Merge tag 'iwlwifi-for-kalle-2015-12-16' into next
[deliverable/linux.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17
18 /*
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
23 *
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
27 *
28 * LOCKING:
29 *
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
32 *
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
37 *
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
40 *
41 * See Documentation/dmaengine.txt for more details
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/dma-mapping.h>
47 #include <linux/init.h>
48 #include <linux/module.h>
49 #include <linux/mm.h>
50 #include <linux/device.h>
51 #include <linux/dmaengine.h>
52 #include <linux/hardirq.h>
53 #include <linux/spinlock.h>
54 #include <linux/percpu.h>
55 #include <linux/rcupdate.h>
56 #include <linux/mutex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rculist.h>
59 #include <linux/idr.h>
60 #include <linux/slab.h>
61 #include <linux/acpi.h>
62 #include <linux/acpi_dma.h>
63 #include <linux/of_dma.h>
64 #include <linux/mempool.h>
65
66 static DEFINE_MUTEX(dma_list_mutex);
67 static DEFINE_IDR(dma_idr);
68 static LIST_HEAD(dma_device_list);
69 static long dmaengine_ref_count;
70
71 /* --- sysfs implementation --- */
72
73 /**
74 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
75 * @dev - device node
76 *
77 * Must be called under dma_list_mutex
78 */
79 static struct dma_chan *dev_to_dma_chan(struct device *dev)
80 {
81 struct dma_chan_dev *chan_dev;
82
83 chan_dev = container_of(dev, typeof(*chan_dev), device);
84 return chan_dev->chan;
85 }
86
87 static ssize_t memcpy_count_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
89 {
90 struct dma_chan *chan;
91 unsigned long count = 0;
92 int i;
93 int err;
94
95 mutex_lock(&dma_list_mutex);
96 chan = dev_to_dma_chan(dev);
97 if (chan) {
98 for_each_possible_cpu(i)
99 count += per_cpu_ptr(chan->local, i)->memcpy_count;
100 err = sprintf(buf, "%lu\n", count);
101 } else
102 err = -ENODEV;
103 mutex_unlock(&dma_list_mutex);
104
105 return err;
106 }
107 static DEVICE_ATTR_RO(memcpy_count);
108
109 static ssize_t bytes_transferred_show(struct device *dev,
110 struct device_attribute *attr, char *buf)
111 {
112 struct dma_chan *chan;
113 unsigned long count = 0;
114 int i;
115 int err;
116
117 mutex_lock(&dma_list_mutex);
118 chan = dev_to_dma_chan(dev);
119 if (chan) {
120 for_each_possible_cpu(i)
121 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
122 err = sprintf(buf, "%lu\n", count);
123 } else
124 err = -ENODEV;
125 mutex_unlock(&dma_list_mutex);
126
127 return err;
128 }
129 static DEVICE_ATTR_RO(bytes_transferred);
130
131 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
132 char *buf)
133 {
134 struct dma_chan *chan;
135 int err;
136
137 mutex_lock(&dma_list_mutex);
138 chan = dev_to_dma_chan(dev);
139 if (chan)
140 err = sprintf(buf, "%d\n", chan->client_count);
141 else
142 err = -ENODEV;
143 mutex_unlock(&dma_list_mutex);
144
145 return err;
146 }
147 static DEVICE_ATTR_RO(in_use);
148
149 static struct attribute *dma_dev_attrs[] = {
150 &dev_attr_memcpy_count.attr,
151 &dev_attr_bytes_transferred.attr,
152 &dev_attr_in_use.attr,
153 NULL,
154 };
155 ATTRIBUTE_GROUPS(dma_dev);
156
157 static void chan_dev_release(struct device *dev)
158 {
159 struct dma_chan_dev *chan_dev;
160
161 chan_dev = container_of(dev, typeof(*chan_dev), device);
162 if (atomic_dec_and_test(chan_dev->idr_ref)) {
163 mutex_lock(&dma_list_mutex);
164 idr_remove(&dma_idr, chan_dev->dev_id);
165 mutex_unlock(&dma_list_mutex);
166 kfree(chan_dev->idr_ref);
167 }
168 kfree(chan_dev);
169 }
170
171 static struct class dma_devclass = {
172 .name = "dma",
173 .dev_groups = dma_dev_groups,
174 .dev_release = chan_dev_release,
175 };
176
177 /* --- client and device registration --- */
178
179 #define dma_device_satisfies_mask(device, mask) \
180 __dma_device_satisfies_mask((device), &(mask))
181 static int
182 __dma_device_satisfies_mask(struct dma_device *device,
183 const dma_cap_mask_t *want)
184 {
185 dma_cap_mask_t has;
186
187 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
188 DMA_TX_TYPE_END);
