Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <linux/amba/pl080.h>
87
88 #include "dmaengine.h"
89 #include "virt-dma.h"
90
91 #define DRIVER_NAME "pl08xdmac"
92
93 static struct amba_driver pl08x_amba_driver;
94 struct pl08x_driver_data;
95
96 /**
97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98 * @channels: the number of channels available in this variant
99 * @dualmaster: whether this version supports dual AHB masters or not.
100 * @nomadik: whether the channels have Nomadik security extension bits
101 * that need to be checked for permission before use and some registers are
102 * missing
103 */
104 struct vendor_data {
105 u8 channels;
106 bool dualmaster;
107 bool nomadik;
108 };
109
110 /*
111 * PL08X private data structures
112 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
113 * start & end do not - their bus bit info is in cctl. Also note that these
114 * are fixed 32-bit quantities.
115 */
116 struct pl08x_lli {
117 u32 src;
118 u32 dst;
119 u32 lli;
120 u32 cctl;
121 };
122
123 /**
124 * struct pl08x_bus_data - information of source or destination
125 * busses for a transfer
126 * @addr: current address
127 * @maxwidth: the maximum width of a transfer on this bus
128 * @buswidth: the width of this bus in bytes: 1, 2 or 4
129 */
130 struct pl08x_bus_data {
131 dma_addr_t addr;
132 u8 maxwidth;
133 u8 buswidth;
134 };
135
136 /**
137 * struct pl08x_phy_chan - holder for the physical channels
138 * @id: physical index to this channel
139 * @lock: a lock to use when altering an instance of this struct
140 * @serving: the virtual channel currently being served by this physical
141 * channel
142 * @locked: channel unavailable for the system, e.g. dedicated to secure
143 * world
144 */
145 struct pl08x_phy_chan {
146 unsigned int id;
147 void __iomem *base;
148 spinlock_t lock;
149 struct pl08x_dma_chan *serving;
150 bool locked;
151 };
152
153 /**
154 * struct pl08x_sg - structure containing data per sg
155 * @src_addr: src address of sg
156 * @dst_addr: dst address of sg
157 * @len: transfer len in bytes
158 * @node: node for txd's dsg_list
159 */
160 struct pl08x_sg {
161 dma_addr_t src_addr;
162 dma_addr_t dst_addr;
163 size_t len;
164 struct list_head node;
165 };
166
167 /**
168 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
169 * @vd: virtual DMA descriptor
170 * @dsg_list: list of children sg's
171 * @llis_bus: DMA memory address (physical) start for the LLIs
172 * @llis_va: virtual memory address start for the LLIs
173 * @cctl: control reg values for current txd
174 * @ccfg: config reg values for current txd
175 * @done: this marks completed descriptors, which should not have their
176 * mux released.
177 */
178 struct pl08x_txd {
179 struct virt_dma_desc vd;
180 struct list_head dsg_list;
181 dma_addr_t llis_bus;
182 struct pl08x_lli *llis_va;
183 /* Default cctl value for LLIs */
184 u32 cctl;
185 /*
186 * Settings to be put into the physical channel when we
187 * trigger this txd. Other registers are in llis_va[0].
188 */
189 u32 ccfg;
190 bool done;
191 };
192
193 /**
194 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
195 * states
196 * @PL08X_CHAN_IDLE: the channel is idle
197 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
198 * channel and is running a transfer on it
199 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
200 * channel, but the transfer is currently paused
201 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
202 * channel to become available (only pertains to memcpy channels)
203 */
204 enum pl08x_dma_chan_state {
205 PL08X_CHAN_IDLE,
206 PL08X_CHAN_RUNNING,
207 PL08X_CHAN_PAUSED,
208 PL08X_CHAN_WAITING,
209 };
210
211 /**
212 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
213 * @vc: wrappped virtual channel
214 * @phychan: the physical channel utilized by this channel, if there is one
215 * @name: name of channel
216 * @cd: channel platform data
217 * @runtime_addr: address for RX/TX according to the runtime config
218 * @at: active transaction on this channel
219 * @lock: a lock for this channel data
220 * @host: a pointer to the host (internal use)
221 * @state: whether the channel is idle, paused, running etc
222 * @slave: whether this channel is a device (slave) or for memcpy
223 * @signal: the physical DMA request signal which this channel is using
224 * @mux_use: count of descriptors using this DMA request signal setting
225 */
226 struct pl08x_dma_chan {
227 struct virt_dma_chan vc;
228 struct pl08x_phy_chan *phychan;
229 const char *name;
230 const struct pl08x_channel_data *cd;
231 struct dma_slave_config cfg;
232 struct pl08x_txd *at;
233 struct pl08x_driver_data *host;
234 enum pl08x_dma_chan_state state;
235 bool slave;
236 int signal;
237 unsigned mux_use;
238 };
239
240 /**
241 * struct pl08x_driver_data - the local state holder for the PL08x
242 * @slave: slave engine for this instance
243 * @memcpy: memcpy engine for this instance
244 * @base: virtual memory base (remapped) for the PL08x
245 * @adev: the corresponding AMBA (PrimeCell) bus entry
246 * @vd: vendor data for this PL08x variant
247 * @pd: platform data passed in from the platform/machine
248 * @phy_chans: array of data for the physical channels
249 * @pool: a pool for the LLI descriptors
250 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
251 * fetches
252 * @mem_buses: set to indicate memory transfers on AHB2.
253 * @lock: a spinlock for this struct
254 */
255 struct pl08x_driver_data {
256 struct dma_device slave;
257 struct dma_device memcpy;
258 void __iomem *base;
259 struct amba_device *adev;
260 const struct vendor_data *vd;
261 struct pl08x_platform_data *pd;
262 struct pl08x_phy_chan *phy_chans;
263 struct dma_pool *pool;
264 u8 lli_buses;
265 u8 mem_buses;
266 };
267
268 /*
269 * PL08X specific defines
270 */
271
272 /* Size (bytes) of each LLI buffer allocated for one transfer */
273 # define PL08X_LLI_TSFR_SIZE 0x2000
274
275 /* Maximum times we call dma_pool_alloc on this pool without freeing */
276 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
277 #define PL08X_ALIGN 8
278
279 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
280 {
281 return container_of(chan, struct pl08x_dma_chan, vc.chan);
282 }
283
284 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
285 {
286 return container_of(tx, struct pl08x_txd, vd.tx);
287 }
288
289 /*
290 * Mux handling.
291 *
292 * This gives us the DMA request input to the PL08x primecell which the
293 * peripheral described by the channel data will be routed to, possibly
294 * via a board/SoC specific external MUX. One important point to note
295 * here is that this does not depend on the physical channel.
296 */
297 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
298 {
299 const struct pl08x_platform_data *pd = plchan->host->pd;
300 int ret;
301
302 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
303 ret = pd->get_xfer_signal(plchan->cd);
304 if (ret < 0) {
305 plchan->mux_use = 0;
306 return ret;
307 }
308
309 plchan->signal = ret;
310 }
311 return 0;
312 }
313
314 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
315 {
316 const struct pl08x_platform_data *pd = plchan->host->pd;
317
318 if (plchan->signal >= 0) {
319 WARN_ON(plchan->mux_use == 0);
320
321 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
322 pd->put_xfer_signal(plchan->cd, plchan->signal);
323 plchan->signal = -1;
324 }
325 }
326 }
327
328 /*
329 * Physical channel handling
330 */
331
332 /* Whether a certain channel is busy or not */
333 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
334 {
335 unsigned int val;
336
337 val = readl(ch->base + PL080_CH_CONFIG);
338 return val & PL080_CONFIG_ACTIVE;
339 }
340
341 /*
342 * Set the initial DMA register values i.e. those for the first LLI
343 * The next LLI pointer and the configuration interrupt bit have
344 * been set when the LLIs were constructed. Poke them into the hardware
345 * and start the transfer.
