Merge branch 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38
39 #define ATOM_RATIOS 0x66a
40 #define ATOM_VIDS 0x66b
41 #define ATOM_TURBO_RATIOS 0x66c
42 #define ATOM_TURBO_VIDS 0x66d
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54
55 static inline int32_t mul_fp(int32_t x, int32_t y)
56 {
57 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
58 }
59
60 static inline int32_t div_fp(s64 x, s64 y)
61 {
62 return div64_s64((int64_t)x << FRAC_BITS, y);
63 }
64
65 static inline int ceiling_fp(int32_t x)
66 {
67 int mask, ret;
68
69 ret = fp_toint(x);
70 mask = (1 << FRAC_BITS) - 1;
71 if (x & mask)
72 ret += 1;
73 return ret;
74 }
75
76 static inline u64 mul_ext_fp(u64 x, u64 y)
77 {
78 return (x * y) >> EXT_FRAC_BITS;
79 }
80
81 static inline u64 div_ext_fp(u64 x, u64 y)
82 {
83 return div64_u64(x << EXT_FRAC_BITS, y);
84 }
85
86 /**
87 * struct sample - Store performance sample
88 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
89 * performance during last sample period
90 * @busy_scaled: Scaled busy value which is used to calculate next
91 * P state. This can be different than core_avg_perf
92 * to account for cpu idle period
93 * @aperf: Difference of actual performance frequency clock count
94 * read from APERF MSR between last and current sample
95 * @mperf: Difference of maximum performance frequency clock count
96 * read from MPERF MSR between last and current sample
97 * @tsc: Difference of time stamp counter between last and
98 * current sample
99 * @freq: Effective frequency calculated from APERF/MPERF
100 * @time: Current time from scheduler
101 *
102 * This structure is used in the cpudata structure to store performance sample
103 * data for choosing next P State.
104 */
105 struct sample {
106 int32_t core_avg_perf;
107 int32_t busy_scaled;
108 u64 aperf;
109 u64 mperf;
110 u64 tsc;
111 int freq;
112 u64 time;
113 };
114
115 /**
116 * struct pstate_data - Store P state data
117 * @current_pstate: Current requested P state
118 * @min_pstate: Min P state possible for this platform
119 * @max_pstate: Max P state possible for this platform
120 * @max_pstate_physical:This is physical Max P state for a processor
121 * This can be higher than the max_pstate which can
122 * be limited by platform thermal design power limits
123 * @scaling: Scaling factor to convert frequency to cpufreq
124 * frequency units
125 * @turbo_pstate: Max Turbo P state possible for this platform
126 *
127 * Stores the per cpu model P state limits and current P state.
128 */
129 struct pstate_data {
130 int current_pstate;
131 int min_pstate;
132 int max_pstate;
133 int max_pstate_physical;
134 int scaling;
135 int turbo_pstate;
136 };
137
138 /**
139 * struct vid_data - Stores voltage information data
140 * @min: VID data for this platform corresponding to
141 * the lowest P state
142 * @max: VID data corresponding to the highest P State.
143 * @turbo: VID data for turbo P state
144 * @ratio: Ratio of (vid max - vid min) /
145 * (max P state - Min P State)
146 *
147 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148 * This data is used in Atom platforms, where in addition to target P state,
149 * the voltage data needs to be specified to select next P State.
150 */
151 struct vid_data {
152 int min;
153 int max;
154 int turbo;
155 int32_t ratio;
156 };
157
158 /**
159 * struct _pid - Stores PID data
160 * @setpoint: Target set point for busyness or performance
161 * @integral: Storage for accumulated error values
162 * @p_gain: PID proportional gain
163 * @i_gain: PID integral gain
164 * @d_gain: PID derivative gain
165 * @deadband: PID deadband
166 * @last_err: Last error storage for integral part of PID calculation
167 *
168 * Stores PID coefficients and last error for PID controller.
169 */
170 struct _pid {
171 int setpoint;
172 int32_t integral;
173 int32_t p_gain;
174 int32_t i_gain;
175 int32_t d_gain;
176 int deadband;
177 int32_t last_err;
178 };
179
180 /**
181 * struct cpudata - Per CPU instance data storage
182 * @cpu: CPU number for this instance data
183 * @update_util: CPUFreq utility callback information
184 * @update_util_set: CPUFreq utility callback is set
185 * @pstate: Stores P state limits for this CPU
186 * @vid: Stores VID limits for this CPU
187 * @pid: Stores PID parameters for this CPU
188 * @last_sample_time: Last Sample time
189 * @prev_aperf: Last APERF value read from APERF MSR
190 * @prev_mperf: Last MPERF value read from MPERF MSR
191 * @prev_tsc: Last timestamp counter (TSC) value
192 * @prev_cummulative_iowait: IO Wait time difference from last and
193 * current sample
194 * @sample: Storage for storing last Sample data
195 * @acpi_perf_data: Stores ACPI perf information read from _PSS
196 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
197 *
198 * This structure stores per CPU instance data for all CPUs.
199 */
200 struct cpudata {
201 int cpu;
202
203 struct update_util_data update_util;
204 bool update_util_set;
205
206 struct pstate_data pstate;
207 struct vid_data vid;
208 struct _pid pid;
209
210 u64 last_sample_time;
211 u64 prev_aperf;
212 u64 prev_mperf;
213 u64 prev_tsc;
214 u64 prev_cummulative_iowait;
215 struct sample sample;
216 #ifdef CONFIG_ACPI
217 struct acpi_processor_performance acpi_perf_data;
218 bool valid_pss_table;
219 #endif
220 };
221
222 static struct cpudata **all_cpu_data;
223
224 /**
225 * struct pid_adjust_policy - Stores static PID configuration data
226 * @sample_rate_ms: PID calculation sample rate in ms
227 * @sample_rate_ns: Sample rate calculation in ns
228 * @deadband: PID deadband
229 * @setpoint: PID Setpoint
230 * @p_gain_pct: PID proportional gain
231 * @i_gain_pct: PID integral gain
232 * @d_gain_pct: PID derivative gain
233 *
234 * Stores per CPU model static PID configuration data.
235 */
236 struct pstate_adjust_policy {
237 int sample_rate_ms;
238 s64 sample_rate_ns;
239 int deadband;
240 int setpoint;
241 int p_gain_pct;
242 int d_gain_pct;
243 int i_gain_pct;
244 };
245
246 /**
247 * struct pstate_funcs - Per CPU model specific callbacks
248 * @get_max: Callback to get maximum non turbo effective P state
249 * @get_max_physical: Callback to get maximum non turbo physical P state
250 * @get_min: Callback to get minimum P state
251 * @get_turbo: Callback to get turbo P state
252 * @get_scaling: Callback to get frequency scaling factor
253 * @get_val: Callback to convert P state to actual MSR write value
254 * @get_vid: Callback to get VID data for Atom platforms
255 * @get_target_pstate: Callback to a function to calculate next P state to use
256 *
257 * Core and Atom CPU models have different way to get P State limits. This
258 * structure is used to store those callbacks.
