Merge tag 'linux-kselftest-4.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / crypto / atmel-aes.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for ATMEL AES HW acceleration.
5 *
6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7 * Author: Nicolas Royer <nicolas@eukrea.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
12 *
13 * Some ideas are from omap-aes.c driver.
14 */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/platform_data/crypto-atmel.h>
41 #include <dt-bindings/dma/at91.h>
42 #include "atmel-aes-regs.h"
43
44 #define ATMEL_AES_PRIORITY 300
45
46 #define ATMEL_AES_BUFFER_ORDER 2
47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE 1
50 #define CFB16_BLOCK_SIZE 2
51 #define CFB32_BLOCK_SIZE 4
52 #define CFB64_BLOCK_SIZE 8
53
54 #define SIZE_IN_WORDS(x) ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
71
72 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
73 AES_FLAGS_ENCRYPT | \
74 AES_FLAGS_GTAGEN)
75
76 #define AES_FLAGS_INIT BIT(2)
77 #define AES_FLAGS_BUSY BIT(3)
78 #define AES_FLAGS_DUMP_REG BIT(4)
79
80 #define AES_FLAGS_PERSISTENT (AES_FLAGS_INIT | AES_FLAGS_BUSY)
81
82 #define ATMEL_AES_QUEUE_LENGTH 50
83
84 #define ATMEL_AES_DMA_THRESHOLD 256
85
86
87 struct atmel_aes_caps {
88 bool has_dualbuff;
89 bool has_cfb64;
90 bool has_ctr32;
91 bool has_gcm;
92 u32 max_burst_size;
93 };
94
95 struct atmel_aes_dev;
96
97
98 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
99
100
101 struct atmel_aes_base_ctx {
102 struct atmel_aes_dev *dd;
103 atmel_aes_fn_t start;
104 int keylen;
105 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
106 u16 block_size;
107 };
108
109 struct atmel_aes_ctx {
110 struct atmel_aes_base_ctx base;
111 };
112
113 struct atmel_aes_ctr_ctx {
114 struct atmel_aes_base_ctx base;
115
116 u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
117 size_t offset;
118 struct scatterlist src[2];
119 struct scatterlist dst[2];
120 };
121
122 struct atmel_aes_gcm_ctx {
123 struct atmel_aes_base_ctx base;
124
125 struct scatterlist src[2];
126 struct scatterlist dst[2];
127
128 u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
129 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
130 u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
131 size_t textlen;
132
133 const u32 *ghash_in;
134 u32 *ghash_out;
135 atmel_aes_fn_t ghash_resume;
136 };
137
138 struct atmel_aes_reqctx {
139 unsigned long mode;
140 };
141
142 struct atmel_aes_dma {
143 struct dma_chan *chan;
144 struct scatterlist *sg;
145 int nents;
146 unsigned int remainder;
147 unsigned int sg_len;
148 };
149
150 struct atmel_aes_dev {
151 struct list_head list;
152 unsigned long phys_base;
153 void __iomem *io_base;
154
155 struct crypto_async_request *areq;
156 struct atmel_aes_base_ctx *ctx;
157
158 bool is_async;
159 atmel_aes_fn_t resume;
160 atmel_aes_fn_t cpu_transfer_complete;
161
162 struct device *dev;
163 struct clk *iclk;
164 int irq;
165
166 unsigned long flags;
167
168 spinlock_t lock;
169 struct crypto_queue queue;
170
171 struct tasklet_struct done_task;
172 struct tasklet_struct queue_task;
173
174 size_t total;
175 size_t datalen;
176 u32 *data;
177
178 struct atmel_aes_dma src;
179 struct atmel_aes_dma dst;
180
181 size_t buflen;
182 void *buf;
183 struct scatterlist aligned_sg;
184 struct scatterlist *real_dst;
185
186 struct atmel_aes_caps caps;
187
188 u32 hw_version;
189 };
190
191 struct atmel_aes_drv {
192 struct list_head dev_list;
193 spinlock_t lock;
194 };
195
196 static struct atmel_aes_drv atmel_aes = {
197 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
198 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
199 };
200
201 #ifdef VERBOSE_DEBUG
202 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
203 {
204 switch (offset) {
205 case AES_CR:
206 return "CR";
207
208 case AES_MR:
209 return "MR";
210
211 case AES_ISR:
212 return "ISR";
213
214 case AES_IMR:
215 return "IMR";
216
217 case AES_IER:
218 return "IER";
219
220 case AES_IDR:
221 return "IDR";
222
223 case AES_KEYWR(0):
224 case AES_KEYWR(1):
225 case AES_KEYWR(2):
226 case AES_KEYWR(3):
227 case AES_KEYWR(4):
228 case AES_KEYWR(5):
229 case AES_KEYWR(6):
230 case AES_KEYWR(7):
231 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
232 break;
233
234 case AES_IDATAR(0):
235 case AES_IDATAR(1):
236 case AES_IDATAR(2):
237 case AES_IDATAR(3):
238 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
239 break;
240
241 case AES_ODATAR(0):
242 case AES_ODATAR(1):
243 case AES_ODATAR(2):
244 case AES_ODATAR(3):
245 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
246 break;
247
248 case AES_IVR(0):
249 case AES_IVR(1):
250 case AES_IVR(2):
251 case AES_IVR(3):
252 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
253 break;
254
255 case AES_AADLENR:
256 return "AADLENR";
257
258 case AES_CLENR:
259 return "CLENR";
260
261 case AES_GHASHR(0):
262 case AES_GHASHR(1):
263 case AES_GHASHR(2):
264 case AES_GHASHR(3):
265 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
266 break;
267
268 case AES_TAGR(0):
269 case AES_TAGR(1):
270 case AES_TAGR(2):
271 case AES_TAGR(3):
272 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
273 break;
274
275 case AES_CTRR:
276 return "CTRR";
277
278 case AES_GCMHR(0):
279 case AES_GCMHR(1):
280 case AES_GCMHR(2):
281 case AES_GCMHR(3):
282 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
283
284 default:
285 snprintf(tmp, sz, "0x%02x", offset);
286 break;
287 }
288
289 return tmp;
290 }
291 #endif /* VERBOSE_DEBUG */
292
293 /* Shared functions */
294
295 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
296 {
297 u32 value = readl_relaxed(dd->io_base + offset);
298
299 #ifdef VERBOSE_DEBUG
300 if (dd->flags & AES_FLAGS_DUMP_REG) {
301 char tmp[16];
302
303 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
304 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
305 }
306 #endif /* VERBOSE_DEBUG */
307
308 return value;
309 }
310
311 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
312 u32 offset, u32 value)
313 {
314 #ifdef VERBOSE_DEBUG
315 if (dd->flags & AES_FLAGS_DUMP_REG) {
316 char tmp[16];
317
318 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
319 atmel_aes_reg_name(offset, tmp));
320 }
321 #endif /* VERBOSE_DEBUG */
322
323 writel_relaxed(value, dd->io_base + offset);
324 }
325
326 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
327 u32 *value, int count)
328 {
329 for (; count--; value++, offset += 4)
330 *value = atmel_aes_read(dd, offset);
331 }
332
333 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
334 const u32 *value, int count)
335 {
336 for (; count--; value++, offset += 4)
337 atmel_aes_write(dd, offset, *value);
338 }
339
340 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
341 u32 *value)
342 {
343 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
344 }
345
346 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
347 const u32 *value)
348 {
349 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
350 }
351
352 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
353 atmel_aes_fn_t resume)
354 {
355 u32 isr = atmel_aes_read(dd, AES_ISR);
356
357 if (unlikely(isr & AES_INT_DATARDY))
358 return resume(dd);
359
360 dd->resume = resume;
361 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
362 return -EINPROGRESS;
363 }
364
365 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
366 {
367 len &= block_size - 1;
368 return len ? block_size - len : 0;