189 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
190 }
191
192 static struct module *dma_chan_to_owner(struct dma_chan *chan)
193 {
194 return chan->device->dev->driver->owner;
195 }
196
197 /**
198 * balance_ref_count - catch up the channel reference count
199 * @chan - channel to balance ->client_count versus dmaengine_ref_count
200 *
201 * balance_ref_count must be called under dma_list_mutex
202 */
203 static void balance_ref_count(struct dma_chan *chan)
204 {
205 struct module *owner = dma_chan_to_owner(chan);
206
207 while (chan->client_count < dmaengine_ref_count) {
208 __module_get(owner);
209 chan->client_count++;
210 }
211 }
212
213 /**
214 * dma_chan_get - try to grab a dma channel's parent driver module
215 * @chan - channel to grab
216 *
217 * Must be called under dma_list_mutex
218 */
219 static int dma_chan_get(struct dma_chan *chan)
220 {
221 struct module *owner = dma_chan_to_owner(chan);
222 int ret;
223
224 /* The channel is already in use, update client count */
225 if (chan->client_count) {
226 __module_get(owner);
227 goto out;
228 }
229
230 if (!try_module_get(owner))
231 return -ENODEV;
232
233 /* allocate upon first client reference */
234 if (chan->device->device_alloc_chan_resources) {
235 ret = chan->device->device_alloc_chan_resources(chan);
236 if (ret < 0)
237 goto err_out;
238 }
239
240 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
241 balance_ref_count(chan);
242
243 out:
244 chan->client_count++;
245 return 0;
246
247 err_out:
248 module_put(owner);
249 return ret;
250 }
251
252 /**
253 * dma_chan_put - drop a reference to a dma channel's parent driver module
254 * @chan - channel to release
255 *
256 * Must be called under dma_list_mutex
257 */
258 static void dma_chan_put(struct dma_chan *chan)
259 {
260 /* This channel is not in use, bail out */
261 if (!chan->client_count)
262 return;
263
264 chan->client_count--;
265 module_put(dma_chan_to_owner(chan));
266
267 /* This channel is not in use anymore, free it */
268 if (!chan->client_count && chan->device->device_free_chan_resources)
269 chan->device->device_free_chan_resources(chan);
270
271 /* If the channel is used via a DMA request router, free the mapping */
272 if (chan->router && chan->router->route_free) {
273 chan->router->route_free(chan->router->dev, chan->route_data);
274 chan->router = NULL;
275 chan->route_data = NULL;
276 }
277 }
278
279 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
280 {
281 enum dma_status status;
282 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
283
284 dma_async_issue_pending(chan);
285 do {
286 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
287 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
288 pr_err("%s: timeout!\n", __func__);
289 return DMA_ERROR;
290 }
291 if (status != DMA_IN_PROGRESS)
292 break;
293 cpu_relax();
294 } while (1);
295
296 return status;
297 }
298 EXPORT_SYMBOL(dma_sync_wait);
299
300 /**
301 * dma_cap_mask_all - enable iteration over all operation types
302 */
303 static dma_cap_mask_t dma_cap_mask_all;
304
305 /**
306 * dma_chan_tbl_ent - tracks channel allocations per core/operation
307 * @chan - associated channel for this entry
308 */
309 struct dma_chan_tbl_ent {
310 struct dma_chan *chan;
311 };
312
313 /**
314 * channel_table - percpu lookup table for memory-to-memory offload providers
315 */
316 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
317
318 static int __init dma_channel_table_init(void)
319 {
320 enum dma_transaction_type cap;
321 int err = 0;
322
323 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
324
325 /* 'interrupt', 'private', and 'slave' are channel capabilities,
326 * but are not associated with an operation so they do not need
327 * an entry in the channel_table
328 */
329 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
330 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
331 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
332
333 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
334 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
335 if (!channel_table[cap]) {
336 err = -ENOMEM;
337 break;
338 }
339 }
340
341 if (err) {
342 pr_err("initialization failure\n");
