right freq to be set now with powersave_bias on.
89 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
90 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
91 */
92 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
93 unsigned int freq_next, unsigned int relation)
94 {
95 unsigned int freq_req, freq_reduc, freq_avg;
96 unsigned int freq_hi, freq_lo;
97 unsigned int index = 0;
98 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
99 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
100 policy->cpu);
101
102 if (!dbs_info->freq_table) {
103 dbs_info->freq_lo = 0;
104 dbs_info->freq_lo_jiffies = 0;
105 return freq_next;
106 }
107
108 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
109 relation, &index);
110 freq_req = dbs_info->freq_table[index].frequency;
111 freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
112 freq_avg = freq_req - freq_reduc;
113
114 /* Find freq bounds for freq_avg in freq_table */
115 index = 0;
116 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
117 CPUFREQ_RELATION_H, &index);
118 freq_lo = dbs_info->freq_table[index].frequency;
119 index = 0;
120 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
121 CPUFREQ_RELATION_L, &index);
122 freq_hi = dbs_info->freq_table[index].frequency;
123
124 /* Find out how long we have to be in hi and lo freqs */
125 if (freq_hi == freq_lo) {
126 dbs_info->freq_lo = 0;
127 dbs_info->freq_lo_jiffies = 0;
128 return freq_lo;
129 }
130 jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
131 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
132 jiffies_hi += ((freq_hi - freq_lo) / 2);
133 jiffies_hi /= (freq_hi - freq_lo);
134 jiffies_lo = jiffies_total - jiffies_hi;
135 dbs_info->freq_lo = freq_lo;
136 dbs_info->freq_lo_jiffies = jiffies_lo;
137 dbs_info->freq_hi_jiffies = jiffies_hi;
138 return freq_hi;
139 }
140
141 static void ondemand_powersave_bias_init(void)
142 {
143 int i;
144 for_each_online_cpu(i) {
145 ondemand_powersave_bias_init_cpu(i);
146 }
147 }
148
149 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
150 {
151 if (od_tuners.powersave_bias)
152 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
153 else if (p->cur == p->max)
154 return;
155
156 __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
157 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
158 }
159
160 /*
161 * Every sampling_rate, we check, if current idle time is less than 20%
162 * (default), then we try to increase frequency. Every sampling_rate, we look
163 * for the lowest frequency which can sustain the load while keeping idle time
164 * over 30%. If such a frequency exist, we try to decrease to this frequency.
165 *
166 * Any frequency increase takes it to the maximum frequency. Frequency reduction
167 * happens at minimum steps of 5% (default) of current frequency
168 */
169 static void od_check_cpu(int cpu, unsigned int load_freq)
170 {
171 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
172 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
173
174 dbs_info->freq_lo = 0;
175
176 /* Check for frequency increase */
177 if (load_freq > od_tuners.up_threshold * policy->cur) {
178 /* If switching to max speed, apply sampling_down_factor */
179 if (policy->cur < policy->max)
180 dbs_info->rate_mult =
181 od_tuners.sampling_down_factor;
182 dbs_freq_increase(policy, policy->max);
183 return;
184 }
185
186 /* Check for frequency decrease */
187 /* if we cannot reduce the frequency anymore, break out early */
188 if (policy->cur == policy->min)
189 return;
190
191 /*
192 * The optimal frequency is the frequency that is the lowest that can
193 * support the current CPU usage without triggering the up policy. To be
194 * safe, we focus 10 points under the threshold.
195 */
196 if (load_freq < od_tuners.adj_up_threshold * policy->cur) {
197 unsigned int freq_next;
198 freq_next = load_freq / od_tuners.adj_up_threshold;
199
200 /* No longer fully busy, reset rate_mult */
201 dbs_info->rate_mult = 1;
202
203 if (freq_next < policy->min)
204 freq_next = policy->min;
205
206 if (!od_tuners.powersave_bias) {
207 __cpufreq_driver_target(policy, freq_next,
208 CPUFREQ_RELATION_L);
209 } else {
210 int freq = powersave_bias_target(policy, freq_next,
211 CPUFREQ_RELATION_L);
212 __cpufreq_driver_target(policy, freq,
213 CPUFREQ_RELATION_L);
214 }
215 }
216 }
217
218 static void od_dbs_timer(struct work_struct *work)
219 {
220 struct delayed_work *dw = to_delayed_work(work);
221 struct od_cpu_dbs_info_s *dbs_info =
222 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
223 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
224 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
225 cpu);
226 int delay, sample_type = core_dbs_info->sample_type;
227 bool eval_load;
228
229 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
230 eval_load = need_load_eval(&core_dbs_info->cdbs,
231 od_tuners.sampling_rate);
232
233 /* Common NORMAL_SAMPLE setup */
234 core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
235 if (sample_type == OD_SUB_SAMPLE) {
236 delay = core_dbs_info->freq_lo_jiffies;
237 if (eval_load)
238 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
239 core_dbs_info->freq_lo,
240 CPUFREQ_RELATION_H);
241 } else {
242 if (eval_load)
243 dbs_check_cpu(&od_dbs_data, cpu);
244 if (core_dbs_info->freq_lo) {
245 /* Setup timer for SUB_SAMPLE */
246 core_dbs_info->sample_type = OD_SUB_SAMPLE;
247 delay = core_dbs_info->freq_hi_jiffies;
248 } else {
249 delay = delay_for_sampling_rate(od_tuners.sampling_rate
250 * core_dbs_info->rate_mult);
251 }
252 }
253
254 schedule_delayed_work_on(smp_processor_id(), dw, delay);
255 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
256 }
257
258 /************************** sysfs interface ************************/
259
260 static ssize_t show_sampling_rate_min(struct kobject *kobj,
261 struct attribute *attr, char *buf)
262 {
263 return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
264 }
265
266 /**
267 * update_sampling_rate - update sampling rate effective immediately if needed.
