Merge branch 'cpuinit-delete' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg...
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33
34 #define SAMPLE_COUNT 3
35
36 #define FRAC_BITS 8
37 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
38 #define fp_toint(X) ((X) >> FRAC_BITS)
39
40 static inline int32_t mul_fp(int32_t x, int32_t y)
41 {
42 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
43 }
44
45 static inline int32_t div_fp(int32_t x, int32_t y)
46 {
47 return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
48 }
49
50 struct sample {
51 int core_pct_busy;
52 u64 aperf;
53 u64 mperf;
54 int freq;
55 };
56
57 struct pstate_data {
58 int current_pstate;
59 int min_pstate;
60 int max_pstate;
61 int turbo_pstate;
62 };
63
64 struct _pid {
65 int setpoint;
66 int32_t integral;
67 int32_t p_gain;
68 int32_t i_gain;
69 int32_t d_gain;
70 int deadband;
71 int last_err;
72 };
73
74 struct cpudata {
75 int cpu;
76
77 char name[64];
78
79 struct timer_list timer;
80
81 struct pstate_adjust_policy *pstate_policy;
82 struct pstate_data pstate;
83 struct _pid pid;
84
85 int min_pstate_count;
86
87 u64 prev_aperf;
88 u64 prev_mperf;
89 int sample_ptr;
90 struct sample samples[SAMPLE_COUNT];
91 };
92
93 static struct cpudata **all_cpu_data;
94 struct pstate_adjust_policy {
95 int sample_rate_ms;
96 int deadband;
97 int setpoint;
98 int p_gain_pct;
99 int d_gain_pct;
100 int i_gain_pct;
101 };
102
103 static struct pstate_adjust_policy default_policy = {
104 .sample_rate_ms = 10,
105 .deadband = 0,
106 .setpoint = 109,
107 .p_gain_pct = 17,
108 .d_gain_pct = 0,
109 .i_gain_pct = 4,
110 };
111
112 struct perf_limits {
113 int no_turbo;
114 int max_perf_pct;
115 int min_perf_pct;
116 int32_t max_perf;
117 int32_t min_perf;
118 int max_policy_pct;
119 int max_sysfs_pct;
120 };
121
122 static struct perf_limits limits = {
123 .no_turbo = 0,
124 .max_perf_pct = 100,
125 .max_perf = int_tofp(1),
126 .min_perf_pct = 0,
127 .min_perf = 0,
128 .max_policy_pct = 100,
129 .max_sysfs_pct = 100,
130 };
131
132 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
133 int deadband, int integral) {
134 pid->setpoint = setpoint;
135 pid->deadband = deadband;
136 pid->integral = int_tofp(integral);
137 pid->last_err = setpoint - busy;
138 }
139
140 static inline void pid_p_gain_set(struct _pid *pid, int percent)
141 {
142 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
143 }
144
145 static inline void pid_i_gain_set(struct _pid *pid, int percent)
146 {
147 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
148 }
149
150 static inline void pid_d_gain_set(struct _pid *pid, int percent)
151 {
152
153 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
154 }
155
156 static signed int pid_calc(struct _pid *pid, int busy)
157 {
158 signed int err, result;
159 int32_t pterm, dterm, fp_error;
160 int32_t integral_limit;
161
162 err = pid->setpoint - busy;
163 fp_error = int_tofp(err);
164
165 if (abs(err) <= pid->deadband)
166 return 0;
167
168 pterm = mul_fp(pid->p_gain, fp_error);
169
170 pid->integral += fp_error;
171
172 /* limit the integral term */
173 integral_limit = int_tofp(30);
174 if (pid->integral > integral_limit)
175 pid->integral = integral_limit;
176 if (pid->integral < -integral_limit)
177 pid->integral = -integral_limit;
178
179 dterm = mul_fp(pid->d_gain, (err - pid->last_err));
180 pid->last_err = err;
181
182 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
183
184 return (signed int)fp_toint(result);
185 }
186
187 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
188 {
189 pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
190 pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
191 pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);