259 */
260 struct pstate_funcs {
261 int (*get_max)(void);
262 int (*get_max_physical)(void);
263 int (*get_min)(void);
264 int (*get_turbo)(void);
265 int (*get_scaling)(void);
266 u64 (*get_val)(struct cpudata*, int pstate);
267 void (*get_vid)(struct cpudata *);
268 int32_t (*get_target_pstate)(struct cpudata *);
269 };
270
271 /**
272 * struct cpu_defaults- Per CPU model default config data
273 * @pid_policy: PID config data
274 * @funcs: Callback function data
275 */
276 struct cpu_defaults {
277 struct pstate_adjust_policy pid_policy;
278 struct pstate_funcs funcs;
279 };
280
281 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
282 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
283
284 static struct pstate_adjust_policy pid_params;
285 static struct pstate_funcs pstate_funcs;
286 static int hwp_active;
287
288 #ifdef CONFIG_ACPI
289 static bool acpi_ppc;
290 #endif
291
292 /**
293 * struct perf_limits - Store user and policy limits
294 * @no_turbo: User requested turbo state from intel_pstate sysfs
295 * @turbo_disabled: Platform turbo status either from msr
296 * MSR_IA32_MISC_ENABLE or when maximum available pstate
297 * matches the maximum turbo pstate
298 * @max_perf_pct: Effective maximum performance limit in percentage, this
299 * is minimum of either limits enforced by cpufreq policy
300 * or limits from user set limits via intel_pstate sysfs
301 * @min_perf_pct: Effective minimum performance limit in percentage, this
302 * is maximum of either limits enforced by cpufreq policy
303 * or limits from user set limits via intel_pstate sysfs
304 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
305 * This value is used to limit max pstate
306 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
307 * This value is used to limit min pstate
308 * @max_policy_pct: The maximum performance in percentage enforced by
309 * cpufreq setpolicy interface
310 * @max_sysfs_pct: The maximum performance in percentage enforced by
311 * intel pstate sysfs interface
312 * @min_policy_pct: The minimum performance in percentage enforced by
313 * cpufreq setpolicy interface
314 * @min_sysfs_pct: The minimum performance in percentage enforced by
315 * intel pstate sysfs interface
316 *
317 * Storage for user and policy defined limits.
318 */
319 struct perf_limits {
320 int no_turbo;
321 int turbo_disabled;
322 int max_perf_pct;
323 int min_perf_pct;
324 int32_t max_perf;
325 int32_t min_perf;
326 int max_policy_pct;
327 int max_sysfs_pct;
328 int min_policy_pct;
329 int min_sysfs_pct;
330 };
331
332 static struct perf_limits performance_limits = {
333 .no_turbo = 0,
334 .turbo_disabled = 0,
335 .max_perf_pct = 100,
336 .max_perf = int_tofp(1),
337 .min_perf_pct = 100,
338 .min_perf = int_tofp(1),
339 .max_policy_pct = 100,
340 .max_sysfs_pct = 100,
341 .min_policy_pct = 0,
342 .min_sysfs_pct = 0,
343 };
344
345 static struct perf_limits powersave_limits = {
346 .no_turbo = 0,
347 .turbo_disabled = 0,
348 .max_perf_pct = 100,
349 .max_perf = int_tofp(1),
350 .min_perf_pct = 0,
351 .min_perf = 0,
352 .max_policy_pct = 100,
353 .max_sysfs_pct = 100,
354 .min_policy_pct = 0,
355 .min_sysfs_pct = 0,
356 };
357
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359 static struct perf_limits *limits = &performance_limits;
360 #else
361 static struct perf_limits *limits = &powersave_limits;
362 #endif
363
364 #ifdef CONFIG_ACPI
365
366 static bool intel_pstate_get_ppc_enable_status(void)
367 {
368 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
369 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
370 return true;
371
372 return acpi_ppc;
373 }
374
375 /*
376 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
377 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
378 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
379 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
380 * target ratio 0x17. The _PSS control value stores in a format which can be
381 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
382 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
383 * This function converts the _PSS control value to intel pstate driver format
384 * for comparison and assignment.
385 */
386 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
387 {
388 return cpu->acpi_perf_data.states[index].control >> 8;
389 }
390
391 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
392 {
393 struct cpudata *cpu;
394 int turbo_pss_ctl;
395 int ret;
396 int i;
397
398 if (hwp_active)
399 return;
400
401 if (!intel_pstate_get_ppc_enable_status())
402 return;
403
404 cpu = all_cpu_data[policy->cpu];
405
406 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
407 policy->cpu);
408 if (ret)
409 return;
410
411 /*
412 * Check if the control value in _PSS is for PERF_CTL MSR, which should
413 * guarantee that the states returned by it map to the states in our
414 * list directly.
415 */
416 if (cpu->acpi_perf_data.control_register.space_id !=
417 ACPI_ADR_SPACE_FIXED_HARDWARE)
418 goto err;
419
420 /*
421 * If there is only one entry _PSS, simply ignore _PSS and continue as
422 * usual without taking _PSS into account
423 */
424 if (cpu->acpi_perf_data.state_count < 2)
425 goto err;
426
427 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
428 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
429 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
430 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
431 (u32) cpu->acpi_perf_data.states[i].core_frequency,
432 (u32) cpu->acpi_perf_data.states[i].power,
433 (u32) cpu->acpi_perf_data.states[i].control);
434 }
435
436 /*
437 * The _PSS table doesn't contain whole turbo frequency range.
438 * This just contains +1 MHZ above the max non turbo frequency,
439 * with control value corresponding to max turbo ratio. But
440 * when cpufreq set policy is called, it will call with this
441 * max frequency, which will cause a reduced performance as
442 * this driver uses real max turbo frequency as the max
443 * frequency. So correct this frequency in _PSS table to
444 * correct max turbo frequency based on the turbo ratio.
445 * Also need to convert to MHz as _PSS freq is in MHz.