343 for_each_dma_cap_mask(cap, dma_cap_mask_all)
344 free_percpu(channel_table[cap]);
345 }
346
347 return err;
348 }
349 arch_initcall(dma_channel_table_init);
350
351 /**
352 * dma_find_channel - find a channel to carry out the operation
353 * @tx_type: transaction type
354 */
355 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
356 {
357 return this_cpu_read(channel_table[tx_type]->chan);
358 }
359 EXPORT_SYMBOL(dma_find_channel);
360
361 /**
362 * dma_issue_pending_all - flush all pending operations across all channels
363 */
364 void dma_issue_pending_all(void)
365 {
366 struct dma_device *device;
367 struct dma_chan *chan;
368
369 rcu_read_lock();
370 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
371 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
372 continue;
373 list_for_each_entry(chan, &device->channels, device_node)
374 if (chan->client_count)
375 device->device_issue_pending(chan);
376 }
377 rcu_read_unlock();
378 }
379 EXPORT_SYMBOL(dma_issue_pending_all);
380
381 /**
382 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
383 */
384 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
385 {
386 int node = dev_to_node(chan->device->dev);
387 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
388 }
389
390 /**
391 * min_chan - returns the channel with min count and in the same numa-node as the cpu
392 * @cap: capability to match
393 * @cpu: cpu index which the channel should be close to
394 *
395 * If some channels are close to the given cpu, the one with the lowest
396 * reference count is returned. Otherwise, cpu is ignored and only the
397 * reference count is taken into account.
398 * Must be called under dma_list_mutex.
399 */
400 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
401 {
402 struct dma_device *device;
403 struct dma_chan *chan;
404 struct dma_chan *min = NULL;
405 struct dma_chan *localmin = NULL;
406
407 list_for_each_entry(device, &dma_device_list, global_node) {
408 if (!dma_has_cap(cap, device->cap_mask) ||
409 dma_has_cap(DMA_PRIVATE, device->cap_mask))
410 continue;
411 list_for_each_entry(chan, &device->channels, device_node) {
412 if (!chan->client_count)
413 continue;
414 if (!min || chan->table_count < min->table_count)
415 min = chan;
416
417 if (dma_chan_is_local(chan, cpu))
418 if (!localmin ||
419 chan->table_count < localmin->table_count)
420 localmin = chan;
421 }
422 }
423
424 chan = localmin ? localmin : min;
425
426 if (chan)
427 chan->table_count++;
428
429 return chan;
430 }
431
432 /**
433 * dma_channel_rebalance - redistribute the available channels
434 *
435 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
436 * operation type) in the SMP case, and operation isolation (avoid
437 * multi-tasking channels) in the non-SMP case. Must be called under
438 * dma_list_mutex.
439 */
440 static void dma_channel_rebalance(void)
441 {
442 struct dma_chan *chan;
443 struct dma_device *device;
444 int cpu;
445 int cap;
446
447 /* undo the last distribution */
448 for_each_dma_cap_mask(cap, dma_cap_mask_all)
449 for_each_possible_cpu(cpu)
450 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
451
452 list_for_each_entry(device, &dma_device_list, global_node) {
453 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
454 continue;
455 list_for_each_entry(chan, &device->channels, device_node)
456 chan->table_count = 0;
457 }
458
459 /* don't populate the channel_table if no clients are available */
460 if (!dmaengine_ref_count)
461 return;
462
463 /* redistribute available channels */
464 for_each_dma_cap_mask(cap, dma_cap_mask_all)
465 for_each_online_cpu(cpu) {
466 chan = min_chan(cap, cpu);
467 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
468 }
469 }
470
471 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
472 {
473 struct dma_device *device;
474
475 if (!chan || !caps)
476 return -EINVAL;
477
478 device = chan->device;
479
480 /* check if the channel supports slave transactions */
481 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
482 return -ENXIO;
483
484 /*
485 * Check whether it reports it uses the generic slave
486 * capabilities, if not, that means it doesn't support any
487 * kind of slave capabilities reporting.