192
193 pid_reset(&cpu->pid,
194 cpu->pstate_policy->setpoint,
195 100,
196 cpu->pstate_policy->deadband,
197 0);
198 }
199
200 static inline void intel_pstate_reset_all_pid(void)
201 {
202 unsigned int cpu;
203 for_each_online_cpu(cpu) {
204 if (all_cpu_data[cpu])
205 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
206 }
207 }
208
209 /************************** debugfs begin ************************/
210 static int pid_param_set(void *data, u64 val)
211 {
212 *(u32 *)data = val;
213 intel_pstate_reset_all_pid();
214 return 0;
215 }
216 static int pid_param_get(void *data, u64 *val)
217 {
218 *val = *(u32 *)data;
219 return 0;
220 }
221 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
222 pid_param_set, "%llu\n");
223
224 struct pid_param {
225 char *name;
226 void *value;
227 };
228
229 static struct pid_param pid_files[] = {
230 {"sample_rate_ms", &default_policy.sample_rate_ms},
231 {"d_gain_pct", &default_policy.d_gain_pct},
232 {"i_gain_pct", &default_policy.i_gain_pct},
233 {"deadband", &default_policy.deadband},
234 {"setpoint", &default_policy.setpoint},
235 {"p_gain_pct", &default_policy.p_gain_pct},
236 {NULL, NULL}
237 };
238
239 static struct dentry *debugfs_parent;
240 static void intel_pstate_debug_expose_params(void)
241 {
242 int i = 0;
243
244 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
245 if (IS_ERR_OR_NULL(debugfs_parent))
246 return;
247 while (pid_files[i].name) {
248 debugfs_create_file(pid_files[i].name, 0660,
249 debugfs_parent, pid_files[i].value,
250 &fops_pid_param);
251 i++;
252 }
253 }
254
255 /************************** debugfs end ************************/
256
257 /************************** sysfs begin ************************/
258 #define show_one(file_name, object) \
259 static ssize_t show_##file_name \
260 (struct kobject *kobj, struct attribute *attr, char *buf) \
261 { \
262 return sprintf(buf, "%u\n", limits.object); \
263 }
264
265 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
266 const char *buf, size_t count)
267 {
268 unsigned int input;
269 int ret;
270 ret = sscanf(buf, "%u", &input);
271 if (ret != 1)
272 return -EINVAL;
273 limits.no_turbo = clamp_t(int, input, 0 , 1);
274
275 return count;
276 }
277
278 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
279 const char *buf, size_t count)
280 {
281 unsigned int input;
282 int ret;
283 ret = sscanf(buf, "%u", &input);
284 if (ret != 1)
285 return -EINVAL;
286
287 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
288 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
289 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
290 return count;
291 }
292
293 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
294 const char *buf, size_t count)
295 {
296 unsigned int input;
297 int ret;
298 ret = sscanf(buf, "%u", &input);
299 if (ret != 1)
300 return -EINVAL;
301 limits.min_perf_pct = clamp_t(int, input, 0 , 100);
302 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
303
304 return count;
305 }
306
307 show_one(no_turbo, no_turbo);
308 show_one(max_perf_pct, max_perf_pct);
309 show_one(min_perf_pct, min_perf_pct);
310
311 define_one_global_rw(no_turbo);
312 define_one_global_rw(max_perf_pct);
313 define_one_global_rw(min_perf_pct);
314
315 static struct attribute *intel_pstate_attributes[] = {
316 &no_turbo.attr,
317 &max_perf_pct.attr,
318 &min_perf_pct.attr,
319 NULL
320 };
321
322 static struct attribute_group intel_pstate_attr_group = {
323 .attrs = intel_pstate_attributes,
324 };
325 static struct kobject *intel_pstate_kobject;
326
327 static void intel_pstate_sysfs_expose_params(void)
328 {
329 int rc;
330
331 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
332 &cpu_subsys.dev_root->kobj);
333 BUG_ON(!intel_pstate_kobject);
