Merge branch 'fix/rt5645' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / drivers / dma / at_hdmac.c
1 /*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3 *
4 * Copyright (C) 2008 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 *
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
15 */
16
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32
33 /*
34 * Glossary
35 * --------
36 *
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
40 */
41
42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51 #define ATC_MAX_DSCR_TRIALS 10
52
53 /*
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
56 */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
61
62
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66
67
68 /*----------------------------------------------------------------------*/
69
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
72 {
73 unsigned int width;
74
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
81
82 return width;
83 }
84
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
89 }
90
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
95 }
96
97 /**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
101 *
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
106 */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
109 {
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
113
114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 memset(desc, 0, sizeof(struct at_desc));
117 INIT_LIST_HEAD(&desc->tx_list);
118 dma_async_tx_descriptor_init(&desc->txd, chan);
119 /* txd.flags will be overwritten in prep functions */
120 desc->txd.flags = DMA_CTRL_ACK;
121 desc->txd.tx_submit = atc_tx_submit;
122 desc->txd.phys = phys;
123 }
124
125 return desc;
126 }
127
128 /**
129 * atc_desc_get - get an unused descriptor from free_list
130 * @atchan: channel we want a new descriptor for
131 */
132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133 {
134 struct at_desc *desc, *_desc;
135 struct at_desc *ret = NULL;
136 unsigned long flags;
137 unsigned int i = 0;
138 LIST_HEAD(tmp_list);
139
140 spin_lock_irqsave(&atchan->lock, flags);
141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 i++;
143 if (async_tx_test_ack(&desc->txd)) {
144 list_del(&desc->desc_node);
145 ret = desc;
146 break;
147 }
148 dev_dbg(chan2dev(&atchan->chan_common),
149 "desc %p not ACKed\n", desc);
150 }
151 spin_unlock_irqrestore(&atchan->lock, flags);
152 dev_vdbg(chan2dev(&atchan->chan_common),
153 "scanned %u descriptors on freelist\n", i);
154
155 /* no more descriptor available in initial pool: create one more */
156 if (!ret) {
157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 if (ret) {
159 spin_lock_irqsave(&atchan->lock, flags);
160 atchan->descs_allocated++;
161 spin_unlock_irqrestore(&atchan->lock, flags);
162 } else {
163 dev_err(chan2dev(&atchan->chan_common),
164 "not enough descriptors available\n");
165 }
166 }
167
168 return ret;
169 }
170
171 /**
172 * atc_desc_put - move a descriptor, including any children, to the free list
173 * @atchan: channel we work on
174 * @desc: descriptor, at the head of a chain, to move to free list
175 */
176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177 {
178 if (desc) {
179 struct at_desc *child;
180 unsigned long flags;
181
182 spin_lock_irqsave(&atchan->lock, flags);
183 list_for_each_entry(child, &desc->tx_list, desc_node)
184 dev_vdbg(chan2dev(&atchan->chan_common),
185 "moving child desc %p to freelist\n",
186 child);
187 list_splice_init(&desc->tx_list, &atchan->free_list);
188 dev_vdbg(chan2dev(&atchan->chan_common),
189 "moving desc %p to freelist\n", desc);
190 list_add(&desc->desc_node, &atchan->free_list);
191 spin_unlock_irqrestore(&atchan->lock, flags);
192 }
193 }
194
195 /**
196 * atc_desc_chain - build chain adding a descriptor
197 * @first: address of first descriptor of the chain
198 * @prev: address of previous descriptor of the chain
199 * @desc: descriptor to queue
200 *
201 * Called from prep_* functions
202 */
203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 struct at_desc *desc)
205 {
206 if (!(*first)) {
207 *first = desc;
208 } else {
209 /* inform the HW lli about chaining */
210 (*prev)->lli.dscr = desc->txd.phys;
211 /* insert the link descriptor to the LD ring */
212 list_add_tail(&desc->desc_node,
213 &(*first)->tx_list);
214 }
215 *prev = desc;
216 }
217
218 /**
219 * atc_dostart - starts the DMA engine for real
220 * @atchan: the channel we want to start
221 * @first: first descriptor in the list we want to begin with
222 *
223 * Called with atchan->lock held and bh disabled
224 */
225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226 {
227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
228
229 /* ASSERT: channel is idle */
230 if (atc_chan_is_enabled(atchan)) {
231 dev_err(chan2dev(&atchan->chan_common),
232 "BUG: Attempted to start non-idle channel\n");
233 dev_err(chan2dev(&atchan->chan_common),
234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 channel_readl(atchan, SADDR),
236 channel_readl(atchan, DADDR),
237 channel_readl(atchan, CTRLA),
238 channel_readl(atchan, CTRLB),
239 channel_readl(atchan, DSCR));
240
241 /* The tasklet will hopefully advance the queue... */
242 return;
243 }
244
245 vdbg_dump_regs(atchan);
246
247 channel_writel(atchan, SADDR, 0);
248 channel_writel(atchan, DADDR, 0);
249 channel_writel(atchan, CTRLA, 0);
250 channel_writel(atchan, CTRLB, 0);
251 channel_writel(atchan, DSCR, first->txd.phys);
252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 ATC_SPIP_BOUNDARY(first->boundary));
254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 ATC_DPIP_BOUNDARY(first->boundary));
256 dma_writel(atdma, CHER, atchan->mask);
257
258 vdbg_dump_regs(atchan);
259 }
260
261 /*
262 * atc_get_desc_by_cookie - get the descriptor of a cookie
263 * @atchan: the DMA channel
264 * @cookie: the cookie to get the descriptor for
265 */
266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 dma_cookie_t cookie)
268 {
269 struct at_desc *desc, *_desc;
270
271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 if (desc->txd.cookie == cookie)
273 return desc;
274 }
275
276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 if (desc->txd.cookie == cookie)
278 return desc;
279 }
280
281 return NULL;
282 }
283
284 /**
285 * atc_calc_bytes_left - calculates the number of bytes left according to the
286 * value read from CTRLA.
287 *
288 * @current_len: the number of bytes left before reading CTRLA
289 * @ctrla: the value of CTRLA
290 */
291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292 {
293 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295
296 /*
297 * According to the datasheet, when reading the Control A Register
298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 * number of transfers completed on the Source Interface.
300 * So btsize is always a number of source width transfers.
301 */
302 return current_len - (btsize << src_width);
303 }
304
305 /**
306 * atc_get_bytes_left - get the number of bytes residue for a cookie
307 * @chan: DMA channel
308 * @cookie: transaction identifier to check status of
309 */
310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311 {
312 struct at_dma_chan *atchan = to_at_dma_chan(chan);
313 struct at_desc *desc_first = atc_first_active(atchan);
314 struct at_desc *desc;
315 int ret;
316 u32 ctrla, dscr, trials;
317
318 /*
319 * If the cookie doesn't match to the currently running transfer then
320 * we can return the total length of the associated DMA transfer,
321 * because it is still queued.
322 */
323 desc = atc_get_desc_by_cookie(atchan, cookie);
324 if (desc == NULL)
325 return -EINVAL;
326 else if (desc != desc_first)
327 return desc->total_len;
328
329 /* cookie matches to the currently running transfer */
330 ret = desc_first->total_len;
331
332 if (desc_first->lli.dscr) {
333 /* hardware linked list transfer */
334
335 /*
336 * Calculate the residue by removing the length of the child
337 * descriptors already transferred from the total length.
338 * To get the current child descriptor we can use the value of
339 * the channel's DSCR register and compare it against the value
340 * of the hardware linked list structure of each child
341 * descriptor.
342 *
343 * The CTRLA register provides us with the amount of data
344 * already read from the source for the current child
345 * descriptor. So we can compute a more accurate residue by also
346 * removing the number of bytes corresponding to this amount of
347 * data.