488 */
489 if (!device->directions)
490 return -ENXIO;
491
492 caps->src_addr_widths = device->src_addr_widths;
493 caps->dst_addr_widths = device->dst_addr_widths;
494 caps->directions = device->directions;
495 caps->residue_granularity = device->residue_granularity;
496
497 /*
498 * Some devices implement only pause (e.g. to get residuum) but no
499 * resume. However cmd_pause is advertised as pause AND resume.
500 */
501 caps->cmd_pause = !!(device->device_pause && device->device_resume);
502 caps->cmd_terminate = !!device->device_terminate_all;
503
504 return 0;
505 }
506 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
507
508 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
509 struct dma_device *dev,
510 dma_filter_fn fn, void *fn_param)
511 {
512 struct dma_chan *chan;
513
514 if (!__dma_device_satisfies_mask(dev, mask)) {
515 pr_debug("%s: wrong capabilities\n", __func__);
516 return NULL;
517 }
518 /* devices with multiple channels need special handling as we need to
519 * ensure that all channels are either private or public.
520 */
521 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
522 list_for_each_entry(chan, &dev->channels, device_node) {
523 /* some channels are already publicly allocated */
524 if (chan->client_count)
525 return NULL;
526 }
527
528 list_for_each_entry(chan, &dev->channels, device_node) {
529 if (chan->client_count) {
530 pr_debug("%s: %s busy\n",
531 __func__, dma_chan_name(chan));
532 continue;
533 }
534 if (fn && !fn(chan, fn_param)) {
535 pr_debug("%s: %s filter said false\n",
536 __func__, dma_chan_name(chan));
537 continue;
538 }
539 return chan;
540 }
541
542 return NULL;
543 }
544
545 /**
546 * dma_get_slave_channel - try to get specific channel exclusively
547 * @chan: target channel
548 */
549 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
550 {
551 int err = -EBUSY;
552
553 /* lock against __dma_request_channel */
554 mutex_lock(&dma_list_mutex);
555
556 if (chan->client_count == 0) {
557 struct dma_device *device = chan->device;
558
559 dma_cap_set(DMA_PRIVATE, device->cap_mask);
560 device->privatecnt++;
561 err = dma_chan_get(chan);
562 if (err) {
563 pr_debug("%s: failed to get %s: (%d)\n",
564 __func__, dma_chan_name(chan), err);
565 chan = NULL;
566 if (--device->privatecnt == 0)
567 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
568 }
569 } else
570 chan = NULL;
571
572 mutex_unlock(&dma_list_mutex);
573
574
575 return chan;
576 }
577 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
578
579 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
580 {
581 dma_cap_mask_t mask;
582 struct dma_chan *chan;
583 int err;
584
585 dma_cap_zero(mask);
586 dma_cap_set(DMA_SLAVE, mask);
587
588 /* lock against __dma_request_channel */
589 mutex_lock(&dma_list_mutex);
590
591 chan = private_candidate(&mask, device, NULL, NULL);
592 if (chan) {
593 dma_cap_set(DMA_PRIVATE, device->cap_mask);
594 device->privatecnt++;
595 err = dma_chan_get(chan);
596 if (err) {
597 pr_debug("%s: failed to get %s: (%d)\n",
598 __func__, dma_chan_name(chan), err);
599 chan = NULL;
600 if (--device->privatecnt == 0)
601 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
602 }
603 }
604
605 mutex_unlock(&dma_list_mutex);
606
607 return chan;
608 }
609 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
610
611 /**
612 * __dma_request_channel - try to allocate an exclusive channel
613 * @mask: capabilities that the channel must satisfy
614 * @fn: optional callback to disposition available channels
615 * @fn_param: opaque parameter to pass to dma_filter_fn
616 *
617 * Returns pointer to appropriate DMA channel on success or NULL.