334 rc = sysfs_create_group(intel_pstate_kobject,
335 &intel_pstate_attr_group);
336 BUG_ON(rc);
337 }
338
339 /************************** sysfs end ************************/
340
341 static int intel_pstate_min_pstate(void)
342 {
343 u64 value;
344 rdmsrl(MSR_PLATFORM_INFO, value);
345 return (value >> 40) & 0xFF;
346 }
347
348 static int intel_pstate_max_pstate(void)
349 {
350 u64 value;
351 rdmsrl(MSR_PLATFORM_INFO, value);
352 return (value >> 8) & 0xFF;
353 }
354
355 static int intel_pstate_turbo_pstate(void)
356 {
357 u64 value;
358 int nont, ret;
359 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
360 nont = intel_pstate_max_pstate();
361 ret = ((value) & 255);
362 if (ret <= nont)
363 ret = nont;
364 return ret;
365 }
366
367 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
368 {
369 int max_perf = cpu->pstate.turbo_pstate;
370 int min_perf;
371 if (limits.no_turbo)
372 max_perf = cpu->pstate.max_pstate;
373
374 max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
375 *max = clamp_t(int, max_perf,
376 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
377
378 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
379 *min = clamp_t(int, min_perf,
380 cpu->pstate.min_pstate, max_perf);
381 }
382
383 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
384 {
385 int max_perf, min_perf;
386
387 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
388
389 pstate = clamp_t(int, pstate, min_perf, max_perf);
390
391 if (pstate == cpu->pstate.current_pstate)
392 return;
393
394 trace_cpu_frequency(pstate * 100000, cpu->cpu);
395
396 cpu->pstate.current_pstate = pstate;
397 wrmsrl(MSR_IA32_PERF_CTL, pstate << 8);
398
399 }
400
401 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
402 {
403 int target;
404 target = cpu->pstate.current_pstate + steps;
405
406 intel_pstate_set_pstate(cpu, target);
407 }
408
409 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
410 {
411 int target;
412 target = cpu->pstate.current_pstate - steps;
413 intel_pstate_set_pstate(cpu, target);
414 }
415
416 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
417 {
418 sprintf(cpu->name, "Intel 2nd generation core");
419
420 cpu->pstate.min_pstate = intel_pstate_min_pstate();
421 cpu->pstate.max_pstate = intel_pstate_max_pstate();
422 cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();
423
424 /*
425 * goto max pstate so we don't slow up boot if we are built-in if we are
426 * a module we will take care of it during normal operation
427 */
428 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
429 }
430
431 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
432 struct sample *sample)
433 {
434 u64 core_pct;
435 core_pct = div64_u64(sample->aperf * 100, sample->mperf);
436 sample->freq = cpu->pstate.max_pstate * core_pct * 1000;
437
438 sample->core_pct_busy = core_pct;
439 }
440
441 static inline void intel_pstate_sample(struct cpudata *cpu)
442 {
443 u64 aperf, mperf;
444
445 rdmsrl(MSR_IA32_APERF, aperf);
446 rdmsrl(MSR_IA32_MPERF, mperf);
447 cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
448 cpu->samples[cpu->sample_ptr].aperf = aperf;
449 cpu->samples[cpu->sample_ptr].mperf = mperf;
450 cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
451 cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
452
453 intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
454
455 cpu->prev_aperf = aperf;
456 cpu->prev_mperf = mperf;
457 }
458
459 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
460 {
461 int sample_time, delay;
462
463 sample_time = cpu->pstate_policy->sample_rate_ms;
464 delay = msecs_to_jiffies(sample_time);
465 mod_timer_pinned(&cpu->timer, jiffies + delay);
466 }
467
468 static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu)