348 *
349 * However, the DSCR and CTRLA registers cannot be read both
350 * atomically. Hence a race condition may occur: the first read
351 * register may refer to one child descriptor whereas the second
352 * read may refer to a later child descriptor in the list
353 * because of the DMA transfer progression inbetween the two
354 * reads.
355 *
356 * One solution could have been to pause the DMA transfer, read
357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 * this approach presents some drawbacks:
359 * - If the DMA transfer is paused, RX overruns or TX underruns
360 * are more likey to occur depending on the system latency.
361 * Taking the USART driver as an example, it uses a cyclic DMA
362 * transfer to read data from the Receive Holding Register
363 * (RHR) to avoid RX overruns since the RHR is not protected
364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 * to compute the residue would break the USART driver design.
366 * - The atc_pause() function masks interrupts but we'd rather
367 * avoid to do so for system latency purpose.
368 *
369 * Then we'd rather use another solution: the DSCR is read a
370 * first time, the CTRLA is read in turn, next the DSCR is read
371 * a second time. If the two consecutive read values of the DSCR
372 * are the same then we assume both refers to the very same
373 * child descriptor as well as the CTRLA value read inbetween
374 * does. For cyclic tranfers, the assumption is that a full loop
375 * is "not so fast".
376 * If the two DSCR values are different, we read again the CTRLA
377 * then the DSCR till two consecutive read values from DSCR are
378 * equal or till the maxium trials is reach.
379 * This algorithm is very unlikely not to find a stable value for
380 * DSCR.
381 */
382
383 dscr = channel_readl(atchan, DSCR);
384 rmb(); /* ensure DSCR is read before CTRLA */
385 ctrla = channel_readl(atchan, CTRLA);
386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 u32 new_dscr;
388
389 rmb(); /* ensure DSCR is read after CTRLA */
390 new_dscr = channel_readl(atchan, DSCR);
391
392 /*
393 * If the DSCR register value has not changed inside the
394 * DMA controller since the previous read, we assume
395 * that both the dscr and ctrla values refers to the
396 * very same descriptor.
397 */
398 if (likely(new_dscr == dscr))
399 break;
400
401 /*
402 * DSCR has changed inside the DMA controller, so the
403 * previouly read value of CTRLA may refer to an already
404 * processed descriptor hence could be outdated.
405 * We need to update ctrla to match the current
406 * descriptor.
407 */
408 dscr = new_dscr;
409 rmb(); /* ensure DSCR is read before CTRLA */
410 ctrla = channel_readl(atchan, CTRLA);
411 }
412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 return -ETIMEDOUT;
414
415 /* for the first descriptor we can be more accurate */
416 if (desc_first->lli.dscr == dscr)
417 return atc_calc_bytes_left(ret, ctrla);
418
419 ret -= desc_first->len;
420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 if (desc->lli.dscr == dscr)
422 break;
423
424 ret -= desc->len;
425 }
426
427 /*
428 * For the current descriptor in the chain we can calculate
429 * the remaining bytes using the channel's register.
430 */
431 ret = atc_calc_bytes_left(ret, ctrla);
432 } else {
433 /* single transfer */
434 ctrla = channel_readl(atchan, CTRLA);
435 ret = atc_calc_bytes_left(ret, ctrla);
436 }
437
438 return ret;
439 }
440
441 /**
442 * atc_chain_complete - finish work for one transaction chain
443 * @atchan: channel we work on
444 * @desc: descriptor at the head of the chain we want do complete
445 *
446 * Called with atchan->lock held and bh disabled */
447 static void
448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449 {
450 struct dma_async_tx_descriptor *txd = &desc->txd;
451
452 dev_vdbg(chan2dev(&atchan->chan_common),
453 "descriptor %u complete\n", txd->cookie);
454
455 /* mark the descriptor as complete for non cyclic cases only */
456 if (!atc_chan_is_cyclic(atchan))
457 dma_cookie_complete(txd);
458
459 /* move children to free_list */
460 list_splice_init(&desc->tx_list, &atchan->free_list);
461 /* move myself to free_list */
462 list_move(&desc->desc_node, &atchan->free_list);
463
464 dma_descriptor_unmap(txd);
465 /* for cyclic transfers,
466 * no need to replay callback function while stopping */
467 if (!atc_chan_is_cyclic(atchan)) {
468 dma_async_tx_callback callback = txd->callback;
469 void *param = txd->callback_param;
470
471 /*
472 * The API requires that no submissions are done from a
473 * callback, so we don't need to drop the lock here
474 */
475 if (callback)
476 callback(param);
477 }
478
479 dma_run_dependencies(txd);
480 }
481
482 /**
483 * atc_complete_all - finish work for all transactions
484 * @atchan: channel to complete transactions for
485 *
486 * Eventually submit queued descriptors if any
487 *
488 * Assume channel is idle while calling this function
489 * Called with atchan->lock held and bh disabled
490 */
491 static void atc_complete_all(struct at_dma_chan *atchan)
492 {
493 struct at_desc *desc, *_desc;
494 LIST_HEAD(list);
495
496 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
497
498 /*
499 * Submit queued descriptors ASAP, i.e. before we go through
500 * the completed ones.
501 */
502 if (!list_empty(&atchan->queue))
503 atc_dostart(atchan, atc_first_queued(atchan));
504 /* empty active_list now it is completed */
505 list_splice_init(&atchan->active_list, &list);
506 /* empty queue list by moving descriptors (if any) to active_list */
507 list_splice_init(&atchan->queue, &atchan->active_list);
508
509 list_for_each_entry_safe(desc, _desc, &list, desc_node)
510 atc_chain_complete(atchan, desc);
511 }
512
513 /**
514 * atc_advance_work - at the end of a transaction, move forward
515 * @atchan: channel where the transaction ended
516 *
517 * Called with atchan->lock held and bh disabled
518 */
519 static void atc_advance_work(struct at_dma_chan *atchan)
520 {
521 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
522
523 if (atc_chan_is_enabled(atchan))
524 return;
525
526 if (list_empty(&atchan->active_list) ||
527 list_is_singular(&atchan->active_list)) {
528 atc_complete_all(atchan);
529 } else {
530 atc_chain_complete(atchan, atc_first_active(atchan));
531 /* advance work */
532 atc_dostart(atchan, atc_first_active(atchan));
533 }
534 }
535
536
537 /**
538 * atc_handle_error - handle errors reported by DMA controller
539 * @atchan: channel where error occurs
540 *
541 * Called with atchan->lock held and bh disabled
542 */
543 static void atc_handle_error(struct at_dma_chan *atchan)
544 {
545 struct at_desc *bad_desc;
546 struct at_desc *child;
547
548 /*
549 * The descriptor currently at the head of the active list is
550 * broked. Since we don't have any way to report errors, we'll
551 * just have to scream loudly and try to carry on.
552 */
553 bad_desc = atc_first_active(atchan);
554 list_del_init(&bad_desc->desc_node);
555
556 /* As we are stopped, take advantage to push queued descriptors
557 * in active_list */
558 list_splice_init(&atchan->queue, atchan->active_list.prev);
559
560 /* Try to restart the controller */
561 if (!list_empty(&atchan->active_list))
562 atc_dostart(atchan, atc_first_active(atchan));
563
564 /*
565 * KERN_CRITICAL may seem harsh, but since this only happens
566 * when someone submits a bad physical address in a
567 * descriptor, we should consider ourselves lucky that the
568 * controller flagged an error instead of scribbling over
569 * random memory locations.
