ARM: PL08x: fix locking between prepare function and submit function
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the
23 * file called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/dmapool.h>
83 #include <linux/dmaengine.h>
84 #include <linux/amba/bus.h>
85 #include <linux/amba/pl08x.h>
86 #include <linux/debugfs.h>
87 #include <linux/seq_file.h>
88
89 #include <asm/hardware/pl080.h>
90
91 #define DRIVER_NAME "pl08xdmac"
92
93 /**
94 * struct vendor_data - vendor-specific config parameters
95 * for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters
98 * or not.
99 */
100 struct vendor_data {
101 u8 channels;
102 bool dualmaster;
103 };
104
105 /*
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
110 */
111 struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
116 };
117
118 /**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
131 * @lock: a spinlock for this struct
132 */
133 struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
138 const struct vendor_data *vd;
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
143 u8 lli_buses;
144 u8 mem_buses;
145 spinlock_t lock;
146 };
147
148 /*
149 * PL08X specific defines
150 */
151
152 /*
153 * Memory boundaries: the manual for PL08x says that the controller
154 * cannot read past a 1KiB boundary, so these defines are used to
155 * create transfer LLIs that do not cross such boundaries.
156 */
157 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
158 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159
160 /* Minimum period between work queue runs */
161 #define PL08X_WQ_PERIODMIN 20
162
163 /* Size (bytes) of each LLI buffer allocated for one transfer */
164 # define PL08X_LLI_TSFR_SIZE 0x2000
165
166 /* Maximum times we call dma_pool_alloc on this pool without freeing */
167 #define PL08X_MAX_ALLOCS 0x40
168 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
169 #define PL08X_ALIGN 8
170
171 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
172 {
173 return container_of(chan, struct pl08x_dma_chan, chan);
174 }
175
176 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
177 {
178 return container_of(tx, struct pl08x_txd, tx);
179 }
180
181 /*
182 * Physical channel handling
183 */
184
185 /* Whether a certain channel is busy or not */
186 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
187 {
188 unsigned int val;
189
190 val = readl(ch->base + PL080_CH_CONFIG);
191 return val & PL080_CONFIG_ACTIVE;
192 }
193
194 /*
195 * Set the initial DMA register values i.e. those for the first LLI
196 * The next LLI pointer and the configuration interrupt bit have
197 * been set when the LLIs were constructed. Poke them into the hardware
198 * and start the transfer.
199 */
200 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
201 struct pl08x_txd *txd)
202 {
203 struct pl08x_driver_data *pl08x = plchan->host;
204 struct pl08x_phy_chan *phychan = plchan->phychan;
205 struct pl08x_lli *lli = &txd->llis_va[0];
206 u32 val;
207
208 plchan->at = txd;
209
210 /* Wait for channel inactive */
211 while (pl08x_phy_channel_busy(phychan))
212 cpu_relax();
213
214 dev_vdbg(&pl08x->adev->dev,
215 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
216 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
217 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
218 txd->ccfg);
219
220 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
221 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
222 writel(lli->lli, phychan->base + PL080_CH_LLI);
223 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
224 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
225
226 /* Enable the DMA channel */
227 /* Do not access config register until channel shows as disabled */
228 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
229 cpu_relax();
230
231 /* Do not access config register until channel shows as inactive */
232 val = readl(phychan->base + PL080_CH_CONFIG);
233 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
234 val = readl(phychan->base + PL080_CH_CONFIG);
235
236 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
237 }
238
239 /*
240 * Overall DMAC remains enabled always.
241 *
242 * Disabling individual channels could lose data.
243 *
244 * Disable the peripheral DMA after disabling the DMAC
245 * in order to allow the DMAC FIFO to drain, and
246 * hence allow the channel to show inactive
247 *
248 */
249 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
250 {
251 u32 val;
252
253 /* Set the HALT bit and wait for the FIFO to drain */
254 val = readl(ch->base + PL080_CH_CONFIG);
255 val |= PL080_CONFIG_HALT;
256 writel(val, ch->base + PL080_CH_CONFIG);
257
258 /* Wait for channel inactive */
259 while (pl08x_phy_channel_busy(ch))
260 cpu_relax();
261 }
262
263 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
264 {
265 u32 val;
266
267 /* Clear the HALT bit */
268 val = readl(ch->base + PL080_CH_CONFIG);
269 val &= ~PL080_CONFIG_HALT;
270 writel(val, ch->base + PL080_CH_CONFIG);
271 }
272
273
274 /* Stops the channel */
275 static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
276 {
277 u32 val;
278
279 pl08x_pause_phy_chan(ch);
280
281 /* Disable channel */
282 val = readl(ch->base + PL080_CH_CONFIG);
283 val &= ~PL080_CONFIG_ENABLE;
284 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
285 val &= ~PL080_CONFIG_TC_IRQ_MASK;
286 writel(val, ch->base + PL080_CH_CONFIG);
287 }
288
289 static inline u32 get_bytes_in_cctl(u32 cctl)
290 {
291 /* The source width defines the number of bytes */
292 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
293
294 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
295 case PL080_WIDTH_8BIT:
296 break;
297 case PL080_WIDTH_16BIT:
298 bytes *= 2;
299 break;
300 case PL080_WIDTH_32BIT:
301 bytes *= 4;
302 break;
303 }
304 return bytes;
305 }
306
307 /* The channel should be paused when calling this */
308 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
309 {
310 struct pl08x_phy_chan *ch;
311 struct pl08x_txd *txd;
312 unsigned long flags;
313 size_t bytes = 0;
314
315 spin_lock_irqsave(&plchan->lock, flags);
316 ch = plchan->phychan;
317 txd = plchan->at;
318
319 /*
320 * Follow the LLIs to get the number of remaining
321 * bytes in the currently active transaction.
322 */
323 if (ch && txd) {
324 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
325
326 /* First get the remaining bytes in the active transfer */
327 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
328
329 if (clli) {
330 struct pl08x_lli *llis_va = txd->llis_va;
331 dma_addr_t llis_bus = txd->llis_bus;
332 int index;
333
334 BUG_ON(clli < llis_bus || clli >= llis_bus +
335 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
336
337 /*
338 * Locate the next LLI - as this is an array,
339 * it's simple maths to find.
340 */
341 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
342
343 for (; index < MAX_NUM_TSFR_LLIS; index++) {
344 bytes += get_bytes_in_cctl(llis_va[index].cctl);
345
346 /*
347 * A LLI pointer of 0 terminates the LLI list
348 */
349 if (!llis_va[index].lli)
350 break;
351 }
352 }
353 }
354
355 /* Sum up all queued transactions */
356 if (!list_empty(&plchan->pend_list)) {
357 struct pl08x_txd *txdi;
358 list_for_each_entry(txdi, &plchan->pend_list, node) {
359 bytes += txdi->len;
360 }
361 }
362
363 spin_unlock_irqrestore(&plchan->lock, flags);
364
365 return bytes;
366 }
367
368 /*
369 * Allocate a physical channel for a virtual channel
370 */
371 static struct pl08x_phy_chan *
372 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
373 struct pl08x_dma_chan *virt_chan)
374 {
375 struct pl08x_phy_chan *ch = NULL;
376 unsigned long flags;
377 int i;
378
379 /*
380 * Try to locate a physical channel to be used for
381 * this transfer. If all are taken return NULL and
382 * the requester will have to cope by using some fallback
383 * PIO mode or retrying later.