469 {
470 int32_t busy_scaled;
471 int32_t core_busy, turbo_pstate, current_pstate;
472
473 core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy);
474 turbo_pstate = int_tofp(cpu->pstate.turbo_pstate);
475 current_pstate = int_tofp(cpu->pstate.current_pstate);
476 busy_scaled = mul_fp(core_busy, div_fp(turbo_pstate, current_pstate));
477
478 return fp_toint(busy_scaled);
479 }
480
481 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
482 {
483 int busy_scaled;
484 struct _pid *pid;
485 signed int ctl = 0;
486 int steps;
487
488 pid = &cpu->pid;
489 busy_scaled = intel_pstate_get_scaled_busy(cpu);
490
491 ctl = pid_calc(pid, busy_scaled);
492
493 steps = abs(ctl);
494 if (ctl < 0)
495 intel_pstate_pstate_increase(cpu, steps);
496 else
497 intel_pstate_pstate_decrease(cpu, steps);
498 }
499
500 static void intel_pstate_timer_func(unsigned long __data)
501 {
502 struct cpudata *cpu = (struct cpudata *) __data;
503
504 intel_pstate_sample(cpu);
505 intel_pstate_adjust_busy_pstate(cpu);
506
507 if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
508 cpu->min_pstate_count++;
509 if (!(cpu->min_pstate_count % 5)) {
510 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
511 }
512 } else
513 cpu->min_pstate_count = 0;
514
515 intel_pstate_set_sample_time(cpu);
516 }
517
518 #define ICPU(model, policy) \
519 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }
520
521 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
522 ICPU(0x2a, default_policy),
523 ICPU(0x2d, default_policy),
524 ICPU(0x3a, default_policy),
525 {}
526 };
527 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
528
529 static int intel_pstate_init_cpu(unsigned int cpunum)
530 {
531
532 const struct x86_cpu_id *id;
533 struct cpudata *cpu;
534
535 id = x86_match_cpu(intel_pstate_cpu_ids);
536 if (!id)
537 return -ENODEV;
538
539 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
540 if (!all_cpu_data[cpunum])
541 return -ENOMEM;
542
543 cpu = all_cpu_data[cpunum];
544
545 intel_pstate_get_cpu_pstates(cpu);
546
547 cpu->cpu = cpunum;
548 cpu->pstate_policy =
549 (struct pstate_adjust_policy *)id->driver_data;
550 init_timer_deferrable(&cpu->timer);
551 cpu->timer.function = intel_pstate_timer_func;
552 cpu->timer.data =
553 (unsigned long)cpu;
554 cpu->timer.expires = jiffies + HZ/100;
555 intel_pstate_busy_pid_reset(cpu);
556 intel_pstate_sample(cpu);
557 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
558
559 add_timer_on(&cpu->timer, cpunum);
560
561 pr_info("Intel pstate controlling: cpu %d\n", cpunum);
562
563 return 0;
564 }
565
566 static unsigned int intel_pstate_get(unsigned int cpu_num)
567 {
568 struct sample *sample;
569 struct cpudata *cpu;
570
571 cpu = all_cpu_data[cpu_num];
572 if (!cpu)
573 return 0;
574 sample = &cpu->samples[cpu->sample_ptr];
575 return sample->freq;
576 }
577
578 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
579 {
580 struct cpudata *cpu;
581
582 cpu = all_cpu_data[policy->cpu];
583
584 if (!policy->cpuinfo.max_freq)
585 return -ENODEV;
586
587 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
588 limits.min_perf_pct = 100;
589 limits.min_perf = int_tofp(1);
590 limits.max_perf_pct = 100;
591 limits.max_perf = int_tofp(1);
592 limits.no_turbo = 0;
593 return 0;
594 }
595 limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
596 limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
597 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
598
599 limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
600 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
601 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
602 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
603
604 return 0;
605 }
606