570 */
571 dev_crit(chan2dev(&atchan->chan_common),
572 "Bad descriptor submitted for DMA!\n");
573 dev_crit(chan2dev(&atchan->chan_common),
574 " cookie: %d\n", bad_desc->txd.cookie);
575 atc_dump_lli(atchan, &bad_desc->lli);
576 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
577 atc_dump_lli(atchan, &child->lli);
578
579 /* Pretend the descriptor completed successfully */
580 atc_chain_complete(atchan, bad_desc);
581 }
582
583 /**
584 * atc_handle_cyclic - at the end of a period, run callback function
585 * @atchan: channel used for cyclic operations
586 *
587 * Called with atchan->lock held and bh disabled
588 */
589 static void atc_handle_cyclic(struct at_dma_chan *atchan)
590 {
591 struct at_desc *first = atc_first_active(atchan);
592 struct dma_async_tx_descriptor *txd = &first->txd;
593 dma_async_tx_callback callback = txd->callback;
594 void *param = txd->callback_param;
595
596 dev_vdbg(chan2dev(&atchan->chan_common),
597 "new cyclic period llp 0x%08x\n",
598 channel_readl(atchan, DSCR));
599
600 if (callback)
601 callback(param);
602 }
603
604 /*-- IRQ & Tasklet ---------------------------------------------------*/
605
606 static void atc_tasklet(unsigned long data)
607 {
608 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 unsigned long flags;
610
611 spin_lock_irqsave(&atchan->lock, flags);
612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 atc_handle_error(atchan);
614 else if (atc_chan_is_cyclic(atchan))
615 atc_handle_cyclic(atchan);
616 else
617 atc_advance_work(atchan);
618
619 spin_unlock_irqrestore(&atchan->lock, flags);
620 }
621
622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623 {
624 struct at_dma *atdma = (struct at_dma *)dev_id;
625 struct at_dma_chan *atchan;
626 int i;
627 u32 status, pending, imr;
628 int ret = IRQ_NONE;
629
630 do {
631 imr = dma_readl(atdma, EBCIMR);
632 status = dma_readl(atdma, EBCISR);
633 pending = status & imr;
634
635 if (!pending)
636 break;
637
638 dev_vdbg(atdma->dma_common.dev,
639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 status, imr, pending);
641
642 for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 atchan = &atdma->chan[i];
644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 if (pending & AT_DMA_ERR(i)) {
646 /* Disable channel on AHB error */
647 dma_writel(atdma, CHDR,
648 AT_DMA_RES(i) | atchan->mask);
649 /* Give information to tasklet */
650 set_bit(ATC_IS_ERROR, &atchan->status);
651 }
652 tasklet_schedule(&atchan->tasklet);
653 ret = IRQ_HANDLED;
654 }
655 }
656
657 } while (pending);
658
659 return ret;
660 }
661
662
663 /*-- DMA Engine API --------------------------------------------------*/
664
665 /**
666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667 * @desc: descriptor at the head of the transaction chain
668 *
669 * Queue chain if DMA engine is working already
670 *
671 * Cookie increment and adding to active_list or queue must be atomic
672 */
673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675 struct at_desc *desc = txd_to_at_desc(tx);
676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
677 dma_cookie_t cookie;
678 unsigned long flags;
679
680 spin_lock_irqsave(&atchan->lock, flags);
681 cookie = dma_cookie_assign(tx);
682
683 if (list_empty(&atchan->active_list)) {
684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 desc->txd.cookie);
686 atc_dostart(atchan, desc);
687 list_add_tail(&desc->desc_node, &atchan->active_list);
688 } else {
689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 desc->txd.cookie);
691 list_add_tail(&desc->desc_node, &atchan->queue);
692 }
693
694 spin_unlock_irqrestore(&atchan->lock, flags);
695
696 return cookie;
697 }
698
699 /**
700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701 * @chan: the channel to prepare operation on
702 * @xt: Interleaved transfer template
703 * @flags: tx descriptor status flags
704 */
705 static struct dma_async_tx_descriptor *
706 atc_prep_dma_interleaved(struct dma_chan *chan,
707 struct dma_interleaved_template *xt,
708 unsigned long flags)
709 {
710 struct at_dma_chan *atchan = to_at_dma_chan(chan);
711 struct data_chunk *first = xt->sgl;
712 struct at_desc *desc = NULL;
713 size_t xfer_count;
714 unsigned int dwidth;
715 u32 ctrla;
716 u32 ctrlb;
717 size_t len = 0;
718 int i;
719
720 dev_info(chan2dev(chan),
721 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n",
722 __func__, xt->src_start, xt->dst_start, xt->numf,
723 xt->frame_size, flags);
724
725 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
726 return NULL;
727
728 /*
729 * The controller can only "skip" X bytes every Y bytes, so we
730 * need to make sure we are given a template that fit that
731 * description, ie a template with chunks that always have the
732 * same size, with the same ICGs.
733 */
734 for (i = 0; i < xt->frame_size; i++) {
735 struct data_chunk *chunk = xt->sgl + i;
736
737 if ((chunk->size != xt->sgl->size) ||
738 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
739 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
740 dev_err(chan2dev(chan),
741 "%s: the controller can transfer only identical chunks\n",
742 __func__);
743 return NULL;
744 }
745
746 len += chunk->size;
747 }
748
749 dwidth = atc_get_xfer_width(xt->src_start,
750 xt->dst_start, len);
751
752 xfer_count = len >> dwidth;
753 if (xfer_count > ATC_BTSIZE_MAX) {
754 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
755 return NULL;
756 }
757
758 ctrla = ATC_SRC_WIDTH(dwidth) |
759 ATC_DST_WIDTH(dwidth);
760
761 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
762 | ATC_SRC_ADDR_MODE_INCR
763 | ATC_DST_ADDR_MODE_INCR
764 | ATC_SRC_PIP
765 | ATC_DST_PIP
766 | ATC_FC_MEM2MEM;
767
768 /* create the transfer */
769 desc = atc_desc_get(atchan);
770 if (!desc) {
771 dev_err(chan2dev(chan),
772 "%s: couldn't allocate our descriptor\n", __func__);
773 return NULL;
774 }
775
776 desc->lli.saddr = xt->src_start;
777 desc->lli.daddr = xt->dst_start;
778 desc->lli.ctrla = ctrla | xfer_count;
779 desc->lli.ctrlb = ctrlb;
780
781 desc->boundary = first->size >> dwidth;
782 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
783 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
784
785 desc->txd.cookie = -EBUSY;
786 desc->total_len = desc->len = len;
787
788 /* set end-of-link to the last link descriptor of list*/
789 set_desc_eol(desc);
790
791 desc->txd.flags = flags; /* client is in control of this ack */
792
793 return &desc->txd;
794 }
795
796 /**
797 * atc_prep_dma_memcpy - prepare a memcpy operation
798 * @chan: the channel to prepare operation on
799 * @dest: operation virtual destination address
800 * @src: operation virtual source address
801 * @len: operation length
802 * @flags: tx descriptor status flags
803 */
804 static struct dma_async_tx_descriptor *
805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
806 size_t len, unsigned long flags)
807 {
808 struct at_dma_chan *atchan = to_at_dma_chan(chan);
809 struct at_desc *desc = NULL;
810 struct at_desc *first = NULL;
811 struct at_desc *prev = NULL;
812 size_t xfer_count;
813 size_t offset;
814 unsigned int src_width;
815 unsigned int dst_width;
816 u32 ctrla;
817 u32 ctrlb;
818
819 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n",
820 dest, src, len, flags);
821
822 if (unlikely(!len)) {
823 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
824 return NULL;
825 }
826
827 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
828 | ATC_SRC_ADDR_MODE_INCR
829 | ATC_DST_ADDR_MODE_INCR
830 | ATC_FC_MEM2MEM;
831
832 /*
833 * We can be a lot more clever here, but this should take care
834 * of the most common optimization.