346 */
347 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
348 {
349 struct pl08x_driver_data *pl08x = plchan->host;
350 struct pl08x_phy_chan *phychan = plchan->phychan;
351 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
352 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
353 struct pl08x_lli *lli;
354 u32 val;
355
356 list_del(&txd->vd.node);
357
358 plchan->at = txd;
359
360 /* Wait for channel inactive */
361 while (pl08x_phy_channel_busy(phychan))
362 cpu_relax();
363
364 lli = &txd->llis_va[0];
365
366 dev_vdbg(&pl08x->adev->dev,
367 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
368 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
369 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
370 txd->ccfg);
371
372 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
373 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
374 writel(lli->lli, phychan->base + PL080_CH_LLI);
375 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
376 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
377
378 /* Enable the DMA channel */
379 /* Do not access config register until channel shows as disabled */
380 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
381 cpu_relax();
382
383 /* Do not access config register until channel shows as inactive */
384 val = readl(phychan->base + PL080_CH_CONFIG);
385 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
386 val = readl(phychan->base + PL080_CH_CONFIG);
387
388 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
389 }
390
391 /*
392 * Pause the channel by setting the HALT bit.
393 *
394 * For M->P transfers, pause the DMAC first and then stop the peripheral -
395 * the FIFO can only drain if the peripheral is still requesting data.
396 * (note: this can still timeout if the DMAC FIFO never drains of data.)
397 *
398 * For P->M transfers, disable the peripheral first to stop it filling
399 * the DMAC FIFO, and then pause the DMAC.
400 */
401 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
402 {
403 u32 val;
404 int timeout;
405
406 /* Set the HALT bit and wait for the FIFO to drain */
407 val = readl(ch->base + PL080_CH_CONFIG);
408 val |= PL080_CONFIG_HALT;
409 writel(val, ch->base + PL080_CH_CONFIG);
410
411 /* Wait for channel inactive */
412 for (timeout = 1000; timeout; timeout--) {
413 if (!pl08x_phy_channel_busy(ch))
414 break;
415 udelay(1);
416 }
417 if (pl08x_phy_channel_busy(ch))
418 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
419 }
420
421 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
422 {
423 u32 val;
424
425 /* Clear the HALT bit */
426 val = readl(ch->base + PL080_CH_CONFIG);
427 val &= ~PL080_CONFIG_HALT;
428 writel(val, ch->base + PL080_CH_CONFIG);
429 }
430
431 /*
432 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
433 * clears any pending interrupt status. This should not be used for
434 * an on-going transfer, but as a method of shutting down a channel
435 * (eg, when it's no longer used) or terminating a transfer.
436 */
437 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
438 struct pl08x_phy_chan *ch)
439 {
440 u32 val = readl(ch->base + PL080_CH_CONFIG);
441
442 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
443 PL080_CONFIG_TC_IRQ_MASK);
444
445 writel(val, ch->base + PL080_CH_CONFIG);
446
447 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
448 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
449 }
450
451 static inline u32 get_bytes_in_cctl(u32 cctl)
452 {
453 /* The source width defines the number of bytes */
454 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
455
456 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
457 case PL080_WIDTH_8BIT:
458 break;
459 case PL080_WIDTH_16BIT:
460 bytes *= 2;
461 break;
462 case PL080_WIDTH_32BIT:
463 bytes *= 4;
464 break;
465 }
466 return bytes;
467 }
468
469 /* The channel should be paused when calling this */
470 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
471 {
472 struct pl08x_phy_chan *ch;
473 struct pl08x_txd *txd;
474 size_t bytes = 0;
475
476 ch = plchan->phychan;
477 txd = plchan->at;
478
479 /*
480 * Follow the LLIs to get the number of remaining
481 * bytes in the currently active transaction.
482 */
483 if (ch && txd) {
484 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
485
486 /* First get the remaining bytes in the active transfer */
487 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
488
489 if (clli) {
490 struct pl08x_lli *llis_va = txd->llis_va;
491 dma_addr_t llis_bus = txd->llis_bus;
492 int index;
493
494 BUG_ON(clli < llis_bus || clli >= llis_bus +
495 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
496
497 /*
498 * Locate the next LLI - as this is an array,
499 * it's simple maths to find.
500 */
501 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
502
503 for (; index < MAX_NUM_TSFR_LLIS; index++) {
504 bytes += get_bytes_in_cctl(llis_va[index].cctl);
505
506 /*
507 * A LLI pointer of 0 terminates the LLI list
508 */
509 if (!llis_va[index].lli)
510 break;
511 }
512 }
513 }
514
515 return bytes;
516 }
517
518 /*
519 * Allocate a physical channel for a virtual channel
520 *
521 * Try to locate a physical channel to be used for this transfer. If all
522 * are taken return NULL and the requester will have to cope by using
523 * some fallback PIO mode or retrying later.
524 */
525 static struct pl08x_phy_chan *
526 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
527 struct pl08x_dma_chan *virt_chan)
528 {
529 struct pl08x_phy_chan *ch = NULL;
530 unsigned long flags;
531 int i;
532
533 for (i = 0; i < pl08x->vd->channels; i++) {
534 ch = &pl08x->phy_chans[i];
535
536 spin_lock_irqsave(&ch->lock, flags);
537
538 if (!ch->locked && !ch->serving) {
539 ch->serving = virt_chan;
540 spin_unlock_irqrestore(&ch->lock, flags);
541 break;
542 }
543
544 spin_unlock_irqrestore(&ch->lock, flags);
545 }
546
547 if (i == pl08x->vd->channels) {
548 /* No physical channel available, cope with it */
549 return NULL;
550 }
551
552 return ch;
553 }
554
555 /* Mark the physical channel as free. Note, this write is atomic. */
556 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
557 struct pl08x_phy_chan *ch)
558 {
559 ch->serving = NULL;
560 }
561
562 /*
563 * Try to allocate a physical channel. When successful, assign it to
564 * this virtual channel, and initiate the next descriptor. The
565 * virtual channel lock must be held at this point.
566 */
567 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
568 {
569 struct pl08x_driver_data *pl08x = plchan->host;
570 struct pl08x_phy_chan *ch;
571
572 ch = pl08x_get_phy_channel(pl08x, plchan);
573 if (!ch) {
574 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
575 plchan->state = PL08X_CHAN_WAITING;
576 return;
577 }
578
579 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
580 ch->id, plchan->name);
581
582 plchan->phychan = ch;
583 plchan->state = PL08X_CHAN_RUNNING;
584 pl08x_start_next_txd(plchan);
585 }
586
587 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
588 struct pl08x_dma_chan *plchan)
589 {
590 struct pl08x_driver_data *pl08x = plchan->host;
591
592 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
593 ch->id, plchan->name);
594
595 /*
596 * We do this without taking the lock; we're really only concerned
597 * about whether this pointer is NULL or not, and we're guaranteed
598 * that this will only be called when it _already_ is non-NULL.