607 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
608 {
609 cpufreq_verify_within_limits(policy,
610 policy->cpuinfo.min_freq,
611 policy->cpuinfo.max_freq);
612
613 if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
614 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
615 return -EINVAL;
616
617 return 0;
618 }
619
620 static int __cpuinit intel_pstate_cpu_exit(struct cpufreq_policy *policy)
621 {
622 int cpu = policy->cpu;
623
624 del_timer(&all_cpu_data[cpu]->timer);
625 kfree(all_cpu_data[cpu]);
626 all_cpu_data[cpu] = NULL;
627 return 0;
628 }
629
630 static int __cpuinit intel_pstate_cpu_init(struct cpufreq_policy *policy)
631 {
632 int rc, min_pstate, max_pstate;
633 struct cpudata *cpu;
634
635 rc = intel_pstate_init_cpu(policy->cpu);
636 if (rc)
637 return rc;
638
639 cpu = all_cpu_data[policy->cpu];
640
641 if (!limits.no_turbo &&
642 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
643 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
644 else
645 policy->policy = CPUFREQ_POLICY_POWERSAVE;
646
647 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
648 policy->min = min_pstate * 100000;
649 policy->max = max_pstate * 100000;
650
651 /* cpuinfo and default policy values */
652 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
653 policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
654 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
655 cpumask_set_cpu(policy->cpu, policy->cpus);
656
657 return 0;
658 }
659
660 static struct cpufreq_driver intel_pstate_driver = {
661 .flags = CPUFREQ_CONST_LOOPS,
662 .verify = intel_pstate_verify_policy,
663 .setpolicy = intel_pstate_set_policy,
664 .get = intel_pstate_get,
665 .init = intel_pstate_cpu_init,
666 .exit = intel_pstate_cpu_exit,
667 .name = "intel_pstate",
668 .owner = THIS_MODULE,
669 };
670
671 static int __initdata no_load;
672
673 static int intel_pstate_msrs_not_valid(void)
674 {
675 /* Check that all the msr's we are using are valid. */
676 u64 aperf, mperf, tmp;
677
678 rdmsrl(MSR_IA32_APERF, aperf);
679 rdmsrl(MSR_IA32_MPERF, mperf);
680
681 if (!intel_pstate_min_pstate() ||
682 !intel_pstate_max_pstate() ||
683 !intel_pstate_turbo_pstate())
684 return -ENODEV;
685
686 rdmsrl(MSR_IA32_APERF, tmp);
687 if (!(tmp - aperf))
688 return -ENODEV;
689
690 rdmsrl(MSR_IA32_MPERF, tmp);
691 if (!(tmp - mperf))
692 return -ENODEV;
693
694 return 0;
695 }
696 static int __init intel_pstate_init(void)
697 {
698 int cpu, rc = 0;
699 const struct x86_cpu_id *id;
700
701 if (no_load)
702 return -ENODEV;
703
704 id = x86_match_cpu(intel_pstate_cpu_ids);
705 if (!id)
706 return -ENODEV;
707
708 if (intel_pstate_msrs_not_valid())
709 return -ENODEV;
710
711 pr_info("Intel P-state driver initializing.\n");
712
713 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
714 if (!all_cpu_data)
715 return -ENOMEM;
716
717 rc = cpufreq_register_driver(&intel_pstate_driver);
718 if (rc)
719 goto out;
720
721 intel_pstate_debug_expose_params();
722 intel_pstate_sysfs_expose_params();
723 return rc;
724 out:
725 get_online_cpus();
726 for_each_online_cpu(cpu) {
727 if (all_cpu_data[cpu]) {
728 del_timer_sync(&all_cpu_data[cpu]->timer);
729 kfree(all_cpu_data[cpu]);
730 }
731 }
732
733 put_online_cpus();
734 vfree(all_cpu_data);
735 return -ENODEV;
736 }
737 device_initcall(intel_pstate_init);
738
739 static int __init intel_pstate_setup(char *str)
740 {
741 if (!str)
742 return -EINVAL;
743
744 if (!strcmp(str, "disable"))
745 no_load = 1;
746 return 0;
747 }
748 early_param("intel_pstate", intel_pstate_setup);
749
750 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
751 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
752 MODULE_LICENSE("GPL");
This page took 0.046755 seconds and 5 git commands to generate.