835 */
836 src_width = dst_width = atc_get_xfer_width(src, dest, len);
837
838 ctrla = ATC_SRC_WIDTH(src_width) |
839 ATC_DST_WIDTH(dst_width);
840
841 for (offset = 0; offset < len; offset += xfer_count << src_width) {
842 xfer_count = min_t(size_t, (len - offset) >> src_width,
843 ATC_BTSIZE_MAX);
844
845 desc = atc_desc_get(atchan);
846 if (!desc)
847 goto err_desc_get;
848
849 desc->lli.saddr = src + offset;
850 desc->lli.daddr = dest + offset;
851 desc->lli.ctrla = ctrla | xfer_count;
852 desc->lli.ctrlb = ctrlb;
853
854 desc->txd.cookie = 0;
855 desc->len = xfer_count << src_width;
856
857 atc_desc_chain(&first, &prev, desc);
858 }
859
860 /* First descriptor of the chain embedds additional information */
861 first->txd.cookie = -EBUSY;
862 first->total_len = len;
863
864 /* set end-of-link to the last link descriptor of list*/
865 set_desc_eol(desc);
866
867 first->txd.flags = flags; /* client is in control of this ack */
868
869 return &first->txd;
870
871 err_desc_get:
872 atc_desc_put(atchan, first);
873 return NULL;
874 }
875
876
877 /**
878 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
879 * @chan: DMA channel
880 * @sgl: scatterlist to transfer to/from
881 * @sg_len: number of entries in @scatterlist
882 * @direction: DMA direction
883 * @flags: tx descriptor status flags
884 * @context: transaction context (ignored)
885 */
886 static struct dma_async_tx_descriptor *
887 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
888 unsigned int sg_len, enum dma_transfer_direction direction,
889 unsigned long flags, void *context)
890 {
891 struct at_dma_chan *atchan = to_at_dma_chan(chan);
892 struct at_dma_slave *atslave = chan->private;
893 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
894 struct at_desc *first = NULL;
895 struct at_desc *prev = NULL;
896 u32 ctrla;
897 u32 ctrlb;
898 dma_addr_t reg;
899 unsigned int reg_width;
900 unsigned int mem_width;
901 unsigned int i;
902 struct scatterlist *sg;
903 size_t total_len = 0;
904
905 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
906 sg_len,
907 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
908 flags);
909
910 if (unlikely(!atslave || !sg_len)) {
911 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
912 return NULL;
913 }
914
915 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
916 | ATC_DCSIZE(sconfig->dst_maxburst);
917 ctrlb = ATC_IEN;
918
919 switch (direction) {
920 case DMA_MEM_TO_DEV:
921 reg_width = convert_buswidth(sconfig->dst_addr_width);
922 ctrla |= ATC_DST_WIDTH(reg_width);
923 ctrlb |= ATC_DST_ADDR_MODE_FIXED
924 | ATC_SRC_ADDR_MODE_INCR
925 | ATC_FC_MEM2PER
926 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
927 reg = sconfig->dst_addr;
928 for_each_sg(sgl, sg, sg_len, i) {
929 struct at_desc *desc;
930 u32 len;
931 u32 mem;
932
933 desc = atc_desc_get(atchan);
934 if (!desc)
935 goto err_desc_get;
936
937 mem = sg_dma_address(sg);
938 len = sg_dma_len(sg);
939 if (unlikely(!len)) {
940 dev_dbg(chan2dev(chan),
941 "prep_slave_sg: sg(%d) data length is zero\n", i);
942 goto err;
943 }
944 mem_width = 2;
945 if (unlikely(mem & 3 || len & 3))
946 mem_width = 0;
947
948 desc->lli.saddr = mem;
949 desc->lli.daddr = reg;
950 desc->lli.ctrla = ctrla
951 | ATC_SRC_WIDTH(mem_width)
952 | len >> mem_width;
953 desc->lli.ctrlb = ctrlb;
954 desc->len = len;
955
956 atc_desc_chain(&first, &prev, desc);
957 total_len += len;
958 }
959 break;
960 case DMA_DEV_TO_MEM:
961 reg_width = convert_buswidth(sconfig->src_addr_width);
962 ctrla |= ATC_SRC_WIDTH(reg_width);
963 ctrlb |= ATC_DST_ADDR_MODE_INCR
964 | ATC_SRC_ADDR_MODE_FIXED
965 | ATC_FC_PER2MEM
966 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
967
968 reg = sconfig->src_addr;
969 for_each_sg(sgl, sg, sg_len, i) {
970 struct at_desc *desc;
971 u32 len;
972 u32 mem;
973
974 desc = atc_desc_get(atchan);
975 if (!desc)
976 goto err_desc_get;
977
978 mem = sg_dma_address(sg);
979 len = sg_dma_len(sg);
980 if (unlikely(!len)) {
981 dev_dbg(chan2dev(chan),
982 "prep_slave_sg: sg(%d) data length is zero\n", i);
983 goto err;
984 }
985 mem_width = 2;
986 if (unlikely(mem & 3 || len & 3))
987 mem_width = 0;
988
989 desc->lli.saddr = reg;
990 desc->lli.daddr = mem;
991 desc->lli.ctrla = ctrla
992 | ATC_DST_WIDTH(mem_width)
993 | len >> reg_width;
994 desc->lli.ctrlb = ctrlb;
995 desc->len = len;
996
997 atc_desc_chain(&first, &prev, desc);
998 total_len += len;
999 }
1000 break;
1001 default:
1002 return NULL;
1003 }
1004
1005 /* set end-of-link to the last link descriptor of list*/
1006 set_desc_eol(prev);
1007
1008 /* First descriptor of the chain embedds additional information */
1009 first->txd.cookie = -EBUSY;
1010 first->total_len = total_len;
1011
1012 /* first link descriptor of list is responsible of flags */
1013 first->txd.flags = flags; /* client is in control of this ack */
1014
1015 return &first->txd;
1016
1017 err_desc_get:
1018 dev_err(chan2dev(chan), "not enough descriptors available\n");
1019 err:
1020 atc_desc_put(atchan, first);
1021 return NULL;
1022 }
1023
1024 /**
1025 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1026 * @chan: the channel to prepare operation on
1027 * @dst_sg: destination scatterlist
1028 * @dst_nents: number of destination scatterlist entries
1029 * @src_sg: source scatterlist
1030 * @src_nents: number of source scatterlist entries
1031 * @flags: tx descriptor status flags
1032 */
1033 static struct dma_async_tx_descriptor *
1034 atc_prep_dma_sg(struct dma_chan *chan,
1035 struct scatterlist *dst_sg, unsigned int dst_nents,
1036 struct scatterlist *src_sg, unsigned int src_nents,
1037 unsigned long flags)
1038 {
1039 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1040 struct at_desc *desc = NULL;
1041 struct at_desc *first = NULL;
1042 struct at_desc *prev = NULL;
1043 unsigned int src_width;
1044 unsigned int dst_width;
1045 size_t xfer_count;
1046 u32 ctrla;
1047 u32 ctrlb;
1048 size_t dst_len = 0, src_len = 0;
1049 dma_addr_t dst = 0, src = 0;
1050 size_t len = 0, total_len = 0;
1051
1052 if (unlikely(dst_nents == 0 || src_nents == 0))
1053 return NULL;
1054
1055 if (unlikely(dst_sg == NULL || src_sg == NULL))
1056 return NULL;
1057
1058 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
1059 | ATC_SRC_ADDR_MODE_INCR
1060 | ATC_DST_ADDR_MODE_INCR
1061 | ATC_FC_MEM2MEM;
1062
1063 /*
1064 * loop until there is either no more source or no more destination
1065 * scatterlist entry
1066 */
1067 while (true) {
1068
1069 /* prepare the next transfer */
1070 if (dst_len == 0) {
1071
1072 /* no more destination scatterlist entries */
1073 if (!dst_sg || !dst_nents)
1074 break;
1075
1076 dst = sg_dma_address(dst_sg);
1077 dst_len = sg_dma_len(dst_sg);
1078
1079 dst_sg = sg_next(dst_sg);
1080 dst_nents--;
1081 }
1082
1083 if (src_len == 0) {
1084
1085 /* no more source scatterlist entries */
1086 if (!src_sg || !src_nents)
1087 break;
1088
1089 src = sg_dma_address(src_sg);
1090 src_len = sg_dma_len(src_sg);
1091
1092 src_sg = sg_next(src_sg);
1093 src_nents--;
1094 }
1095
1096 len = min_t(size_t, src_len, dst_len);
1097 if (len == 0)
1098 continue;
1099
1100 /* take care for the alignment */
1101 src_width = dst_width = atc_get_xfer_width(src, dst, len);
1102
1103 ctrla = ATC_SRC_WIDTH(src_width) |
1104 ATC_DST_WIDTH(dst_width);
1105
1106 /*
1107 * The number of transfers to set up refer to the source width
1108 * that depends on the alignment.
