Merge branch 'topic/univ_api' into for-linus
[deliverable/linux.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17
18 /*
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
23 *
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
27 *
28 * LOCKING:
29 *
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
32 *
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
37 *
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
40 *
41 * See Documentation/dmaengine.txt for more details
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66
67 static DEFINE_MUTEX(dma_list_mutex);
68 static DEFINE_IDR(dma_idr);
69 static LIST_HEAD(dma_device_list);
70 static long dmaengine_ref_count;
71
72 /* --- sysfs implementation --- */
73
74 /**
75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
76 * @dev - device node
77 *
78 * Must be called under dma_list_mutex
79 */
80 static struct dma_chan *dev_to_dma_chan(struct device *dev)
81 {
82 struct dma_chan_dev *chan_dev;
83
84 chan_dev = container_of(dev, typeof(*chan_dev), device);
85 return chan_dev->chan;
86 }
87
88 static ssize_t memcpy_count_show(struct device *dev,
89 struct device_attribute *attr, char *buf)
90 {
91 struct dma_chan *chan;
92 unsigned long count = 0;
93 int i;
94 int err;
95
96 mutex_lock(&dma_list_mutex);
97 chan = dev_to_dma_chan(dev);
98 if (chan) {
99 for_each_possible_cpu(i)
100 count += per_cpu_ptr(chan->local, i)->memcpy_count;
101 err = sprintf(buf, "%lu\n", count);
102 } else
103 err = -ENODEV;
104 mutex_unlock(&dma_list_mutex);
105
106 return err;
107 }
108 static DEVICE_ATTR_RO(memcpy_count);
109
110 static ssize_t bytes_transferred_show(struct device *dev,
111 struct device_attribute *attr, char *buf)
112 {
113 struct dma_chan *chan;
114 unsigned long count = 0;
115 int i;
116 int err;
117
118 mutex_lock(&dma_list_mutex);
119 chan = dev_to_dma_chan(dev);
120 if (chan) {
121 for_each_possible_cpu(i)
122 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 err = sprintf(buf, "%lu\n", count);
124 } else
125 err = -ENODEV;
126 mutex_unlock(&dma_list_mutex);
127
128 return err;
129 }
130 static DEVICE_ATTR_RO(bytes_transferred);
131
132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
133 char *buf)
134 {
135 struct dma_chan *chan;
136 int err;
137
138 mutex_lock(&dma_list_mutex);
139 chan = dev_to_dma_chan(dev);
140 if (chan)
141 err = sprintf(buf, "%d\n", chan->client_count);
142 else
143 err = -ENODEV;
144 mutex_unlock(&dma_list_mutex);
145
146 return err;
147 }
148 static DEVICE_ATTR_RO(in_use);
149
150 static struct attribute *dma_dev_attrs[] = {
151 &dev_attr_memcpy_count.attr,
152 &dev_attr_bytes_transferred.attr,
153 &dev_attr_in_use.attr,
154 NULL,
155 };
156 ATTRIBUTE_GROUPS(dma_dev);
157
158 static void chan_dev_release(struct device *dev)
159 {
160 struct dma_chan_dev *chan_dev;
161
162 chan_dev = container_of(dev, typeof(*chan_dev), device);
163 if (atomic_dec_and_test(chan_dev->idr_ref)) {
164 mutex_lock(&dma_list_mutex);
165 idr_remove(&dma_idr, chan_dev->dev_id);
166 mutex_unlock(&dma_list_mutex);
167 kfree(chan_dev->idr_ref);
168 }
169 kfree(chan_dev);
170 }
171
172 static struct class dma_devclass = {
173 .name = "dma",
174 .dev_groups = dma_dev_groups,
175 .dev_release = chan_dev_release,
176 };
177
178 /* --- client and device registration --- */
179
180 #define dma_device_satisfies_mask(device, mask) \
181 __dma_device_satisfies_mask((device), &(mask))
182 static int
183 __dma_device_satisfies_mask(struct dma_device *device,
184 const dma_cap_mask_t *want)
185 {
186 dma_cap_mask_t has;
187
188 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
189 DMA_TX_TYPE_END);
190 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
191 }
192
193 static struct module *dma_chan_to_owner(struct dma_chan *chan)
194 {
195 return chan->device->dev->driver->owner;
196 }
197
198 /**
199 * balance_ref_count - catch up the channel reference count
200 * @chan - channel to balance ->client_count versus dmaengine_ref_count
201 *
202 * balance_ref_count must be called under dma_list_mutex
203 */
204 static void balance_ref_count(struct dma_chan *chan)
205 {
206 struct module *owner = dma_chan_to_owner(chan);
207
208 while (chan->client_count < dmaengine_ref_count) {
209 __module_get(owner);
210 chan->client_count++;
211 }
212 }
213
214 /**
215 * dma_chan_get - try to grab a dma channel's parent driver module
216 * @chan - channel to grab
217 *
218 * Must be called under dma_list_mutex
219 */
220 static int dma_chan_get(struct dma_chan *chan)
221 {
222 struct module *owner = dma_chan_to_owner(chan);
223 int ret;
224
225 /* The channel is already in use, update client count */
226 if (chan->client_count) {
227 __module_get(owner);
228 goto out;
229 }
230
231 if (!try_module_get(owner))