618 */
619 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
620 dma_filter_fn fn, void *fn_param)
621 {
622 struct dma_device *device, *_d;
623 struct dma_chan *chan = NULL;
624 int err;
625
626 /* Find a channel */
627 mutex_lock(&dma_list_mutex);
628 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
629 chan = private_candidate(mask, device, fn, fn_param);
630 if (chan) {
631 /* Found a suitable channel, try to grab, prep, and
632 * return it. We first set DMA_PRIVATE to disable
633 * balance_ref_count as this channel will not be
634 * published in the general-purpose allocator
635 */
636 dma_cap_set(DMA_PRIVATE, device->cap_mask);
637 device->privatecnt++;
638 err = dma_chan_get(chan);
639
640 if (err == -ENODEV) {
641 pr_debug("%s: %s module removed\n",
642 __func__, dma_chan_name(chan));
643 list_del_rcu(&device->global_node);
644 } else if (err)
645 pr_debug("%s: failed to get %s: (%d)\n",
646 __func__, dma_chan_name(chan), err);
647 else
648 break;
649 if (--device->privatecnt == 0)
650 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
651 chan = NULL;
652 }
653 }
654 mutex_unlock(&dma_list_mutex);
655
656 pr_debug("%s: %s (%s)\n",
657 __func__,
658 chan ? "success" : "fail",
659 chan ? dma_chan_name(chan) : NULL);
660
661 return chan;
662 }
663 EXPORT_SYMBOL_GPL(__dma_request_channel);
664
665 /**
666 * dma_request_slave_channel_reason - try to allocate an exclusive slave channel
667 * @dev: pointer to client device structure
668 * @name: slave channel name
669 *
670 * Returns pointer to appropriate DMA channel on success or an error pointer.
671 */
672 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
673 const char *name)
674 {
675 /* If device-tree is present get slave info from here */
676 if (dev->of_node)
677 return of_dma_request_slave_channel(dev->of_node, name);
678
679 /* If device was enumerated by ACPI get slave info from here */
680 if (ACPI_HANDLE(dev))
681 return acpi_dma_request_slave_chan_by_name(dev, name);
682
683 return ERR_PTR(-ENODEV);
684 }
685 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
686
687 /**
688 * dma_request_slave_channel - try to allocate an exclusive slave channel
689 * @dev: pointer to client device structure
690 * @name: slave channel name
691 *
692 * Returns pointer to appropriate DMA channel on success or NULL.
693 */
694 struct dma_chan *dma_request_slave_channel(struct device *dev,
695 const char *name)
696 {
697 struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
698 if (IS_ERR(ch))
699 return NULL;
700
701 dma_cap_set(DMA_PRIVATE, ch->device->cap_mask);
702 ch->device->privatecnt++;
703
704 return ch;
705 }
706 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
707
708 void dma_release_channel(struct dma_chan *chan)
709 {
710 mutex_lock(&dma_list_mutex);
711 WARN_ONCE(chan->client_count != 1,
712 "chan reference count %d != 1\n", chan->client_count);
713 dma_chan_put(chan);
714 /* drop PRIVATE cap enabled by __dma_request_channel() */
715 if (--chan->device->privatecnt == 0)
716 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
717 mutex_unlock(&dma_list_mutex);
718 }
719 EXPORT_SYMBOL_GPL(dma_release_channel);
720
721 /**
722 * dmaengine_get - register interest in dma_channels
723 */
724 void dmaengine_get(void)
725 {
726 struct dma_device *device, *_d;
727 struct dma_chan *chan;
728 int err;
729
730 mutex_lock(&dma_list_mutex);
731 dmaengine_ref_count++;
732
733 /* try to grab channels */
734 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
735 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
736 continue;
737 list_for_each_entry(chan, &device->channels, device_node) {
738 err = dma_chan_get(chan);
739 if (err == -ENODEV) {
740 /* module removed before we could use it */
741 list_del_rcu(&device->global_node);
742 break;
743 } else if (err)
744 pr_debug("%s: failed to get %s: (%d)\n",
745 __func__, dma_chan_name(chan), err);
746 }
747 }
748
749 /* if this is the first reference and there were channels
750 * waiting we need to rebalance to get those channels
751 * incorporated into the channel table
752 */
753 if (dmaengine_ref_count == 1)
754 dma_channel_rebalance();
755 mutex_unlock(&dma_list_mutex);
756 }
757 EXPORT_SYMBOL(dmaengine_get);
758
759 /**
760 * dmaengine_put - let dma drivers be removed when ref_count == 0
761 */
762 void dmaengine_put(void)
763 {
764 struct dma_device *device;
765 struct dma_chan *chan;
766
767 mutex_lock(&dma_list_mutex);
768 dmaengine_ref_count--;
769 BUG_ON(dmaengine_ref_count < 0);
770 /* drop channel references */
771 list_for_each_entry(device, &dma_device_list, global_node) {
772 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
773 continue;
774 list_for_each_entry(chan, &device->channels, device_node)
775 dma_chan_put(chan);
776 }
777 mutex_unlock(&dma_list_mutex);
778 }
779 EXPORT_SYMBOL(dmaengine_put);
780
781 static bool device_has_all_tx_types(struct dma_device *device)
782 {
783 /* A device that satisfies this test has channels that will never cause
784 * an async_tx channel switch event as all possible operation types can
785 * be handled.
