Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17
18 /*
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
23 *
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
27 *
28 * LOCKING:
29 *
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
32 *
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
37 *
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
40 *
41 * See Documentation/dmaengine.txt for more details
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66
67 static DEFINE_MUTEX(dma_list_mutex);
68 static DEFINE_IDR(dma_idr);
69 static LIST_HEAD(dma_device_list);
70 static long dmaengine_ref_count;
71
72 /* --- sysfs implementation --- */
73
74 /**
75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
76 * @dev - device node
77 *
78 * Must be called under dma_list_mutex
79 */
80 static struct dma_chan *dev_to_dma_chan(struct device *dev)
81 {
82 struct dma_chan_dev *chan_dev;
83
84 chan_dev = container_of(dev, typeof(*chan_dev), device);
85 return chan_dev->chan;
86 }
87
88 static ssize_t memcpy_count_show(struct device *dev,
89 struct device_attribute *attr, char *buf)
90 {
91 struct dma_chan *chan;
92 unsigned long count = 0;
93 int i;
94 int err;
95
96 mutex_lock(&dma_list_mutex);
97 chan = dev_to_dma_chan(dev);
98 if (chan) {
99 for_each_possible_cpu(i)
100 count += per_cpu_ptr(chan->local, i)->memcpy_count;
101 err = sprintf(buf, "%lu\n", count);
102 } else
103 err = -ENODEV;
104 mutex_unlock(&dma_list_mutex);
105
106 return err;
107 }
108 static DEVICE_ATTR_RO(memcpy_count);
109
110 static ssize_t bytes_transferred_show(struct device *dev,
111 struct device_attribute *attr, char *buf)
112 {
113 struct dma_chan *chan;
114 unsigned long count = 0;
115 int i;
116 int err;
117
118 mutex_lock(&dma_list_mutex);
119 chan = dev_to_dma_chan(dev);
120 if (chan) {
121 for_each_possible_cpu(i)
122 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 err = sprintf(buf, "%lu\n", count);
124 } else
125 err = -ENODEV;
126 mutex_unlock(&dma_list_mutex);
127
128 return err;
129 }
130 static DEVICE_ATTR_RO(bytes_transferred);
131
132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
133 char *buf)
134 {
135 struct dma_chan *chan;
136 int err;
137
138 mutex_lock(&dma_list_mutex);
139 chan = dev_to_dma_chan(dev);
140 if (chan)
141 err = sprintf(buf, "%d\n", chan->client_count);
142 else
143 err = -ENODEV;
144 mutex_unlock(&dma_list_mutex);
145
146 return err;
147 }
148 static DEVICE_ATTR_RO(in_use);
149
150 static struct attribute *dma_dev_attrs[] = {
151 &dev_attr_memcpy_count.attr,
152 &dev_attr_bytes_transferred.attr,
153 &dev_attr_in_use.attr,
154 NULL,
155 };
156 ATTRIBUTE_GROUPS(dma_dev);
157
158 static void chan_dev_release(struct device *dev)
159 {
160 struct dma_chan_dev *chan_dev;
161
162 chan_dev = container_of(dev, typeof(*chan_dev), device);
163 if (atomic_dec_and_test(chan_dev->idr_ref)) {
164 mutex_lock(&dma_list_mutex);
165 idr_remove(&dma_idr, chan_dev->dev_id);
166 mutex_unlock(&dma_list_mutex);
167 kfree(chan_dev->idr_ref);
168 }
169 kfree(chan_dev);
170 }
171
172 static struct class dma_devclass = {
173 .name = "dma",
174 .dev_groups = dma_dev_groups,
175 .dev_release = chan_dev_release,
176 };
177
178 /* --- client and device registration --- */
179
180 #define dma_device_satisfies_mask(device, mask) \
181 __dma_device_satisfies_mask((device), &(mask))
182 static int
183 __dma_device_satisfies_mask(struct dma_device *device,
184 const dma_cap_mask_t *want)
185 {
186 dma_cap_mask_t has;
187
188 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
189 DMA_TX_TYPE_END);
190 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
191 }
192
193 static struct module *dma_chan_to_owner(struct dma_chan *chan)
194 {
195 return chan->device->dev->driver->owner;
196 }
197
198 /**
199 * balance_ref_count - catch up the channel reference count
200 * @chan - channel to balance ->client_count versus dmaengine_ref_count
201 *
202 * balance_ref_count must be called under dma_list_mutex
203 */
204 static void balance_ref_count(struct dma_chan *chan)
205 {
206 struct module *owner = dma_chan_to_owner(chan);
207
208 while (chan->client_count < dmaengine_ref_count) {
209 __module_get(owner);
210 chan->client_count++;
211 }
212 }
213
214 /**
215 * dma_chan_get - try to grab a dma channel's parent driver module
216 * @chan - channel to grab
217 *
218 * Must be called under dma_list_mutex
219 */
220 static int dma_chan_get(struct dma_chan *chan)
221 {
222 struct module *owner = dma_chan_to_owner(chan);
223 int ret;
224
225 /* The channel is already in use, update client count */
226 if (chan->client_count) {
227 __module_get(owner);
228 goto out;
229 }
230
231 if (!try_module_get(owner))
232 return -ENODEV;
233
234 /* allocate upon first client reference */