446 */
447 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
448 if (turbo_pss_ctl > cpu->pstate.max_pstate)
449 cpu->acpi_perf_data.states[0].core_frequency =
450 policy->cpuinfo.max_freq / 1000;
451 cpu->valid_pss_table = true;
452 pr_debug("_PPC limits will be enforced\n");
453
454 return;
455
456 err:
457 cpu->valid_pss_table = false;
458 acpi_processor_unregister_performance(policy->cpu);
459 }
460
461 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
462 {
463 struct cpudata *cpu;
464
465 cpu = all_cpu_data[policy->cpu];
466 if (!cpu->valid_pss_table)
467 return;
468
469 acpi_processor_unregister_performance(policy->cpu);
470 }
471
472 #else
473 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
474 {
475 }
476
477 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
478 {
479 }
480 #endif
481
482 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
483 int deadband, int integral) {
484 pid->setpoint = int_tofp(setpoint);
485 pid->deadband = int_tofp(deadband);
486 pid->integral = int_tofp(integral);
487 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
488 }
489
490 static inline void pid_p_gain_set(struct _pid *pid, int percent)
491 {
492 pid->p_gain = div_fp(percent, 100);
493 }
494
495 static inline void pid_i_gain_set(struct _pid *pid, int percent)
496 {
497 pid->i_gain = div_fp(percent, 100);
498 }
499
500 static inline void pid_d_gain_set(struct _pid *pid, int percent)
501 {
502 pid->d_gain = div_fp(percent, 100);
503 }
504
505 static signed int pid_calc(struct _pid *pid, int32_t busy)
506 {
507 signed int result;
508 int32_t pterm, dterm, fp_error;
509 int32_t integral_limit;
510
511 fp_error = pid->setpoint - busy;
512
513 if (abs(fp_error) <= pid->deadband)
514 return 0;
515
516 pterm = mul_fp(pid->p_gain, fp_error);
517
518 pid->integral += fp_error;
519
520 /*
521 * We limit the integral here so that it will never
522 * get higher than 30. This prevents it from becoming
523 * too large an input over long periods of time and allows
524 * it to get factored out sooner.
525 *
526 * The value of 30 was chosen through experimentation.
527 */
528 integral_limit = int_tofp(30);
529 if (pid->integral > integral_limit)
530 pid->integral = integral_limit;
531 if (pid->integral < -integral_limit)
532 pid->integral = -integral_limit;
533
534 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
535 pid->last_err = fp_error;
536
537 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
538 result = result + (1 << (FRAC_BITS-1));
539 return (signed int)fp_toint(result);
540 }
541
542 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
543 {
544 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
545 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
546 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
547
548 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
549 }
550
551 static inline void intel_pstate_reset_all_pid(void)
552 {
553 unsigned int cpu;
554
555 for_each_online_cpu(cpu) {
556 if (all_cpu_data[cpu])
557 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
558 }
559 }
560
561 static inline void update_turbo_state(void)
562 {
563 u64 misc_en;
564 struct cpudata *cpu;
565
566 cpu = all_cpu_data[0];
567 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
568 limits->turbo_disabled =
569 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
570 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
571 }
572
573 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
574 {
575 int min, hw_min, max, hw_max, cpu, range, adj_range;
576 u64 value, cap;
577
578 rdmsrl(MSR_HWP_CAPABILITIES, cap);
579 hw_min = HWP_LOWEST_PERF(cap);
580 hw_max = HWP_HIGHEST_PERF(cap);
581 range = hw_max - hw_min;
582
583 for_each_cpu(cpu, cpumask) {
584 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
585 adj_range = limits->min_perf_pct * range / 100;
586 min = hw_min + adj_range;
587 value &= ~HWP_MIN_PERF(~0L);
588 value |= HWP_MIN_PERF(min);
589
590 adj_range = limits->max_perf_pct * range / 100;
591 max = hw_min + adj_range;
592 if (limits->no_turbo) {
593 hw_max = HWP_GUARANTEED_PERF(cap);
594 if (hw_max < max)
595 max = hw_max;
596 }
597
598 value &= ~HWP_MAX_PERF(~0L);
599 value |= HWP_MAX_PERF(max);
600 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
601 }
602 }
603
604 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
605 {
606 if (hwp_active)
607 intel_pstate_hwp_set(policy->cpus);
608
609 return 0;
610 }
611
612 static void intel_pstate_hwp_set_online_cpus(void)
613 {
614 get_online_cpus();
615 intel_pstate_hwp_set(cpu_online_mask);
616 put_online_cpus();
617 }
618
619 /************************** debugfs begin ************************/
620 static int pid_param_set(void *data, u64 val)
621 {
622 *(u32 *)data = val;
623 intel_pstate_reset_all_pid();
624 return 0;
625 }
626
627 static int pid_param_get(void *data, u64 *val)
628 {
629 *val = *(u32 *)data;
630 return 0;
631 }
632 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
633
634 struct pid_param {
635 char *name;
636 void *value;
637 };
638
639 static struct pid_param pid_files[] = {
640 {"sample_rate_ms", &pid_params.sample_rate_ms},
641 {"d_gain_pct", &pid_params.d_gain_pct},
642 {"i_gain_pct", &pid_params.i_gain_pct},
643 {"deadband", &pid_params.deadband},
644 {"setpoint", &pid_params.setpoint},
645 {"p_gain_pct", &pid_params.p_gain_pct},
646 {NULL, NULL}
647 };
648
649 static void __init intel_pstate_debug_expose_params(void)
650 {
651 struct dentry *debugfs_parent;
652 int i = 0;
653
654 if (hwp_active)
655 return;
656 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
657 if (IS_ERR_OR_NULL(debugfs_parent))
658 return;
659 while (pid_files[i].name) {
660 debugfs_create_file(pid_files[i].name, 0660,
661 debugfs_parent, pid_files[i].value,
662 &fops_pid_param);
663 i++;
664 }
665 }
666
667 /************************** debugfs end ************************/
668
669 /************************** sysfs begin ************************/
670 #define show_one(file_name, object) \
671 static ssize_t show_##file_name \
672 (struct kobject *kobj, struct attribute *attr, char *buf) \