786 */
787 #ifdef CONFIG_ASYNC_TX_DMA
788 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
789 return false;
790 #endif
791
792 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
793 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
794 return false;
795 #endif
796
797 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
798 if (!dma_has_cap(DMA_XOR, device->cap_mask))
799 return false;
800
801 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
802 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
803 return false;
804 #endif
805 #endif
806
807 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
808 if (!dma_has_cap(DMA_PQ, device->cap_mask))
809 return false;
810
811 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
812 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
813 return false;
814 #endif
815 #endif
816
817 return true;
818 }
819
820 static int get_dma_id(struct dma_device *device)
821 {
822 int rc;
823
824 mutex_lock(&dma_list_mutex);
825
826 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
827 if (rc >= 0)
828 device->dev_id = rc;
829
830 mutex_unlock(&dma_list_mutex);
831 return rc < 0 ? rc : 0;
832 }
833
834 /**
835 * dma_async_device_register - registers DMA devices found
836 * @device: &dma_device
837 */
838 int dma_async_device_register(struct dma_device *device)
839 {
840 int chancnt = 0, rc;
841 struct dma_chan* chan;
842 atomic_t *idr_ref;
843
844 if (!device)
845 return -ENODEV;
846
847 /* validate device routines */
848 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
849 !device->device_prep_dma_memcpy);
850 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
851 !device->device_prep_dma_xor);
852 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
853 !device->device_prep_dma_xor_val);
854 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
855 !device->device_prep_dma_pq);
856 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
857 !device->device_prep_dma_pq_val);
858 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
859 !device->device_prep_dma_memset);
860 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
861 !device->device_prep_dma_interrupt);
862 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
863 !device->device_prep_dma_sg);
864 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
865 !device->device_prep_dma_cyclic);
866 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
867 !device->device_prep_interleaved_dma);
868
869 BUG_ON(!device->device_tx_status);
870 BUG_ON(!device->device_issue_pending);
871 BUG_ON(!device->dev);
872
873 /* note: this only matters in the
874 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
875 */
876 if (device_has_all_tx_types(device))
877 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
878
879 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
880 if (!idr_ref)
881 return -ENOMEM;
882 rc = get_dma_id(device);
883 if (rc != 0) {
884 kfree(idr_ref);
885 return rc;
886 }
887
888 atomic_set(idr_ref, 0);
889
890 /* represent channels in sysfs. Probably want devs too */
891 list_for_each_entry(chan, &device->channels, device_node) {
892 rc = -ENOMEM;
893 chan->local = alloc_percpu(typeof(*chan->local));
894 if (chan->local == NULL)
895 goto err_out;
896 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
897 if (chan->dev == NULL) {
898 free_percpu(chan->local);
899 chan->local = NULL;
900 goto err_out;
901 }
902
903 chan->chan_id = chancnt++;
904 chan->dev->device.class = &dma_devclass;
905 chan->dev->device.parent = device->dev;
906 chan->dev->chan = chan;
907 chan->dev->idr_ref = idr_ref;
908 chan->dev->dev_id = device->dev_id;
909 atomic_inc(idr_ref);
910 dev_set_name(&chan->dev->device, "dma%dchan%d",
911 device->dev_id, chan->chan_id);
912
913 rc = device_register(&chan->dev->device);
914 if (rc) {
915 free_percpu(chan->local);
916 chan->local = NULL;
917 kfree(chan->dev);
918 atomic_dec(idr_ref);
919 goto err_out;
920 }
921 chan->client_count = 0;
922 }