235 if (chan->device->device_alloc_chan_resources) {
236 ret = chan->device->device_alloc_chan_resources(chan);
237 if (ret < 0)
238 goto err_out;
239 }
240
241 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
242 balance_ref_count(chan);
243
244 out:
245 chan->client_count++;
246 return 0;
247
248 err_out:
249 module_put(owner);
250 return ret;
251 }
252
253 /**
254 * dma_chan_put - drop a reference to a dma channel's parent driver module
255 * @chan - channel to release
256 *
257 * Must be called under dma_list_mutex
258 */
259 static void dma_chan_put(struct dma_chan *chan)
260 {
261 /* This channel is not in use, bail out */
262 if (!chan->client_count)
263 return;
264
265 chan->client_count--;
266 module_put(dma_chan_to_owner(chan));
267
268 /* This channel is not in use anymore, free it */
269 if (!chan->client_count && chan->device->device_free_chan_resources) {
270 /* Make sure all operations have completed */
271 dmaengine_synchronize(chan);
272 chan->device->device_free_chan_resources(chan);
273 }
274
275 /* If the channel is used via a DMA request router, free the mapping */
276 if (chan->router && chan->router->route_free) {
277 chan->router->route_free(chan->router->dev, chan->route_data);
278 chan->router = NULL;
279 chan->route_data = NULL;
280 }
281 }
282
283 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
284 {
285 enum dma_status status;
286 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
287
288 dma_async_issue_pending(chan);
289 do {
290 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
291 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
292 pr_err("%s: timeout!\n", __func__);
293 return DMA_ERROR;
294 }
295 if (status != DMA_IN_PROGRESS)
296 break;
297 cpu_relax();
298 } while (1);
299
300 return status;
301 }
302 EXPORT_SYMBOL(dma_sync_wait);
303
304 /**
305 * dma_cap_mask_all - enable iteration over all operation types
306 */
307 static dma_cap_mask_t dma_cap_mask_all;
308
309 /**
310 * dma_chan_tbl_ent - tracks channel allocations per core/operation
311 * @chan - associated channel for this entry
312 */
313 struct dma_chan_tbl_ent {
314 struct dma_chan *chan;
315 };
316
317 /**
318 * channel_table - percpu lookup table for memory-to-memory offload providers
319 */
320 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
321
322 static int __init dma_channel_table_init(void)
323 {
324 enum dma_transaction_type cap;
325 int err = 0;
326
327 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
328
329 /* 'interrupt', 'private', and 'slave' are channel capabilities,
330 * but are not associated with an operation so they do not need
331 * an entry in the channel_table
332 */
333 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
334 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
335 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
336
337 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
338 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
339 if (!channel_table[cap]) {
340 err = -ENOMEM;
341 break;
342 }
343 }
344
345 if (err) {
346 pr_err("initialization failure\n");
347 for_each_dma_cap_mask(cap, dma_cap_mask_all)
348 free_percpu(channel_table[cap]);
349 }
350
351 return err;
352 }
353 arch_initcall(dma_channel_table_init);
354
355 /**
356 * dma_find_channel - find a channel to carry out the operation
357 * @tx_type: transaction type
358 */
359 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
360 {
361 return this_cpu_read(channel_table[tx_type]->chan);
362 }
363 EXPORT_SYMBOL(dma_find_channel);
364
365 /**
366 * dma_issue_pending_all - flush all pending operations across all channels
367 */
368 void dma_issue_pending_all(void)
369 {
370 struct dma_device *device;
371 struct dma_chan *chan;
372
373 rcu_read_lock();
374 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
375 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
376 continue;
377 list_for_each_entry(chan, &device->channels, device_node)
378 if (chan->client_count)
379 device->device_issue_pending(chan);
380 }
381 rcu_read_unlock();
382 }
383 EXPORT_SYMBOL(dma_issue_pending_all);
384
385 /**
386 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
387 */
388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
389 {
390 int node = dev_to_node(chan->device->dev);
391 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
392 }
393
394 /**
395 * min_chan - returns the channel with min count and in the same numa-node as the cpu
396 * @cap: capability to match
397 * @cpu: cpu index which the channel should be close to
398 *
399 * If some channels are close to the given cpu, the one with the lowest
400 * reference count is returned. Otherwise, cpu is ignored and only the
401 * reference count is taken into account.