673 { \
674 return sprintf(buf, "%u\n", limits->object); \
675 }
676
677 static ssize_t show_turbo_pct(struct kobject *kobj,
678 struct attribute *attr, char *buf)
679 {
680 struct cpudata *cpu;
681 int total, no_turbo, turbo_pct;
682 uint32_t turbo_fp;
683
684 cpu = all_cpu_data[0];
685
686 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
687 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
688 turbo_fp = div_fp(no_turbo, total);
689 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
690 return sprintf(buf, "%u\n", turbo_pct);
691 }
692
693 static ssize_t show_num_pstates(struct kobject *kobj,
694 struct attribute *attr, char *buf)
695 {
696 struct cpudata *cpu;
697 int total;
698
699 cpu = all_cpu_data[0];
700 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
701 return sprintf(buf, "%u\n", total);
702 }
703
704 static ssize_t show_no_turbo(struct kobject *kobj,
705 struct attribute *attr, char *buf)
706 {
707 ssize_t ret;
708
709 update_turbo_state();
710 if (limits->turbo_disabled)
711 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
712 else
713 ret = sprintf(buf, "%u\n", limits->no_turbo);
714
715 return ret;
716 }
717
718 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
719 const char *buf, size_t count)
720 {
721 unsigned int input;
722 int ret;
723
724 ret = sscanf(buf, "%u", &input);
725 if (ret != 1)
726 return -EINVAL;
727
728 update_turbo_state();
729 if (limits->turbo_disabled) {
730 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
731 return -EPERM;
732 }
733
734 limits->no_turbo = clamp_t(int, input, 0, 1);
735
736 if (hwp_active)
737 intel_pstate_hwp_set_online_cpus();
738
739 return count;
740 }
741
742 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
743 const char *buf, size_t count)
744 {
745 unsigned int input;
746 int ret;
747
748 ret = sscanf(buf, "%u", &input);
749 if (ret != 1)
750 return -EINVAL;
751
752 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
753 limits->max_perf_pct = min(limits->max_policy_pct,
754 limits->max_sysfs_pct);
755 limits->max_perf_pct = max(limits->min_policy_pct,
756 limits->max_perf_pct);
757 limits->max_perf_pct = max(limits->min_perf_pct,
758 limits->max_perf_pct);
759 limits->max_perf = div_fp(limits->max_perf_pct, 100);
760
761 if (hwp_active)
762 intel_pstate_hwp_set_online_cpus();
763 return count;
764 }
765
766 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
767 const char *buf, size_t count)
768 {
769 unsigned int input;
770 int ret;
771
772 ret = sscanf(buf, "%u", &input);
773 if (ret != 1)
774 return -EINVAL;
775
776 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
777 limits->min_perf_pct = max(limits->min_policy_pct,
778 limits->min_sysfs_pct);
779 limits->min_perf_pct = min(limits->max_policy_pct,
780 limits->min_perf_pct);
781 limits->min_perf_pct = min(limits->max_perf_pct,
782 limits->min_perf_pct);
783 limits->min_perf = div_fp(limits->min_perf_pct, 100);
784
785 if (hwp_active)
786 intel_pstate_hwp_set_online_cpus();
787 return count;
788 }
789
790 show_one(max_perf_pct, max_perf_pct);
791 show_one(min_perf_pct, min_perf_pct);
792
793 define_one_global_rw(no_turbo);
794 define_one_global_rw(max_perf_pct);
795 define_one_global_rw(min_perf_pct);
796 define_one_global_ro(turbo_pct);
797 define_one_global_ro(num_pstates);
798
799 static struct attribute *intel_pstate_attributes[] = {
800 &no_turbo.attr,
801 &max_perf_pct.attr,
802 &min_perf_pct.attr,
803 &turbo_pct.attr,
804 &num_pstates.attr,
805 NULL
806 };
807
808 static struct attribute_group intel_pstate_attr_group = {
809 .attrs = intel_pstate_attributes,
810 };
811
812 static void __init intel_pstate_sysfs_expose_params(void)
813 {
814 struct kobject *intel_pstate_kobject;
815 int rc;
816
817 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
818 &cpu_subsys.dev_root->kobj);
819 BUG_ON(!intel_pstate_kobject);
820 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
821 BUG_ON(rc);
822 }
823 /************************** sysfs end ************************/
824
825 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
826 {
827 /* First disable HWP notification interrupt as we don't process them */
828 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
829
830 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
831 }
832
833 static int atom_get_min_pstate(void)
834 {
835 u64 value;
836
837 rdmsrl(ATOM_RATIOS, value);
838 return (value >> 8) & 0x7F;
839 }
840
841 static int atom_get_max_pstate(void)
842 {
843 u64 value;
844
845 rdmsrl(ATOM_RATIOS, value);
846 return (value >> 16) & 0x7F;
847 }
848
849 static int atom_get_turbo_pstate(void)
850 {
851 u64 value;
852
853 rdmsrl(ATOM_TURBO_RATIOS, value);
854 return value & 0x7F;
855 }
856
857 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
858 {
859 u64 val;
860 int32_t vid_fp;
861 u32 vid;
862
863 val = (u64)pstate << 8;
864 if (limits->no_turbo && !limits->turbo_disabled)
865 val |= (u64)1 << 32;
866
867 vid_fp = cpudata->vid.min + mul_fp(
868 int_tofp(pstate - cpudata->pstate.min_pstate),
869 cpudata->vid.ratio);
870
871 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
872 vid = ceiling_fp(vid_fp);
873
874 if (pstate > cpudata->pstate.max_pstate)
875 vid = cpudata->vid.turbo;
876
877 return val | vid;
878 }
879
880 static int silvermont_get_scaling(void)
881 {
882 u64 value;
883 int i;
884 /* Defined in Table 35-6 from SDM (Sept 2015) */
885 static int silvermont_freq_table[] = {
886 83300, 100000, 133300, 116700, 80000};
887
888 rdmsrl(MSR_FSB_FREQ, value);
889 i = value & 0x7;
890 WARN_ON(i > 4);
891
892 return silvermont_freq_table[i];
893 }
894
895 static int airmont_get_scaling(void)
896 {
897 u64 value;
898 int i;
899 /* Defined in Table 35-10 from SDM (Sept 2015) */
900 static int airmont_freq_table[] = {
901 83300, 100000, 133300, 116700, 80000,
902 93300, 90000, 88900, 87500};
903
904 rdmsrl(MSR_FSB_FREQ, value);
905 i = value & 0xF;
906 WARN_ON(i > 8);
907
908 return airmont_freq_table[i];
909 }
910
911 static void atom_get_vid(struct cpudata *cpudata)
912 {
913 u64 value;