599 */
600 ch->serving = plchan;
601 plchan->phychan = ch;
602 plchan->state = PL08X_CHAN_RUNNING;
603 pl08x_start_next_txd(plchan);
604 }
605
606 /*
607 * Free a physical DMA channel, potentially reallocating it to another
608 * virtual channel if we have any pending.
609 */
610 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
611 {
612 struct pl08x_driver_data *pl08x = plchan->host;
613 struct pl08x_dma_chan *p, *next;
614
615 retry:
616 next = NULL;
617
618 /* Find a waiting virtual channel for the next transfer. */
619 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
620 if (p->state == PL08X_CHAN_WAITING) {
621 next = p;
622 break;
623 }
624
625 if (!next) {
626 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
627 if (p->state == PL08X_CHAN_WAITING) {
628 next = p;
629 break;
630 }
631 }
632
633 /* Ensure that the physical channel is stopped */
634 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
635
636 if (next) {
637 bool success;
638
639 /*
640 * Eww. We know this isn't going to deadlock
641 * but lockdep probably doesn't.
642 */
643 spin_lock(&next->vc.lock);
644 /* Re-check the state now that we have the lock */
645 success = next->state == PL08X_CHAN_WAITING;
646 if (success)
647 pl08x_phy_reassign_start(plchan->phychan, next);
648 spin_unlock(&next->vc.lock);
649
650 /* If the state changed, try to find another channel */
651 if (!success)
652 goto retry;
653 } else {
654 /* No more jobs, so free up the physical channel */
655 pl08x_put_phy_channel(pl08x, plchan->phychan);
656 }
657
658 plchan->phychan = NULL;
659 plchan->state = PL08X_CHAN_IDLE;
660 }
661
662 /*
663 * LLI handling
664 */
665
666 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
667 {
668 switch (coded) {
669 case PL080_WIDTH_8BIT:
670 return 1;
671 case PL080_WIDTH_16BIT:
672 return 2;
673 case PL080_WIDTH_32BIT:
674 return 4;
675 default:
676 break;
677 }
678 BUG();
679 return 0;
680 }
681
682 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
683 size_t tsize)
684 {
685 u32 retbits = cctl;
686
687 /* Remove all src, dst and transfer size bits */
688 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
689 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
690 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
691
692 /* Then set the bits according to the parameters */
693 switch (srcwidth) {
694 case 1:
695 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
696 break;
697 case 2:
698 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
699 break;
700 case 4:
701 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
702 break;
703 default:
704 BUG();
705 break;
706 }
707
708 switch (dstwidth) {
709 case 1:
710 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
711 break;
712 case 2:
713 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
714 break;
715 case 4:
716 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
717 break;
718 default:
719 BUG();
720 break;
721 }
722
723 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
724 return retbits;
725 }
726
727 struct pl08x_lli_build_data {
728 struct pl08x_txd *txd;
729 struct pl08x_bus_data srcbus;
730 struct pl08x_bus_data dstbus;
731 size_t remainder;
732 u32 lli_bus;
733 };
734
735 /*
736 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
737 * victim in case src & dest are not similarly aligned. i.e. If after aligning
738 * masters address with width requirements of transfer (by sending few byte by
739 * byte data), slave is still not aligned, then its width will be reduced to
740 * BYTE.
741 * - prefers the destination bus if both available
742 * - prefers bus with fixed address (i.e. peripheral)
743 */
744 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
745 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
746 {
747 if (!(cctl & PL080_CONTROL_DST_INCR)) {
748 *mbus = &bd->dstbus;
749 *sbus = &bd->srcbus;
750 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
751 *mbus = &bd->srcbus;
752 *sbus = &bd->dstbus;
753 } else {
754 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
755 *mbus = &bd->dstbus;
756 *sbus = &bd->srcbus;
757 } else {
758 *mbus = &bd->srcbus;
759 *sbus = &bd->dstbus;
760 }
761 }
762 }
763
764 /*
765 * Fills in one LLI for a certain transfer descriptor and advance the counter
766 */
767 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
768 int num_llis, int len, u32 cctl)
769 {
770 struct pl08x_lli *llis_va = bd->txd->llis_va;
771 dma_addr_t llis_bus = bd->txd->llis_bus;
772
773 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
774
775 llis_va[num_llis].cctl = cctl;
776 llis_va[num_llis].src = bd->srcbus.addr;
777 llis_va[num_llis].dst = bd->dstbus.addr;
778 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
779 sizeof(struct pl08x_lli);
780 llis_va[num_llis].lli |= bd->lli_bus;
781
782 if (cctl & PL080_CONTROL_SRC_INCR)
783 bd->srcbus.addr += len;
784 if (cctl & PL080_CONTROL_DST_INCR)
785 bd->dstbus.addr += len;
786
787 BUG_ON(bd->remainder < len);
788
789 bd->remainder -= len;
790 }
791
792 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
793 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
794 {
795 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
796 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
797 (*total_bytes) += len;
798 }
799
800 /*
801 * This fills in the table of LLIs for the transfer descriptor
802 * Note that we assume we never have to change the burst sizes
803 * Return 0 for error
804 */
805 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
806 struct pl08x_txd *txd)
807 {
808 struct pl08x_bus_data *mbus, *sbus;
809 struct pl08x_lli_build_data bd;
810 int num_llis = 0;
811 u32 cctl, early_bytes = 0;
812 size_t max_bytes_per_lli, total_bytes;
813 struct pl08x_lli *llis_va;
814 struct pl08x_sg *dsg;
815
816 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
817 if (!txd->llis_va) {
818 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
819 return 0;
820 }
821
822 bd.txd = txd;
823 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
824 cctl = txd->cctl;
825
826 /* Find maximum width of the source bus */
827 bd.srcbus.maxwidth =
828 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
829 PL080_CONTROL_SWIDTH_SHIFT);
830
831 /* Find maximum width of the destination bus */
832 bd.dstbus.maxwidth =
833 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
834 PL080_CONTROL_DWIDTH_SHIFT);
835
836 list_for_each_entry(dsg, &txd->dsg_list, node) {
837 total_bytes = 0;
838 cctl = txd->cctl;
839
840 bd.srcbus.addr = dsg->src_addr;
841 bd.dstbus.addr = dsg->dst_addr;
842 bd.remainder = dsg->len;
843 bd.srcbus.buswidth = bd.srcbus.maxwidth;
844 bd.dstbus.buswidth = bd.dstbus.maxwidth;
845
846 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
847
848 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
849 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
850 bd.srcbus.buswidth,
851 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
852 bd.dstbus.buswidth,
853 bd.remainder);
854 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
855 mbus == &bd.srcbus ? "src" : "dst",
856 sbus == &bd.srcbus ? "src" : "dst");
857
858 /*
859 * Zero length is only allowed if all these requirements are
860 * met:
861 * - flow controller is peripheral.
862 * - src.addr is aligned to src.width
863 * - dst.addr is aligned to dst.width
864 *
865 * sg_len == 1 should be true, as there can be two cases here:
866 *
867 * - Memory addresses are contiguous and are not scattered.
868 * Here, Only one sg will be passed by user driver, with
869 * memory address and zero length. We pass this to controller
870 * and after the transfer it will receive the last burst
871 * request from peripheral and so transfer finishes.