369 }
370
371 static inline struct aead_request *
372 aead_request_cast(struct crypto_async_request *req)
373 {
374 return container_of(req, struct aead_request, base);
375 }
376
377 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
378 {
379 struct atmel_aes_dev *aes_dd = NULL;
380 struct atmel_aes_dev *tmp;
381
382 spin_lock_bh(&atmel_aes.lock);
383 if (!ctx->dd) {
384 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
385 aes_dd = tmp;
386 break;
387 }
388 ctx->dd = aes_dd;
389 } else {
390 aes_dd = ctx->dd;
391 }
392
393 spin_unlock_bh(&atmel_aes.lock);
394
395 return aes_dd;
396 }
397
398 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
399 {
400 int err;
401
402 err = clk_prepare_enable(dd->iclk);
403 if (err)
404 return err;
405
406 if (!(dd->flags & AES_FLAGS_INIT)) {
407 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
408 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
409 dd->flags |= AES_FLAGS_INIT;
410 }
411
412 return 0;
413 }
414
415 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
416 {
417 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
418 }
419
420 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
421 {
422 int err;
423
424 err = atmel_aes_hw_init(dd);
425 if (err)
426 return err;
427
428 dd->hw_version = atmel_aes_get_version(dd);
429
430 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
431
432 clk_disable_unprepare(dd->iclk);
433 return 0;
434 }
435
436 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
437 const struct atmel_aes_reqctx *rctx)
438 {
439 /* Clear all but persistent flags and set request flags. */
440 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
441 }
442
443 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
444 {
445 return (dd->flags & AES_FLAGS_ENCRYPT);
446 }
447
448 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
449 {
450 clk_disable_unprepare(dd->iclk);
451 dd->flags &= ~AES_FLAGS_BUSY;
452
453 if (dd->is_async)
454 dd->areq->complete(dd->areq, err);
455
456 tasklet_schedule(&dd->queue_task);
457
458 return err;
459 }
460
461 static void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
462 const u32 *iv)
463 {
464 u32 valmr = 0;
465
466 /* MR register must be set before IV registers */
467 if (dd->ctx->keylen == AES_KEYSIZE_128)
468 valmr |= AES_MR_KEYSIZE_128;
469 else if (dd->ctx->keylen == AES_KEYSIZE_192)
470 valmr |= AES_MR_KEYSIZE_192;
471 else
472 valmr |= AES_MR_KEYSIZE_256;
473
474 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
475
476 if (use_dma) {
477 valmr |= AES_MR_SMOD_IDATAR0;
478 if (dd->caps.has_dualbuff)
479 valmr |= AES_MR_DUALBUFF;
480 } else {
481 valmr |= AES_MR_SMOD_AUTO;
482 }
483
484 atmel_aes_write(dd, AES_MR, valmr);
485
486 atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
487 SIZE_IN_WORDS(dd->ctx->keylen));
488
489 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
490 atmel_aes_write_block(dd, AES_IVR(0), iv);
491 }
492
493
494 /* CPU transfer */
495
496 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
497 {
498 int err = 0;
499 u32 isr;
500
501 for (;;) {
502 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
503 dd->data += 4;
504 dd->datalen -= AES_BLOCK_SIZE;
505
506 if (dd->datalen < AES_BLOCK_SIZE)
507 break;
508
509 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
510
511 isr = atmel_aes_read(dd, AES_ISR);
512 if (!(isr & AES_INT_DATARDY)) {
513 dd->resume = atmel_aes_cpu_transfer;
514 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
515 return -EINPROGRESS;
516 }
517 }
518
519 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
520 dd->buf, dd->total))
521 err = -EINVAL;
522
523 if (err)
524 return atmel_aes_complete(dd, err);
525
526 return dd->cpu_transfer_complete(dd);
527 }
528
529 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
530 struct scatterlist *src,
531 struct scatterlist *dst,
532 size_t len,
533 atmel_aes_fn_t resume)
534 {
535 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
536
537 if (unlikely(len == 0))
538 return -EINVAL;
539
540 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
541
542 dd->total = len;
543 dd->real_dst = dst;
544 dd->cpu_transfer_complete = resume;
545 dd->datalen = len + padlen;
546 dd->data = (u32 *)dd->buf;
547 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
548 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
549 }
550
551
552 /* DMA transfer */
553
554 static void atmel_aes_dma_callback(void *data);
555
556 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
557 struct scatterlist *sg,
558 size_t len,
559 struct atmel_aes_dma *dma)
560 {
561 int nents;
562
563 if (!IS_ALIGNED(len, dd->ctx->block_size))
564 return false;
565
566 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
567 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
568 return false;
569
570 if (len <= sg->length) {
571 if (!IS_ALIGNED(len, dd->ctx->block_size))
572 return false;
573
574 dma->nents = nents+1;
575 dma->remainder = sg->length - len;
576 sg->length = len;
577 return true;
578 }
579
580 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
581 return false;
582
583 len -= sg->length;
584 }
585
586 return false;
587 }
588
589 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
590 {
591 struct scatterlist *sg = dma->sg;
592 int nents = dma->nents;
593
594 if (!dma->remainder)
595 return;
596
597 while (--nents > 0 && sg)
598 sg = sg_next(sg);
599
600 if (!sg)
601 return;
602
603 sg->length += dma->remainder;
604 }
605
606 static int atmel_aes_map(struct atmel_aes_dev *dd,
607 struct scatterlist *src,
608 struct scatterlist *dst,
609 size_t len)
610 {
611 bool src_aligned, dst_aligned;
612 size_t padlen;
613
614 dd->total = len;
615 dd->src.sg = src;
616 dd->dst.sg = dst;
617 dd->real_dst = dst;
618
619 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
620 if (src == dst)
621 dst_aligned = src_aligned;
622 else
623 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
624 if (!src_aligned || !dst_aligned) {
625 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
626
627 if (dd->buflen < len + padlen)
628 return -ENOMEM;
629
630 if (!src_aligned) {
631 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
632 dd->src.sg = &dd->aligned_sg;
633 dd->src.nents = 1;
634 dd->src.remainder = 0;
635 }
636
637 if (!dst_aligned) {
638 dd->dst.sg = &dd->aligned_sg;
639 dd->dst.nents = 1;
640 dd->dst.remainder = 0;
641 }
642
643 sg_init_table(&dd->aligned_sg, 1);
644 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
645 }
646
647 if (dd->src.sg == dd->dst.sg) {
648 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
649 DMA_BIDIRECTIONAL);
650 dd->dst.sg_len = dd->src.sg_len;
651 if (!dd->src.sg_len)
652 return -EFAULT;
653 } else {
654 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
655 DMA_TO_DEVICE);
656 if (!dd->src.sg_len)
657 return -EFAULT;
658
659 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
660 DMA_FROM_DEVICE);
661 if (!dd->dst.sg_len) {
662 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
663 DMA_TO_DEVICE);
664 return -EFAULT;
665 }
666 }
667
668 return 0;
669 }
670
671 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
672 {
673 if (dd->src.sg == dd->dst.sg) {
674 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
675 DMA_BIDIRECTIONAL);
676
677 if (dd->src.sg != &dd->aligned_sg)
678 atmel_aes_restore_sg(&dd->src);
679 } else {
680 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
681 DMA_FROM_DEVICE);
682
683 if (dd->dst.sg != &dd->aligned_sg)