914
915 rdmsrl(ATOM_VIDS, value);
916 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
917 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
918 cpudata->vid.ratio = div_fp(
919 cpudata->vid.max - cpudata->vid.min,
920 int_tofp(cpudata->pstate.max_pstate -
921 cpudata->pstate.min_pstate));
922
923 rdmsrl(ATOM_TURBO_VIDS, value);
924 cpudata->vid.turbo = value & 0x7f;
925 }
926
927 static int core_get_min_pstate(void)
928 {
929 u64 value;
930
931 rdmsrl(MSR_PLATFORM_INFO, value);
932 return (value >> 40) & 0xFF;
933 }
934
935 static int core_get_max_pstate_physical(void)
936 {
937 u64 value;
938
939 rdmsrl(MSR_PLATFORM_INFO, value);
940 return (value >> 8) & 0xFF;
941 }
942
943 static int core_get_max_pstate(void)
944 {
945 u64 tar;
946 u64 plat_info;
947 int max_pstate;
948 int err;
949
950 rdmsrl(MSR_PLATFORM_INFO, plat_info);
951 max_pstate = (plat_info >> 8) & 0xFF;
952
953 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
954 if (!err) {
955 /* Do some sanity checking for safety */
956 if (plat_info & 0x600000000) {
957 u64 tdp_ctrl;
958 u64 tdp_ratio;
959 int tdp_msr;
960
961 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
962 if (err)
963 goto skip_tar;
964
965 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
966 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
967 if (err)
968 goto skip_tar;
969
970 /* For level 1 and 2, bits[23:16] contain the ratio */
971 if (tdp_ctrl)
972 tdp_ratio >>= 16;
973
974 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
975 if (tdp_ratio - 1 == tar) {
976 max_pstate = tar;
977 pr_debug("max_pstate=TAC %x\n", max_pstate);
978 } else {
979 goto skip_tar;
980 }
981 }
982 }
983
984 skip_tar:
985 return max_pstate;
986 }
987
988 static int core_get_turbo_pstate(void)
989 {
990 u64 value;
991 int nont, ret;
992
993 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
994 nont = core_get_max_pstate();
995 ret = (value) & 255;
996 if (ret <= nont)
997 ret = nont;
998 return ret;
999 }
1000
1001 static inline int core_get_scaling(void)
1002 {
1003 return 100000;
1004 }
1005
1006 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1007 {
1008 u64 val;
1009
1010 val = (u64)pstate << 8;
1011 if (limits->no_turbo && !limits->turbo_disabled)
1012 val |= (u64)1 << 32;
1013
1014 return val;
1015 }
1016
1017 static int knl_get_turbo_pstate(void)
1018 {
1019 u64 value;
1020 int nont, ret;
1021
1022 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1023 nont = core_get_max_pstate();
1024 ret = (((value) >> 8) & 0xFF);
1025 if (ret <= nont)
1026 ret = nont;
1027 return ret;
1028 }
1029
1030 static struct cpu_defaults core_params = {
1031 .pid_policy = {
1032 .sample_rate_ms = 10,
1033 .deadband = 0,
1034 .setpoint = 97,
1035 .p_gain_pct = 20,
1036 .d_gain_pct = 0,
1037 .i_gain_pct = 0,
1038 },
1039 .funcs = {
1040 .get_max = core_get_max_pstate,
1041 .get_max_physical = core_get_max_pstate_physical,
1042 .get_min = core_get_min_pstate,
1043 .get_turbo = core_get_turbo_pstate,
1044 .get_scaling = core_get_scaling,
1045 .get_val = core_get_val,
1046 .get_target_pstate = get_target_pstate_use_performance,
1047 },
1048 };
1049
1050 static struct cpu_defaults silvermont_params = {
1051 .pid_policy = {
1052 .sample_rate_ms = 10,
1053 .deadband = 0,
1054 .setpoint = 60,
1055 .p_gain_pct = 14,
1056 .d_gain_pct = 0,
1057 .i_gain_pct = 4,
1058 },
1059 .funcs = {
1060 .get_max = atom_get_max_pstate,
1061 .get_max_physical = atom_get_max_pstate,
1062 .get_min = atom_get_min_pstate,
1063 .get_turbo = atom_get_turbo_pstate,
1064 .get_val = atom_get_val,
1065 .get_scaling = silvermont_get_scaling,
1066 .get_vid = atom_get_vid,
1067 .get_target_pstate = get_target_pstate_use_cpu_load,
1068 },
1069 };
1070
1071 static struct cpu_defaults airmont_params = {
1072 .pid_policy = {
1073 .sample_rate_ms = 10,
1074 .deadband = 0,
1075 .setpoint = 60,
1076 .p_gain_pct = 14,
1077 .d_gain_pct = 0,
1078 .i_gain_pct = 4,
1079 },
1080 .funcs = {
1081 .get_max = atom_get_max_pstate,
1082 .get_max_physical = atom_get_max_pstate,
1083 .get_min = atom_get_min_pstate,
1084 .get_turbo = atom_get_turbo_pstate,
1085 .get_val = atom_get_val,
1086 .get_scaling = airmont_get_scaling,
1087 .get_vid = atom_get_vid,
1088 .get_target_pstate = get_target_pstate_use_cpu_load,
1089 },
1090 };
1091
1092 static struct cpu_defaults knl_params = {
1093 .pid_policy = {
1094 .sample_rate_ms = 10,
1095 .deadband = 0,
1096 .setpoint = 97,
1097 .p_gain_pct = 20,
1098 .d_gain_pct = 0,
1099 .i_gain_pct = 0,
1100 },
1101 .funcs = {
1102 .get_max = core_get_max_pstate,
1103 .get_max_physical = core_get_max_pstate_physical,
1104 .get_min = core_get_min_pstate,
1105 .get_turbo = knl_get_turbo_pstate,
1106 .get_scaling = core_get_scaling,
1107 .get_val = core_get_val,
1108 .get_target_pstate = get_target_pstate_use_performance,
1109 },
1110 };
1111
1112 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1113 {
1114 int max_perf = cpu->pstate.turbo_pstate;
1115 int max_perf_adj;
1116 int min_perf;
1117
1118 if (limits->no_turbo || limits->turbo_disabled)
1119 max_perf = cpu->pstate.max_pstate;
1120
1121 /*
1122 * performance can be limited by user through sysfs, by cpufreq
1123 * policy, or by cpu specific default values determined through
1124 * experimentation.
1125 */
1126 max_perf_adj = fp_toint(max_perf * limits->max_perf);
1127 *max = clamp_t(int, max_perf_adj,
1128 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1129
1130 min_perf = fp_toint(max_perf * limits->min_perf);
1131 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1132 }
1133
1134 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1135 {
1136 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1137 cpu->pstate.current_pstate = pstate;
1138 }
1139
1140 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1141 {
1142 int pstate = cpu->pstate.min_pstate;
1143
1144 intel_pstate_record_pstate(cpu, pstate);
1145 /*
1146 * Generally, there is no guarantee that this code will always run on
1147 * the CPU being updated, so force the register update to run on the
1148 * right CPU.