384 */
385 for (i = 0; i < pl08x->vd->channels; i++) {
386 ch = &pl08x->phy_chans[i];
387
388 spin_lock_irqsave(&ch->lock, flags);
389
390 if (!ch->serving) {
391 ch->serving = virt_chan;
392 ch->signal = -1;
393 spin_unlock_irqrestore(&ch->lock, flags);
394 break;
395 }
396
397 spin_unlock_irqrestore(&ch->lock, flags);
398 }
399
400 if (i == pl08x->vd->channels) {
401 /* No physical channel available, cope with it */
402 return NULL;
403 }
404
405 return ch;
406 }
407
408 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
409 struct pl08x_phy_chan *ch)
410 {
411 unsigned long flags;
412
413 /* Stop the channel and clear its interrupts */
414 pl08x_stop_phy_chan(ch);
415 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
416 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
417
418 /* Mark it as free */
419 spin_lock_irqsave(&ch->lock, flags);
420 ch->serving = NULL;
421 spin_unlock_irqrestore(&ch->lock, flags);
422 }
423
424 /*
425 * LLI handling
426 */
427
428 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
429 {
430 switch (coded) {
431 case PL080_WIDTH_8BIT:
432 return 1;
433 case PL080_WIDTH_16BIT:
434 return 2;
435 case PL080_WIDTH_32BIT:
436 return 4;
437 default:
438 break;
439 }
440 BUG();
441 return 0;
442 }
443
444 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
445 size_t tsize)
446 {
447 u32 retbits = cctl;
448
449 /* Remove all src, dst and transfer size bits */
450 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
451 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
452 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
453
454 /* Then set the bits according to the parameters */
455 switch (srcwidth) {
456 case 1:
457 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
458 break;
459 case 2:
460 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
461 break;
462 case 4:
463 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
464 break;
465 default:
466 BUG();
467 break;
468 }
469
470 switch (dstwidth) {
471 case 1:
472 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
473 break;
474 case 2:
475 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
476 break;
477 case 4:
478 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
479 break;
480 default:
481 BUG();
482 break;
483 }
484
485 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
486 return retbits;
487 }
488
489 struct pl08x_lli_build_data {
490 struct pl08x_txd *txd;
491 struct pl08x_driver_data *pl08x;
492 struct pl08x_bus_data srcbus;
493 struct pl08x_bus_data dstbus;
494 size_t remainder;
495 };
496
497 /*
498 * Autoselect a master bus to use for the transfer
499 * this prefers the destination bus if both available
500 * if fixed address on one bus the other will be chosen
501 */
502 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
503 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
504 {
505 if (!(cctl & PL080_CONTROL_DST_INCR)) {
506 *mbus = &bd->srcbus;
507 *sbus = &bd->dstbus;
508 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
509 *mbus = &bd->dstbus;
510 *sbus = &bd->srcbus;
511 } else {
512 if (bd->dstbus.buswidth == 4) {
513 *mbus = &bd->dstbus;
514 *sbus = &bd->srcbus;
515 } else if (bd->srcbus.buswidth == 4) {
516 *mbus = &bd->srcbus;
517 *sbus = &bd->dstbus;
518 } else if (bd->dstbus.buswidth == 2) {
519 *mbus = &bd->dstbus;
520 *sbus = &bd->srcbus;
521 } else if (bd->srcbus.buswidth == 2) {
522 *mbus = &bd->srcbus;
523 *sbus = &bd->dstbus;
524 } else {
525 /* bd->srcbus.buswidth == 1 */
526 *mbus = &bd->dstbus;
527 *sbus = &bd->srcbus;
528 }
529 }
530 }
531
532 /*
533 * Fills in one LLI for a certain transfer descriptor
534 * and advance the counter
535 */
536 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
537 int num_llis, int len, u32 cctl)
538 {
539 struct pl08x_lli *llis_va = bd->txd->llis_va;
540 dma_addr_t llis_bus = bd->txd->llis_bus;
541
542 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
543
544 llis_va[num_llis].cctl = cctl;
545 llis_va[num_llis].src = bd->srcbus.addr;
546 llis_va[num_llis].dst = bd->dstbus.addr;
547 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
548 if (bd->pl08x->lli_buses & PL08X_AHB2)
549 llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
550
551 if (cctl & PL080_CONTROL_SRC_INCR)
552 bd->srcbus.addr += len;
553 if (cctl & PL080_CONTROL_DST_INCR)
554 bd->dstbus.addr += len;
555
556 BUG_ON(bd->remainder < len);
557
558 bd->remainder -= len;
559 }
560
561 /*
562 * Return number of bytes to fill to boundary, or len.
563 * This calculation works for any value of addr.
564 */
565 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
566 {
567 size_t boundary_len = PL08X_BOUNDARY_SIZE -
568 (addr & (PL08X_BOUNDARY_SIZE - 1));
569
570 return min(boundary_len, len);
571 }
572
573 /*
574 * This fills in the table of LLIs for the transfer descriptor
575 * Note that we assume we never have to change the burst sizes
576 * Return 0 for error
577 */
578 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
579 struct pl08x_txd *txd)
580 {
581 struct pl08x_bus_data *mbus, *sbus;
582 struct pl08x_lli_build_data bd;
583 int num_llis = 0;
584 u32 cctl;
585 size_t max_bytes_per_lli;
586 size_t total_bytes = 0;
587 struct pl08x_lli *llis_va;
588
589 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
590 &txd->llis_bus);
591 if (!txd->llis_va) {
592 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
593 return 0;
594 }
595
596 pl08x->pool_ctr++;
597
598 /* Get the default CCTL */
599 cctl = txd->cctl;
600
601 bd.txd = txd;
602 bd.pl08x = pl08x;
603 bd.srcbus.addr = txd->src_addr;
604 bd.dstbus.addr = txd->dst_addr;
605
606 /* Find maximum width of the source bus */
607 bd.srcbus.maxwidth =
608 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
609 PL080_CONTROL_SWIDTH_SHIFT);
610
611 /* Find maximum width of the destination bus */
612 bd.dstbus.maxwidth =
613 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
614 PL080_CONTROL_DWIDTH_SHIFT);
615
616 /* Set up the bus widths to the maximum */
617 bd.srcbus.buswidth = bd.srcbus.maxwidth;
618 bd.dstbus.buswidth = bd.dstbus.maxwidth;
619 dev_vdbg(&pl08x->adev->dev,
620 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
621 __func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
622
623
624 /*
625 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
626 */
627 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
628 PL080_CONTROL_TRANSFER_SIZE_MASK;
629 dev_vdbg(&pl08x->adev->dev,
630 "%s max bytes per lli = %zu\n",
631 __func__, max_bytes_per_lli);
632
633 /* We need to count this down to zero */
634 bd.remainder = txd->len;
635 dev_vdbg(&pl08x->adev->dev,
636 "%s remainder = %zu\n",
637 __func__, bd.remainder);
638
639 /*
640 * Choose bus to align to
641 * - prefers destination bus if both available
642 * - if fixed address on one bus chooses other
643 * - modifies cctl to choose an appropriate master
644 */
645 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
646
647 if (txd->len < mbus->buswidth) {
648 /*
649 * Less than a bus width available
650 * - send as single bytes
651 */
652 while (bd.remainder) {
653 dev_vdbg(&pl08x->adev->dev,
654 "%s single byte LLIs for a transfer of "
655 "less than a bus width (remain 0x%08x)\n",
656 __func__, bd.remainder);
657 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
658 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
659 total_bytes++;
660 }
661 } else {
662 /*
663 * Make one byte LLIs until master bus is aligned
664 * - slave will then be aligned also
665 */
666 while ((mbus->addr) % (mbus->buswidth)) {
667 dev_vdbg(&pl08x->adev->dev,
668 "%s adjustment lli for less than bus width "
669 "(remain 0x%08x)\n",
670 __func__, bd.remainder);
671 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
672 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
673 total_bytes++;
674 }
675
676 /*
677 * Master now aligned
678 * - if slave is not then we must set its width down
679 */
680 if (sbus->addr % sbus->buswidth) {
681 dev_dbg(&pl08x->adev->dev,
682 "%s set down bus width to one byte\n",
683 __func__);
684
685 sbus->buswidth = 1;
686 }
687
688 /*
689 * Make largest possible LLIs until less than one bus
690 * width left
691 */
692 while (bd.remainder > (mbus->buswidth - 1)) {
693 size_t lli_len, target_len, tsize, odd_bytes;
694
695 /*
696 * If enough left try to send max possible,
697 * otherwise try to send the remainder
698 */
699 target_len = min(bd.remainder, max_bytes_per_lli);
700
701 /*
702 * Set bus lengths for incrementing buses to the
703 * number of bytes which fill to next memory boundary,
704 * limiting on the target length calculated above.