1109 */
1110 xfer_count = len >> src_width;
1111 if (xfer_count > ATC_BTSIZE_MAX) {
1112 xfer_count = ATC_BTSIZE_MAX;
1113 len = ATC_BTSIZE_MAX << src_width;
1114 }
1115
1116 /* create the transfer */
1117 desc = atc_desc_get(atchan);
1118 if (!desc)
1119 goto err_desc_get;
1120
1121 desc->lli.saddr = src;
1122 desc->lli.daddr = dst;
1123 desc->lli.ctrla = ctrla | xfer_count;
1124 desc->lli.ctrlb = ctrlb;
1125
1126 desc->txd.cookie = 0;
1127 desc->len = len;
1128
1129 atc_desc_chain(&first, &prev, desc);
1130
1131 /* update the lengths and addresses for the next loop cycle */
1132 dst_len -= len;
1133 src_len -= len;
1134 dst += len;
1135 src += len;
1136
1137 total_len += len;
1138 }
1139
1140 /* First descriptor of the chain embedds additional information */
1141 first->txd.cookie = -EBUSY;
1142 first->total_len = total_len;
1143
1144 /* set end-of-link to the last link descriptor of list*/
1145 set_desc_eol(desc);
1146
1147 first->txd.flags = flags; /* client is in control of this ack */
1148
1149 return &first->txd;
1150
1151 err_desc_get:
1152 atc_desc_put(atchan, first);
1153 return NULL;
1154 }
1155
1156 /**
1157 * atc_dma_cyclic_check_values
1158 * Check for too big/unaligned periods and unaligned DMA buffer
1159 */
1160 static int
1161 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1162 size_t period_len)
1163 {
1164 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1165 goto err_out;
1166 if (unlikely(period_len & ((1 << reg_width) - 1)))
1167 goto err_out;
1168 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1169 goto err_out;
1170
1171 return 0;
1172
1173 err_out:
1174 return -EINVAL;
1175 }
1176
1177 /**
1178 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1179 */
1180 static int
1181 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1182 unsigned int period_index, dma_addr_t buf_addr,
1183 unsigned int reg_width, size_t period_len,
1184 enum dma_transfer_direction direction)
1185 {
1186 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1187 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1188 u32 ctrla;
1189
1190 /* prepare common CRTLA value */
1191 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1192 | ATC_DCSIZE(sconfig->dst_maxburst)
1193 | ATC_DST_WIDTH(reg_width)
1194 | ATC_SRC_WIDTH(reg_width)
1195 | period_len >> reg_width;
1196
1197 switch (direction) {
1198 case DMA_MEM_TO_DEV:
1199 desc->lli.saddr = buf_addr + (period_len * period_index);
1200 desc->lli.daddr = sconfig->dst_addr;
1201 desc->lli.ctrla = ctrla;
1202 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1203 | ATC_SRC_ADDR_MODE_INCR
1204 | ATC_FC_MEM2PER
1205 | ATC_SIF(atchan->mem_if)
1206 | ATC_DIF(atchan->per_if);
1207 desc->len = period_len;
1208 break;
1209
1210 case DMA_DEV_TO_MEM:
1211 desc->lli.saddr = sconfig->src_addr;
1212 desc->lli.daddr = buf_addr + (period_len * period_index);
1213 desc->lli.ctrla = ctrla;
1214 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1215 | ATC_SRC_ADDR_MODE_FIXED
1216 | ATC_FC_PER2MEM
1217 | ATC_SIF(atchan->per_if)
1218 | ATC_DIF(atchan->mem_if);
1219 desc->len = period_len;
1220 break;
1221
1222 default:
1223 return -EINVAL;
1224 }
1225
1226 return 0;
1227 }
1228
1229 /**
1230 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1231 * @chan: the DMA channel to prepare
1232 * @buf_addr: physical DMA address where the buffer starts
1233 * @buf_len: total number of bytes for the entire buffer
1234 * @period_len: number of bytes for each period
1235 * @direction: transfer direction, to or from device
1236 * @flags: tx descriptor status flags
1237 */
1238 static struct dma_async_tx_descriptor *
1239 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1240 size_t period_len, enum dma_transfer_direction direction,
1241 unsigned long flags)
1242 {
1243 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1244 struct at_dma_slave *atslave = chan->private;
1245 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1246 struct at_desc *first = NULL;
1247 struct at_desc *prev = NULL;
1248 unsigned long was_cyclic;
1249 unsigned int reg_width;
1250 unsigned int periods = buf_len / period_len;
1251 unsigned int i;
1252
1253 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n",
1254 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1255 buf_addr,
1256 periods, buf_len, period_len);
1257
1258 if (unlikely(!atslave || !buf_len || !period_len)) {
1259 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1260 return NULL;
1261 }
1262
1263 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1264 if (was_cyclic) {
1265 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1266 return NULL;
1267 }
1268
1269 if (unlikely(!is_slave_direction(direction)))
1270 goto err_out;
1271
1272 if (sconfig->direction == DMA_MEM_TO_DEV)
1273 reg_width = convert_buswidth(sconfig->dst_addr_width);
1274 else
1275 reg_width = convert_buswidth(sconfig->src_addr_width);
1276
1277 /* Check for too big/unaligned periods and unaligned DMA buffer */
1278 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1279 goto err_out;
1280
1281 /* build cyclic linked list */
1282 for (i = 0; i < periods; i++) {
1283 struct at_desc *desc;
1284
1285 desc = atc_desc_get(atchan);
1286 if (!desc)
1287 goto err_desc_get;
1288
1289 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1290 reg_width, period_len, direction))
1291 goto err_desc_get;
1292
1293 atc_desc_chain(&first, &prev, desc);
1294 }
1295
1296 /* lets make a cyclic list */
1297 prev->lli.dscr = first->txd.phys;
1298
1299 /* First descriptor of the chain embedds additional information */
1300 first->txd.cookie = -EBUSY;
1301 first->total_len = buf_len;
1302
1303 return &first->txd;
1304
1305 err_desc_get:
1306 dev_err(chan2dev(chan), "not enough descriptors available\n");
1307 atc_desc_put(atchan, first);
1308 err_out:
1309 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1310 return NULL;
1311 }
1312
1313 static int atc_config(struct dma_chan *chan,
1314 struct dma_slave_config *sconfig)
1315 {
1316 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1317
1318 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1319
1320 /* Check if it is chan is configured for slave transfers */
1321 if (!chan->private)
1322 return -EINVAL;
1323
1324 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1325
1326 convert_burst(&atchan->dma_sconfig.src_maxburst);
1327 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1328
1329 return 0;
1330 }
1331
1332 static int atc_pause(struct dma_chan *chan)
1333 {
1334 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1335 struct at_dma *atdma = to_at_dma(chan->device);
1336 int chan_id = atchan->chan_common.chan_id;
1337 unsigned long flags;
1338
1339 LIST_HEAD(list);
1340
1341 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1342
1343 spin_lock_irqsave(&atchan->lock, flags);
1344
1345 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1346 set_bit(ATC_IS_PAUSED, &atchan->status);
1347
1348 spin_unlock_irqrestore(&atchan->lock, flags);
1349
1350 return 0;
1351 }
1352
1353 static int atc_resume(struct dma_chan *chan)
1354 {
1355 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1356 struct at_dma *atdma = to_at_dma(chan->device);
1357 int chan_id = atchan->chan_common.chan_id;
1358 unsigned long flags;
1359
1360 LIST_HEAD(list);
1361
1362 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1363
1364 if (!atc_chan_is_paused(atchan))
1365 return 0;
1366
1367 spin_lock_irqsave(&atchan->lock, flags);
1368
1369 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1370 clear_bit(ATC_IS_PAUSED, &atchan->status);
1371
1372 spin_unlock_irqrestore(&atchan->lock, flags);
1373
1374 return 0;
1375 }
1376
1377 static int atc_terminate_all(struct dma_chan *chan)
1378 {
1379 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1380 struct at_dma *atdma = to_at_dma(chan->device);
1381 int chan_id = atchan->chan_common.chan_id;
1382 struct at_desc *desc, *_desc;
1383 unsigned long flags;
1384
1385 LIST_HEAD(list);
1386
1387 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1388
1389 /*
1390 * This is only called when something went wrong elsewhere, so
1391 * we don't really care about the data. Just disable the
1392 * channel. We still have to poll the channel enable bit due
1393 * to AHB/HSB limitations.