1149 */
1150 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1151 pstate_funcs.get_val(cpu, pstate));
1152 }
1153
1154 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1155 {
1156 cpu->pstate.min_pstate = pstate_funcs.get_min();
1157 cpu->pstate.max_pstate = pstate_funcs.get_max();
1158 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1159 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1160 cpu->pstate.scaling = pstate_funcs.get_scaling();
1161
1162 if (pstate_funcs.get_vid)
1163 pstate_funcs.get_vid(cpu);
1164
1165 intel_pstate_set_min_pstate(cpu);
1166 }
1167
1168 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1169 {
1170 struct sample *sample = &cpu->sample;
1171
1172 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1173 }
1174
1175 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1176 {
1177 u64 aperf, mperf;
1178 unsigned long flags;
1179 u64 tsc;
1180
1181 local_irq_save(flags);
1182 rdmsrl(MSR_IA32_APERF, aperf);
1183 rdmsrl(MSR_IA32_MPERF, mperf);
1184 tsc = rdtsc();
1185 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1186 local_irq_restore(flags);
1187 return false;
1188 }
1189 local_irq_restore(flags);
1190
1191 cpu->last_sample_time = cpu->sample.time;
1192 cpu->sample.time = time;
1193 cpu->sample.aperf = aperf;
1194 cpu->sample.mperf = mperf;
1195 cpu->sample.tsc = tsc;
1196 cpu->sample.aperf -= cpu->prev_aperf;
1197 cpu->sample.mperf -= cpu->prev_mperf;
1198 cpu->sample.tsc -= cpu->prev_tsc;
1199
1200 cpu->prev_aperf = aperf;
1201 cpu->prev_mperf = mperf;
1202 cpu->prev_tsc = tsc;
1203 /*
1204 * First time this function is invoked in a given cycle, all of the
1205 * previous sample data fields are equal to zero or stale and they must
1206 * be populated with meaningful numbers for things to work, so assume
1207 * that sample.time will always be reset before setting the utilization
1208 * update hook and make the caller skip the sample then.
1209 */
1210 return !!cpu->last_sample_time;
1211 }
1212
1213 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1214 {
1215 return mul_ext_fp(cpu->sample.core_avg_perf,
1216 cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1217 }
1218
1219 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1220 {
1221 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1222 cpu->sample.core_avg_perf);
1223 }
1224
1225 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1226 {
1227 struct sample *sample = &cpu->sample;
1228 u64 cummulative_iowait, delta_iowait_us;
1229 u64 delta_iowait_mperf;
1230 u64 mperf, now;
1231 int32_t cpu_load;
1232
1233 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1234
1235 /*
1236 * Convert iowait time into number of IO cycles spent at max_freq.
1237 * IO is considered as busy only for the cpu_load algorithm. For
1238 * performance this is not needed since we always try to reach the
1239 * maximum P-State, so we are already boosting the IOs.
1240 */
1241 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1242 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1243 cpu->pstate.max_pstate, MSEC_PER_SEC);
1244
1245 mperf = cpu->sample.mperf + delta_iowait_mperf;
1246 cpu->prev_cummulative_iowait = cummulative_iowait;
1247
1248 /*
1249 * The load can be estimated as the ratio of the mperf counter
1250 * running at a constant frequency during active periods
1251 * (C0) and the time stamp counter running at the same frequency
1252 * also during C-states.
1253 */
1254 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1255 cpu->sample.busy_scaled = cpu_load;
1256
1257 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1258 }
1259
1260 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1261 {
1262 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1263 u64 duration_ns;
1264
1265 /*
1266 * perf_scaled is the average performance during the last sampling
1267 * period scaled by the ratio of the maximum P-state to the P-state
1268 * requested last time (in percent). That measures the system's
1269 * response to the previous P-state selection.
1270 */
1271 max_pstate = cpu->pstate.max_pstate_physical;
1272 current_pstate = cpu->pstate.current_pstate;
1273 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1274 div_fp(100 * max_pstate, current_pstate));
1275
1276 /*
1277 * Since our utilization update callback will not run unless we are
1278 * in C0, check if the actual elapsed time is significantly greater (3x)
1279 * than our sample interval. If it is, then we were idle for a long
1280 * enough period of time to adjust our performance metric.
1281 */
1282 duration_ns = cpu->sample.time - cpu->last_sample_time;
1283 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1284 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1285 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1286 } else {
1287 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1288 if (sample_ratio < int_tofp(1))
1289 perf_scaled = 0;
1290 }
1291
1292 cpu->sample.busy_scaled = perf_scaled;
1293 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1294 }
1295
1296 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1297 {
1298 int max_perf, min_perf;
1299
1300 update_turbo_state();
1301
1302 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1303 pstate = clamp_t(int, pstate, min_perf, max_perf);
1304 if (pstate == cpu->pstate.current_pstate)
1305 return;
1306
1307 intel_pstate_record_pstate(cpu, pstate);
1308 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1309 }
1310
1311 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1312 {
1313 int from, target_pstate;
1314 struct sample *sample;
1315
1316 from = cpu->pstate.current_pstate;
1317
1318 target_pstate = pstate_funcs.get_target_pstate(cpu);
1319
1320 intel_pstate_update_pstate(cpu, target_pstate);
1321
1322 sample = &cpu->sample;
1323 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1324 fp_toint(sample->busy_scaled),
1325 from,
1326 cpu->pstate.current_pstate,
1327 sample->mperf,
1328 sample->aperf,
1329 sample->tsc,
1330 get_avg_frequency(cpu));
1331 }
1332
1333 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1334 unsigned long util, unsigned long max)
1335 {
1336 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1337 u64 delta_ns = time - cpu->sample.time;
1338
1339 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1340 bool sample_taken = intel_pstate_sample(cpu, time);
1341
1342 if (sample_taken) {
1343 intel_pstate_calc_avg_perf(cpu);
1344 if (!hwp_active)
1345 intel_pstate_adjust_busy_pstate(cpu);
1346 }
1347 }
1348 }
1349
1350 #define ICPU(model, policy) \
1351 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1352 (unsigned long)&policy }
1353
1354 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1355 ICPU(0x2a, core_params),
1356 ICPU(0x2d, core_params),
1357 ICPU(0x37, silvermont_params),