705 */
706 if (cctl & PL080_CONTROL_SRC_INCR)
707 bd.srcbus.fill_bytes =
708 pl08x_pre_boundary(bd.srcbus.addr,
709 target_len);
710 else
711 bd.srcbus.fill_bytes = target_len;
712
713 if (cctl & PL080_CONTROL_DST_INCR)
714 bd.dstbus.fill_bytes =
715 pl08x_pre_boundary(bd.dstbus.addr,
716 target_len);
717 else
718 bd.dstbus.fill_bytes = target_len;
719
720 /* Find the nearest */
721 lli_len = min(bd.srcbus.fill_bytes,
722 bd.dstbus.fill_bytes);
723
724 BUG_ON(lli_len > bd.remainder);
725
726 if (lli_len <= 0) {
727 dev_err(&pl08x->adev->dev,
728 "%s lli_len is %zu, <= 0\n",
729 __func__, lli_len);
730 return 0;
731 }
732
733 if (lli_len == target_len) {
734 /*
735 * Can send what we wanted
736 */
737 /*
738 * Maintain alignment
739 */
740 lli_len = (lli_len/mbus->buswidth) *
741 mbus->buswidth;
742 odd_bytes = 0;
743 } else {
744 /*
745 * So now we know how many bytes to transfer
746 * to get to the nearest boundary
747 * The next LLI will past the boundary
748 * - however we may be working to a boundary
749 * on the slave bus
750 * We need to ensure the master stays aligned
751 */
752 odd_bytes = lli_len % mbus->buswidth;
753 /*
754 * - and that we are working in multiples
755 * of the bus widths
756 */
757 lli_len -= odd_bytes;
758
759 }
760
761 if (lli_len) {
762 /*
763 * Check against minimum bus alignment:
764 * Calculate actual transfer size in relation
765 * to bus width an get a maximum remainder of
766 * the smallest bus width - 1
767 */
768 /* FIXME: use round_down()? */
769 tsize = lli_len / min(mbus->buswidth,
770 sbus->buswidth);
771 lli_len = tsize * min(mbus->buswidth,
772 sbus->buswidth);
773
774 if (target_len != lli_len) {
775 dev_vdbg(&pl08x->adev->dev,
776 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
777 __func__, target_len, lli_len, txd->len);
778 }
779
780 cctl = pl08x_cctl_bits(cctl,
781 bd.srcbus.buswidth,
782 bd.dstbus.buswidth,
783 tsize);
784
785 dev_vdbg(&pl08x->adev->dev,
786 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
787 __func__, lli_len, bd.remainder);
788 pl08x_fill_lli_for_desc(&bd, num_llis++,
789 lli_len, cctl);
790 total_bytes += lli_len;
791 }
792
793
794 if (odd_bytes) {
795 /*
796 * Creep past the boundary,
797 * maintaining master alignment
798 */
799 int j;
800 for (j = 0; (j < mbus->buswidth)
801 && (bd.remainder); j++) {
802 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
803 dev_vdbg(&pl08x->adev->dev,
804 "%s align with boundary, single byte (remain 0x%08zx)\n",
805 __func__, bd.remainder);
806 pl08x_fill_lli_for_desc(&bd,
807 num_llis++, 1, cctl);
808 total_bytes++;
809 }
810 }
811 }
812
813 /*
814 * Send any odd bytes
815 */
816 while (bd.remainder) {
817 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
818 dev_vdbg(&pl08x->adev->dev,
819 "%s align with boundary, single odd byte (remain %zu)\n",
820 __func__, bd.remainder);
821 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
822 total_bytes++;
823 }
824 }
825 if (total_bytes != txd->len) {
826 dev_err(&pl08x->adev->dev,
827 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
828 __func__, total_bytes, txd->len);
829 return 0;
830 }
831
832 if (num_llis >= MAX_NUM_TSFR_LLIS) {
833 dev_err(&pl08x->adev->dev,
834 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
835 __func__, (u32) MAX_NUM_TSFR_LLIS);
836 return 0;
837 }
838
839 llis_va = txd->llis_va;
840 /*
841 * The final LLI terminates the LLI.
842 */
843 llis_va[num_llis - 1].lli = 0;
844 /*
845 * The final LLI element shall also fire an interrupt
846 */
847 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
848
849 #ifdef VERBOSE_DEBUG
850 {
851 int i;
852
853 for (i = 0; i < num_llis; i++) {
854 dev_vdbg(&pl08x->adev->dev,
855 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
856 i,
857 &llis_va[i],
858 llis_va[i].src,
859 llis_va[i].dst,
860 llis_va[i].cctl,
861 llis_va[i].lli
862 );
863 }
864 }
865 #endif
866
867 return num_llis;
868 }
869
870 /* You should call this with the struct pl08x lock held */
871 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
872 struct pl08x_txd *txd)
873 {
874 /* Free the LLI */
875 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
876
877 pl08x->pool_ctr--;
878
879 kfree(txd);
880 }
881
882 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
883 struct pl08x_dma_chan *plchan)
884 {
885 struct pl08x_txd *txdi = NULL;
886 struct pl08x_txd *next;
887
888 if (!list_empty(&plchan->pend_list)) {
889 list_for_each_entry_safe(txdi,
890 next, &plchan->pend_list, node) {
891 list_del(&txdi->node);
892 pl08x_free_txd(pl08x, txdi);
893 }
894
895 }
896 }
897
898 /*
899 * The DMA ENGINE API
900 */
901 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
902 {
903 return 0;
904 }
905
906 static void pl08x_free_chan_resources(struct dma_chan *chan)
907 {
908 }
909
910 /*
911 * This should be called with the channel plchan->lock held
912 */
913 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
914 struct pl08x_txd *txd)
915 {
916 struct pl08x_driver_data *pl08x = plchan->host;
917 struct pl08x_phy_chan *ch;
918 int ret;
919
920 /* Check if we already have a channel */
921 if (plchan->phychan)
922 return 0;
923
924 ch = pl08x_get_phy_channel(pl08x, plchan);
925 if (!ch) {
926 /* No physical channel available, cope with it */
927 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
928 return -EBUSY;
929 }
930
931 /*
932 * OK we have a physical channel: for memcpy() this is all we
933 * need, but for slaves the physical signals may be muxed!