1394 */
1395 spin_lock_irqsave(&atchan->lock, flags);
1396
1397 /* disabling channel: must also remove suspend state */
1398 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1399
1400 /* confirm that this channel is disabled */
1401 while (dma_readl(atdma, CHSR) & atchan->mask)
1402 cpu_relax();
1403
1404 /* active_list entries will end up before queued entries */
1405 list_splice_init(&atchan->queue, &list);
1406 list_splice_init(&atchan->active_list, &list);
1407
1408 /* Flush all pending and queued descriptors */
1409 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1410 atc_chain_complete(atchan, desc);
1411
1412 clear_bit(ATC_IS_PAUSED, &atchan->status);
1413 /* if channel dedicated to cyclic operations, free it */
1414 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1415
1416 spin_unlock_irqrestore(&atchan->lock, flags);
1417
1418 return 0;
1419 }
1420
1421 /**
1422 * atc_tx_status - poll for transaction completion
1423 * @chan: DMA channel
1424 * @cookie: transaction identifier to check status of
1425 * @txstate: if not %NULL updated with transaction state
1426 *
1427 * If @txstate is passed in, upon return it reflect the driver
1428 * internal state and can be used with dma_async_is_complete() to check
1429 * the status of multiple cookies without re-checking hardware state.
1430 */
1431 static enum dma_status
1432 atc_tx_status(struct dma_chan *chan,
1433 dma_cookie_t cookie,
1434 struct dma_tx_state *txstate)
1435 {
1436 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1437 unsigned long flags;
1438 enum dma_status ret;
1439 int bytes = 0;
1440
1441 ret = dma_cookie_status(chan, cookie, txstate);
1442 if (ret == DMA_COMPLETE)
1443 return ret;
1444 /*
1445 * There's no point calculating the residue if there's
1446 * no txstate to store the value.
1447 */
1448 if (!txstate)
1449 return DMA_ERROR;
1450
1451 spin_lock_irqsave(&atchan->lock, flags);
1452
1453 /* Get number of bytes left in the active transactions */
1454 bytes = atc_get_bytes_left(chan, cookie);
1455
1456 spin_unlock_irqrestore(&atchan->lock, flags);
1457
1458 if (unlikely(bytes < 0)) {
1459 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1460 return DMA_ERROR;
1461 } else {
1462 dma_set_residue(txstate, bytes);
1463 }
1464
1465 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1466 ret, cookie, bytes);
1467
1468 return ret;
1469 }
1470
1471 /**
1472 * atc_issue_pending - try to finish work
1473 * @chan: target DMA channel
1474 */
1475 static void atc_issue_pending(struct dma_chan *chan)
1476 {
1477 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1478 unsigned long flags;
1479
1480 dev_vdbg(chan2dev(chan), "issue_pending\n");
1481
1482 /* Not needed for cyclic transfers */
1483 if (atc_chan_is_cyclic(atchan))
1484 return;
1485
1486 spin_lock_irqsave(&atchan->lock, flags);
1487 atc_advance_work(atchan);
1488 spin_unlock_irqrestore(&atchan->lock, flags);
1489 }
1490
1491 /**
1492 * atc_alloc_chan_resources - allocate resources for DMA channel
1493 * @chan: allocate descriptor resources for this channel
1494 * @client: current client requesting the channel be ready for requests
1495 *
1496 * return - the number of allocated descriptors
1497 */
1498 static int atc_alloc_chan_resources(struct dma_chan *chan)
1499 {
1500 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1501 struct at_dma *atdma = to_at_dma(chan->device);
1502 struct at_desc *desc;
1503 struct at_dma_slave *atslave;
1504 unsigned long flags;
1505 int i;
1506 u32 cfg;
1507 LIST_HEAD(tmp_list);
1508
1509 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1510
1511 /* ASSERT: channel is idle */
1512 if (atc_chan_is_enabled(atchan)) {
1513 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1514 return -EIO;
1515 }
1516
1517 cfg = ATC_DEFAULT_CFG;
1518
1519 atslave = chan->private;
1520 if (atslave) {
1521 /*
1522 * We need controller-specific data to set up slave
1523 * transfers.
1524 */
1525 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1526
1527 /* if cfg configuration specified take it instead of default */
1528 if (atslave->cfg)
1529 cfg = atslave->cfg;
1530 }
1531
1532 /* have we already been set up?
1533 * reconfigure channel but no need to reallocate descriptors */
1534 if (!list_empty(&atchan->free_list))
1535 return atchan->descs_allocated;
1536
1537 /* Allocate initial pool of descriptors */
1538 for (i = 0; i < init_nr_desc_per_channel; i++) {
1539 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1540 if (!desc) {
1541 dev_err(atdma->dma_common.dev,
1542 "Only %d initial descriptors\n", i);
1543 break;
1544 }
1545 list_add_tail(&desc->desc_node, &tmp_list);
1546 }
1547
1548 spin_lock_irqsave(&atchan->lock, flags);
1549 atchan->descs_allocated = i;
1550 list_splice(&tmp_list, &atchan->free_list);
1551 dma_cookie_init(chan);
1552 spin_unlock_irqrestore(&atchan->lock, flags);
1553
1554 /* channel parameters */
1555 channel_writel(atchan, CFG, cfg);
1556
1557 dev_dbg(chan2dev(chan),
1558 "alloc_chan_resources: allocated %d descriptors\n",
1559 atchan->descs_allocated);
1560
1561 return atchan->descs_allocated;
1562 }
1563
1564 /**
1565 * atc_free_chan_resources - free all channel resources
1566 * @chan: DMA channel
1567 */
1568 static void atc_free_chan_resources(struct dma_chan *chan)
1569 {
1570 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1571 struct at_dma *atdma = to_at_dma(chan->device);
1572 struct at_desc *desc, *_desc;
1573 LIST_HEAD(list);
1574
1575 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1576 atchan->descs_allocated);
1577
1578 /* ASSERT: channel is idle */
1579 BUG_ON(!list_empty(&atchan->active_list));
1580 BUG_ON(!list_empty(&atchan->queue));
1581 BUG_ON(atc_chan_is_enabled(atchan));
1582
1583 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1584 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1585 list_del(&desc->desc_node);
1586 /* free link descriptor */
1587 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1588 }
1589 list_splice_init(&atchan->free_list, &list);
1590 atchan->descs_allocated = 0;
1591 atchan->status = 0;
1592
1593 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1594 }
1595
1596 #ifdef CONFIG_OF
1597 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1598 {
1599 struct at_dma_slave *atslave = slave;
1600
1601 if (atslave->dma_dev == chan->device->dev) {
1602 chan->private = atslave;
1603 return true;
1604 } else {
1605 return false;
1606 }
1607 }
1608
1609 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1610 struct of_dma *of_dma)
1611 {
1612 struct dma_chan *chan;
1613 struct at_dma_chan *atchan;
1614 struct at_dma_slave *atslave;
1615 dma_cap_mask_t mask;
1616 unsigned int per_id;
1617 struct platform_device *dmac_pdev;
1618
1619 if (dma_spec->args_count != 2)
1620 return NULL;
1621
1622 dmac_pdev = of_find_device_by_node(dma_spec->np);
1623
1624 dma_cap_zero(mask);
1625 dma_cap_set(DMA_SLAVE, mask);
1626
1627 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1628 if (!atslave)
1629 return NULL;
1630
1631 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1632 /*
1633 * We can fill both SRC_PER and DST_PER, one of these fields will be
1634 * ignored depending on DMA transfer direction.