684 atmel_aes_restore_sg(&dd->dst);
685
686 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
687 DMA_TO_DEVICE);
688
689 if (dd->src.sg != &dd->aligned_sg)
690 atmel_aes_restore_sg(&dd->src);
691 }
692
693 if (dd->dst.sg == &dd->aligned_sg)
694 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
695 dd->buf, dd->total);
696 }
697
698 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
699 enum dma_slave_buswidth addr_width,
700 enum dma_transfer_direction dir,
701 u32 maxburst)
702 {
703 struct dma_async_tx_descriptor *desc;
704 struct dma_slave_config config;
705 dma_async_tx_callback callback;
706 struct atmel_aes_dma *dma;
707 int err;
708
709 memset(&config, 0, sizeof(config));
710 config.direction = dir;
711 config.src_addr_width = addr_width;
712 config.dst_addr_width = addr_width;
713 config.src_maxburst = maxburst;
714 config.dst_maxburst = maxburst;
715
716 switch (dir) {
717 case DMA_MEM_TO_DEV:
718 dma = &dd->src;
719 callback = NULL;
720 config.dst_addr = dd->phys_base + AES_IDATAR(0);
721 break;
722
723 case DMA_DEV_TO_MEM:
724 dma = &dd->dst;
725 callback = atmel_aes_dma_callback;
726 config.src_addr = dd->phys_base + AES_ODATAR(0);
727 break;
728
729 default:
730 return -EINVAL;
731 }
732
733 err = dmaengine_slave_config(dma->chan, &config);
734 if (err)
735 return err;
736
737 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
738 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
739 if (!desc)
740 return -ENOMEM;
741
742 desc->callback = callback;
743 desc->callback_param = dd;
744 dmaengine_submit(desc);
745 dma_async_issue_pending(dma->chan);
746
747 return 0;
748 }
749
750 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
751 enum dma_transfer_direction dir)
752 {
753 struct atmel_aes_dma *dma;
754
755 switch (dir) {
756 case DMA_MEM_TO_DEV:
757 dma = &dd->src;
758 break;
759
760 case DMA_DEV_TO_MEM:
761 dma = &dd->dst;
762 break;
763
764 default:
765 return;
766 }
767
768 dmaengine_terminate_all(dma->chan);
769 }
770
771 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
772 struct scatterlist *src,
773 struct scatterlist *dst,
774 size_t len,
775 atmel_aes_fn_t resume)
776 {
777 enum dma_slave_buswidth addr_width;
778 u32 maxburst;
779 int err;
780
781 switch (dd->ctx->block_size) {
782 case CFB8_BLOCK_SIZE:
783 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
784 maxburst = 1;
785 break;
786
787 case CFB16_BLOCK_SIZE:
788 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
789 maxburst = 1;
790 break;
791
792 case CFB32_BLOCK_SIZE:
793 case CFB64_BLOCK_SIZE:
794 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795 maxburst = 1;
796 break;
797
798 case AES_BLOCK_SIZE:
799 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
800 maxburst = dd->caps.max_burst_size;
801 break;
802
803 default:
804 err = -EINVAL;
805 goto exit;
806 }
807
808 err = atmel_aes_map(dd, src, dst, len);
809 if (err)
810 goto exit;
811
812 dd->resume = resume;
813
814 /* Set output DMA transfer first */
815 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
816 maxburst);
817 if (err)
818 goto unmap;
819
820 /* Then set input DMA transfer */
821 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
822 maxburst);
823 if (err)
824 goto output_transfer_stop;
825
826 return -EINPROGRESS;
827
828 output_transfer_stop:
829 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
830 unmap:
831 atmel_aes_unmap(dd);
832 exit:
833 return atmel_aes_complete(dd, err);
834 }
835
836 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
837 {
838 atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
839 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
840 atmel_aes_unmap(dd);
841 }
842
843 static void atmel_aes_dma_callback(void *data)
844 {
845 struct atmel_aes_dev *dd = data;
846
847 atmel_aes_dma_stop(dd);
848 dd->is_async = true;
849 (void)dd->resume(dd);
850 }
851
852 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
853 struct crypto_async_request *new_areq)
854 {
855 struct crypto_async_request *areq, *backlog;
856 struct atmel_aes_base_ctx *ctx;
857 unsigned long flags;
858 int err, ret = 0;
859
860 spin_lock_irqsave(&dd->lock, flags);
861 if (new_areq)
862 ret = crypto_enqueue_request(&dd->queue, new_areq);
863 if (dd->flags & AES_FLAGS_BUSY) {
864 spin_unlock_irqrestore(&dd->lock, flags);
865 return ret;
866 }
867 backlog = crypto_get_backlog(&dd->queue);
868 areq = crypto_dequeue_request(&dd->queue);
869 if (areq)
870 dd->flags |= AES_FLAGS_BUSY;
871 spin_unlock_irqrestore(&dd->lock, flags);
872
873 if (!areq)
874 return ret;
875
876 if (backlog)
877 backlog->complete(backlog, -EINPROGRESS);
878
879 ctx = crypto_tfm_ctx(areq->tfm);
880
881 dd->areq = areq;
882 dd->ctx = ctx;
883 dd->is_async = (areq != new_areq);
884
885 err = ctx->start(dd);
886 return (dd->is_async) ? ret : err;
887 }
888
889
890 /* AES async block ciphers */
891
892 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
893 {
894 return atmel_aes_complete(dd, 0);
895 }
896
897 static int atmel_aes_start(struct atmel_aes_dev *dd)
898 {
899 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
900 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
901 bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
902 dd->ctx->block_size != AES_BLOCK_SIZE);
903 int err;
904
905 atmel_aes_set_mode(dd, rctx);
906
907 err = atmel_aes_hw_init(dd);
908 if (err)
909 return atmel_aes_complete(dd, err);
910
911 atmel_aes_write_ctrl(dd, use_dma, req->info);
912 if (use_dma)
913 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
914 atmel_aes_transfer_complete);
915
916 return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
917 atmel_aes_transfer_complete);
918 }
919
920 static inline struct atmel_aes_ctr_ctx *
921 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
922 {
923 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
924 }
925
926 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
927 {
928 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
929 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
930 struct scatterlist *src, *dst;
931 u32 ctr, blocks;
932 size_t datalen;
933 bool use_dma, fragmented = false;
934
935 /* Check for transfer completion. */
936 ctx->offset += dd->total;
937 if (ctx->offset >= req->nbytes)
938 return atmel_aes_transfer_complete(dd);
939
940 /* Compute data length. */
941 datalen = req->nbytes - ctx->offset;
942 blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
943 ctr = be32_to_cpu(ctx->iv[3]);
944 if (dd->caps.has_ctr32) {
945 /* Check 32bit counter overflow. */
946 u32 start = ctr;
947 u32 end = start + blocks - 1;
948
949 if (end < start) {
950 ctr |= 0xffffffff;
951 datalen = AES_BLOCK_SIZE * -start;
952 fragmented = true;
953 }
954 } else {
955 /* Check 16bit counter overflow. */
956 u16 start = ctr & 0xffff;
957 u16 end = start + (u16)blocks - 1;
958
959 if (blocks >> 16 || end < start) {
960 ctr |= 0xffff;
961 datalen = AES_BLOCK_SIZE * (0x10000-start);
962 fragmented = true;
963 }
964 }
965 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
966
967 /* Jump to offset. */
968 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
969 dst = ((req->src == req->dst) ? src :
970 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
971
972 /* Configure hardware. */
973 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
974 if (unlikely(fragmented)) {
975 /*
976 * Increment the counter manually to cope with the hardware
977 * counter overflow.