934 * Can the platform allow us to use this channel?
935 */
936 if (plchan->slave &&
937 ch->signal < 0 &&
938 pl08x->pd->get_signal) {
939 ret = pl08x->pd->get_signal(plchan);
940 if (ret < 0) {
941 dev_dbg(&pl08x->adev->dev,
942 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
943 ch->id, plchan->name);
944 /* Release physical channel & return */
945 pl08x_put_phy_channel(pl08x, ch);
946 return -EBUSY;
947 }
948 ch->signal = ret;
949
950 /* Assign the flow control signal to this channel */
951 if (txd->direction == DMA_TO_DEVICE)
952 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
953 else if (txd->direction == DMA_FROM_DEVICE)
954 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
955 }
956
957 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
958 ch->id,
959 ch->signal,
960 plchan->name);
961
962 plchan->phychan_hold++;
963 plchan->phychan = ch;
964
965 return 0;
966 }
967
968 static void release_phy_channel(struct pl08x_dma_chan *plchan)
969 {
970 struct pl08x_driver_data *pl08x = plchan->host;
971
972 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
973 pl08x->pd->put_signal(plchan);
974 plchan->phychan->signal = -1;
975 }
976 pl08x_put_phy_channel(pl08x, plchan->phychan);
977 plchan->phychan = NULL;
978 }
979
980 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
981 {
982 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
983 struct pl08x_txd *txd = to_pl08x_txd(tx);
984 unsigned long flags;
985
986 spin_lock_irqsave(&plchan->lock, flags);
987
988 plchan->chan.cookie += 1;
989 if (plchan->chan.cookie < 0)
990 plchan->chan.cookie = 1;
991 tx->cookie = plchan->chan.cookie;
992
993 /* Put this onto the pending list */
994 list_add_tail(&txd->node, &plchan->pend_list);
995
996 /*
997 * If there was no physical channel available for this memcpy,
998 * stack the request up and indicate that the channel is waiting
999 * for a free physical channel.
1000 */
1001 if (!plchan->slave && !plchan->phychan) {
1002 /* Do this memcpy whenever there is a channel ready */
1003 plchan->state = PL08X_CHAN_WAITING;
1004 plchan->waiting = txd;
1005 } else {
1006 plchan->phychan_hold--;
1007 }
1008
1009 spin_unlock_irqrestore(&plchan->lock, flags);
1010
1011 return tx->cookie;
1012 }
1013
1014 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1015 struct dma_chan *chan, unsigned long flags)
1016 {
1017 struct dma_async_tx_descriptor *retval = NULL;
1018
1019 return retval;
1020 }
1021
1022 /*
1023 * Code accessing dma_async_is_complete() in a tight loop
1024 * may give problems - could schedule where indicated.
1025 * If slaves are relying on interrupts to signal completion this
1026 * function must not be called with interrupts disabled
1027 */
1028 static enum dma_status
1029 pl08x_dma_tx_status(struct dma_chan *chan,
1030 dma_cookie_t cookie,
1031 struct dma_tx_state *txstate)
1032 {
1033 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1034 dma_cookie_t last_used;
1035 dma_cookie_t last_complete;
1036 enum dma_status ret;
1037 u32 bytesleft = 0;
1038
1039 last_used = plchan->chan.cookie;
1040 last_complete = plchan->lc;
1041
1042 ret = dma_async_is_complete(cookie, last_complete, last_used);
1043 if (ret == DMA_SUCCESS) {
1044 dma_set_tx_state(txstate, last_complete, last_used, 0);
1045 return ret;
1046 }
1047
1048 /*
1049 * schedule(); could be inserted here
1050 */
1051
1052 /*
1053 * This cookie not complete yet
1054 */
1055 last_used = plchan->chan.cookie;
1056 last_complete = plchan->lc;
1057
1058 /* Get number of bytes left in the active transactions and queue */
1059 bytesleft = pl08x_getbytes_chan(plchan);
1060
1061 dma_set_tx_state(txstate, last_complete, last_used,
1062 bytesleft);
1063
1064 if (plchan->state == PL08X_CHAN_PAUSED)
1065 return DMA_PAUSED;
1066
1067 /* Whether waiting or running, we're in progress */
1068 return DMA_IN_PROGRESS;
1069 }
1070
1071 /* PrimeCell DMA extension */
1072 struct burst_table {
1073 int burstwords;
1074 u32 reg;
1075 };
1076
1077 static const struct burst_table burst_sizes[] = {
1078 {
1079 .burstwords = 256,
1080 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1081 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1082 },
1083 {
1084 .burstwords = 128,
1085 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1086 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1087 },
1088 {
1089 .burstwords = 64,
1090 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1091 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1092 },
1093 {
1094 .burstwords = 32,
1095 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1096 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1097 },
1098 {
1099 .burstwords = 16,
1100 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1101 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1102 },
1103 {
1104 .burstwords = 8,
1105 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1106 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1107 },
1108 {
1109 .burstwords = 4,
1110 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1111 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1112 },
1113 {
1114 .burstwords = 1,
1115 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1116 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1117 },
1118 };
1119
1120 static void dma_set_runtime_config(struct dma_chan *chan,
1121 struct dma_slave_config *config)
1122 {
1123 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1124 struct pl08x_driver_data *pl08x = plchan->host;
1125 struct pl08x_channel_data *cd = plchan->cd;
1126 enum dma_slave_buswidth addr_width;
1127 u32 maxburst;
1128 u32 cctl = 0;
1129 int i;
1130
1131 /* Transfer direction */
1132 plchan->runtime_direction = config->direction;
1133 if (config->direction == DMA_TO_DEVICE) {
1134 plchan->runtime_addr = config->dst_addr;
1135 addr_width = config->dst_addr_width;
1136 maxburst = config->dst_maxburst;
1137 } else if (config->direction == DMA_FROM_DEVICE) {
1138 plchan->runtime_addr = config->src_addr;
1139 addr_width = config->src_addr_width;
1140 maxburst = config->src_maxburst;
1141 } else {
1142 dev_err(&pl08x->adev->dev,
1143 "bad runtime_config: alien transfer direction\n");
1144 return;
1145 }
1146
1147 switch (addr_width) {
1148 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1149 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1150 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1151 break;
1152 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1153 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1154 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1155 break;
1156 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1157 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1158 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1159 break;
1160 default:
1161 dev_err(&pl08x->adev->dev,
1162 "bad runtime_config: alien address width\n");
1163 return;
1164 }
1165
1166 /*
1167 * Now decide on a maxburst:
1168 * If this channel will only request single transfers, set this
1169 * down to ONE element. Also select one element if no maxburst
1170 * is specified.