268 * @new_rate: new sampling rate
269 *
270 * If new rate is smaller than the old, simply updating
271 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
272 * original sampling_rate was 1 second and the requested new sampling rate is 10
273 * ms because the user needs immediate reaction from ondemand governor, but not
274 * sure if higher frequency will be required or not, then, the governor may
275 * change the sampling rate too late; up to 1 second later. Thus, if we are
276 * reducing the sampling rate, we need to make the new value effective
277 * immediately.
278 */
279 static void update_sampling_rate(unsigned int new_rate)
280 {
281 int cpu;
282
283 od_tuners.sampling_rate = new_rate = max(new_rate,
284 od_dbs_data.min_sampling_rate);
285
286 for_each_online_cpu(cpu) {
287 struct cpufreq_policy *policy;
288 struct od_cpu_dbs_info_s *dbs_info;
289 unsigned long next_sampling, appointed_at;
290
291 policy = cpufreq_cpu_get(cpu);
292 if (!policy)
293 continue;
294 if (policy->governor != &cpufreq_gov_ondemand) {
295 cpufreq_cpu_put(policy);
296 continue;
297 }
298 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
299 cpufreq_cpu_put(policy);
300
301 mutex_lock(&dbs_info->cdbs.timer_mutex);
302
303 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
304 mutex_unlock(&dbs_info->cdbs.timer_mutex);
305 continue;
306 }
307
308 next_sampling = jiffies + usecs_to_jiffies(new_rate);
309 appointed_at = dbs_info->cdbs.work.timer.expires;
310
311 if (time_before(next_sampling, appointed_at)) {
312
313 mutex_unlock(&dbs_info->cdbs.timer_mutex);
314 cancel_delayed_work_sync(&dbs_info->cdbs.work);
315 mutex_lock(&dbs_info->cdbs.timer_mutex);
316
317 schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
318 usecs_to_jiffies(new_rate));
319
320 }
321 mutex_unlock(&dbs_info->cdbs.timer_mutex);
322 }
323 }
324
325 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
326 const char *buf, size_t count)
327 {
328 unsigned int input;
329 int ret;
330 ret = sscanf(buf, "%u", &input);
331 if (ret != 1)
332 return -EINVAL;
333 update_sampling_rate(input);
334 return count;
335 }
336
337 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
338 const char *buf, size_t count)
339 {
340 unsigned int input;
341 int ret;
342
343 ret = sscanf(buf, "%u", &input);
344 if (ret != 1)
345 return -EINVAL;
346 od_tuners.io_is_busy = !!input;
347 return count;
348 }
349
350 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
351 const char *buf, size_t count)
352 {
353 unsigned int input;
354 int ret;
355 ret = sscanf(buf, "%u", &input);
356
357 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
358 input < MIN_FREQUENCY_UP_THRESHOLD) {
359 return -EINVAL;
360 }
361 /* Calculate the new adj_up_threshold */
362 od_tuners.adj_up_threshold += input;
363 od_tuners.adj_up_threshold -= od_tuners.up_threshold;
364
365 od_tuners.up_threshold = input;
366 return count;
367 }
368
369 static ssize_t store_sampling_down_factor(struct kobject *a,
370 struct attribute *b, const char *buf, size_t count)
371 {
372 unsigned int input, j;
373 int ret;
374 ret = sscanf(buf, "%u", &input);
375
376 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
377 return -EINVAL;
378 od_tuners.sampling_down_factor = input;
379
380 /* Reset down sampling multiplier in case it was active */
381 for_each_online_cpu(j) {
382 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
383 j);
384 dbs_info->rate_mult = 1;
385 }
386 return count;
387 }
388
389 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
390 const char *buf, size_t count)
391 {
392 unsigned int input;
393 int ret;
394
395 unsigned int j;
396
397 ret = sscanf(buf, "%u", &input);
398 if (ret != 1)
399 return -EINVAL;
400
401 if (input > 1)
402 input = 1;
403
404 if (input == od_tuners.ignore_nice) { /* nothing to do */
405 return count;
406 }
407 od_tuners.ignore_nice = input;
408
409 /* we need to re-evaluate prev_cpu_idle */
410 for_each_online_cpu(j) {
411 struct od_cpu_dbs_info_s *dbs_info;
412 dbs_info = &per_cpu(od_cpu_dbs_info, j);
413 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
414 &dbs_info->cdbs.prev_cpu_wall);
415 if (od_tuners.ignore_nice)
416 dbs_info->cdbs.prev_cpu_nice =