402 * Must be called under dma_list_mutex.
403 */
404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
405 {
406 struct dma_device *device;
407 struct dma_chan *chan;
408 struct dma_chan *min = NULL;
409 struct dma_chan *localmin = NULL;
410
411 list_for_each_entry(device, &dma_device_list, global_node) {
412 if (!dma_has_cap(cap, device->cap_mask) ||
413 dma_has_cap(DMA_PRIVATE, device->cap_mask))
414 continue;
415 list_for_each_entry(chan, &device->channels, device_node) {
416 if (!chan->client_count)
417 continue;
418 if (!min || chan->table_count < min->table_count)
419 min = chan;
420
421 if (dma_chan_is_local(chan, cpu))
422 if (!localmin ||
423 chan->table_count < localmin->table_count)
424 localmin = chan;
425 }
426 }
427
428 chan = localmin ? localmin : min;
429
430 if (chan)
431 chan->table_count++;
432
433 return chan;
434 }
435
436 /**
437 * dma_channel_rebalance - redistribute the available channels
438 *
439 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
440 * operation type) in the SMP case, and operation isolation (avoid
441 * multi-tasking channels) in the non-SMP case. Must be called under
442 * dma_list_mutex.
443 */
444 static void dma_channel_rebalance(void)
445 {
446 struct dma_chan *chan;
447 struct dma_device *device;
448 int cpu;
449 int cap;
450
451 /* undo the last distribution */
452 for_each_dma_cap_mask(cap, dma_cap_mask_all)
453 for_each_possible_cpu(cpu)
454 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
455
456 list_for_each_entry(device, &dma_device_list, global_node) {
457 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
458 continue;
459 list_for_each_entry(chan, &device->channels, device_node)
460 chan->table_count = 0;
461 }
462
463 /* don't populate the channel_table if no clients are available */
464 if (!dmaengine_ref_count)
465 return;
466
467 /* redistribute available channels */
468 for_each_dma_cap_mask(cap, dma_cap_mask_all)
469 for_each_online_cpu(cpu) {
470 chan = min_chan(cap, cpu);
471 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
472 }
473 }
474
475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
476 {
477 struct dma_device *device;
478
479 if (!chan || !caps)
480 return -EINVAL;
481
482 device = chan->device;
483
484 /* check if the channel supports slave transactions */
485 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
486 return -ENXIO;
487
488 /*
489 * Check whether it reports it uses the generic slave
490 * capabilities, if not, that means it doesn't support any
491 * kind of slave capabilities reporting.
492 */
493 if (!device->directions)
494 return -ENXIO;
495
496 caps->src_addr_widths = device->src_addr_widths;
497 caps->dst_addr_widths = device->dst_addr_widths;
498 caps->directions = device->directions;
499 caps->residue_granularity = device->residue_granularity;
500 caps->descriptor_reuse = device->descriptor_reuse;
501
502 /*
503 * Some devices implement only pause (e.g. to get residuum) but no
504 * resume. However cmd_pause is advertised as pause AND resume.
505 */
506 caps->cmd_pause = !!(device->device_pause && device->device_resume);
507 caps->cmd_terminate = !!device->device_terminate_all;
508
509 return 0;
510 }
511 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
512
513 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
514 struct dma_device *dev,
515 dma_filter_fn fn, void *fn_param)
516 {
517 struct dma_chan *chan;
518
519 if (mask && !__dma_device_satisfies_mask(dev, mask)) {
520 pr_debug("%s: wrong capabilities\n", __func__);
521 return NULL;
522 }
523 /* devices with multiple channels need special handling as we need to
524 * ensure that all channels are either private or public.