1171 */
1172 if (plchan->cd->single || maxburst == 0) {
1173 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1174 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1175 } else {
1176 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1177 if (burst_sizes[i].burstwords <= maxburst)
1178 break;
1179 cctl |= burst_sizes[i].reg;
1180 }
1181
1182 /* Modify the default channel data to fit PrimeCell request */
1183 cd->cctl = cctl;
1184
1185 dev_dbg(&pl08x->adev->dev,
1186 "configured channel %s (%s) for %s, data width %d, "
1187 "maxburst %d words, LE, CCTL=0x%08x\n",
1188 dma_chan_name(chan), plchan->name,
1189 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1190 addr_width,
1191 maxburst,
1192 cctl);
1193 }
1194
1195 /*
1196 * Slave transactions callback to the slave device to allow
1197 * synchronization of slave DMA signals with the DMAC enable
1198 */
1199 static void pl08x_issue_pending(struct dma_chan *chan)
1200 {
1201 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1202 unsigned long flags;
1203
1204 spin_lock_irqsave(&plchan->lock, flags);
1205 /* Something is already active, or we're waiting for a channel... */
1206 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1207 spin_unlock_irqrestore(&plchan->lock, flags);
1208 return;
1209 }
1210
1211 /* Take the first element in the queue and execute it */
1212 if (!list_empty(&plchan->pend_list)) {
1213 struct pl08x_txd *next;
1214
1215 next = list_first_entry(&plchan->pend_list,
1216 struct pl08x_txd,
1217 node);
1218 list_del(&next->node);
1219 plchan->state = PL08X_CHAN_RUNNING;
1220
1221 pl08x_start_txd(plchan, next);
1222 }
1223
1224 spin_unlock_irqrestore(&plchan->lock, flags);
1225 }
1226
1227 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1228 struct pl08x_txd *txd)
1229 {
1230 struct pl08x_driver_data *pl08x = plchan->host;
1231 unsigned long flags;
1232 int num_llis, ret;
1233
1234 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1235 if (!num_llis) {
1236 kfree(txd);
1237 return -EINVAL;
1238 }
1239
1240 spin_lock_irqsave(&plchan->lock, flags);
1241
1242 /*
1243 * See if we already have a physical channel allocated,
1244 * else this is the time to try to get one.
1245 */
1246 ret = prep_phy_channel(plchan, txd);
1247 if (ret) {
1248 /*
1249 * No physical channel was available.
1250 *
1251 * memcpy transfers can be sorted out at submission time.
1252 *
1253 * Slave transfers may have been denied due to platform
1254 * channel muxing restrictions. Since there is no guarantee
1255 * that this will ever be resolved, and the signal must be
1256 * acquired AFTER acquiring the physical channel, we will let
1257 * them be NACK:ed with -EBUSY here. The drivers can retry
1258 * the prep() call if they are eager on doing this using DMA.
1259 */
1260 if (plchan->slave) {
1261 pl08x_free_txd_list(pl08x, plchan);
1262 pl08x_free_txd(pl08x, txd);
1263 spin_unlock_irqrestore(&plchan->lock, flags);
1264 return -EBUSY;
1265 }
1266 } else
1267 /*
1268 * Else we're all set, paused and ready to roll,
1269 * status will switch to PL08X_CHAN_RUNNING when
1270 * we call issue_pending(). If there is something
1271 * running on the channel already we don't change
1272 * its state.
1273 */
1274 if (plchan->state == PL08X_CHAN_IDLE)
1275 plchan->state = PL08X_CHAN_PAUSED;
1276
1277 spin_unlock_irqrestore(&plchan->lock, flags);
1278
1279 return 0;
1280 }
1281
1282 /*
1283 * Given the source and destination available bus masks, select which
1284 * will be routed to each port. We try to have source and destination
1285 * on separate ports, but always respect the allowable settings.
1286 */
1287 static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
1288 {
1289 u32 cctl = 0;
1290
1291 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1292 cctl |= PL080_CONTROL_DST_AHB2;
1293 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1294 cctl |= PL080_CONTROL_SRC_AHB2;
1295
1296 return cctl;
1297 }
1298
1299 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1300 unsigned long flags)
1301 {
1302 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1303
1304 if (txd) {
1305 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1306 txd->tx.flags = flags;
1307 txd->tx.tx_submit = pl08x_tx_submit;
1308 INIT_LIST_HEAD(&txd->node);
1309
1310 /* Always enable error and terminal interrupts */
1311 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1312 PL080_CONFIG_TC_IRQ_MASK;
1313 }
1314 return txd;
1315 }
1316
1317 /*
1318 * Initialize a descriptor to be used by memcpy submit
1319 */
1320 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1321 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1322 size_t len, unsigned long flags)
1323 {
1324 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1325 struct pl08x_driver_data *pl08x = plchan->host;
1326 struct pl08x_txd *txd;
1327 int ret;
1328
1329 txd = pl08x_get_txd(plchan, flags);
1330 if (!txd) {
1331 dev_err(&pl08x->adev->dev,
1332 "%s no memory for descriptor\n", __func__);
1333 return NULL;
1334 }
1335
1336 txd->direction = DMA_NONE;
1337 txd->src_addr = src;
1338 txd->dst_addr = dest;
1339 txd->len = len;
1340
1341 /* Set platform data for m2m */
1342 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1343 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1344 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1345
1346 /* Both to be incremented or the code will break */
1347 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1348
1349 if (pl08x->vd->dualmaster)
1350 txd->cctl |= pl08x_select_bus(pl08x,
1351 pl08x->mem_buses, pl08x->mem_buses);
1352
1353 ret = pl08x_prep_channel_resources(plchan, txd);
1354 if (ret)
1355 return NULL;
1356
1357 return &txd->tx;
1358 }
1359
1360 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1361 struct dma_chan *chan, struct scatterlist *sgl,
1362 unsigned int sg_len, enum dma_data_direction direction,
1363 unsigned long flags)
1364 {
1365 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1366 struct pl08x_driver_data *pl08x = plchan->host;
1367 struct pl08x_txd *txd;
1368 u8 src_buses, dst_buses;
1369 int ret;
1370
1371 /*
1372 * Current implementation ASSUMES only one sg
1373 */
1374 if (sg_len != 1) {
1375 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1376 __func__);
1377 BUG();
1378 }
1379
1380 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1381 __func__, sgl->length, plchan->name);
1382
1383 txd = pl08x_get_txd(plchan, flags);
1384 if (!txd) {
1385 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1386 return NULL;
1387 }
1388
1389 if (direction != plchan->runtime_direction)
1390 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1391 "the direction configured for the PrimeCell\n",
1392 __func__);
1393
1394 /*
1395 * Set up addresses, the PrimeCell configured address
1396 * will take precedence since this may configure the
1397 * channel target address dynamically at runtime.