1358 ICPU(0x3a, core_params),
1359 ICPU(0x3c, core_params),
1360 ICPU(0x3d, core_params),
1361 ICPU(0x3e, core_params),
1362 ICPU(0x3f, core_params),
1363 ICPU(0x45, core_params),
1364 ICPU(0x46, core_params),
1365 ICPU(0x47, core_params),
1366 ICPU(0x4c, airmont_params),
1367 ICPU(0x4e, core_params),
1368 ICPU(0x4f, core_params),
1369 ICPU(0x5e, core_params),
1370 ICPU(0x56, core_params),
1371 ICPU(0x57, knl_params),
1372 {}
1373 };
1374 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1375
1376 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1377 ICPU(0x56, core_params),
1378 {}
1379 };
1380
1381 static int intel_pstate_init_cpu(unsigned int cpunum)
1382 {
1383 struct cpudata *cpu;
1384
1385 if (!all_cpu_data[cpunum])
1386 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1387 GFP_KERNEL);
1388 if (!all_cpu_data[cpunum])
1389 return -ENOMEM;
1390
1391 cpu = all_cpu_data[cpunum];
1392
1393 cpu->cpu = cpunum;
1394
1395 if (hwp_active) {
1396 intel_pstate_hwp_enable(cpu);
1397 pid_params.sample_rate_ms = 50;
1398 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1399 }
1400
1401 intel_pstate_get_cpu_pstates(cpu);
1402
1403 intel_pstate_busy_pid_reset(cpu);
1404
1405 pr_debug("controlling: cpu %d\n", cpunum);
1406
1407 return 0;
1408 }
1409
1410 static unsigned int intel_pstate_get(unsigned int cpu_num)
1411 {
1412 struct cpudata *cpu = all_cpu_data[cpu_num];
1413
1414 return cpu ? get_avg_frequency(cpu) : 0;
1415 }
1416
1417 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1418 {
1419 struct cpudata *cpu = all_cpu_data[cpu_num];
1420
1421 /* Prevent intel_pstate_update_util() from using stale data. */
1422 cpu->sample.time = 0;
1423 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1424 intel_pstate_update_util);
1425 cpu->update_util_set = true;
1426 }
1427
1428 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1429 {
1430 struct cpudata *cpu_data = all_cpu_data[cpu];
1431
1432 if (!cpu_data->update_util_set)
1433 return;
1434
1435 cpufreq_remove_update_util_hook(cpu);
1436 cpu_data->update_util_set = false;
1437 synchronize_sched();
1438 }
1439
1440 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1441 {
1442 limits->no_turbo = 0;
1443 limits->turbo_disabled = 0;
1444 limits->max_perf_pct = 100;
1445 limits->max_perf = int_tofp(1);
1446 limits->min_perf_pct = 100;
1447 limits->min_perf = int_tofp(1);
1448 limits->max_policy_pct = 100;
1449 limits->max_sysfs_pct = 100;
1450 limits->min_policy_pct = 0;
1451 limits->min_sysfs_pct = 0;
1452 }
1453
1454 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1455 {
1456 struct cpudata *cpu;
1457
1458 if (!policy->cpuinfo.max_freq)
1459 return -ENODEV;
1460
1461 intel_pstate_clear_update_util_hook(policy->cpu);
1462
1463 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1464 policy->cpuinfo.max_freq, policy->max);
1465
1466 cpu = all_cpu_data[0];
1467 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1468 policy->max < policy->cpuinfo.max_freq &&
1469 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1470 pr_debug("policy->max > max non turbo frequency\n");
1471 policy->max = policy->cpuinfo.max_freq;
1472 }
1473
1474 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1475 limits = &performance_limits;
1476 if (policy->max >= policy->cpuinfo.max_freq) {
1477 pr_debug("set performance\n");
1478 intel_pstate_set_performance_limits(limits);
1479 goto out;
1480 }
1481 } else {
1482 pr_debug("set powersave\n");
1483 limits = &powersave_limits;
1484 }
1485
1486 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1487 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1488 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1489 policy->cpuinfo.max_freq);
1490 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1491
1492 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1493 limits->min_perf_pct = max(limits->min_policy_pct,
1494 limits->min_sysfs_pct);
1495 limits->min_perf_pct = min(limits->max_policy_pct,
1496 limits->min_perf_pct);
1497 limits->max_perf_pct = min(limits->max_policy_pct,
1498 limits->max_sysfs_pct);
1499 limits->max_perf_pct = max(limits->min_policy_pct,
1500 limits->max_perf_pct);
1501
1502 /* Make sure min_perf_pct <= max_perf_pct */
1503 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1504
1505 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1506 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1507 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1508
1509 out:
1510 intel_pstate_set_update_util_hook(policy->cpu);
1511
1512 intel_pstate_hwp_set_policy(policy);
1513
1514 return 0;
1515 }
1516
1517 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1518 {
1519 cpufreq_verify_within_cpu_limits(policy);
1520
1521 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1522 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1523 return -EINVAL;
1524
1525 return 0;
1526 }
1527
1528 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1529 {
1530 int cpu_num = policy->cpu;
1531 struct cpudata *cpu = all_cpu_data[cpu_num];
1532
1533 pr_debug("CPU %d exiting\n", cpu_num);
1534
1535 intel_pstate_clear_update_util_hook(cpu_num);
1536
1537 if (hwp_active)
1538 return;
1539
1540 intel_pstate_set_min_pstate(cpu);
1541 }
1542
1543 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1544 {
1545 struct cpudata *cpu;
1546 int rc;
1547
1548 rc = intel_pstate_init_cpu(policy->cpu);
1549 if (rc)
1550 return rc;
1551
1552 cpu = all_cpu_data[policy->cpu];
1553
1554 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1555 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1556 else
1557 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1558
1559 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1560 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1561
1562 /* cpuinfo and default policy values */
1563 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1564 update_turbo_state();
1565 policy->cpuinfo.max_freq = limits->turbo_disabled ?
1566 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1567 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1568
1569 intel_pstate_init_acpi_perf_limits(policy);
1570 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1571 cpumask_set_cpu(policy->cpu, policy->cpus);
1572
1573 return 0;
1574 }
1575
1576 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1577 {
1578 intel_pstate_exit_perf_limits(policy);
1579
1580 return 0;
1581 }
1582
1583 static struct cpufreq_driver intel_pstate_driver = {
1584 .flags = CPUFREQ_CONST_LOOPS,
1585 .verify = intel_pstate_verify_policy,
1586 .setpolicy = intel_pstate_set_policy,
1587 .resume = intel_pstate_hwp_set_policy,
1588 .get = intel_pstate_get,
1589 .init = intel_pstate_cpu_init,
1590 .exit = intel_pstate_cpu_exit,
1591 .stop_cpu = intel_pstate_stop_cpu,
1592 .name = "intel_pstate",
1593 };