978 */
979 ctx->iv[3] = cpu_to_be32(ctr);
980 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
981 }
982
983 if (use_dma)
984 return atmel_aes_dma_start(dd, src, dst, datalen,
985 atmel_aes_ctr_transfer);
986
987 return atmel_aes_cpu_start(dd, src, dst, datalen,
988 atmel_aes_ctr_transfer);
989 }
990
991 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
992 {
993 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
994 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
995 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
996 int err;
997
998 atmel_aes_set_mode(dd, rctx);
999
1000 err = atmel_aes_hw_init(dd);
1001 if (err)
1002 return atmel_aes_complete(dd, err);
1003
1004 memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1005 ctx->offset = 0;
1006 dd->total = 0;
1007 return atmel_aes_ctr_transfer(dd);
1008 }
1009
1010 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1011 {
1012 struct atmel_aes_base_ctx *ctx;
1013 struct atmel_aes_reqctx *rctx;
1014 struct atmel_aes_dev *dd;
1015
1016 ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1017 switch (mode & AES_FLAGS_OPMODE_MASK) {
1018 case AES_FLAGS_CFB8:
1019 ctx->block_size = CFB8_BLOCK_SIZE;
1020 break;
1021
1022 case AES_FLAGS_CFB16:
1023 ctx->block_size = CFB16_BLOCK_SIZE;
1024 break;
1025
1026 case AES_FLAGS_CFB32:
1027 ctx->block_size = CFB32_BLOCK_SIZE;
1028 break;
1029
1030 case AES_FLAGS_CFB64:
1031 ctx->block_size = CFB64_BLOCK_SIZE;
1032 break;
1033
1034 default:
1035 ctx->block_size = AES_BLOCK_SIZE;
1036 break;
1037 }
1038
1039 dd = atmel_aes_find_dev(ctx);
1040 if (!dd)
1041 return -ENODEV;
1042
1043 rctx = ablkcipher_request_ctx(req);
1044 rctx->mode = mode;
1045
1046 return atmel_aes_handle_queue(dd, &req->base);
1047 }
1048
1049 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1050 unsigned int keylen)
1051 {
1052 struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1053
1054 if (keylen != AES_KEYSIZE_128 &&
1055 keylen != AES_KEYSIZE_192 &&
1056 keylen != AES_KEYSIZE_256) {
1057 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1058 return -EINVAL;
1059 }
1060
1061 memcpy(ctx->key, key, keylen);
1062 ctx->keylen = keylen;
1063
1064 return 0;
1065 }
1066
1067 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1068 {
1069 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1070 }
1071
1072 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1073 {
1074 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1075 }
1076
1077 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1078 {
1079 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1080 }
1081
1082 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1083 {
1084 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1085 }
1086
1087 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1088 {
1089 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1090 }
1091
1092 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1093 {
1094 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1095 }
1096
1097 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1098 {
1099 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1100 }
1101
1102 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1103 {
1104 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1105 }
1106
1107 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1108 {
1109 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1110 }
1111
1112 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1113 {
1114 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1115 }
1116
1117 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1118 {
1119 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1120 }
1121
1122 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1123 {
1124 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1125 }
1126
1127 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1128 {
1129 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1130 }
1131
1132 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1133 {
1134 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1135 }
1136
1137 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1138 {
1139 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1140 }
1141
1142 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1143 {
1144 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1145 }
1146
1147 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1148 {
1149 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1150 }
1151
1152 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1153 {
1154 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1155 }
1156
1157 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1158 {
1159 struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1160
1161 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1162 ctx->base.start = atmel_aes_start;
1163
1164 return 0;
1165 }
1166
1167 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1168 {
1169 struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1170
1171 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1172 ctx->base.start = atmel_aes_ctr_start;
1173
1174 return 0;
1175 }
1176
1177 static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1178 {
1179 }
1180
1181 static struct crypto_alg aes_algs[] = {
1182 {
1183 .cra_name = "ecb(aes)",
1184 .cra_driver_name = "atmel-ecb-aes",
1185 .cra_priority = ATMEL_AES_PRIORITY,
1186 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1187 .cra_blocksize = AES_BLOCK_SIZE,
1188 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1189 .cra_alignmask = 0xf,
1190 .cra_type = &crypto_ablkcipher_type,
1191 .cra_module = THIS_MODULE,
1192 .cra_init = atmel_aes_cra_init,
1193 .cra_exit = atmel_aes_cra_exit,
1194 .cra_u.ablkcipher = {
1195 .min_keysize = AES_MIN_KEY_SIZE,
1196 .max_keysize = AES_MAX_KEY_SIZE,
1197 .setkey = atmel_aes_setkey,
1198 .encrypt = atmel_aes_ecb_encrypt,
1199 .decrypt = atmel_aes_ecb_decrypt,
1200 }
1201 },
1202 {
1203 .cra_name = "cbc(aes)",
1204 .cra_driver_name = "atmel-cbc-aes",
1205 .cra_priority = ATMEL_AES_PRIORITY,
1206 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1207 .cra_blocksize = AES_BLOCK_SIZE,
1208 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1209 .cra_alignmask = 0xf,
1210 .cra_type = &crypto_ablkcipher_type,
1211 .cra_module = THIS_MODULE,
1212 .cra_init = atmel_aes_cra_init,
1213 .cra_exit = atmel_aes_cra_exit,
1214 .cra_u.ablkcipher = {
1215 .min_keysize = AES_MIN_KEY_SIZE,
1216 .max_keysize = AES_MAX_KEY_SIZE,
1217 .ivsize = AES_BLOCK_SIZE,
1218 .setkey = atmel_aes_setkey,
1219 .encrypt = atmel_aes_cbc_encrypt,
1220 .decrypt = atmel_aes_cbc_decrypt,
1221 }
1222 },
1223 {
1224 .cra_name = "ofb(aes)",
1225 .cra_driver_name = "atmel-ofb-aes",