525 */
526 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
527 list_for_each_entry(chan, &dev->channels, device_node) {
528 /* some channels are already publicly allocated */
529 if (chan->client_count)
530 return NULL;
531 }
532
533 list_for_each_entry(chan, &dev->channels, device_node) {
534 if (chan->client_count) {
535 pr_debug("%s: %s busy\n",
536 __func__, dma_chan_name(chan));
537 continue;
538 }
539 if (fn && !fn(chan, fn_param)) {
540 pr_debug("%s: %s filter said false\n",
541 __func__, dma_chan_name(chan));
542 continue;
543 }
544 return chan;
545 }
546
547 return NULL;
548 }
549
550 static struct dma_chan *find_candidate(struct dma_device *device,
551 const dma_cap_mask_t *mask,
552 dma_filter_fn fn, void *fn_param)
553 {
554 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
555 int err;
556
557 if (chan) {
558 /* Found a suitable channel, try to grab, prep, and return it.
559 * We first set DMA_PRIVATE to disable balance_ref_count as this
560 * channel will not be published in the general-purpose
561 * allocator
562 */
563 dma_cap_set(DMA_PRIVATE, device->cap_mask);
564 device->privatecnt++;
565 err = dma_chan_get(chan);
566
567 if (err) {
568 if (err == -ENODEV) {
569 pr_debug("%s: %s module removed\n", __func__,
570 dma_chan_name(chan));
571 list_del_rcu(&device->global_node);
572 } else
573 pr_debug("%s: failed to get %s: (%d)\n",
574 __func__, dma_chan_name(chan), err);
575
576 if (--device->privatecnt == 0)
577 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
578
579 chan = ERR_PTR(err);
580 }
581 }
582
583 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
584 }
585
586 /**
587 * dma_get_slave_channel - try to get specific channel exclusively
588 * @chan: target channel
589 */
590 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
591 {
592 int err = -EBUSY;
593
594 /* lock against __dma_request_channel */
595 mutex_lock(&dma_list_mutex);
596
597 if (chan->client_count == 0) {
598 struct dma_device *device = chan->device;
599
600 dma_cap_set(DMA_PRIVATE, device->cap_mask);
601 device->privatecnt++;
602 err = dma_chan_get(chan);
603 if (err) {
604 pr_debug("%s: failed to get %s: (%d)\n",
605 __func__, dma_chan_name(chan), err);
606 chan = NULL;
607 if (--device->privatecnt == 0)
608 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
609 }
610 } else
611 chan = NULL;
612
613 mutex_unlock(&dma_list_mutex);
614
615
616 return chan;
617 }
618 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
619
620 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
621 {
622 dma_cap_mask_t mask;
623 struct dma_chan *chan;
624
625 dma_cap_zero(mask);
626 dma_cap_set(DMA_SLAVE, mask);
627
628 /* lock against __dma_request_channel */
629 mutex_lock(&dma_list_mutex);
630
631 chan = find_candidate(device, &mask, NULL, NULL);
632
633 mutex_unlock(&dma_list_mutex);
634
635 return IS_ERR(chan) ? NULL : chan;
636 }
637 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
638
639 /**
640 * __dma_request_channel - try to allocate an exclusive channel
641 * @mask: capabilities that the channel must satisfy
642 * @fn: optional callback to disposition available channels
643 * @fn_param: opaque parameter to pass to dma_filter_fn
644 *
645 * Returns pointer to appropriate DMA channel on success or NULL.
646 */
647 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
648 dma_filter_fn fn, void *fn_param)
649 {
650 struct dma_device *device, *_d;
651 struct dma_chan *chan = NULL;
652
653 /* Find a channel */
654 mutex_lock(&dma_list_mutex);
655 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
656 chan = find_candidate(device, mask, fn, fn_param);
657 if (!IS_ERR(chan))
658 break;
659
660 chan = NULL;
661 }
662 mutex_unlock(&dma_list_mutex);
663
664 pr_debug("%s: %s (%s)\n",
665 __func__,
666 chan ? "success" : "fail",
667 chan ? dma_chan_name(chan) : NULL);
668
669 return chan;
670 }
671 EXPORT_SYMBOL_GPL(__dma_request_channel);
672
673 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
674 const char *name,
675 struct device *dev)
676 {
677 int i;
678
679 if (!device->filter.mapcnt)
680 return NULL;
681
682 for (i = 0; i < device->filter.mapcnt; i++) {
683 const struct dma_slave_map *map = &device->filter.map[i];
684
685 if (!strcmp(map->devname, dev_name(dev)) &&
686 !strcmp(map->slave, name))
687 return map;
688 }
689
690 return NULL;
691 }
692
693 /**
694 * dma_request_chan - try to allocate an exclusive slave channel
695 * @dev: pointer to client device structure
696 * @name: slave channel name
697 *
698 * Returns pointer to appropriate DMA channel on success or an error pointer.