923 device->chancnt = chancnt;
924
925 mutex_lock(&dma_list_mutex);
926 /* take references on public channels */
927 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
928 list_for_each_entry(chan, &device->channels, device_node) {
929 /* if clients are already waiting for channels we need
930 * to take references on their behalf
931 */
932 if (dma_chan_get(chan) == -ENODEV) {
933 /* note we can only get here for the first
934 * channel as the remaining channels are
935 * guaranteed to get a reference
936 */
937 rc = -ENODEV;
938 mutex_unlock(&dma_list_mutex);
939 goto err_out;
940 }
941 }
942 list_add_tail_rcu(&device->global_node, &dma_device_list);
943 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
944 device->privatecnt++; /* Always private */
945 dma_channel_rebalance();
946 mutex_unlock(&dma_list_mutex);
947
948 return 0;
949
950 err_out:
951 /* if we never registered a channel just release the idr */
952 if (atomic_read(idr_ref) == 0) {
953 mutex_lock(&dma_list_mutex);
954 idr_remove(&dma_idr, device->dev_id);
955 mutex_unlock(&dma_list_mutex);
956 kfree(idr_ref);
957 return rc;
958 }
959
960 list_for_each_entry(chan, &device->channels, device_node) {
961 if (chan->local == NULL)
962 continue;
963 mutex_lock(&dma_list_mutex);
964 chan->dev->chan = NULL;
965 mutex_unlock(&dma_list_mutex);
966 device_unregister(&chan->dev->device);
967 free_percpu(chan->local);
968 }
969 return rc;
970 }
971 EXPORT_SYMBOL(dma_async_device_register);
972
973 /**
974 * dma_async_device_unregister - unregister a DMA device
975 * @device: &dma_device
976 *
977 * This routine is called by dma driver exit routines, dmaengine holds module
978 * references to prevent it being called while channels are in use.
979 */
980 void dma_async_device_unregister(struct dma_device *device)
981 {
982 struct dma_chan *chan;
983
984 mutex_lock(&dma_list_mutex);
985 list_del_rcu(&device->global_node);
986 dma_channel_rebalance();
987 mutex_unlock(&dma_list_mutex);
988
989 list_for_each_entry(chan, &device->channels, device_node) {
990 WARN_ONCE(chan->client_count,
991 "%s called while %d clients hold a reference\n",
992 __func__, chan->client_count);
993 mutex_lock(&dma_list_mutex);
994 chan->dev->chan = NULL;
995 mutex_unlock(&dma_list_mutex);
996 device_unregister(&chan->dev->device);
997 free_percpu(chan->local);
998 }
999 }
1000 EXPORT_SYMBOL(dma_async_device_unregister);
1001
1002 struct dmaengine_unmap_pool {
1003 struct kmem_cache *cache;
1004 const char *name;
1005 mempool_t *pool;
1006 size_t size;
1007 };
1008
1009 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1010 static struct dmaengine_unmap_pool unmap_pool[] = {
1011 __UNMAP_POOL(2),
1012 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1013 __UNMAP_POOL(16),
1014 __UNMAP_POOL(128),
1015 __UNMAP_POOL(256),
1016 #endif
1017 };
1018
1019 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1020 {
1021 int order = get_count_order(nr);
1022
1023 switch (order) {
1024 case 0 ... 1:
1025 return &unmap_pool[0];
1026 case 2 ... 4:
1027 return &unmap_pool[1];
1028 case 5 ... 7:
1029 return &unmap_pool[2];
1030 case 8:
1031 return &unmap_pool[3];
1032 default:
1033 BUG();
1034 return NULL;
1035 }
1036 }
1037
1038 static void dmaengine_unmap(struct kref *kref)
1039 {
1040 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1041 struct device *dev = unmap->dev;
1042 int cnt, i;
1043
1044 cnt = unmap->to_cnt;
1045 for (i = 0; i < cnt; i++)
1046 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1047 DMA_TO_DEVICE);
1048 cnt += unmap->from_cnt;
1049 for (; i < cnt; i++)
1050 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1051 DMA_FROM_DEVICE);
1052 cnt += unmap->bidi_cnt;
1053 for (; i < cnt; i++) {
1054 if (unmap->addr[i] == 0)
1055 continue;
1056 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1057 DMA_BIDIRECTIONAL);
1058 }
1059 cnt = unmap->map_cnt;
1060 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1061 }
1062
1063 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1064 {