1635 */
1636 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1637 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1638 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1639 /*
1640 * We have to translate the value we get from the device tree since
1641 * the half FIFO configuration value had to be 0 to keep backward
1642 * compatibility.
1643 */
1644 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1645 case AT91_DMA_CFG_FIFOCFG_ALAP:
1646 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1647 break;
1648 case AT91_DMA_CFG_FIFOCFG_ASAP:
1649 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1650 break;
1651 case AT91_DMA_CFG_FIFOCFG_HALF:
1652 default:
1653 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1654 }
1655 atslave->dma_dev = &dmac_pdev->dev;
1656
1657 chan = dma_request_channel(mask, at_dma_filter, atslave);
1658 if (!chan)
1659 return NULL;
1660
1661 atchan = to_at_dma_chan(chan);
1662 atchan->per_if = dma_spec->args[0] & 0xff;
1663 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1664
1665 return chan;
1666 }
1667 #else
1668 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1669 struct of_dma *of_dma)
1670 {
1671 return NULL;
1672 }
1673 #endif
1674
1675 /*-- Module Management -----------------------------------------------*/
1676
1677 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1678 static struct at_dma_platform_data at91sam9rl_config = {
1679 .nr_channels = 2,
1680 };
1681 static struct at_dma_platform_data at91sam9g45_config = {
1682 .nr_channels = 8,
1683 };
1684
1685 #if defined(CONFIG_OF)
1686 static const struct of_device_id atmel_dma_dt_ids[] = {
1687 {
1688 .compatible = "atmel,at91sam9rl-dma",
1689 .data = &at91sam9rl_config,
1690 }, {
1691 .compatible = "atmel,at91sam9g45-dma",
1692 .data = &at91sam9g45_config,
1693 }, {
1694 /* sentinel */
1695 }
1696 };
1697
1698 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1699 #endif
1700
1701 static const struct platform_device_id atdma_devtypes[] = {
1702 {
1703 .name = "at91sam9rl_dma",
1704 .driver_data = (unsigned long) &at91sam9rl_config,
1705 }, {
1706 .name = "at91sam9g45_dma",
1707 .driver_data = (unsigned long) &at91sam9g45_config,
1708 }, {
1709 /* sentinel */
1710 }
1711 };
1712
1713 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1714 struct platform_device *pdev)
1715 {
1716 if (pdev->dev.of_node) {
1717 const struct of_device_id *match;
1718 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1719 if (match == NULL)
1720 return NULL;
1721 return match->data;
1722 }
1723 return (struct at_dma_platform_data *)
1724 platform_get_device_id(pdev)->driver_data;
1725 }
1726
1727 /**
1728 * at_dma_off - disable DMA controller
1729 * @atdma: the Atmel HDAMC device
1730 */
1731 static void at_dma_off(struct at_dma *atdma)
1732 {
1733 dma_writel(atdma, EN, 0);
1734
1735 /* disable all interrupts */
1736 dma_writel(atdma, EBCIDR, -1L);
1737
1738 /* confirm that all channels are disabled */
1739 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1740 cpu_relax();
1741 }
1742
1743 static int __init at_dma_probe(struct platform_device *pdev)
1744 {
1745 struct resource *io;
1746 struct at_dma *atdma;
1747 size_t size;
1748 int irq;
1749 int err;
1750 int i;
1751 const struct at_dma_platform_data *plat_dat;
1752
1753 /* setup platform data for each SoC */
1754 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1755 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1756 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1757 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1758 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1759 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1760
1761 /* get DMA parameters from controller type */
1762 plat_dat = at_dma_get_driver_data(pdev);
1763 if (!plat_dat)
1764 return -ENODEV;
1765
1766 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1767 if (!io)
1768 return -EINVAL;
1769
1770 irq = platform_get_irq(pdev, 0);
1771 if (irq < 0)
1772 return irq;
1773
1774 size = sizeof(struct at_dma);
1775 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1776 atdma = kzalloc(size, GFP_KERNEL);
1777 if (!atdma)
1778 return -ENOMEM;
1779
1780 /* discover transaction capabilities */
1781 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1782 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1783
1784 size = resource_size(io);
1785 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1786 err = -EBUSY;
1787 goto err_kfree;
1788 }
1789
1790 atdma->regs = ioremap(io->start, size);
1791 if (!atdma->regs) {
1792 err = -ENOMEM;
1793 goto err_release_r;
1794 }
1795
1796 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1797 if (IS_ERR(atdma->clk)) {
1798 err = PTR_ERR(atdma->clk);
1799 goto err_clk;
1800 }
1801 err = clk_prepare_enable(atdma->clk);
1802 if (err)
1803 goto err_clk_prepare;
1804
1805 /* force dma off, just in case */
1806 at_dma_off(atdma);
1807
1808 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1809 if (err)
1810 goto err_irq;
1811
1812 platform_set_drvdata(pdev, atdma);
1813
1814 /* create a pool of consistent memory blocks for hardware descriptors */
1815 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1816 &pdev->dev, sizeof(struct at_desc),
1817 4 /* word alignment */, 0);
1818 if (!atdma->dma_desc_pool) {
1819 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1820 err = -ENOMEM;
1821 goto err_pool_create;
1822 }
1823
1824 /* clear any pending interrupt */
1825 while (dma_readl(atdma, EBCISR))
1826 cpu_relax();
1827
1828 /* initialize channels related values */
1829 INIT_LIST_HEAD(&atdma->dma_common.channels);
1830 for (i = 0; i < plat_dat->nr_channels; i++) {
1831 struct at_dma_chan *atchan = &atdma->chan[i];
1832
1833 atchan->mem_if = AT_DMA_MEM_IF;
1834 atchan->per_if = AT_DMA_PER_IF;
1835 atchan->chan_common.device = &atdma->dma_common;
1836 dma_cookie_init(&atchan->chan_common);
1837 list_add_tail(&atchan->chan_common.device_node,
1838 &atdma->dma_common.channels);
1839
1840 atchan->ch_regs = atdma->regs + ch_regs(i);
1841 spin_lock_init(&atchan->lock);
1842 atchan->mask = 1 << i;
1843
1844 INIT_LIST_HEAD(&atchan->active_list);
1845 INIT_LIST_HEAD(&atchan->queue);
1846 INIT_LIST_HEAD(&atchan->free_list);
1847
1848 tasklet_init(&atchan->tasklet, atc_tasklet,
1849 (unsigned long)atchan);
1850 atc_enable_chan_irq(atdma, i);
1851 }
1852
1853 /* set base routines */
1854 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1855 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1856 atdma->dma_common.device_tx_status = atc_tx_status;
1857 atdma->dma_common.device_issue_pending = atc_issue_pending;
1858 atdma->dma_common.dev = &pdev->dev;
1859
1860 /* set prep routines based on capability */
1861 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1862 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1863
1864 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1865 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1866
1867 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1868 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1869 /* controller can do slave DMA: can trigger cyclic transfers */
1870 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1871 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1872 atdma->dma_common.device_config = atc_config;
1873 atdma->dma_common.device_pause = atc_pause;
1874 atdma->dma_common.device_resume = atc_resume;
1875 atdma->dma_common.device_terminate_all = atc_terminate_all;
1876 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1877 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1878 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1879 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1880 }
1881
1882 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
1883 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
1884
1885 dma_writel(atdma, EN, AT_DMA_ENABLE);
1886
1887 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1888 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1889 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
1890 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "",
1891 plat_dat->nr_channels);
1892
1893 dma_async_device_register(&atdma->dma_common);
1894
1895 /*
1896 * Do not return an error if the dmac node is not present in order to
1897 * not break the existing way of requesting channel with
1898 * dma_request_channel().