699 */
700 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
701 {
702 struct dma_device *d, *_d;
703 struct dma_chan *chan = NULL;
704
705 /* If device-tree is present get slave info from here */
706 if (dev->of_node)
707 chan = of_dma_request_slave_channel(dev->of_node, name);
708
709 /* If device was enumerated by ACPI get slave info from here */
710 if (has_acpi_companion(dev) && !chan)
711 chan = acpi_dma_request_slave_chan_by_name(dev, name);
712
713 if (chan) {
714 /* Valid channel found or requester need to be deferred */
715 if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
716 return chan;
717 }
718
719 /* Try to find the channel via the DMA filter map(s) */
720 mutex_lock(&dma_list_mutex);
721 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
722 dma_cap_mask_t mask;
723 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
724
725 if (!map)
726 continue;
727
728 dma_cap_zero(mask);
729 dma_cap_set(DMA_SLAVE, mask);
730
731 chan = find_candidate(d, &mask, d->filter.fn, map->param);
732 if (!IS_ERR(chan))
733 break;
734 }
735 mutex_unlock(&dma_list_mutex);
736
737 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
738 }
739 EXPORT_SYMBOL_GPL(dma_request_chan);
740
741 /**
742 * dma_request_slave_channel - try to allocate an exclusive slave channel
743 * @dev: pointer to client device structure
744 * @name: slave channel name
745 *
746 * Returns pointer to appropriate DMA channel on success or NULL.
747 */
748 struct dma_chan *dma_request_slave_channel(struct device *dev,
749 const char *name)
750 {
751 struct dma_chan *ch = dma_request_chan(dev, name);
752 if (IS_ERR(ch))
753 return NULL;
754
755 return ch;
756 }
757 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
758
759 /**
760 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
761 * @mask: capabilities that the channel must satisfy
762 *
763 * Returns pointer to appropriate DMA channel on success or an error pointer.
764 */
765 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
766 {
767 struct dma_chan *chan;
768
769 if (!mask)
770 return ERR_PTR(-ENODEV);
771
772 chan = __dma_request_channel(mask, NULL, NULL);
773 if (!chan)
774 chan = ERR_PTR(-ENODEV);
775
776 return chan;
777 }
778 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
779
780 void dma_release_channel(struct dma_chan *chan)
781 {
782 mutex_lock(&dma_list_mutex);
783 WARN_ONCE(chan->client_count != 1,
784 "chan reference count %d != 1\n", chan->client_count);
785 dma_chan_put(chan);
786 /* drop PRIVATE cap enabled by __dma_request_channel() */
787 if (--chan->device->privatecnt == 0)
788 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
789 mutex_unlock(&dma_list_mutex);
790 }
791 EXPORT_SYMBOL_GPL(dma_release_channel);
792
793 /**
794 * dmaengine_get - register interest in dma_channels
795 */
796 void dmaengine_get(void)
797 {
798 struct dma_device *device, *_d;
799 struct dma_chan *chan;
800 int err;
801
802 mutex_lock(&dma_list_mutex);
803 dmaengine_ref_count++;
804
805 /* try to grab channels */
806 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
807 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
808 continue;
809 list_for_each_entry(chan, &device->channels, device_node) {
810 err = dma_chan_get(chan);
811 if (err == -ENODEV) {
812 /* module removed before we could use it */
813 list_del_rcu(&device->global_node);
814 break;
815 } else if (err)
816 pr_debug("%s: failed to get %s: (%d)\n",
817 __func__, dma_chan_name(chan), err);
818 }
819 }
820
821 /* if this is the first reference and there were channels
822 * waiting we need to rebalance to get those channels
823 * incorporated into the channel table
824 */
825 if (dmaengine_ref_count == 1)
826 dma_channel_rebalance();
827 mutex_unlock(&dma_list_mutex);
828 }
829 EXPORT_SYMBOL(dmaengine_get);
830
831 /**
832 * dmaengine_put - let dma drivers be removed when ref_count == 0
833 */
834 void dmaengine_put(void)
835 {
836 struct dma_device *device;
837 struct dma_chan *chan;
838
839 mutex_lock(&dma_list_mutex);
840 dmaengine_ref_count--;
841 BUG_ON(dmaengine_ref_count < 0);
842 /* drop channel references */
843 list_for_each_entry(device, &dma_device_list, global_node) {
844 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
845 continue;
846 list_for_each_entry(chan, &device->channels, device_node)
847 dma_chan_put(chan);
848 }
849 mutex_unlock(&dma_list_mutex);
850 }
851 EXPORT_SYMBOL(dmaengine_put);
852
853 static bool device_has_all_tx_types(struct dma_device *device)
854 {
855 /* A device that satisfies this test has channels that will never cause
856 * an async_tx channel switch event as all possible operation types can
857 * be handled.