872 *
873 * - Memory addresses are scattered and are not contiguous.
874 * Here, Obviously as DMA controller doesn't know when a lli's
875 * transfer gets over, it can't load next lli. So in this
876 * case, there has to be an assumption that only one lli is
877 * supported. Thus, we can't have scattered addresses.
878 */
879 if (!bd.remainder) {
880 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
881 PL080_CONFIG_FLOW_CONTROL_SHIFT;
882 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
883 (fc <= PL080_FLOW_SRC2DST_SRC))) {
884 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
885 __func__);
886 return 0;
887 }
888
889 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
890 (bd.dstbus.addr % bd.dstbus.buswidth)) {
891 dev_err(&pl08x->adev->dev,
892 "%s src & dst address must be aligned to src"
893 " & dst width if peripheral is flow controller",
894 __func__);
895 return 0;
896 }
897
898 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
899 bd.dstbus.buswidth, 0);
900 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
901 break;
902 }
903
904 /*
905 * Send byte by byte for following cases
906 * - Less than a bus width available
907 * - until master bus is aligned
908 */
909 if (bd.remainder < mbus->buswidth)
910 early_bytes = bd.remainder;
911 else if ((mbus->addr) % (mbus->buswidth)) {
912 early_bytes = mbus->buswidth - (mbus->addr) %
913 (mbus->buswidth);
914 if ((bd.remainder - early_bytes) < mbus->buswidth)
915 early_bytes = bd.remainder;
916 }
917
918 if (early_bytes) {
919 dev_vdbg(&pl08x->adev->dev,
920 "%s byte width LLIs (remain 0x%08x)\n",
921 __func__, bd.remainder);
922 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
923 &total_bytes);
924 }
925
926 if (bd.remainder) {
927 /*
928 * Master now aligned
929 * - if slave is not then we must set its width down
930 */
931 if (sbus->addr % sbus->buswidth) {
932 dev_dbg(&pl08x->adev->dev,
933 "%s set down bus width to one byte\n",
934 __func__);
935
936 sbus->buswidth = 1;
937 }
938
939 /*
940 * Bytes transferred = tsize * src width, not
941 * MIN(buswidths)
942 */
943 max_bytes_per_lli = bd.srcbus.buswidth *
944 PL080_CONTROL_TRANSFER_SIZE_MASK;
945 dev_vdbg(&pl08x->adev->dev,
946 "%s max bytes per lli = %zu\n",
947 __func__, max_bytes_per_lli);
948
949 /*
950 * Make largest possible LLIs until less than one bus
951 * width left
952 */
953 while (bd.remainder > (mbus->buswidth - 1)) {
954 size_t lli_len, tsize, width;
955
956 /*
957 * If enough left try to send max possible,
958 * otherwise try to send the remainder
959 */
960 lli_len = min(bd.remainder, max_bytes_per_lli);
961
962 /*
963 * Check against maximum bus alignment:
964 * Calculate actual transfer size in relation to
965 * bus width an get a maximum remainder of the
966 * highest bus width - 1
967 */
968 width = max(mbus->buswidth, sbus->buswidth);
969 lli_len = (lli_len / width) * width;
970 tsize = lli_len / bd.srcbus.buswidth;
971
972 dev_vdbg(&pl08x->adev->dev,
973 "%s fill lli with single lli chunk of "
974 "size 0x%08zx (remainder 0x%08zx)\n",
975 __func__, lli_len, bd.remainder);
976
977 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
978 bd.dstbus.buswidth, tsize);
979 pl08x_fill_lli_for_desc(&bd, num_llis++,
980 lli_len, cctl);
981 total_bytes += lli_len;
982 }
983
984 /*
985 * Send any odd bytes
986 */
987 if (bd.remainder) {
988 dev_vdbg(&pl08x->adev->dev,
989 "%s align with boundary, send odd bytes (remain %zu)\n",
990 __func__, bd.remainder);
991 prep_byte_width_lli(&bd, &cctl, bd.remainder,
992 num_llis++, &total_bytes);
993 }
994 }
995
996 if (total_bytes != dsg->len) {
997 dev_err(&pl08x->adev->dev,
998 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
999 __func__, total_bytes, dsg->len);
1000 return 0;
1001 }
1002
1003 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1004 dev_err(&pl08x->adev->dev,
1005 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1006 __func__, (u32) MAX_NUM_TSFR_LLIS);
1007 return 0;
1008 }
1009 }
1010
1011 llis_va = txd->llis_va;
1012 /* The final LLI terminates the LLI. */
1013 llis_va[num_llis - 1].lli = 0;
1014 /* The final LLI element shall also fire an interrupt. */
1015 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
1016
1017 #ifdef VERBOSE_DEBUG
1018 {
1019 int i;
1020
1021 dev_vdbg(&pl08x->adev->dev,
1022 "%-3s %-9s %-10s %-10s %-10s %s\n",
1023 "lli", "", "csrc", "cdst", "clli", "cctl");
1024 for (i = 0; i < num_llis; i++) {
1025 dev_vdbg(&pl08x->adev->dev,
1026 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1027 i, &llis_va[i], llis_va[i].src,
1028 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
1029 );
1030 }
1031 }
1032 #endif
1033
1034 return num_llis;
1035 }
1036
1037 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1038 struct pl08x_txd *txd)
1039 {
1040 struct pl08x_sg *dsg, *_dsg;
1041
1042 if (txd->llis_va)
1043 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1044
1045 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1046 list_del(&dsg->node);
1047 kfree(dsg);
1048 }
1049
1050 kfree(txd);
1051 }
1052
1053 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1054 {
1055 struct device *dev = txd->vd.tx.chan->device->dev;
1056 struct pl08x_sg *dsg;
1057
1058 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1059 if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1060 list_for_each_entry(dsg, &txd->dsg_list, node)
1061 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1062 DMA_TO_DEVICE);
1063 else {
1064 list_for_each_entry(dsg, &txd->dsg_list, node)
1065 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1066 DMA_TO_DEVICE);
1067 }
1068 }
1069 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1070 if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1071 list_for_each_entry(dsg, &txd->dsg_list, node)
1072 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1073 DMA_FROM_DEVICE);
1074 else
1075 list_for_each_entry(dsg, &txd->dsg_list, node)
1076 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1077 DMA_FROM_DEVICE);
1078 }
1079 }
1080
1081 static void pl08x_desc_free(struct virt_dma_desc *vd)
1082 {
1083 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1084 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1085
1086 if (!plchan->slave)
1087 pl08x_unmap_buffers(txd);
1088
1089 if (!txd->done)
1090 pl08x_release_mux(plchan);
1091
1092 pl08x_free_txd(plchan->host, txd);
1093 }
1094
1095 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1096 struct pl08x_dma_chan *plchan)
1097 {
1098 LIST_HEAD(head);
1099
1100 vchan_get_all_descriptors(&plchan->vc, &head);
1101 vchan_dma_desc_free_list(&plchan->vc, &head);
1102 }
1103
1104 /*
1105 * The DMA ENGINE API
1106 */
1107 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1108 {
1109 return 0;
1110 }
1111
1112 static void pl08x_free_chan_resources(struct dma_chan *chan)
1113 {
1114 /* Ensure all queued descriptors are freed */
1115 vchan_free_chan_resources(to_virt_chan(chan));
1116 }
1117
1118 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1119 struct dma_chan *chan, unsigned long flags)
1120 {
1121 struct dma_async_tx_descriptor *retval = NULL;
1122
1123 return retval;
1124 }
1125
1126 /*
1127 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1128 * If slaves are relying on interrupts to signal completion this function
1129 * must not be called with interrupts disabled.