1226 .cra_priority = ATMEL_AES_PRIORITY,
1227 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1228 .cra_blocksize = AES_BLOCK_SIZE,
1229 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1230 .cra_alignmask = 0xf,
1231 .cra_type = &crypto_ablkcipher_type,
1232 .cra_module = THIS_MODULE,
1233 .cra_init = atmel_aes_cra_init,
1234 .cra_exit = atmel_aes_cra_exit,
1235 .cra_u.ablkcipher = {
1236 .min_keysize = AES_MIN_KEY_SIZE,
1237 .max_keysize = AES_MAX_KEY_SIZE,
1238 .ivsize = AES_BLOCK_SIZE,
1239 .setkey = atmel_aes_setkey,
1240 .encrypt = atmel_aes_ofb_encrypt,
1241 .decrypt = atmel_aes_ofb_decrypt,
1242 }
1243 },
1244 {
1245 .cra_name = "cfb(aes)",
1246 .cra_driver_name = "atmel-cfb-aes",
1247 .cra_priority = ATMEL_AES_PRIORITY,
1248 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1249 .cra_blocksize = AES_BLOCK_SIZE,
1250 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1251 .cra_alignmask = 0xf,
1252 .cra_type = &crypto_ablkcipher_type,
1253 .cra_module = THIS_MODULE,
1254 .cra_init = atmel_aes_cra_init,
1255 .cra_exit = atmel_aes_cra_exit,
1256 .cra_u.ablkcipher = {
1257 .min_keysize = AES_MIN_KEY_SIZE,
1258 .max_keysize = AES_MAX_KEY_SIZE,
1259 .ivsize = AES_BLOCK_SIZE,
1260 .setkey = atmel_aes_setkey,
1261 .encrypt = atmel_aes_cfb_encrypt,
1262 .decrypt = atmel_aes_cfb_decrypt,
1263 }
1264 },
1265 {
1266 .cra_name = "cfb32(aes)",
1267 .cra_driver_name = "atmel-cfb32-aes",
1268 .cra_priority = ATMEL_AES_PRIORITY,
1269 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1270 .cra_blocksize = CFB32_BLOCK_SIZE,
1271 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1272 .cra_alignmask = 0x3,
1273 .cra_type = &crypto_ablkcipher_type,
1274 .cra_module = THIS_MODULE,
1275 .cra_init = atmel_aes_cra_init,
1276 .cra_exit = atmel_aes_cra_exit,
1277 .cra_u.ablkcipher = {
1278 .min_keysize = AES_MIN_KEY_SIZE,
1279 .max_keysize = AES_MAX_KEY_SIZE,
1280 .ivsize = AES_BLOCK_SIZE,
1281 .setkey = atmel_aes_setkey,
1282 .encrypt = atmel_aes_cfb32_encrypt,
1283 .decrypt = atmel_aes_cfb32_decrypt,
1284 }
1285 },
1286 {
1287 .cra_name = "cfb16(aes)",
1288 .cra_driver_name = "atmel-cfb16-aes",
1289 .cra_priority = ATMEL_AES_PRIORITY,
1290 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1291 .cra_blocksize = CFB16_BLOCK_SIZE,
1292 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1293 .cra_alignmask = 0x1,
1294 .cra_type = &crypto_ablkcipher_type,
1295 .cra_module = THIS_MODULE,
1296 .cra_init = atmel_aes_cra_init,
1297 .cra_exit = atmel_aes_cra_exit,
1298 .cra_u.ablkcipher = {
1299 .min_keysize = AES_MIN_KEY_SIZE,
1300 .max_keysize = AES_MAX_KEY_SIZE,
1301 .ivsize = AES_BLOCK_SIZE,
1302 .setkey = atmel_aes_setkey,
1303 .encrypt = atmel_aes_cfb16_encrypt,
1304 .decrypt = atmel_aes_cfb16_decrypt,
1305 }
1306 },
1307 {
1308 .cra_name = "cfb8(aes)",
1309 .cra_driver_name = "atmel-cfb8-aes",
1310 .cra_priority = ATMEL_AES_PRIORITY,
1311 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1312 .cra_blocksize = CFB8_BLOCK_SIZE,
1313 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1314 .cra_alignmask = 0x0,
1315 .cra_type = &crypto_ablkcipher_type,
1316 .cra_module = THIS_MODULE,
1317 .cra_init = atmel_aes_cra_init,
1318 .cra_exit = atmel_aes_cra_exit,
1319 .cra_u.ablkcipher = {
1320 .min_keysize = AES_MIN_KEY_SIZE,
1321 .max_keysize = AES_MAX_KEY_SIZE,
1322 .ivsize = AES_BLOCK_SIZE,
1323 .setkey = atmel_aes_setkey,
1324 .encrypt = atmel_aes_cfb8_encrypt,
1325 .decrypt = atmel_aes_cfb8_decrypt,
1326 }
1327 },
1328 {
1329 .cra_name = "ctr(aes)",
1330 .cra_driver_name = "atmel-ctr-aes",
1331 .cra_priority = ATMEL_AES_PRIORITY,
1332 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1333 .cra_blocksize = 1,
1334 .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1335 .cra_alignmask = 0xf,
1336 .cra_type = &crypto_ablkcipher_type,
1337 .cra_module = THIS_MODULE,
1338 .cra_init = atmel_aes_ctr_cra_init,
1339 .cra_exit = atmel_aes_cra_exit,
1340 .cra_u.ablkcipher = {
1341 .min_keysize = AES_MIN_KEY_SIZE,
1342 .max_keysize = AES_MAX_KEY_SIZE,
1343 .ivsize = AES_BLOCK_SIZE,
1344 .setkey = atmel_aes_setkey,
1345 .encrypt = atmel_aes_ctr_encrypt,
1346 .decrypt = atmel_aes_ctr_decrypt,
1347 }
1348 },
1349 };
1350
1351 static struct crypto_alg aes_cfb64_alg = {
1352 .cra_name = "cfb64(aes)",
1353 .cra_driver_name = "atmel-cfb64-aes",
1354 .cra_priority = ATMEL_AES_PRIORITY,
1355 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1356 .cra_blocksize = CFB64_BLOCK_SIZE,
1357 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1358 .cra_alignmask = 0x7,
1359 .cra_type = &crypto_ablkcipher_type,
1360 .cra_module = THIS_MODULE,
1361 .cra_init = atmel_aes_cra_init,
1362 .cra_exit = atmel_aes_cra_exit,
1363 .cra_u.ablkcipher = {
1364 .min_keysize = AES_MIN_KEY_SIZE,
1365 .max_keysize = AES_MAX_KEY_SIZE,
1366 .ivsize = AES_BLOCK_SIZE,
1367 .setkey = atmel_aes_setkey,
1368 .encrypt = atmel_aes_cfb64_encrypt,
1369 .decrypt = atmel_aes_cfb64_decrypt,
1370 }
1371 };
1372
1373
1374 /* gcm aead functions */
1375
1376 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1377 const u32 *data, size_t datalen,
1378 const u32 *ghash_in, u32 *ghash_out,
1379 atmel_aes_fn_t resume);
1380 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1381 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1382
1383 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1384 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1385 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1386 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1387 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1388 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1389 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1390
1391 static inline struct atmel_aes_gcm_ctx *
1392 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1393 {
1394 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1395 }
1396
1397 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1398 const u32 *data, size_t datalen,
1399 const u32 *ghash_in, u32 *ghash_out,
1400 atmel_aes_fn_t resume)
1401 {
1402 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1403
1404 dd->data = (u32 *)data;
1405 dd->datalen = datalen;
1406 ctx->ghash_in = ghash_in;
1407 ctx->ghash_out = ghash_out;
1408 ctx->ghash_resume = resume;
1409
1410 atmel_aes_write_ctrl(dd, false, NULL);
1411 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1412 }
1413
1414 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1415 {
1416 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1417
1418 /* Set the data length. */
1419 atmel_aes_write(dd, AES_AADLENR, dd->total);
1420 atmel_aes_write(dd, AES_CLENR, 0);
1421
1422 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1423 if (ctx->ghash_in)