858 */
859 #ifdef CONFIG_ASYNC_TX_DMA
860 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
861 return false;
862 #endif
863
864 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
865 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
866 return false;
867 #endif
868
869 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
870 if (!dma_has_cap(DMA_XOR, device->cap_mask))
871 return false;
872
873 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
874 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
875 return false;
876 #endif
877 #endif
878
879 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
880 if (!dma_has_cap(DMA_PQ, device->cap_mask))
881 return false;
882
883 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
884 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
885 return false;
886 #endif
887 #endif
888
889 return true;
890 }
891
892 static int get_dma_id(struct dma_device *device)
893 {
894 int rc;
895
896 mutex_lock(&dma_list_mutex);
897
898 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
899 if (rc >= 0)
900 device->dev_id = rc;
901
902 mutex_unlock(&dma_list_mutex);
903 return rc < 0 ? rc : 0;
904 }
905
906 /**
907 * dma_async_device_register - registers DMA devices found
908 * @device: &dma_device
909 */
910 int dma_async_device_register(struct dma_device *device)
911 {
912 int chancnt = 0, rc;
913 struct dma_chan* chan;
914 atomic_t *idr_ref;
915
916 if (!device)
917 return -ENODEV;
918
919 /* validate device routines */
920 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
921 !device->device_prep_dma_memcpy);
922 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
923 !device->device_prep_dma_xor);
924 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
925 !device->device_prep_dma_xor_val);
926 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
927 !device->device_prep_dma_pq);
928 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
929 !device->device_prep_dma_pq_val);
930 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
931 !device->device_prep_dma_memset);
932 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
933 !device->device_prep_dma_interrupt);
934 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
935 !device->device_prep_dma_sg);
936 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
937 !device->device_prep_dma_cyclic);
938 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
939 !device->device_prep_interleaved_dma);
940
941 BUG_ON(!device->device_tx_status);
942 BUG_ON(!device->device_issue_pending);
943 BUG_ON(!device->dev);
944
945 /* note: this only matters in the
946 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
947 */
948 if (device_has_all_tx_types(device))
949 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
950
951 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
952 if (!idr_ref)
953 return -ENOMEM;
954 rc = get_dma_id(device);
955 if (rc != 0) {
956 kfree(idr_ref);
957 return rc;
958 }
959
960 atomic_set(idr_ref, 0);
961
962 /* represent channels in sysfs. Probably want devs too */
963 list_for_each_entry(chan, &device->channels, device_node) {
964 rc = -ENOMEM;
965 chan->local = alloc_percpu(typeof(*chan->local));
966 if (chan->local == NULL)
967 goto err_out;
968 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
969 if (chan->dev == NULL) {
970 free_percpu(chan->local);
971 chan->local = NULL;
972 goto err_out;
973 }
974
975 chan->chan_id = chancnt++;
976 chan->dev->device.class = &dma_devclass;
977 chan->dev->device.parent = device->dev;
978 chan->dev->chan = chan;
979 chan->dev->idr_ref = idr_ref;
980 chan->dev->dev_id = device->dev_id;
981 atomic_inc(idr_ref);
982 dev_set_name(&chan->dev->device, "dma%dchan%d",
983 device->dev_id, chan->chan_id);
984
985 rc = device_register(&chan->dev->device);
986 if (rc) {
987 free_percpu(chan->local);
988 chan->local = NULL;
989 kfree(chan->dev);
990 atomic_dec(idr_ref);
991 goto err_out;
992 }
993 chan->client_count = 0;
994 }
995 device->chancnt = chancnt;
996