1130 */
1131 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1132 dma_cookie_t cookie, struct dma_tx_state *txstate)
1133 {
1134 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1135 struct virt_dma_desc *vd;
1136 unsigned long flags;
1137 enum dma_status ret;
1138 size_t bytes = 0;
1139
1140 ret = dma_cookie_status(chan, cookie, txstate);
1141 if (ret == DMA_SUCCESS)
1142 return ret;
1143
1144 /*
1145 * There's no point calculating the residue if there's
1146 * no txstate to store the value.
1147 */
1148 if (!txstate) {
1149 if (plchan->state == PL08X_CHAN_PAUSED)
1150 ret = DMA_PAUSED;
1151 return ret;
1152 }
1153
1154 spin_lock_irqsave(&plchan->vc.lock, flags);
1155 ret = dma_cookie_status(chan, cookie, txstate);
1156 if (ret != DMA_SUCCESS) {
1157 vd = vchan_find_desc(&plchan->vc, cookie);
1158 if (vd) {
1159 /* On the issued list, so hasn't been processed yet */
1160 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1161 struct pl08x_sg *dsg;
1162
1163 list_for_each_entry(dsg, &txd->dsg_list, node)
1164 bytes += dsg->len;
1165 } else {
1166 bytes = pl08x_getbytes_chan(plchan);
1167 }
1168 }
1169 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1170
1171 /*
1172 * This cookie not complete yet
1173 * Get number of bytes left in the active transactions and queue
1174 */
1175 dma_set_residue(txstate, bytes);
1176
1177 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1178 ret = DMA_PAUSED;
1179
1180 /* Whether waiting or running, we're in progress */
1181 return ret;
1182 }
1183
1184 /* PrimeCell DMA extension */
1185 struct burst_table {
1186 u32 burstwords;
1187 u32 reg;
1188 };
1189
1190 static const struct burst_table burst_sizes[] = {
1191 {
1192 .burstwords = 256,
1193 .reg = PL080_BSIZE_256,
1194 },
1195 {
1196 .burstwords = 128,
1197 .reg = PL080_BSIZE_128,
1198 },
1199 {
1200 .burstwords = 64,
1201 .reg = PL080_BSIZE_64,
1202 },
1203 {
1204 .burstwords = 32,
1205 .reg = PL080_BSIZE_32,
1206 },
1207 {
1208 .burstwords = 16,
1209 .reg = PL080_BSIZE_16,
1210 },
1211 {
1212 .burstwords = 8,
1213 .reg = PL080_BSIZE_8,
1214 },
1215 {
1216 .burstwords = 4,
1217 .reg = PL080_BSIZE_4,
1218 },
1219 {
1220 .burstwords = 0,
1221 .reg = PL080_BSIZE_1,
1222 },
1223 };
1224
1225 /*
1226 * Given the source and destination available bus masks, select which
1227 * will be routed to each port. We try to have source and destination
1228 * on separate ports, but always respect the allowable settings.
1229 */
1230 static u32 pl08x_select_bus(u8 src, u8 dst)
1231 {
1232 u32 cctl = 0;
1233
1234 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1235 cctl |= PL080_CONTROL_DST_AHB2;
1236 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1237 cctl |= PL080_CONTROL_SRC_AHB2;
1238
1239 return cctl;
1240 }
1241
1242 static u32 pl08x_cctl(u32 cctl)
1243 {
1244 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1245 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1246 PL080_CONTROL_PROT_MASK);
1247
1248 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1249 return cctl | PL080_CONTROL_PROT_SYS;
1250 }
1251
1252 static u32 pl08x_width(enum dma_slave_buswidth width)
1253 {
1254 switch (width) {
1255 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1256 return PL080_WIDTH_8BIT;
1257 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1258 return PL080_WIDTH_16BIT;
1259 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1260 return PL080_WIDTH_32BIT;
1261 default:
1262 return ~0;
1263 }
1264 }
1265
1266 static u32 pl08x_burst(u32 maxburst)
1267 {
1268 int i;
1269
1270 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1271 if (burst_sizes[i].burstwords <= maxburst)
1272 break;
1273
1274 return burst_sizes[i].reg;
1275 }
1276
1277 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1278 enum dma_slave_buswidth addr_width, u32 maxburst)
1279 {
1280 u32 width, burst, cctl = 0;
1281
1282 width = pl08x_width(addr_width);
1283 if (width == ~0)
1284 return ~0;
1285
1286 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1287 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1288
1289 /*
1290 * If this channel will only request single transfers, set this
1291 * down to ONE element. Also select one element if no maxburst
1292 * is specified.
1293 */
1294 if (plchan->cd->single)
1295 maxburst = 1;
1296
1297 burst = pl08x_burst(maxburst);
1298 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1299 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1300
1301 return pl08x_cctl(cctl);
1302 }
1303
1304 static int dma_set_runtime_config(struct dma_chan *chan,
1305 struct dma_slave_config *config)
1306 {
1307 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1308
1309 if (!plchan->slave)
1310 return -EINVAL;
1311
1312 /* Reject definitely invalid configurations */
1313 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1314 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1315 return -EINVAL;
1316
1317 plchan->cfg = *config;
1318
1319 return 0;
1320 }
1321
1322 /*
1323 * Slave transactions callback to the slave device to allow
1324 * synchronization of slave DMA signals with the DMAC enable
1325 */
1326 static void pl08x_issue_pending(struct dma_chan *chan)
1327 {
1328 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1329 unsigned long flags;
1330
1331 spin_lock_irqsave(&plchan->vc.lock, flags);
1332 if (vchan_issue_pending(&plchan->vc)) {
1333 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1334 pl08x_phy_alloc_and_start(plchan);
1335 }
1336 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1337 }
1338
1339 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1340 {
1341 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1342
1343 if (txd) {
1344 INIT_LIST_HEAD(&txd->dsg_list);
1345
1346 /* Always enable error and terminal interrupts */
1347 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1348 PL080_CONFIG_TC_IRQ_MASK;
1349 }
1350 return txd;
1351 }
1352
1353 /*
1354 * Initialize a descriptor to be used by memcpy submit
1355 */
1356 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1357 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1358 size_t len, unsigned long flags)
1359 {
1360 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1361 struct pl08x_driver_data *pl08x = plchan->host;
1362 struct pl08x_txd *txd;
1363 struct pl08x_sg *dsg;
1364 int ret;
1365
1366 txd = pl08x_get_txd(plchan);
1367 if (!txd) {
1368 dev_err(&pl08x->adev->dev,
1369 "%s no memory for descriptor\n", __func__);
1370 return NULL;
1371 }
1372
1373 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1374 if (!dsg) {
1375 pl08x_free_txd(pl08x, txd);
1376 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1377 __func__);
1378 return NULL;
1379 }
1380 list_add_tail(&dsg->node, &txd->dsg_list);
1381
1382 dsg->src_addr = src;
1383 dsg->dst_addr = dest;
1384 dsg->len = len;
1385
1386 /* Set platform data for m2m */
1387 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1388 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1389 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1390
1391 /* Both to be incremented or the code will break */
1392 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1393
1394 if (pl08x->vd->dualmaster)
1395 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1396 pl08x->mem_buses);
1397
1398 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1399 if (!ret) {
1400 pl08x_free_txd(pl08x, txd);
1401 return NULL;
1402 }
1403
1404 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1405 }
1406
1407 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1408 struct dma_chan *chan, struct scatterlist *sgl,
1409 unsigned int sg_len, enum dma_transfer_direction direction,
1410 unsigned long flags, void *context)
1411 {
1412 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1413 struct pl08x_driver_data *pl08x = plchan->host;
1414 struct pl08x_txd *txd;
1415 struct pl08x_sg *dsg;
1416 struct scatterlist *sg;
1417 enum dma_slave_buswidth addr_width;
1418 dma_addr_t slave_addr;
1419 int ret, tmp;
1420 u8 src_buses, dst_buses;
1421 u32 maxburst, cctl;
1422
1423 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1424 __func__, sg_dma_len(sgl), plchan->name);
1425
1426 txd = pl08x_get_txd(plchan);
1427 if (!txd) {
1428 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1429 return NULL;
1430 }
1431
1432 /*
1433 * Set up addresses, the PrimeCell configured address
1434 * will take precedence since this may configure the
1435 * channel target address dynamically at runtime.