1424 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1425
1426 return atmel_aes_gcm_ghash_finalize(dd);
1427 }
1428
1429 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1430 {
1431 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1432 u32 isr;
1433
1434 /* Write data into the Input Data Registers. */
1435 while (dd->datalen > 0) {
1436 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1437 dd->data += 4;
1438 dd->datalen -= AES_BLOCK_SIZE;
1439
1440 isr = atmel_aes_read(dd, AES_ISR);
1441 if (!(isr & AES_INT_DATARDY)) {
1442 dd->resume = atmel_aes_gcm_ghash_finalize;
1443 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1444 return -EINPROGRESS;
1445 }
1446 }
1447
1448 /* Read the computed hash from GHASHRx. */
1449 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1450
1451 return ctx->ghash_resume(dd);
1452 }
1453
1454
1455 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1456 {
1457 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1458 struct aead_request *req = aead_request_cast(dd->areq);
1459 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1460 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1461 size_t ivsize = crypto_aead_ivsize(tfm);
1462 size_t datalen, padlen;
1463 const void *iv = req->iv;
1464 u8 *data = dd->buf;
1465 int err;
1466
1467 atmel_aes_set_mode(dd, rctx);
1468
1469 err = atmel_aes_hw_init(dd);
1470 if (err)
1471 return atmel_aes_complete(dd, err);
1472
1473 if (likely(ivsize == 12)) {
1474 memcpy(ctx->j0, iv, ivsize);
1475 ctx->j0[3] = cpu_to_be32(1);
1476 return atmel_aes_gcm_process(dd);
1477 }
1478
1479 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1480 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1481 if (datalen > dd->buflen)
1482 return atmel_aes_complete(dd, -EINVAL);
1483
1484 memcpy(data, iv, ivsize);
1485 memset(data + ivsize, 0, padlen + sizeof(u64));
1486 ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1487
1488 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1489 NULL, ctx->j0, atmel_aes_gcm_process);
1490 }
1491
1492 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1493 {
1494 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1495 struct aead_request *req = aead_request_cast(dd->areq);
1496 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1497 bool enc = atmel_aes_is_encrypt(dd);
1498 u32 authsize;
1499
1500 /* Compute text length. */
1501 authsize = crypto_aead_authsize(tfm);
1502 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1503
1504 /*
1505 * According to tcrypt test suite, the GCM Automatic Tag Generation
1506 * fails when both the message and its associated data are empty.
1507 */
1508 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1509 dd->flags |= AES_FLAGS_GTAGEN;
1510
1511 atmel_aes_write_ctrl(dd, false, NULL);
1512 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1513 }
1514
1515 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1516 {
1517 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1518 struct aead_request *req = aead_request_cast(dd->areq);
1519 u32 j0_lsw, *j0 = ctx->j0;
1520 size_t padlen;
1521
1522 /* Write incr32(J0) into IV. */
1523 j0_lsw = j0[3];
1524 j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1525 atmel_aes_write_block(dd, AES_IVR(0), j0);
1526 j0[3] = j0_lsw;
1527
1528 /* Set aad and text lengths. */
1529 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1530 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1531
1532 /* Check whether AAD are present. */
1533 if (unlikely(req->assoclen == 0)) {
1534 dd->datalen = 0;
1535 return atmel_aes_gcm_data(dd);
1536 }
1537
1538 /* Copy assoc data and add padding. */
1539 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1540 if (unlikely(req->assoclen + padlen > dd->buflen))
1541 return atmel_aes_complete(dd, -EINVAL);
1542 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1543
1544 /* Write assoc data into the Input Data register. */
1545 dd->data = (u32 *)dd->buf;
1546 dd->datalen = req->assoclen + padlen;
1547 return atmel_aes_gcm_data(dd);
1548 }
1549
1550 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1551 {
1552 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1553 struct aead_request *req = aead_request_cast(dd->areq);
1554 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1555 struct scatterlist *src, *dst;
1556 u32 isr, mr;
1557
1558 /* Write AAD first. */
1559 while (dd->datalen > 0) {
1560 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1561 dd->data += 4;
1562 dd->datalen -= AES_BLOCK_SIZE;
1563
1564 isr = atmel_aes_read(dd, AES_ISR);
1565 if (!(isr & AES_INT_DATARDY)) {
1566 dd->resume = atmel_aes_gcm_data;
1567 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1568 return -EINPROGRESS;
1569 }
1570 }
1571
1572 /* GMAC only. */
1573 if (unlikely(ctx->textlen == 0))
1574 return atmel_aes_gcm_tag_init(dd);
1575
1576 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1577 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1578 dst = ((req->src == req->dst) ? src :
1579 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1580
1581 if (use_dma) {
1582 /* Update the Mode Register for DMA transfers. */
1583 mr = atmel_aes_read(dd, AES_MR);
1584 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1585 mr |= AES_MR_SMOD_IDATAR0;
1586 if (dd->caps.has_dualbuff)
1587 mr |= AES_MR_DUALBUFF;
1588 atmel_aes_write(dd, AES_MR, mr);
1589
1590 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1591 atmel_aes_gcm_tag_init);
1592 }
1593
1594 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1595 atmel_aes_gcm_tag_init);
1596 }
1597
1598 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1599 {
1600 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1601 struct aead_request *req = aead_request_cast(dd->areq);
1602 u64 *data = dd->buf;
1603
1604 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1605 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1606 dd->resume = atmel_aes_gcm_tag_init;
1607 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1608 return -EINPROGRESS;
1609 }
1610
1611 return atmel_aes_gcm_finalize(dd);
1612 }
1613
1614 /* Read the GCM Intermediate Hash Word Registers. */
1615 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1616
1617 data[0] = cpu_to_be64(req->assoclen * 8);
1618 data[1] = cpu_to_be64(ctx->textlen * 8);
1619
1620 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1621 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1622 }
1623
1624 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1625 {
1626 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1627 unsigned long flags;
1628
1629 /*
1630 * Change mode to CTR to complete the tag generation.
1631 * Use J0 as Initialization Vector.