997 mutex_lock(&dma_list_mutex);
998 /* take references on public channels */
999 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1000 list_for_each_entry(chan, &device->channels, device_node) {
1001 /* if clients are already waiting for channels we need
1002 * to take references on their behalf
1003 */
1004 if (dma_chan_get(chan) == -ENODEV) {
1005 /* note we can only get here for the first
1006 * channel as the remaining channels are
1007 * guaranteed to get a reference
1008 */
1009 rc = -ENODEV;
1010 mutex_unlock(&dma_list_mutex);
1011 goto err_out;
1012 }
1013 }
1014 list_add_tail_rcu(&device->global_node, &dma_device_list);
1015 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1016 device->privatecnt++; /* Always private */
1017 dma_channel_rebalance();
1018 mutex_unlock(&dma_list_mutex);
1019
1020 return 0;
1021
1022 err_out:
1023 /* if we never registered a channel just release the idr */
1024 if (atomic_read(idr_ref) == 0) {
1025 mutex_lock(&dma_list_mutex);
1026 idr_remove(&dma_idr, device->dev_id);
1027 mutex_unlock(&dma_list_mutex);
1028 kfree(idr_ref);
1029 return rc;
1030 }
1031
1032 list_for_each_entry(chan, &device->channels, device_node) {
1033 if (chan->local == NULL)
1034 continue;
1035 mutex_lock(&dma_list_mutex);
1036 chan->dev->chan = NULL;
1037 mutex_unlock(&dma_list_mutex);
1038 device_unregister(&chan->dev->device);
1039 free_percpu(chan->local);
1040 }
1041 return rc;
1042 }
1043 EXPORT_SYMBOL(dma_async_device_register);
1044
1045 /**
1046 * dma_async_device_unregister - unregister a DMA device
1047 * @device: &dma_device
1048 *
1049 * This routine is called by dma driver exit routines, dmaengine holds module
1050 * references to prevent it being called while channels are in use.
1051 */
1052 void dma_async_device_unregister(struct dma_device *device)
1053 {
1054 struct dma_chan *chan;
1055
1056 mutex_lock(&dma_list_mutex);
1057 list_del_rcu(&device->global_node);
1058 dma_channel_rebalance();
1059 mutex_unlock(&dma_list_mutex);
1060
1061 list_for_each_entry(chan, &device->channels, device_node) {
1062 WARN_ONCE(chan->client_count,
1063 "%s called while %d clients hold a reference\n",
1064 __func__, chan->client_count);
1065 mutex_lock(&dma_list_mutex);
1066 chan->dev->chan = NULL;
1067 mutex_unlock(&dma_list_mutex);
1068 device_unregister(&chan->dev->device);
1069 free_percpu(chan->local);
1070 }
1071 }
1072 EXPORT_SYMBOL(dma_async_device_unregister);
1073
1074 struct dmaengine_unmap_pool {
1075 struct kmem_cache *cache;
1076 const char *name;
1077 mempool_t *pool;
1078 size_t size;
1079 };
1080
1081 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1082 static struct dmaengine_unmap_pool unmap_pool[] = {
1083 __UNMAP_POOL(2),
1084 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1085 __UNMAP_POOL(16),
1086 __UNMAP_POOL(128),
1087 __UNMAP_POOL(256),
1088 #endif
1089 };
1090
1091 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1092 {
1093 int order = get_count_order(nr);
1094
1095 switch (order) {
1096 case 0 ... 1:
1097 return &unmap_pool[0];
1098 case 2 ... 4:
1099 return &unmap_pool[1];
1100 case 5 ... 7:
1101 return &unmap_pool[2];
1102 case 8:
1103 return &unmap_pool[3];
1104 default:
1105 BUG();
1106 return NULL;
1107 }
1108 }
1109
1110 static void dmaengine_unmap(struct kref *kref)
1111 {
1112 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1113 struct device *dev = unmap->dev;
1114 int cnt, i;
1115
1116 cnt = unmap->to_cnt;
1117 for (i = 0; i < cnt; i++)
1118 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1119 DMA_TO_DEVICE);
1120 cnt += unmap->from_cnt;
1121 for (; i < cnt; i++)
1122 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1123 DMA_FROM_DEVICE);
1124 cnt += unmap->bidi_cnt;
1125 for (; i < cnt; i++) {
1126 if (unmap->addr[i] == 0)
1127 continue;
1128 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1129 DMA_BIDIRECTIONAL);
1130 }
1131 cnt = unmap->map_cnt;
1132 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1133 }
1134