1436 */
1437 if (direction == DMA_MEM_TO_DEV) {
1438 cctl = PL080_CONTROL_SRC_INCR;
1439 slave_addr = plchan->cfg.dst_addr;
1440 addr_width = plchan->cfg.dst_addr_width;
1441 maxburst = plchan->cfg.dst_maxburst;
1442 src_buses = pl08x->mem_buses;
1443 dst_buses = plchan->cd->periph_buses;
1444 } else if (direction == DMA_DEV_TO_MEM) {
1445 cctl = PL080_CONTROL_DST_INCR;
1446 slave_addr = plchan->cfg.src_addr;
1447 addr_width = plchan->cfg.src_addr_width;
1448 maxburst = plchan->cfg.src_maxburst;
1449 src_buses = plchan->cd->periph_buses;
1450 dst_buses = pl08x->mem_buses;
1451 } else {
1452 pl08x_free_txd(pl08x, txd);
1453 dev_err(&pl08x->adev->dev,
1454 "%s direction unsupported\n", __func__);
1455 return NULL;
1456 }
1457
1458 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1459 if (cctl == ~0) {
1460 pl08x_free_txd(pl08x, txd);
1461 dev_err(&pl08x->adev->dev,
1462 "DMA slave configuration botched?\n");
1463 return NULL;
1464 }
1465
1466 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1467
1468 if (plchan->cfg.device_fc)
1469 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1470 PL080_FLOW_PER2MEM_PER;
1471 else
1472 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1473 PL080_FLOW_PER2MEM;
1474
1475 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1476
1477 ret = pl08x_request_mux(plchan);
1478 if (ret < 0) {
1479 pl08x_free_txd(pl08x, txd);
1480 dev_dbg(&pl08x->adev->dev,
1481 "unable to mux for transfer on %s due to platform restrictions\n",
1482 plchan->name);
1483 return NULL;
1484 }
1485
1486 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1487 plchan->signal, plchan->name);
1488
1489 /* Assign the flow control signal to this channel */
1490 if (direction == DMA_MEM_TO_DEV)
1491 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1492 else
1493 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1494
1495 for_each_sg(sgl, sg, sg_len, tmp) {
1496 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1497 if (!dsg) {
1498 pl08x_release_mux(plchan);
1499 pl08x_free_txd(pl08x, txd);
1500 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1501 __func__);
1502 return NULL;
1503 }
1504 list_add_tail(&dsg->node, &txd->dsg_list);
1505
1506 dsg->len = sg_dma_len(sg);
1507 if (direction == DMA_MEM_TO_DEV) {
1508 dsg->src_addr = sg_dma_address(sg);
1509 dsg->dst_addr = slave_addr;
1510 } else {
1511 dsg->src_addr = slave_addr;
1512 dsg->dst_addr = sg_dma_address(sg);
1513 }
1514 }
1515
1516 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1517 if (!ret) {
1518 pl08x_release_mux(plchan);
1519 pl08x_free_txd(pl08x, txd);
1520 return NULL;
1521 }
1522
1523 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1524 }
1525
1526 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1527 unsigned long arg)
1528 {
1529 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1530 struct pl08x_driver_data *pl08x = plchan->host;
1531 unsigned long flags;
1532 int ret = 0;
1533
1534 /* Controls applicable to inactive channels */
1535 if (cmd == DMA_SLAVE_CONFIG) {
1536 return dma_set_runtime_config(chan,
1537 (struct dma_slave_config *)arg);
1538 }
1539
1540 /*
1541 * Anything succeeds on channels with no physical allocation and
1542 * no queued transfers.
1543 */
1544 spin_lock_irqsave(&plchan->vc.lock, flags);
1545 if (!plchan->phychan && !plchan->at) {
1546 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1547 return 0;
1548 }
1549
1550 switch (cmd) {
1551 case DMA_TERMINATE_ALL:
1552 plchan->state = PL08X_CHAN_IDLE;
1553
1554 if (plchan->phychan) {
1555 /*
1556 * Mark physical channel as free and free any slave
1557 * signal
1558 */
1559 pl08x_phy_free(plchan);
1560 }
1561 /* Dequeue jobs and free LLIs */
1562 if (plchan->at) {
1563 pl08x_desc_free(&plchan->at->vd);
1564 plchan->at = NULL;
1565 }
1566 /* Dequeue jobs not yet fired as well */
1567 pl08x_free_txd_list(pl08x, plchan);
1568 break;
1569 case DMA_PAUSE:
1570 pl08x_pause_phy_chan(plchan->phychan);
1571 plchan->state = PL08X_CHAN_PAUSED;
1572 break;
1573 case DMA_RESUME:
1574 pl08x_resume_phy_chan(plchan->phychan);
1575 plchan->state = PL08X_CHAN_RUNNING;
1576 break;
1577 default:
1578 /* Unknown command */
1579 ret = -ENXIO;
1580 break;
1581 }
1582
1583 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1584
1585 return ret;
1586 }
1587
1588 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1589 {
1590 struct pl08x_dma_chan *plchan;
1591 char *name = chan_id;
1592
1593 /* Reject channels for devices not bound to this driver */
1594 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1595 return false;
1596
1597 plchan = to_pl08x_chan(chan);
1598
1599 /* Check that the channel is not taken! */
1600 if (!strcmp(plchan->name, name))
1601 return true;
1602
1603 return false;
1604 }
1605
1606 /*
1607 * Just check that the device is there and active
1608 * TODO: turn this bit on/off depending on the number of physical channels
1609 * actually used, if it is zero... well shut it off. That will save some
1610 * power. Cut the clock at the same time.