1065 if (unmap)
1066 kref_put(&unmap->kref, dmaengine_unmap);
1067 }
1068 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1069
1070 static void dmaengine_destroy_unmap_pool(void)
1071 {
1072 int i;
1073
1074 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1075 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1076
1077 mempool_destroy(p->pool);
1078 p->pool = NULL;
1079 kmem_cache_destroy(p->cache);
1080 p->cache = NULL;
1081 }
1082 }
1083
1084 static int __init dmaengine_init_unmap_pool(void)
1085 {
1086 int i;
1087
1088 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1089 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1090 size_t size;
1091
1092 size = sizeof(struct dmaengine_unmap_data) +
1093 sizeof(dma_addr_t) * p->size;
1094
1095 p->cache = kmem_cache_create(p->name, size, 0,
1096 SLAB_HWCACHE_ALIGN, NULL);
1097 if (!p->cache)
1098 break;
1099 p->pool = mempool_create_slab_pool(1, p->cache);
1100 if (!p->pool)
1101 break;
1102 }
1103
1104 if (i == ARRAY_SIZE(unmap_pool))
1105 return 0;
1106
1107 dmaengine_destroy_unmap_pool();
1108 return -ENOMEM;
1109 }
1110
1111 struct dmaengine_unmap_data *
1112 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1113 {
1114 struct dmaengine_unmap_data *unmap;
1115
1116 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1117 if (!unmap)
1118 return NULL;
1119
1120 memset(unmap, 0, sizeof(*unmap));
1121 kref_init(&unmap->kref);
1122 unmap->dev = dev;
1123 unmap->map_cnt = nr;
1124
1125 return unmap;
1126 }
1127 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1128
1129 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1130 struct dma_chan *chan)
1131 {
1132 tx->chan = chan;
1133 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1134 spin_lock_init(&tx->lock);
1135 #endif
1136 }
1137 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1138
1139 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1140 * @tx: in-flight transaction to wait on
1141 */
1142 enum dma_status
1143 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1144 {
1145 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1146
1147 if (!tx)
1148 return DMA_COMPLETE;
1149
1150 while (tx->cookie == -EBUSY) {
1151 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1152 pr_err("%s timeout waiting for descriptor submission\n",
1153 __func__);
1154 return DMA_ERROR;
1155 }
1156 cpu_relax();
1157 }
1158 return dma_sync_wait(tx->chan, tx->cookie);
1159 }
1160 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1161
1162 /* dma_run_dependencies - helper routine for dma drivers to process
1163 * (start) dependent operations on their target channel
1164 * @tx: transaction with dependencies
1165 */
1166 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1167 {
1168 struct dma_async_tx_descriptor *dep = txd_next(tx);
1169 struct dma_async_tx_descriptor *dep_next;
1170 struct dma_chan *chan;
1171
1172 if (!dep)
1173 return;
1174
1175 /* we'll submit tx->next now, so clear the link */
1176 txd_clear_next(tx);
1177 chan = dep->chan;
1178
1179 /* keep submitting up until a channel switch is detected
1180 * in that case we will be called again as a result of
1181 * processing the interrupt from async_tx_channel_switch
1182 */
1183 for (; dep; dep = dep_next) {
1184 txd_lock(dep);
1185 txd_clear_parent(dep);
1186 dep_next = txd_next(dep);
1187 if (dep_next && dep_next->chan == chan)
1188 txd_clear_next(dep); /* ->next will be submitted */
1189 else
1190 dep_next = NULL; /* submit current dep and terminate */
1191 txd_unlock(dep);
1192
1193 dep->tx_submit(dep);
1194 }
1195
1196 chan->device->device_issue_pending(chan);
1197 }
1198 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1199
1200 static int __init dma_bus_init(void)
1201 {
1202 int err = dmaengine_init_unmap_pool();
1203
1204 if (err)
1205 return err;
1206 return class_register(&dma_devclass);
1207 }
1208 arch_initcall(dma_bus_init);
1209
1210
This page took 0.083052 seconds and 6 git commands to generate.