1899 */
1900 if (pdev->dev.of_node) {
1901 err = of_dma_controller_register(pdev->dev.of_node,
1902 at_dma_xlate, atdma);
1903 if (err) {
1904 dev_err(&pdev->dev, "could not register of_dma_controller\n");
1905 goto err_of_dma_controller_register;
1906 }
1907 }
1908
1909 return 0;
1910
1911 err_of_dma_controller_register:
1912 dma_async_device_unregister(&atdma->dma_common);
1913 dma_pool_destroy(atdma->dma_desc_pool);
1914 err_pool_create:
1915 free_irq(platform_get_irq(pdev, 0), atdma);
1916 err_irq:
1917 clk_disable_unprepare(atdma->clk);
1918 err_clk_prepare:
1919 clk_put(atdma->clk);
1920 err_clk:
1921 iounmap(atdma->regs);
1922 atdma->regs = NULL;
1923 err_release_r:
1924 release_mem_region(io->start, size);
1925 err_kfree:
1926 kfree(atdma);
1927 return err;
1928 }
1929
1930 static int at_dma_remove(struct platform_device *pdev)
1931 {
1932 struct at_dma *atdma = platform_get_drvdata(pdev);
1933 struct dma_chan *chan, *_chan;
1934 struct resource *io;
1935
1936 at_dma_off(atdma);
1937 dma_async_device_unregister(&atdma->dma_common);
1938
1939 dma_pool_destroy(atdma->dma_desc_pool);
1940 free_irq(platform_get_irq(pdev, 0), atdma);
1941
1942 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1943 device_node) {
1944 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1945
1946 /* Disable interrupts */
1947 atc_disable_chan_irq(atdma, chan->chan_id);
1948
1949 tasklet_kill(&atchan->tasklet);
1950 list_del(&chan->device_node);
1951 }
1952
1953 clk_disable_unprepare(atdma->clk);
1954 clk_put(atdma->clk);
1955
1956 iounmap(atdma->regs);
1957 atdma->regs = NULL;
1958
1959 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1960 release_mem_region(io->start, resource_size(io));
1961
1962 kfree(atdma);
1963
1964 return 0;
1965 }
1966
1967 static void at_dma_shutdown(struct platform_device *pdev)
1968 {
1969 struct at_dma *atdma = platform_get_drvdata(pdev);
1970
1971 at_dma_off(platform_get_drvdata(pdev));
1972 clk_disable_unprepare(atdma->clk);
1973 }
1974
1975 static int at_dma_prepare(struct device *dev)
1976 {
1977 struct platform_device *pdev = to_platform_device(dev);
1978 struct at_dma *atdma = platform_get_drvdata(pdev);
1979 struct dma_chan *chan, *_chan;
1980
1981 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1982 device_node) {
1983 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1984 /* wait for transaction completion (except in cyclic case) */
1985 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
1986 return -EAGAIN;
1987 }
1988 return 0;
1989 }
1990
1991 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
1992 {
1993 struct dma_chan *chan = &atchan->chan_common;
1994
1995 /* Channel should be paused by user
1996 * do it anyway even if it is not done already */
1997 if (!atc_chan_is_paused(atchan)) {
1998 dev_warn(chan2dev(chan),
1999 "cyclic channel not paused, should be done by channel user\n");
2000 atc_pause(chan);
2001 }
2002
2003 /* now preserve additional data for cyclic operations */
2004 /* next descriptor address in the cyclic list */
2005 atchan->save_dscr = channel_readl(atchan, DSCR);
2006
2007 vdbg_dump_regs(atchan);
2008 }
2009
2010 static int at_dma_suspend_noirq(struct device *dev)
2011 {
2012 struct platform_device *pdev = to_platform_device(dev);
2013 struct at_dma *atdma = platform_get_drvdata(pdev);
2014 struct dma_chan *chan, *_chan;
2015
2016 /* preserve data */
2017 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2018 device_node) {
2019 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2020
2021 if (atc_chan_is_cyclic(atchan))
2022 atc_suspend_cyclic(atchan);
2023 atchan->save_cfg = channel_readl(atchan, CFG);
2024 }
2025 atdma->save_imr = dma_readl(atdma, EBCIMR);
2026
2027 /* disable DMA controller */
2028 at_dma_off(atdma);
2029 clk_disable_unprepare(atdma->clk);
2030 return 0;
2031 }
2032
2033 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2034 {
2035 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2036
2037 /* restore channel status for cyclic descriptors list:
2038 * next descriptor in the cyclic list at the time of suspend */
2039 channel_writel(atchan, SADDR, 0);
2040 channel_writel(atchan, DADDR, 0);
2041 channel_writel(atchan, CTRLA, 0);
2042 channel_writel(atchan, CTRLB, 0);
2043 channel_writel(atchan, DSCR, atchan->save_dscr);
2044 dma_writel(atdma, CHER, atchan->mask);
2045
2046 /* channel pause status should be removed by channel user
2047 * We cannot take the initiative to do it here */
2048
2049 vdbg_dump_regs(atchan);
2050 }
2051
2052 static int at_dma_resume_noirq(struct device *dev)
2053 {
2054 struct platform_device *pdev = to_platform_device(dev);
2055 struct at_dma *atdma = platform_get_drvdata(pdev);
2056 struct dma_chan *chan, *_chan;
2057
2058 /* bring back DMA controller */
2059 clk_prepare_enable(atdma->clk);
2060 dma_writel(atdma, EN, AT_DMA_ENABLE);
2061
2062 /* clear any pending interrupt */
2063 while (dma_readl(atdma, EBCISR))
2064 cpu_relax();
2065
2066 /* restore saved data */
2067 dma_writel(atdma, EBCIER, atdma->save_imr);
2068 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2069 device_node) {
2070 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2071
2072 channel_writel(atchan, CFG, atchan->save_cfg);
2073 if (atc_chan_is_cyclic(atchan))
2074 atc_resume_cyclic(atchan);
2075 }
2076 return 0;
2077 }
2078
2079 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2080 .prepare = at_dma_prepare,
2081 .suspend_noirq = at_dma_suspend_noirq,
2082 .resume_noirq = at_dma_resume_noirq,
2083 };
2084
2085 static struct platform_driver at_dma_driver = {
2086 .remove = at_dma_remove,
2087 .shutdown = at_dma_shutdown,
2088 .id_table = atdma_devtypes,
2089 .driver = {
2090 .name = "at_hdmac",
2091 .pm = &at_dma_dev_pm_ops,
2092 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2093 },
2094 };
2095
2096 static int __init at_dma_init(void)
2097 {
2098 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2099 }
2100 subsys_initcall(at_dma_init);
2101
2102 static void __exit at_dma_exit(void)
2103 {
2104 platform_driver_unregister(&at_dma_driver);
2105 }
2106 module_exit(at_dma_exit);
2107
2108 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2109 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2110 MODULE_LICENSE("GPL");
2111 MODULE_ALIAS("platform:at_hdmac");
This page took 0.079066 seconds and 5 git commands to generate.