1398 */
1399 txd->direction = direction;
1400 txd->len = sgl->length;
1401
1402 txd->cctl = plchan->cd->cctl &
1403 ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1404 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1405 PL080_CONTROL_PROT_MASK);
1406
1407 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1408 txd->cctl |= PL080_CONTROL_PROT_SYS;
1409
1410 if (direction == DMA_TO_DEVICE) {
1411 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1412 txd->cctl |= PL080_CONTROL_SRC_INCR;
1413 txd->src_addr = sgl->dma_address;
1414 if (plchan->runtime_addr)
1415 txd->dst_addr = plchan->runtime_addr;
1416 else
1417 txd->dst_addr = plchan->cd->addr;
1418 src_buses = pl08x->mem_buses;
1419 dst_buses = plchan->cd->periph_buses;
1420 } else if (direction == DMA_FROM_DEVICE) {
1421 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1422 txd->cctl |= PL080_CONTROL_DST_INCR;
1423 if (plchan->runtime_addr)
1424 txd->src_addr = plchan->runtime_addr;
1425 else
1426 txd->src_addr = plchan->cd->addr;
1427 txd->dst_addr = sgl->dma_address;
1428 src_buses = plchan->cd->periph_buses;
1429 dst_buses = pl08x->mem_buses;
1430 } else {
1431 dev_err(&pl08x->adev->dev,
1432 "%s direction unsupported\n", __func__);
1433 return NULL;
1434 }
1435
1436 txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
1437
1438 ret = pl08x_prep_channel_resources(plchan, txd);
1439 if (ret)
1440 return NULL;
1441
1442 return &txd->tx;
1443 }
1444
1445 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1446 unsigned long arg)
1447 {
1448 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1449 struct pl08x_driver_data *pl08x = plchan->host;
1450 unsigned long flags;
1451 int ret = 0;
1452
1453 /* Controls applicable to inactive channels */
1454 if (cmd == DMA_SLAVE_CONFIG) {
1455 dma_set_runtime_config(chan,
1456 (struct dma_slave_config *)
1457 arg);
1458 return 0;
1459 }
1460
1461 /*
1462 * Anything succeeds on channels with no physical allocation and
1463 * no queued transfers.
1464 */
1465 spin_lock_irqsave(&plchan->lock, flags);
1466 if (!plchan->phychan && !plchan->at) {
1467 spin_unlock_irqrestore(&plchan->lock, flags);
1468 return 0;
1469 }
1470
1471 switch (cmd) {
1472 case DMA_TERMINATE_ALL:
1473 plchan->state = PL08X_CHAN_IDLE;
1474
1475 if (plchan->phychan) {
1476 pl08x_stop_phy_chan(plchan->phychan);
1477
1478 /*
1479 * Mark physical channel as free and free any slave
1480 * signal
1481 */
1482 release_phy_channel(plchan);
1483 }
1484 /* Dequeue jobs and free LLIs */
1485 if (plchan->at) {
1486 pl08x_free_txd(pl08x, plchan->at);
1487 plchan->at = NULL;
1488 }
1489 /* Dequeue jobs not yet fired as well */
1490 pl08x_free_txd_list(pl08x, plchan);
1491 break;
1492 case DMA_PAUSE:
1493 pl08x_pause_phy_chan(plchan->phychan);
1494 plchan->state = PL08X_CHAN_PAUSED;
1495 break;
1496 case DMA_RESUME:
1497 pl08x_resume_phy_chan(plchan->phychan);
1498 plchan->state = PL08X_CHAN_RUNNING;
1499 break;
1500 default:
1501 /* Unknown command */
1502 ret = -ENXIO;
1503 break;
1504 }
1505
1506 spin_unlock_irqrestore(&plchan->lock, flags);
1507
1508 return ret;
1509 }
1510
1511 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1512 {
1513 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1514 char *name = chan_id;
1515
1516 /* Check that the channel is not taken! */
1517 if (!strcmp(plchan->name, name))
1518 return true;
1519
1520 return false;
1521 }
1522
1523 /*
1524 * Just check that the device is there and active
1525 * TODO: turn this bit on/off depending on the number of
1526 * physical channels actually used, if it is zero... well
1527 * shut it off. That will save some power. Cut the clock
1528 * at the same time.
1529 */
1530 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1531 {
1532 u32 val;
1533
1534 val = readl(pl08x->base + PL080_CONFIG);
1535 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1536 /* We implicitly clear bit 1 and that means little-endian mode */
1537 val |= PL080_CONFIG_ENABLE;
1538 writel(val, pl08x->base + PL080_CONFIG);
1539 }
1540
1541 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1542 {
1543 struct device *dev = txd->tx.chan->device->dev;
1544
1545 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1546 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1547 dma_unmap_single(dev, txd->src_addr, txd->len,
1548 DMA_TO_DEVICE);
1549 else
1550 dma_unmap_page(dev, txd->src_addr, txd->len,
1551 DMA_TO_DEVICE);
1552 }
1553 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1554 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1555 dma_unmap_single(dev, txd->dst_addr, txd->len,
1556 DMA_FROM_DEVICE);
1557 else
1558 dma_unmap_page(dev, txd->dst_addr, txd->len,
1559 DMA_FROM_DEVICE);
1560 }
1561 }
1562
1563 static void pl08x_tasklet(unsigned long data)
1564 {
1565 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1566 struct pl08x_driver_data *pl08x = plchan->host;
1567 struct pl08x_txd *txd;
1568 unsigned long flags;
1569
1570 spin_lock_irqsave(&plchan->lock, flags);
1571
1572 txd = plchan->at;
1573 plchan->at = NULL;
1574
1575 if (txd) {
1576 /*
1577 * Update last completed
1578 */
1579 plchan->lc = txd->tx.cookie;
1580 }
1581
1582 /*
1583 * If a new descriptor is queued, set it up
1584 * plchan->at is NULL here
1585 */
1586 if (!list_empty(&plchan->pend_list)) {
1587 struct pl08x_txd *next;
1588
1589 next = list_first_entry(&plchan->pend_list,
1590 struct pl08x_txd,
1591 node);
1592 list_del(&next->node);
1593
1594 pl08x_start_txd(plchan, next);
1595 } else if (plchan->phychan_hold) {
1596 /*
1597 * This channel is still in use - we have a new txd being
1598 * prepared and will soon be queued. Don't give up the
1599 * physical channel.
1600 */
1601 } else {
1602 struct pl08x_dma_chan *waiting = NULL;
1603
1604 /*
1605 * No more jobs, so free up the physical channel
1606 * Free any allocated signal on slave transfers too
1607 */
1608 release_phy_channel(plchan);
1609 plchan->state = PL08X_CHAN_IDLE;
1610
1611 /*
1612 * And NOW before anyone else can grab that free:d
1613 * up physical channel, see if there is some memcpy
1614 * pending that seriously needs to start because of
1615 * being stacked up while we were choking the
1616 * physical channels with data.