1611 */
1612 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1613 {
1614 /* The Nomadik variant does not have the config register */
1615 if (pl08x->vd->nomadik)
1616 return;
1617 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1618 }
1619
1620 static irqreturn_t pl08x_irq(int irq, void *dev)
1621 {
1622 struct pl08x_driver_data *pl08x = dev;
1623 u32 mask = 0, err, tc, i;
1624
1625 /* check & clear - ERR & TC interrupts */
1626 err = readl(pl08x->base + PL080_ERR_STATUS);
1627 if (err) {
1628 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1629 __func__, err);
1630 writel(err, pl08x->base + PL080_ERR_CLEAR);
1631 }
1632 tc = readl(pl08x->base + PL080_TC_STATUS);
1633 if (tc)
1634 writel(tc, pl08x->base + PL080_TC_CLEAR);
1635
1636 if (!err && !tc)
1637 return IRQ_NONE;
1638
1639 for (i = 0; i < pl08x->vd->channels; i++) {
1640 if (((1 << i) & err) || ((1 << i) & tc)) {
1641 /* Locate physical channel */
1642 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1643 struct pl08x_dma_chan *plchan = phychan->serving;
1644 struct pl08x_txd *tx;
1645
1646 if (!plchan) {
1647 dev_err(&pl08x->adev->dev,
1648 "%s Error TC interrupt on unused channel: 0x%08x\n",
1649 __func__, i);
1650 continue;
1651 }
1652
1653 spin_lock(&plchan->vc.lock);
1654 tx = plchan->at;
1655 if (tx) {
1656 plchan->at = NULL;
1657 /*
1658 * This descriptor is done, release its mux
1659 * reservation.
1660 */
1661 pl08x_release_mux(plchan);
1662 tx->done = true;
1663 vchan_cookie_complete(&tx->vd);
1664
1665 /*
1666 * And start the next descriptor (if any),
1667 * otherwise free this channel.
1668 */
1669 if (vchan_next_desc(&plchan->vc))
1670 pl08x_start_next_txd(plchan);
1671 else
1672 pl08x_phy_free(plchan);
1673 }
1674 spin_unlock(&plchan->vc.lock);
1675
1676 mask |= (1 << i);
1677 }
1678 }
1679
1680 return mask ? IRQ_HANDLED : IRQ_NONE;
1681 }
1682
1683 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1684 {
1685 chan->slave = true;
1686 chan->name = chan->cd->bus_id;
1687 chan->cfg.src_addr = chan->cd->addr;
1688 chan->cfg.dst_addr = chan->cd->addr;
1689 }
1690
1691 /*
1692 * Initialise the DMAC memcpy/slave channels.
1693 * Make a local wrapper to hold required data
1694 */
1695 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1696 struct dma_device *dmadev, unsigned int channels, bool slave)
1697 {
1698 struct pl08x_dma_chan *chan;
1699 int i;
1700
1701 INIT_LIST_HEAD(&dmadev->channels);
1702
1703 /*
1704 * Register as many many memcpy as we have physical channels,
1705 * we won't always be able to use all but the code will have
1706 * to cope with that situation.
1707 */
1708 for (i = 0; i < channels; i++) {
1709 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1710 if (!chan) {
1711 dev_err(&pl08x->adev->dev,
1712 "%s no memory for channel\n", __func__);
1713 return -ENOMEM;
1714 }
1715
1716 chan->host = pl08x;
1717 chan->state = PL08X_CHAN_IDLE;
1718 chan->signal = -1;
1719
1720 if (slave) {
1721 chan->cd = &pl08x->pd->slave_channels[i];
1722 pl08x_dma_slave_init(chan);
1723 } else {
1724 chan->cd = &pl08x->pd->memcpy_channel;
1725 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1726 if (!chan->name) {
1727 kfree(chan);
1728 return -ENOMEM;
1729 }
1730 }
1731 dev_dbg(&pl08x->adev->dev,
1732 "initialize virtual channel \"%s\"\n",
1733 chan->name);
1734
1735 chan->vc.desc_free = pl08x_desc_free;
1736 vchan_init(&chan->vc, dmadev);
1737 }
1738 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1739 i, slave ? "slave" : "memcpy");
1740 return i;
1741 }
1742
1743 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1744 {
1745 struct pl08x_dma_chan *chan = NULL;
1746 struct pl08x_dma_chan *next;
1747
1748 list_for_each_entry_safe(chan,
1749 next, &dmadev->channels, vc.chan.device_node) {
1750 list_del(&chan->vc.chan.device_node);
1751 kfree(chan);
1752 }
1753 }
1754
1755 #ifdef CONFIG_DEBUG_FS
1756 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1757 {
1758 switch (state) {
1759 case PL08X_CHAN_IDLE:
1760 return "idle";
1761 case PL08X_CHAN_RUNNING:
1762 return "running";
1763 case PL08X_CHAN_PAUSED:
1764 return "paused";
1765 case PL08X_CHAN_WAITING:
1766 return "waiting";
1767 default:
1768 break;
1769 }
1770 return "UNKNOWN STATE";
1771 }
1772
1773 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1774 {
1775 struct pl08x_driver_data *pl08x = s->private;
1776 struct pl08x_dma_chan *chan;
1777 struct pl08x_phy_chan *ch;
1778 unsigned long flags;
1779 int i;
1780
1781 seq_printf(s, "PL08x physical channels:\n");
1782 seq_printf(s, "CHANNEL:\tUSER:\n");
1783 seq_printf(s, "--------\t-----\n");
1784 for (i = 0; i < pl08x->vd->channels; i++) {
1785 struct pl08x_dma_chan *virt_chan;
1786
1787 ch = &pl08x->phy_chans[i];
1788
1789 spin_lock_irqsave(&ch->lock, flags);
1790 virt_chan = ch->serving;
1791
1792 seq_printf(s, "%d\t\t%s%s\n",
1793 ch->id,
1794 virt_chan ? virt_chan->name : "(none)",
1795 ch->locked ? " LOCKED" : "");
1796
1797 spin_unlock_irqrestore(&ch->lock, flags);
1798 }
1799
1800 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1801 seq_printf(s, "CHANNEL:\tSTATE:\n");
1802 seq_printf(s, "--------\t------\n");
1803 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1804 seq_printf(s, "%s\t\t%s\n", chan->name,
1805 pl08x_state_str(chan->state));
1806 }
1807
1808 seq_printf(s, "\nPL08x virtual slave channels:\n");
1809 seq_printf(s, "CHANNEL:\tSTATE:\n");
1810 seq_printf(s, "--------\t------\n");
1811 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1812 seq_printf(s, "%s\t\t%s\n", chan->name,
1813 pl08x_state_str(chan->state));
1814 }
1815
1816 return 0;
1817 }
1818
1819 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1820 {
1821 return single_open(file, pl08x_debugfs_show, inode->i_private);
1822 }
1823
1824 static const struct file_operations pl08x_debugfs_operations = {
1825 .open = pl08x_debugfs_open,
1826 .read = seq_read,
1827 .llseek = seq_lseek,
1828 .release = single_release,
1829 };
1830
1831 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1832 {
1833 /* Expose a simple debugfs interface to view all clocks */
1834 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1835 S_IFREG | S_IRUGO, NULL, pl08x,
1836 &pl08x_debugfs_operations);
1837 }
1838
1839 #else
1840 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1841 {
1842 }
1843 #endif
1844
1845 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1846 {
1847 struct pl08x_driver_data *pl08x;
1848 const struct vendor_data *vd = id->data;
1849 int ret = 0;
1850 int i;
1851
1852 ret = amba_request_regions(adev, NULL);
1853 if (ret)
1854 return ret;
1855
1856 /* Create the driver state holder */
1857 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1858 if (!pl08x) {
1859 ret = -ENOMEM;
1860 goto out_no_pl08x;
1861 }
1862
1863 /* Initialize memcpy engine */
1864 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1865 pl08x->memcpy.dev = &adev->dev;