1135 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1136 {
1137 if (unmap)
1138 kref_put(&unmap->kref, dmaengine_unmap);
1139 }
1140 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1141
1142 static void dmaengine_destroy_unmap_pool(void)
1143 {
1144 int i;
1145
1146 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1147 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1148
1149 mempool_destroy(p->pool);
1150 p->pool = NULL;
1151 kmem_cache_destroy(p->cache);
1152 p->cache = NULL;
1153 }
1154 }
1155
1156 static int __init dmaengine_init_unmap_pool(void)
1157 {
1158 int i;
1159
1160 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1161 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1162 size_t size;
1163
1164 size = sizeof(struct dmaengine_unmap_data) +
1165 sizeof(dma_addr_t) * p->size;
1166
1167 p->cache = kmem_cache_create(p->name, size, 0,
1168 SLAB_HWCACHE_ALIGN, NULL);
1169 if (!p->cache)
1170 break;
1171 p->pool = mempool_create_slab_pool(1, p->cache);
1172 if (!p->pool)
1173 break;
1174 }
1175
1176 if (i == ARRAY_SIZE(unmap_pool))
1177 return 0;
1178
1179 dmaengine_destroy_unmap_pool();
1180 return -ENOMEM;
1181 }
1182
1183 struct dmaengine_unmap_data *
1184 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1185 {
1186 struct dmaengine_unmap_data *unmap;
1187
1188 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1189 if (!unmap)
1190 return NULL;
1191
1192 memset(unmap, 0, sizeof(*unmap));
1193 kref_init(&unmap->kref);
1194 unmap->dev = dev;
1195 unmap->map_cnt = nr;
1196
1197 return unmap;
1198 }
1199 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1200
1201 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1202 struct dma_chan *chan)
1203 {
1204 tx->chan = chan;
1205 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1206 spin_lock_init(&tx->lock);
1207 #endif
1208 }
1209 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1210
1211 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1212 * @tx: in-flight transaction to wait on
1213 */
1214 enum dma_status
1215 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1216 {
1217 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1218
1219 if (!tx)
1220 return DMA_COMPLETE;
1221
1222 while (tx->cookie == -EBUSY) {
1223 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1224 pr_err("%s timeout waiting for descriptor submission\n",
1225 __func__);
1226 return DMA_ERROR;
1227 }
1228 cpu_relax();
1229 }
1230 return dma_sync_wait(tx->chan, tx->cookie);
1231 }
1232 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1233
1234 /* dma_run_dependencies - helper routine for dma drivers to process
1235 * (start) dependent operations on their target channel
1236 * @tx: transaction with dependencies
1237 */
1238 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1239 {
1240 struct dma_async_tx_descriptor *dep = txd_next(tx);
1241 struct dma_async_tx_descriptor *dep_next;
1242 struct dma_chan *chan;
1243
1244 if (!dep)
1245 return;
1246
1247 /* we'll submit tx->next now, so clear the link */
1248 txd_clear_next(tx);
1249 chan = dep->chan;
1250
1251 /* keep submitting up until a channel switch is detected
1252 * in that case we will be called again as a result of
1253 * processing the interrupt from async_tx_channel_switch
1254 */
1255 for (; dep; dep = dep_next) {
1256 txd_lock(dep);
1257 txd_clear_parent(dep);
1258 dep_next = txd_next(dep);
1259 if (dep_next && dep_next->chan == chan)
1260 txd_clear_next(dep); /* ->next will be submitted */
1261 else
1262 dep_next = NULL; /* submit current dep and terminate */
1263 txd_unlock(dep);
1264
1265 dep->tx_submit(dep);
1266 }
1267
1268 chan->device->device_issue_pending(chan);
1269 }
1270 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1271
1272 static int __init dma_bus_init(void)
1273 {
1274 int err = dmaengine_init_unmap_pool();
1275
1276 if (err)
1277 return err;
1278 return class_register(&dma_devclass);
1279 }
1280 arch_initcall(dma_bus_init);
1281
1282
This page took 0.05494 seconds and 6 git commands to generate.