1617 */
1618 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1619 chan.device_node) {
1620 if (waiting->state == PL08X_CHAN_WAITING &&
1621 waiting->waiting != NULL) {
1622 int ret;
1623
1624 /* This should REALLY not fail now */
1625 ret = prep_phy_channel(waiting,
1626 waiting->waiting);
1627 BUG_ON(ret);
1628 waiting->phychan_hold--;
1629 waiting->state = PL08X_CHAN_RUNNING;
1630 waiting->waiting = NULL;
1631 pl08x_issue_pending(&waiting->chan);
1632 break;
1633 }
1634 }
1635 }
1636
1637 spin_unlock_irqrestore(&plchan->lock, flags);
1638
1639 if (txd) {
1640 dma_async_tx_callback callback = txd->tx.callback;
1641 void *callback_param = txd->tx.callback_param;
1642
1643 /* Don't try to unmap buffers on slave channels */
1644 if (!plchan->slave)
1645 pl08x_unmap_buffers(txd);
1646
1647 /* Free the descriptor */
1648 spin_lock_irqsave(&plchan->lock, flags);
1649 pl08x_free_txd(pl08x, txd);
1650 spin_unlock_irqrestore(&plchan->lock, flags);
1651
1652 /* Callback to signal completion */
1653 if (callback)
1654 callback(callback_param);
1655 }
1656 }
1657
1658 static irqreturn_t pl08x_irq(int irq, void *dev)
1659 {
1660 struct pl08x_driver_data *pl08x = dev;
1661 u32 mask = 0;
1662 u32 val;
1663 int i;
1664
1665 val = readl(pl08x->base + PL080_ERR_STATUS);
1666 if (val) {
1667 /*
1668 * An error interrupt (on one or more channels)
1669 */
1670 dev_err(&pl08x->adev->dev,
1671 "%s error interrupt, register value 0x%08x\n",
1672 __func__, val);
1673 /*
1674 * Simply clear ALL PL08X error interrupts,
1675 * regardless of channel and cause
1676 * FIXME: should be 0x00000003 on PL081 really.
1677 */
1678 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1679 }
1680 val = readl(pl08x->base + PL080_INT_STATUS);
1681 for (i = 0; i < pl08x->vd->channels; i++) {
1682 if ((1 << i) & val) {
1683 /* Locate physical channel */
1684 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1685 struct pl08x_dma_chan *plchan = phychan->serving;
1686
1687 /* Schedule tasklet on this channel */
1688 tasklet_schedule(&plchan->tasklet);
1689
1690 mask |= (1 << i);
1691 }
1692 }
1693 /*
1694 * Clear only the terminal interrupts on channels we processed
1695 */
1696 writel(mask, pl08x->base + PL080_TC_CLEAR);
1697
1698 return mask ? IRQ_HANDLED : IRQ_NONE;
1699 }
1700
1701 /*
1702 * Initialise the DMAC memcpy/slave channels.
1703 * Make a local wrapper to hold required data
1704 */
1705 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1706 struct dma_device *dmadev,
1707 unsigned int channels,
1708 bool slave)
1709 {
1710 struct pl08x_dma_chan *chan;
1711 int i;
1712
1713 INIT_LIST_HEAD(&dmadev->channels);
1714 /*
1715 * Register as many many memcpy as we have physical channels,
1716 * we won't always be able to use all but the code will have
1717 * to cope with that situation.
1718 */
1719 for (i = 0; i < channels; i++) {
1720 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1721 if (!chan) {
1722 dev_err(&pl08x->adev->dev,
1723 "%s no memory for channel\n", __func__);
1724 return -ENOMEM;
1725 }
1726
1727 chan->host = pl08x;
1728 chan->state = PL08X_CHAN_IDLE;
1729
1730 if (slave) {
1731 chan->slave = true;
1732 chan->name = pl08x->pd->slave_channels[i].bus_id;
1733 chan->cd = &pl08x->pd->slave_channels[i];
1734 } else {
1735 chan->cd = &pl08x->pd->memcpy_channel;
1736 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1737 if (!chan->name) {
1738 kfree(chan);
1739 return -ENOMEM;
1740 }
1741 }
1742 if (chan->cd->circular_buffer) {
1743 dev_err(&pl08x->adev->dev,
1744 "channel %s: circular buffers not supported\n",
1745 chan->name);
1746 kfree(chan);
1747 continue;
1748 }
1749 dev_info(&pl08x->adev->dev,
1750 "initialize virtual channel \"%s\"\n",
1751 chan->name);
1752
1753 chan->chan.device = dmadev;
1754 chan->chan.cookie = 0;
1755 chan->lc = 0;
1756
1757 spin_lock_init(&chan->lock);
1758 INIT_LIST_HEAD(&chan->pend_list);
1759 tasklet_init(&chan->tasklet, pl08x_tasklet,
1760 (unsigned long) chan);
1761
1762 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1763 }
1764 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1765 i, slave ? "slave" : "memcpy");
1766 return i;
1767 }
1768
1769 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1770 {
1771 struct pl08x_dma_chan *chan = NULL;
1772 struct pl08x_dma_chan *next;
1773
1774 list_for_each_entry_safe(chan,
1775 next, &dmadev->channels, chan.device_node) {
1776 list_del(&chan->chan.device_node);
1777 kfree(chan);
1778 }
1779 }
1780
1781 #ifdef CONFIG_DEBUG_FS
1782 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1783 {
1784 switch (state) {
1785 case PL08X_CHAN_IDLE:
1786 return "idle";
1787 case PL08X_CHAN_RUNNING:
1788 return "running";
1789 case PL08X_CHAN_PAUSED:
1790 return "paused";
1791 case PL08X_CHAN_WAITING:
1792 return "waiting";
1793 default:
1794 break;
1795 }
1796 return "UNKNOWN STATE";
1797 }
1798
1799 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1800 {
1801 struct pl08x_driver_data *pl08x = s->private;
1802 struct pl08x_dma_chan *chan;
1803 struct pl08x_phy_chan *ch;
1804 unsigned long flags;
1805 int i;
1806
1807 seq_printf(s, "PL08x physical channels:\n");
1808 seq_printf(s, "CHANNEL:\tUSER:\n");
1809 seq_printf(s, "--------\t-----\n");
1810 for (i = 0; i < pl08x->vd->channels; i++) {
1811 struct pl08x_dma_chan *virt_chan;
1812
1813 ch = &pl08x->phy_chans[i];
1814
1815 spin_lock_irqsave(&ch->lock, flags);
1816 virt_chan = ch->serving;
1817
1818 seq_printf(s, "%d\t\t%s\n",
1819 ch->id, virt_chan ? virt_chan->name : "(none)");
1820
1821 spin_unlock_irqrestore(&ch->lock, flags);
1822 }
1823
1824 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1825 seq_printf(s, "CHANNEL:\tSTATE:\n");
1826 seq_printf(s, "--------\t------\n");
1827 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1828 seq_printf(s, "%s\t\t%s\n", chan->name,
1829 pl08x_state_str(chan->state));
1830 }
1831
1832 seq_printf(s, "\nPL08x virtual slave channels:\n");
1833 seq_printf(s, "CHANNEL:\tSTATE:\n");
1834 seq_printf(s, "--------\t------\n");
1835 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1836 seq_printf(s, "%s\t\t%s\n", chan->name,
1837 pl08x_state_str(chan->state));
1838 }
1839
1840 return 0;
1841 }
1842
1843 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1844 {
1845 return single_open(file, pl08x_debugfs_show, inode->i_private);
1846 }
1847
1848 static const struct file_operations pl08x_debugfs_operations = {
1849 .open = pl08x_debugfs_open,
1850 .read = seq_read,
1851 .llseek = seq_lseek,
1852 .release = single_release,
1853 };
1854
1855 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1856 {
1857 /* Expose a simple debugfs interface to view all clocks */
1858 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1859 NULL, pl08x,
1860 &pl08x_debugfs_operations);
1861 }
1862
1863 #else
1864 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1865 {