1866 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1867 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1868 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1869 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1870 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1871 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1872 pl08x->memcpy.device_control = pl08x_control;
1873
1874 /* Initialize slave engine */
1875 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1876 pl08x->slave.dev = &adev->dev;
1877 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1878 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1879 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1880 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1881 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1882 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1883 pl08x->slave.device_control = pl08x_control;
1884
1885 /* Get the platform data */
1886 pl08x->pd = dev_get_platdata(&adev->dev);
1887 if (!pl08x->pd) {
1888 dev_err(&adev->dev, "no platform data supplied\n");
1889 ret = -EINVAL;
1890 goto out_no_platdata;
1891 }
1892
1893 /* Assign useful pointers to the driver state */
1894 pl08x->adev = adev;
1895 pl08x->vd = vd;
1896
1897 /* By default, AHB1 only. If dualmaster, from platform */
1898 pl08x->lli_buses = PL08X_AHB1;
1899 pl08x->mem_buses = PL08X_AHB1;
1900 if (pl08x->vd->dualmaster) {
1901 pl08x->lli_buses = pl08x->pd->lli_buses;
1902 pl08x->mem_buses = pl08x->pd->mem_buses;
1903 }
1904
1905 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1906 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1907 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1908 if (!pl08x->pool) {
1909 ret = -ENOMEM;
1910 goto out_no_lli_pool;
1911 }
1912
1913 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1914 if (!pl08x->base) {
1915 ret = -ENOMEM;
1916 goto out_no_ioremap;
1917 }
1918
1919 /* Turn on the PL08x */
1920 pl08x_ensure_on(pl08x);
1921
1922 /* Attach the interrupt handler */
1923 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1924 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1925
1926 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1927 DRIVER_NAME, pl08x);
1928 if (ret) {
1929 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1930 __func__, adev->irq[0]);
1931 goto out_no_irq;
1932 }
1933
1934 /* Initialize physical channels */
1935 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1936 GFP_KERNEL);
1937 if (!pl08x->phy_chans) {
1938 dev_err(&adev->dev, "%s failed to allocate "
1939 "physical channel holders\n",
1940 __func__);
1941 ret = -ENOMEM;
1942 goto out_no_phychans;
1943 }
1944
1945 for (i = 0; i < vd->channels; i++) {
1946 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1947
1948 ch->id = i;
1949 ch->base = pl08x->base + PL080_Cx_BASE(i);
1950 spin_lock_init(&ch->lock);
1951
1952 /*
1953 * Nomadik variants can have channels that are locked
1954 * down for the secure world only. Lock up these channels
1955 * by perpetually serving a dummy virtual channel.
1956 */
1957 if (vd->nomadik) {
1958 u32 val;
1959
1960 val = readl(ch->base + PL080_CH_CONFIG);
1961 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
1962 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1963 ch->locked = true;
1964 }
1965 }
1966
1967 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1968 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1969 }
1970
1971 /* Register as many memcpy channels as there are physical channels */
1972 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1973 pl08x->vd->channels, false);
1974 if (ret <= 0) {
1975 dev_warn(&pl08x->adev->dev,
1976 "%s failed to enumerate memcpy channels - %d\n",
1977 __func__, ret);
1978 goto out_no_memcpy;
1979 }
1980 pl08x->memcpy.chancnt = ret;
1981
1982 /* Register slave channels */
1983 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1984 pl08x->pd->num_slave_channels, true);
1985 if (ret <= 0) {
1986 dev_warn(&pl08x->adev->dev,
1987 "%s failed to enumerate slave channels - %d\n",
1988 __func__, ret);
1989 goto out_no_slave;
1990 }
1991 pl08x->slave.chancnt = ret;
1992
1993 ret = dma_async_device_register(&pl08x->memcpy);
1994 if (ret) {
1995 dev_warn(&pl08x->adev->dev,
1996 "%s failed to register memcpy as an async device - %d\n",
1997 __func__, ret);
1998 goto out_no_memcpy_reg;
1999 }
2000
2001 ret = dma_async_device_register(&pl08x->slave);
2002 if (ret) {
2003 dev_warn(&pl08x->adev->dev,
2004 "%s failed to register slave as an async device - %d\n",
2005 __func__, ret);
2006 goto out_no_slave_reg;
2007 }
2008
2009 amba_set_drvdata(adev, pl08x);
2010 init_pl08x_debugfs(pl08x);
2011 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2012 amba_part(adev), amba_rev(adev),
2013 (unsigned long long)adev->res.start, adev->irq[0]);
2014
2015 return 0;
2016
2017 out_no_slave_reg:
2018 dma_async_device_unregister(&pl08x->memcpy);
2019 out_no_memcpy_reg:
2020 pl08x_free_virtual_channels(&pl08x->slave);
2021 out_no_slave:
2022 pl08x_free_virtual_channels(&pl08x->memcpy);
2023 out_no_memcpy:
2024 kfree(pl08x->phy_chans);
2025 out_no_phychans:
2026 free_irq(adev->irq[0], pl08x);
2027 out_no_irq:
2028 iounmap(pl08x->base);
2029 out_no_ioremap:
2030 dma_pool_destroy(pl08x->pool);
2031 out_no_lli_pool:
2032 out_no_platdata:
2033 kfree(pl08x);
2034 out_no_pl08x:
2035 amba_release_regions(adev);
2036 return ret;
2037 }
2038
2039 /* PL080 has 8 channels and the PL080 have just 2 */
2040 static struct vendor_data vendor_pl080 = {
2041 .channels = 8,
2042 .dualmaster = true,
2043 };
2044
2045 static struct vendor_data vendor_nomadik = {
2046 .channels = 8,
2047 .dualmaster = true,
2048 .nomadik = true,
2049 };
2050
2051 static struct vendor_data vendor_pl081 = {
2052 .channels = 2,
2053 .dualmaster = false,
2054 };
2055
2056 static struct amba_id pl08x_ids[] = {
2057 /* PL080 */
2058 {
2059 .id = 0x00041080,
2060 .mask = 0x000fffff,
2061 .data = &vendor_pl080,
2062 },
2063 /* PL081 */
2064 {
2065 .id = 0x00041081,
2066 .mask = 0x000fffff,
2067 .data = &vendor_pl081,
2068 },
2069 /* Nomadik 8815 PL080 variant */
2070 {
2071 .id = 0x00280080,
2072 .mask = 0x00ffffff,
2073 .data = &vendor_nomadik,
2074 },
2075 { 0, 0 },
2076 };
2077
2078 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2079
2080 static struct amba_driver pl08x_amba_driver = {
2081 .drv.name = DRIVER_NAME,
2082 .id_table = pl08x_ids,
2083 .probe = pl08x_probe,
2084 };
2085
2086 static int __init pl08x_init(void)
2087 {
2088 int retval;
2089 retval = amba_driver_register(&pl08x_amba_driver);
2090 if (retval)
2091 printk(KERN_WARNING DRIVER_NAME
2092 "failed to register as an AMBA device (%d)\n",
2093 retval);
2094 return retval;
2095 }
2096 subsys_initcall(pl08x_init);
This page took 0.072996 seconds and 5 git commands to generate.