1632 */
1633 flags = dd->flags;
1634 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1635 dd->flags |= AES_FLAGS_CTR;
1636 atmel_aes_write_ctrl(dd, false, ctx->j0);
1637 dd->flags = flags;
1638
1639 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1640 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1641 }
1642
1643 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1644 {
1645 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1646 struct aead_request *req = aead_request_cast(dd->areq);
1647 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1648 bool enc = atmel_aes_is_encrypt(dd);
1649 u32 offset, authsize, itag[4], *otag = ctx->tag;
1650 int err;
1651
1652 /* Read the computed tag. */
1653 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1654 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1655 else
1656 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1657
1658 offset = req->assoclen + ctx->textlen;
1659 authsize = crypto_aead_authsize(tfm);
1660 if (enc) {
1661 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1662 err = 0;
1663 } else {
1664 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1665 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1666 }
1667
1668 return atmel_aes_complete(dd, err);
1669 }
1670
1671 static int atmel_aes_gcm_crypt(struct aead_request *req,
1672 unsigned long mode)
1673 {
1674 struct atmel_aes_base_ctx *ctx;
1675 struct atmel_aes_reqctx *rctx;
1676 struct atmel_aes_dev *dd;
1677
1678 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1679 ctx->block_size = AES_BLOCK_SIZE;
1680
1681 dd = atmel_aes_find_dev(ctx);
1682 if (!dd)
1683 return -ENODEV;
1684
1685 rctx = aead_request_ctx(req);
1686 rctx->mode = AES_FLAGS_GCM | mode;
1687
1688 return atmel_aes_handle_queue(dd, &req->base);
1689 }
1690
1691 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1692 unsigned int keylen)
1693 {
1694 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1695
1696 if (keylen != AES_KEYSIZE_256 &&
1697 keylen != AES_KEYSIZE_192 &&
1698 keylen != AES_KEYSIZE_128) {
1699 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1700 return -EINVAL;
1701 }
1702
1703 memcpy(ctx->key, key, keylen);
1704 ctx->keylen = keylen;
1705
1706 return 0;
1707 }
1708
1709 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1710 unsigned int authsize)
1711 {
1712 /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1713 switch (authsize) {
1714 case 4:
1715 case 8:
1716 case 12:
1717 case 13:
1718 case 14:
1719 case 15:
1720 case 16:
1721 break;
1722 default:
1723 return -EINVAL;
1724 }
1725
1726 return 0;
1727 }
1728
1729 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1730 {
1731 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1732 }
1733
1734 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1735 {
1736 return atmel_aes_gcm_crypt(req, 0);
1737 }
1738
1739 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1740 {
1741 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1742
1743 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1744 ctx->base.start = atmel_aes_gcm_start;
1745
1746 return 0;
1747 }
1748
1749 static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1750 {
1751
1752 }
1753
1754 static struct aead_alg aes_gcm_alg = {
1755 .setkey = atmel_aes_gcm_setkey,
1756 .setauthsize = atmel_aes_gcm_setauthsize,
1757 .encrypt = atmel_aes_gcm_encrypt,
1758 .decrypt = atmel_aes_gcm_decrypt,
1759 .init = atmel_aes_gcm_init,
1760 .exit = atmel_aes_gcm_exit,
1761 .ivsize = 12,
1762 .maxauthsize = AES_BLOCK_SIZE,
1763
1764 .base = {
1765 .cra_name = "gcm(aes)",
1766 .cra_driver_name = "atmel-gcm-aes",
1767 .cra_priority = ATMEL_AES_PRIORITY,
1768 .cra_flags = CRYPTO_ALG_ASYNC,
1769 .cra_blocksize = 1,
1770 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1771 .cra_alignmask = 0xf,
1772 .cra_module = THIS_MODULE,
1773 },
1774 };
1775
1776
1777 /* Probe functions */
1778
1779 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
1780 {
1781 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
1782 dd->buflen = ATMEL_AES_BUFFER_SIZE;
1783 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
1784
1785 if (!dd->buf) {
1786 dev_err(dd->dev, "unable to alloc pages.\n");
1787 return -ENOMEM;
1788 }
1789
1790 return 0;
1791 }
1792
1793 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
1794 {
1795 free_page((unsigned long)dd->buf);
1796 }
1797
1798 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
1799 {
1800 struct at_dma_slave *sl = slave;
1801
1802 if (sl && sl->dma_dev == chan->device->dev) {
1803 chan->private = sl;
1804 return true;
1805 } else {
1806 return false;
1807 }
1808 }
1809
1810 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
1811 struct crypto_platform_data *pdata)
1812 {
1813 struct at_dma_slave *slave;
1814 int err = -ENOMEM;
1815 dma_cap_mask_t mask;
1816
1817 dma_cap_zero(mask);
1818 dma_cap_set(DMA_SLAVE, mask);
1819
1820 /* Try to grab 2 DMA channels */
1821 slave = &pdata->dma_slave->rxdata;
1822 dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1823 slave, dd->dev, "tx");
1824 if (!dd->src.chan)
1825 goto err_dma_in;
1826
1827 slave = &pdata->dma_slave->txdata;
1828 dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1829 slave, dd->dev, "rx");
1830 if (!dd->dst.chan)
1831 goto err_dma_out;
1832
1833 return 0;
1834
1835 err_dma_out:
1836 dma_release_channel(dd->src.chan);
1837 err_dma_in:
1838 dev_warn(dd->dev, "no DMA channel available\n");
1839 return err;
1840 }
1841
1842 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
1843 {
1844 dma_release_channel(dd->dst.chan);
1845 dma_release_channel(dd->src.chan);
1846 }
1847
1848 static void atmel_aes_queue_task(unsigned long data)
1849 {
1850 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1851
1852 atmel_aes_handle_queue(dd, NULL);
1853 }
1854
1855 static void atmel_aes_done_task(unsigned long data)
1856 {
1857 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1858
1859 dd->is_async = true;
1860 (void)dd->resume(dd);
1861 }
1862
1863 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
1864 {
1865 struct atmel_aes_dev *aes_dd = dev_id;
1866 u32 reg;
1867
1868 reg = atmel_aes_read(aes_dd, AES_ISR);
1869 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
1870 atmel_aes_write(aes_dd, AES_IDR, reg);
1871 if (AES_FLAGS_BUSY & aes_dd->flags)
1872 tasklet_schedule(&aes_dd->done_task);
1873 else
1874 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
1875 return IRQ_HANDLED;
1876 }
1877
1878 return IRQ_NONE;
1879 }
1880
1881 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
1882 {
1883 int i;
1884
1885 if (dd->caps.has_gcm)
1886 crypto_unregister_aead(&aes_gcm_alg);
1887
1888 if (dd->caps.has_cfb64)
1889 crypto_unregister_alg(&aes_cfb64_alg);
1890
1891 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1892 crypto_unregister_alg(&aes_algs[i]);
1893 }
1894
1895 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
1896 {
1897 int err, i, j;
1898