1594
1595 static int __initdata no_load;
1596 static int __initdata no_hwp;
1597 static int __initdata hwp_only;
1598 static unsigned int force_load;
1599
1600 static int intel_pstate_msrs_not_valid(void)
1601 {
1602 if (!pstate_funcs.get_max() ||
1603 !pstate_funcs.get_min() ||
1604 !pstate_funcs.get_turbo())
1605 return -ENODEV;
1606
1607 return 0;
1608 }
1609
1610 static void copy_pid_params(struct pstate_adjust_policy *policy)
1611 {
1612 pid_params.sample_rate_ms = policy->sample_rate_ms;
1613 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1614 pid_params.p_gain_pct = policy->p_gain_pct;
1615 pid_params.i_gain_pct = policy->i_gain_pct;
1616 pid_params.d_gain_pct = policy->d_gain_pct;
1617 pid_params.deadband = policy->deadband;
1618 pid_params.setpoint = policy->setpoint;
1619 }
1620
1621 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1622 {
1623 pstate_funcs.get_max = funcs->get_max;
1624 pstate_funcs.get_max_physical = funcs->get_max_physical;
1625 pstate_funcs.get_min = funcs->get_min;
1626 pstate_funcs.get_turbo = funcs->get_turbo;
1627 pstate_funcs.get_scaling = funcs->get_scaling;
1628 pstate_funcs.get_val = funcs->get_val;
1629 pstate_funcs.get_vid = funcs->get_vid;
1630 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1631
1632 }
1633
1634 #ifdef CONFIG_ACPI
1635
1636 static bool intel_pstate_no_acpi_pss(void)
1637 {
1638 int i;
1639
1640 for_each_possible_cpu(i) {
1641 acpi_status status;
1642 union acpi_object *pss;
1643 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1644 struct acpi_processor *pr = per_cpu(processors, i);
1645
1646 if (!pr)
1647 continue;
1648
1649 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1650 if (ACPI_FAILURE(status))
1651 continue;
1652
1653 pss = buffer.pointer;
1654 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1655 kfree(pss);
1656 return false;
1657 }
1658
1659 kfree(pss);
1660 }
1661
1662 return true;
1663 }
1664
1665 static bool intel_pstate_has_acpi_ppc(void)
1666 {
1667 int i;
1668
1669 for_each_possible_cpu(i) {
1670 struct acpi_processor *pr = per_cpu(processors, i);
1671
1672 if (!pr)
1673 continue;
1674 if (acpi_has_method(pr->handle, "_PPC"))
1675 return true;
1676 }
1677 return false;
1678 }
1679
1680 enum {
1681 PSS,
1682 PPC,
1683 };
1684
1685 struct hw_vendor_info {
1686 u16 valid;
1687 char oem_id[ACPI_OEM_ID_SIZE];
1688 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1689 int oem_pwr_table;
1690 };
1691
1692 /* Hardware vendor-specific info that has its own power management modes */
1693 static struct hw_vendor_info vendor_info[] = {
1694 {1, "HP ", "ProLiant", PSS},
1695 {1, "ORACLE", "X4-2 ", PPC},
1696 {1, "ORACLE", "X4-2L ", PPC},
1697 {1, "ORACLE", "X4-2B ", PPC},
1698 {1, "ORACLE", "X3-2 ", PPC},
1699 {1, "ORACLE", "X3-2L ", PPC},
1700 {1, "ORACLE", "X3-2B ", PPC},
1701 {1, "ORACLE", "X4470M2 ", PPC},
1702 {1, "ORACLE", "X4270M3 ", PPC},
1703 {1, "ORACLE", "X4270M2 ", PPC},
1704 {1, "ORACLE", "X4170M2 ", PPC},
1705 {1, "ORACLE", "X4170 M3", PPC},
1706 {1, "ORACLE", "X4275 M3", PPC},
1707 {1, "ORACLE", "X6-2 ", PPC},
1708 {1, "ORACLE", "Sudbury ", PPC},
1709 {0, "", ""},
1710 };
1711
1712 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1713 {
1714 struct acpi_table_header hdr;
1715 struct hw_vendor_info *v_info;
1716 const struct x86_cpu_id *id;
1717 u64 misc_pwr;
1718
1719 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1720 if (id) {
1721 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1722 if ( misc_pwr & (1 << 8))
1723 return true;
1724 }
1725
1726 if (acpi_disabled ||
1727 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1728 return false;
1729
1730 for (v_info = vendor_info; v_info->valid; v_info++) {
1731 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1732 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1733 ACPI_OEM_TABLE_ID_SIZE))
1734 switch (v_info->oem_pwr_table) {
1735 case PSS:
1736 return intel_pstate_no_acpi_pss();
1737 case PPC:
1738 return intel_pstate_has_acpi_ppc() &&
1739 (!force_load);
1740 }
1741 }
1742
1743 return false;
1744 }
1745 #else /* CONFIG_ACPI not enabled */
1746 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1747 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1748 #endif /* CONFIG_ACPI */
1749
1750 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1751 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1752 {}
1753 };
1754
1755 static int __init intel_pstate_init(void)
1756 {
1757 int cpu, rc = 0;
1758 const struct x86_cpu_id *id;
1759 struct cpu_defaults *cpu_def;
1760
1761 if (no_load)
1762 return -ENODEV;
1763
1764 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1765 copy_cpu_funcs(&core_params.funcs);
1766 hwp_active++;
1767 goto hwp_cpu_matched;
1768 }
1769
1770 id = x86_match_cpu(intel_pstate_cpu_ids);
1771 if (!id)
1772 return -ENODEV;
1773
1774 cpu_def = (struct cpu_defaults *)id->driver_data;
1775
1776 copy_pid_params(&cpu_def->pid_policy);
1777 copy_cpu_funcs(&cpu_def->funcs);
1778
1779 if (intel_pstate_msrs_not_valid())
1780 return -ENODEV;
1781
1782 hwp_cpu_matched:
1783 /*
1784 * The Intel pstate driver will be ignored if the platform
1785 * firmware has its own power management modes.
1786 */
1787 if (intel_pstate_platform_pwr_mgmt_exists())
1788 return -ENODEV;
1789
1790 pr_info("Intel P-state driver initializing\n");
1791
1792 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1793 if (!all_cpu_data)
1794 return -ENOMEM;
1795
1796 if (!hwp_active && hwp_only)
1797 goto out;
1798
1799 rc = cpufreq_register_driver(&intel_pstate_driver);
1800 if (rc)
1801 goto out;
1802
1803 intel_pstate_debug_expose_params();
1804 intel_pstate_sysfs_expose_params();
1805
1806 if (hwp_active)
1807 pr_info("HWP enabled\n");
1808
1809 return rc;
1810 out:
1811 get_online_cpus();
1812 for_each_online_cpu(cpu) {
1813 if (all_cpu_data[cpu]) {
1814 intel_pstate_clear_update_util_hook(cpu);
1815 kfree(all_cpu_data[cpu]);
1816 }
1817 }
1818
1819 put_online_cpus();
1820 vfree(all_cpu_data);
1821 return -ENODEV;
1822 }
1823 device_initcall(intel_pstate_init);
1824
1825 static int __init intel_pstate_setup(char *str)
1826 {
1827 if (!str)
1828 return -EINVAL;
1829
1830 if (!strcmp(str, "disable"))
1831 no_load = 1;
1832 if (!strcmp(str, "no_hwp")) {
1833 pr_info("HWP disabled\n");
1834 no_hwp = 1;
1835 }
1836 if (!strcmp(str, "force"))
1837 force_load = 1;
1838 if (!strcmp(str, "hwp_only"))
1839 hwp_only = 1;
1840
1841 #ifdef CONFIG_ACPI
1842 if (!strcmp(str, "support_acpi_ppc"))
1843 acpi_ppc = true;
1844 #endif
1845
1846 return 0;
1847 }
1848 early_param("intel_pstate", intel_pstate_setup);
1849
1850 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1851 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1852 MODULE_LICENSE("GPL");
This page took 0.06622 seconds and 6 git commands to generate.