1866 }
1867 #endif
1868
1869 static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1870 {
1871 struct pl08x_driver_data *pl08x;
1872 const struct vendor_data *vd = id->data;
1873 int ret = 0;
1874 int i;
1875
1876 ret = amba_request_regions(adev, NULL);
1877 if (ret)
1878 return ret;
1879
1880 /* Create the driver state holder */
1881 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1882 if (!pl08x) {
1883 ret = -ENOMEM;
1884 goto out_no_pl08x;
1885 }
1886
1887 /* Initialize memcpy engine */
1888 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1889 pl08x->memcpy.dev = &adev->dev;
1890 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1891 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1892 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1893 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1894 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1895 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1896 pl08x->memcpy.device_control = pl08x_control;
1897
1898 /* Initialize slave engine */
1899 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1900 pl08x->slave.dev = &adev->dev;
1901 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1902 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1903 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1904 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1905 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1906 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1907 pl08x->slave.device_control = pl08x_control;
1908
1909 /* Get the platform data */
1910 pl08x->pd = dev_get_platdata(&adev->dev);
1911 if (!pl08x->pd) {
1912 dev_err(&adev->dev, "no platform data supplied\n");
1913 goto out_no_platdata;
1914 }
1915
1916 /* Assign useful pointers to the driver state */
1917 pl08x->adev = adev;
1918 pl08x->vd = vd;
1919
1920 /* By default, AHB1 only. If dualmaster, from platform */
1921 pl08x->lli_buses = PL08X_AHB1;
1922 pl08x->mem_buses = PL08X_AHB1;
1923 if (pl08x->vd->dualmaster) {
1924 pl08x->lli_buses = pl08x->pd->lli_buses;
1925 pl08x->mem_buses = pl08x->pd->mem_buses;
1926 }
1927
1928 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1929 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1930 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1931 if (!pl08x->pool) {
1932 ret = -ENOMEM;
1933 goto out_no_lli_pool;
1934 }
1935
1936 spin_lock_init(&pl08x->lock);
1937
1938 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1939 if (!pl08x->base) {
1940 ret = -ENOMEM;
1941 goto out_no_ioremap;
1942 }
1943
1944 /* Turn on the PL08x */
1945 pl08x_ensure_on(pl08x);
1946
1947 /*
1948 * Attach the interrupt handler
1949 */
1950 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1951 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1952
1953 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1954 DRIVER_NAME, pl08x);
1955 if (ret) {
1956 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1957 __func__, adev->irq[0]);
1958 goto out_no_irq;
1959 }
1960
1961 /* Initialize physical channels */
1962 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1963 GFP_KERNEL);
1964 if (!pl08x->phy_chans) {
1965 dev_err(&adev->dev, "%s failed to allocate "
1966 "physical channel holders\n",
1967 __func__);
1968 goto out_no_phychans;
1969 }
1970
1971 for (i = 0; i < vd->channels; i++) {
1972 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1973
1974 ch->id = i;
1975 ch->base = pl08x->base + PL080_Cx_BASE(i);
1976 spin_lock_init(&ch->lock);
1977 ch->serving = NULL;
1978 ch->signal = -1;
1979 dev_info(&adev->dev,
1980 "physical channel %d is %s\n", i,
1981 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1982 }
1983
1984 /* Register as many memcpy channels as there are physical channels */
1985 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1986 pl08x->vd->channels, false);
1987 if (ret <= 0) {
1988 dev_warn(&pl08x->adev->dev,
1989 "%s failed to enumerate memcpy channels - %d\n",
1990 __func__, ret);
1991 goto out_no_memcpy;
1992 }
1993 pl08x->memcpy.chancnt = ret;
1994
1995 /* Register slave channels */
1996 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1997 pl08x->pd->num_slave_channels,
1998 true);
1999 if (ret <= 0) {
2000 dev_warn(&pl08x->adev->dev,
2001 "%s failed to enumerate slave channels - %d\n",
2002 __func__, ret);
2003 goto out_no_slave;
2004 }
2005 pl08x->slave.chancnt = ret;
2006
2007 ret = dma_async_device_register(&pl08x->memcpy);
2008 if (ret) {
2009 dev_warn(&pl08x->adev->dev,
2010 "%s failed to register memcpy as an async device - %d\n",
2011 __func__, ret);
2012 goto out_no_memcpy_reg;
2013 }
2014
2015 ret = dma_async_device_register(&pl08x->slave);
2016 if (ret) {
2017 dev_warn(&pl08x->adev->dev,
2018 "%s failed to register slave as an async device - %d\n",
2019 __func__, ret);
2020 goto out_no_slave_reg;
2021 }
2022
2023 amba_set_drvdata(adev, pl08x);
2024 init_pl08x_debugfs(pl08x);
2025 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2026 amba_part(adev), amba_rev(adev),
2027 (unsigned long long)adev->res.start, adev->irq[0]);
2028 return 0;
2029
2030 out_no_slave_reg:
2031 dma_async_device_unregister(&pl08x->memcpy);
2032 out_no_memcpy_reg:
2033 pl08x_free_virtual_channels(&pl08x->slave);
2034 out_no_slave:
2035 pl08x_free_virtual_channels(&pl08x->memcpy);
2036 out_no_memcpy:
2037 kfree(pl08x->phy_chans);
2038 out_no_phychans:
2039 free_irq(adev->irq[0], pl08x);
2040 out_no_irq:
2041 iounmap(pl08x->base);
2042 out_no_ioremap:
2043 dma_pool_destroy(pl08x->pool);
2044 out_no_lli_pool:
2045 out_no_platdata:
2046 kfree(pl08x);
2047 out_no_pl08x:
2048 amba_release_regions(adev);
2049 return ret;
2050 }
2051
2052 /* PL080 has 8 channels and the PL080 have just 2 */
2053 static struct vendor_data vendor_pl080 = {
2054 .channels = 8,
2055 .dualmaster = true,
2056 };
2057
2058 static struct vendor_data vendor_pl081 = {
2059 .channels = 2,
2060 .dualmaster = false,
2061 };
2062
2063 static struct amba_id pl08x_ids[] = {
2064 /* PL080 */
2065 {
2066 .id = 0x00041080,
2067 .mask = 0x000fffff,
2068 .data = &vendor_pl080,
2069 },
2070 /* PL081 */
2071 {
2072 .id = 0x00041081,
2073 .mask = 0x000fffff,
2074 .data = &vendor_pl081,
2075 },
2076 /* Nomadik 8815 PL080 variant */
2077 {
2078 .id = 0x00280880,
2079 .mask = 0x00ffffff,
2080 .data = &vendor_pl080,
2081 },
2082 { 0, 0 },
2083 };
2084
2085 static struct amba_driver pl08x_amba_driver = {
2086 .drv.name = DRIVER_NAME,
2087 .id_table = pl08x_ids,
2088 .probe = pl08x_probe,
2089 };
2090
2091 static int __init pl08x_init(void)
2092 {
2093 int retval;
2094 retval = amba_driver_register(&pl08x_amba_driver);
2095 if (retval)
2096 printk(KERN_WARNING DRIVER_NAME
2097 "failed to register as an AMBA device (%d)\n",
2098 retval);
2099 return retval;
2100 }
2101 subsys_initcall(pl08x_init);
This page took 0.132316 seconds and 5 git commands to generate.