1899 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1900 err = crypto_register_alg(&aes_algs[i]);
1901 if (err)
1902 goto err_aes_algs;
1903 }
1904
1905 if (dd->caps.has_cfb64) {
1906 err = crypto_register_alg(&aes_cfb64_alg);
1907 if (err)
1908 goto err_aes_cfb64_alg;
1909 }
1910
1911 if (dd->caps.has_gcm) {
1912 err = crypto_register_aead(&aes_gcm_alg);
1913 if (err)
1914 goto err_aes_gcm_alg;
1915 }
1916
1917 return 0;
1918
1919 err_aes_gcm_alg:
1920 crypto_unregister_alg(&aes_cfb64_alg);
1921 err_aes_cfb64_alg:
1922 i = ARRAY_SIZE(aes_algs);
1923 err_aes_algs:
1924 for (j = 0; j < i; j++)
1925 crypto_unregister_alg(&aes_algs[j]);
1926
1927 return err;
1928 }
1929
1930 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
1931 {
1932 dd->caps.has_dualbuff = 0;
1933 dd->caps.has_cfb64 = 0;
1934 dd->caps.has_ctr32 = 0;
1935 dd->caps.has_gcm = 0;
1936 dd->caps.max_burst_size = 1;
1937
1938 /* keep only major version number */
1939 switch (dd->hw_version & 0xff0) {
1940 case 0x500:
1941 dd->caps.has_dualbuff = 1;
1942 dd->caps.has_cfb64 = 1;
1943 dd->caps.has_ctr32 = 1;
1944 dd->caps.has_gcm = 1;
1945 dd->caps.max_burst_size = 4;
1946 break;
1947 case 0x200:
1948 dd->caps.has_dualbuff = 1;
1949 dd->caps.has_cfb64 = 1;
1950 dd->caps.has_ctr32 = 1;
1951 dd->caps.has_gcm = 1;
1952 dd->caps.max_burst_size = 4;
1953 break;
1954 case 0x130:
1955 dd->caps.has_dualbuff = 1;
1956 dd->caps.has_cfb64 = 1;
1957 dd->caps.max_burst_size = 4;
1958 break;
1959 case 0x120:
1960 break;
1961 default:
1962 dev_warn(dd->dev,
1963 "Unmanaged aes version, set minimum capabilities\n");
1964 break;
1965 }
1966 }
1967
1968 #if defined(CONFIG_OF)
1969 static const struct of_device_id atmel_aes_dt_ids[] = {
1970 { .compatible = "atmel,at91sam9g46-aes" },
1971 { /* sentinel */ }
1972 };
1973 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
1974
1975 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
1976 {
1977 struct device_node *np = pdev->dev.of_node;
1978 struct crypto_platform_data *pdata;
1979
1980 if (!np) {
1981 dev_err(&pdev->dev, "device node not found\n");
1982 return ERR_PTR(-EINVAL);
1983 }
1984
1985 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1986 if (!pdata) {
1987 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1988 return ERR_PTR(-ENOMEM);
1989 }
1990
1991 pdata->dma_slave = devm_kzalloc(&pdev->dev,
1992 sizeof(*(pdata->dma_slave)),
1993 GFP_KERNEL);
1994 if (!pdata->dma_slave) {
1995 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1996 devm_kfree(&pdev->dev, pdata);
1997 return ERR_PTR(-ENOMEM);
1998 }
1999
2000 return pdata;
2001 }
2002 #else
2003 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2004 {
2005 return ERR_PTR(-EINVAL);
2006 }
2007 #endif
2008
2009 static int atmel_aes_probe(struct platform_device *pdev)
2010 {
2011 struct atmel_aes_dev *aes_dd;
2012 struct crypto_platform_data *pdata;
2013 struct device *dev = &pdev->dev;
2014 struct resource *aes_res;
2015 int err;
2016
2017 pdata = pdev->dev.platform_data;
2018 if (!pdata) {
2019 pdata = atmel_aes_of_init(pdev);
2020 if (IS_ERR(pdata)) {
2021 err = PTR_ERR(pdata);
2022 goto aes_dd_err;
2023 }
2024 }
2025
2026 if (!pdata->dma_slave) {
2027 err = -ENXIO;
2028 goto aes_dd_err;
2029 }
2030
2031 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2032 if (aes_dd == NULL) {
2033 dev_err(dev, "unable to alloc data struct.\n");
2034 err = -ENOMEM;
2035 goto aes_dd_err;
2036 }
2037
2038 aes_dd->dev = dev;
2039
2040 platform_set_drvdata(pdev, aes_dd);
2041
2042 INIT_LIST_HEAD(&aes_dd->list);
2043 spin_lock_init(&aes_dd->lock);
2044
2045 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2046 (unsigned long)aes_dd);
2047 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2048 (unsigned long)aes_dd);
2049
2050 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2051
2052 aes_dd->irq = -1;
2053
2054 /* Get the base address */
2055 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2056 if (!aes_res) {
2057 dev_err(dev, "no MEM resource info\n");
2058 err = -ENODEV;
2059 goto res_err;
2060 }
2061 aes_dd->phys_base = aes_res->start;
2062
2063 /* Get the IRQ */
2064 aes_dd->irq = platform_get_irq(pdev, 0);
2065 if (aes_dd->irq < 0) {
2066 dev_err(dev, "no IRQ resource info\n");
2067 err = aes_dd->irq;
2068 goto res_err;
2069 }
2070
2071 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2072 IRQF_SHARED, "atmel-aes", aes_dd);
2073 if (err) {
2074 dev_err(dev, "unable to request aes irq.\n");
2075 goto res_err;
2076 }
2077
2078 /* Initializing the clock */
2079 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2080 if (IS_ERR(aes_dd->iclk)) {
2081 dev_err(dev, "clock initialization failed.\n");
2082 err = PTR_ERR(aes_dd->iclk);
2083 goto res_err;
2084 }
2085
2086 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2087 if (!aes_dd->io_base) {
2088 dev_err(dev, "can't ioremap\n");
2089 err = -ENOMEM;
2090 goto res_err;
2091 }
2092
2093 err = atmel_aes_hw_version_init(aes_dd);
2094 if (err)
2095 goto res_err;
2096
2097 atmel_aes_get_cap(aes_dd);
2098
2099 err = atmel_aes_buff_init(aes_dd);
2100 if (err)
2101 goto err_aes_buff;
2102
2103 err = atmel_aes_dma_init(aes_dd, pdata);
2104 if (err)
2105 goto err_aes_dma;
2106
2107 spin_lock(&atmel_aes.lock);
2108 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2109 spin_unlock(&atmel_aes.lock);
2110
2111 err = atmel_aes_register_algs(aes_dd);
2112 if (err)
2113 goto err_algs;
2114
2115 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2116 dma_chan_name(aes_dd->src.chan),
2117 dma_chan_name(aes_dd->dst.chan));
2118
2119 return 0;
2120
2121 err_algs:
2122 spin_lock(&atmel_aes.lock);
2123 list_del(&aes_dd->list);
2124 spin_unlock(&atmel_aes.lock);
2125 atmel_aes_dma_cleanup(aes_dd);
2126 err_aes_dma:
2127 atmel_aes_buff_cleanup(aes_dd);
2128 err_aes_buff:
2129 res_err:
2130 tasklet_kill(&aes_dd->done_task);
2131 tasklet_kill(&aes_dd->queue_task);
2132 aes_dd_err:
2133 dev_err(dev, "initialization failed.\n");
2134
2135 return err;
2136 }
2137
2138 static int atmel_aes_remove(struct platform_device *pdev)
2139 {
2140 static struct atmel_aes_dev *aes_dd;
2141
2142 aes_dd = platform_get_drvdata(pdev);
2143 if (!aes_dd)
2144 return -ENODEV;
2145 spin_lock(&atmel_aes.lock);
2146 list_del(&aes_dd->list);
2147 spin_unlock(&atmel_aes.lock);
2148
2149 atmel_aes_unregister_algs(aes_dd);
2150
2151 tasklet_kill(&aes_dd->done_task);
2152 tasklet_kill(&aes_dd->queue_task);
2153
2154 atmel_aes_dma_cleanup(aes_dd);
2155 atmel_aes_buff_cleanup(aes_dd);
2156
2157 return 0;
2158 }
2159
2160 static struct platform_driver atmel_aes_driver = {
2161 .probe = atmel_aes_probe,
2162 .remove = atmel_aes_remove,
2163 .driver = {
2164 .name = "atmel_aes",
2165 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2166 },
2167 };
2168
2169 module_platform_driver(atmel_aes_driver);
2170
2171 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2172 MODULE_LICENSE("GPL v2");
2173 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
This page took 0.116906 seconds and 5 git commands to generate.