417 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
418
419 }
420 return count;
421 }
422
423 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
424 const char *buf, size_t count)
425 {
426 unsigned int input;
427 int ret;
428 ret = sscanf(buf, "%u", &input);
429
430 if (ret != 1)
431 return -EINVAL;
432
433 if (input > 1000)
434 input = 1000;
435
436 od_tuners.powersave_bias = input;
437 ondemand_powersave_bias_init();
438 return count;
439 }
440
441 show_one(od, sampling_rate, sampling_rate);
442 show_one(od, io_is_busy, io_is_busy);
443 show_one(od, up_threshold, up_threshold);
444 show_one(od, sampling_down_factor, sampling_down_factor);
445 show_one(od, ignore_nice_load, ignore_nice);
446 show_one(od, powersave_bias, powersave_bias);
447
448 define_one_global_rw(sampling_rate);
449 define_one_global_rw(io_is_busy);
450 define_one_global_rw(up_threshold);
451 define_one_global_rw(sampling_down_factor);
452 define_one_global_rw(ignore_nice_load);
453 define_one_global_rw(powersave_bias);
454 define_one_global_ro(sampling_rate_min);
455
456 static struct attribute *dbs_attributes[] = {
457 &sampling_rate_min.attr,
458 &sampling_rate.attr,
459 &up_threshold.attr,
460 &sampling_down_factor.attr,
461 &ignore_nice_load.attr,
462 &powersave_bias.attr,
463 &io_is_busy.attr,
464 NULL
465 };
466
467 static struct attribute_group od_attr_group = {
468 .attrs = dbs_attributes,
469 .name = "ondemand",
470 };
471
472 /************************** sysfs end ************************/
473
474 define_get_cpu_dbs_routines(od_cpu_dbs_info);
475
476 static struct od_ops od_ops = {
477 .io_busy = should_io_be_busy,
478 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
479 .powersave_bias_target = powersave_bias_target,
480 .freq_increase = dbs_freq_increase,
481 };
482
483 static struct dbs_data od_dbs_data = {
484 .governor = GOV_ONDEMAND,
485 .attr_group = &od_attr_group,
486 .tuners = &od_tuners,
487 .get_cpu_cdbs = get_cpu_cdbs,
488 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
489 .gov_dbs_timer = od_dbs_timer,
490 .gov_check_cpu = od_check_cpu,
491 .gov_ops = &od_ops,
492 };
493
494 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
495 unsigned int event)
496 {
497 return cpufreq_governor_dbs(&od_dbs_data, policy, event);
498 }
499
500 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
501 static
502 #endif
503 struct cpufreq_governor cpufreq_gov_ondemand = {
504 .name = "ondemand",
505 .governor = od_cpufreq_governor_dbs,
506 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
507 .owner = THIS_MODULE,
508 };
509
510 static int __init cpufreq_gov_dbs_init(void)
511 {
512 u64 idle_time;
513 int cpu = get_cpu();
514
515 mutex_init(&od_dbs_data.mutex);
516 idle_time = get_cpu_idle_time_us(cpu, NULL);
517 put_cpu();
518 if (idle_time != -1ULL) {
519 /* Idle micro accounting is supported. Use finer thresholds */
520 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
521 od_tuners.adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
522 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
523 /*
524 * In nohz/micro accounting case we set the minimum frequency
525 * not depending on HZ, but fixed (very low). The deferred
526 * timer might skip some samples if idle/sleeping as needed.
527 */
528 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
529 } else {
530 /* For correct statistics, we need 10 ticks for each measure */
531 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
532 jiffies_to_usecs(10);
533 }
534
535 return cpufreq_register_governor(&cpufreq_gov_ondemand);
536 }
537
538 static void __exit cpufreq_gov_dbs_exit(void)
539 {
540 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
541 }
542
543 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
544 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
545 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
546 "Low Latency Frequency Transition capable processors");
547 MODULE_LICENSE("GPL");
548
549 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
550 fs_initcall(cpufreq_gov_dbs_init);
551 #else
552 module_init(cpufreq_gov_dbs_init);
553 #endif
554 module_exit(cpufreq_gov_dbs_exit);
This page took 0.04237 seconds and 6 git commands to generate.