232 return -ENODEV;
233
234 /* allocate upon first client reference */
235 if (chan->device->device_alloc_chan_resources) {
236 ret = chan->device->device_alloc_chan_resources(chan);
237 if (ret < 0)
238 goto err_out;
239 }
240
241 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
242 balance_ref_count(chan);
243
244 out:
245 chan->client_count++;
246 return 0;
247
248 err_out:
249 module_put(owner);
250 return ret;
251 }
252
253 /**
254 * dma_chan_put - drop a reference to a dma channel's parent driver module
255 * @chan - channel to release
256 *
257 * Must be called under dma_list_mutex
258 */
259 static void dma_chan_put(struct dma_chan *chan)
260 {
261 /* This channel is not in use, bail out */
262 if (!chan->client_count)
263 return;
264
265 chan->client_count--;
266 module_put(dma_chan_to_owner(chan));
267
268 /* This channel is not in use anymore, free it */
269 if (!chan->client_count && chan->device->device_free_chan_resources)
270 chan->device->device_free_chan_resources(chan);
271
272 /* If the channel is used via a DMA request router, free the mapping */
273 if (chan->router && chan->router->route_free) {
274 chan->router->route_free(chan->router->dev, chan->route_data);
275 chan->router = NULL;
276 chan->route_data = NULL;
277 }
278 }
279
280 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
281 {
282 enum dma_status status;
283 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
284
285 dma_async_issue_pending(chan);
286 do {
287 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
288 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
289 pr_err("%s: timeout!\n", __func__);
290 return DMA_ERROR;
291 }
292 if (status != DMA_IN_PROGRESS)
293 break;
294 cpu_relax();
295 } while (1);
296
297 return status;
298 }
299 EXPORT_SYMBOL(dma_sync_wait);
300
301 /**
302 * dma_cap_mask_all - enable iteration over all operation types
303 */
304 static dma_cap_mask_t dma_cap_mask_all;
305
306 /**
307 * dma_chan_tbl_ent - tracks channel allocations per core/operation
308 * @chan - associated channel for this entry
309 */
310 struct dma_chan_tbl_ent {
311 struct dma_chan *chan;
312 };
313
314 /**
315 * channel_table - percpu lookup table for memory-to-memory offload providers
316 */
317 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
318
319 static int __init dma_channel_table_init(void)
320 {
321 enum dma_transaction_type cap;
322 int err = 0;
323
324 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
325
326 /* 'interrupt', 'private', and 'slave' are channel capabilities,
327 * but are not associated with an operation so they do not need
328 * an entry in the channel_table
329 */
330 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
331 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
332 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
333
334 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
335 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
336 if (!channel_table[cap]) {
337 err = -ENOMEM;
338 break;
339 }
340 }
341
342 if (err) {
343 pr_err("initialization failure\n");
344 for_each_dma_cap_mask(cap, dma_cap_mask_all)
345 free_percpu(channel_table[cap]);
346 }
347
348 return err;
349 }
350 arch_initcall(dma_channel_table_init);
351
352 /**
353 * dma_find_channel - find a channel to carry out the operation
354 * @tx_type: transaction type
355 */
356 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
357 {
358 return this_cpu_read(channel_table[tx_type]->chan);
359 }
360 EXPORT_SYMBOL(dma_find_channel);
361
362 /**
363 * dma_issue_pending_all - flush all pending operations across all channels
364 */
365 void dma_issue_pending_all(void)
366 {
367 struct dma_device *device;
368 struct dma_chan *chan;
369
370 rcu_read_lock();
371 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
372 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
373 continue;
374 list_for_each_entry(chan, &device->channels, device_node)
375 if (chan->client_count)
376 device->device_issue_pending(chan);
377 }
378 rcu_read_unlock();
379 }
380 EXPORT_SYMBOL(dma_issue_pending_all);
381
382 /**
383 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
384 */
385 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
386 {
387 int node = dev_to_node(chan->device->dev);
388 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
389 }
390
391 /**
392 * min_chan - returns the channel with min count and in the same numa-node as the cpu
393 * @cap: capability to match
394 * @cpu: cpu index which the channel should be close to
395 *
396 * If some channels are close to the given cpu, the one with the lowest
397 * reference count is returned. Otherwise, cpu is ignored and only the
398 * reference count is taken into account.
399 * Must be called under dma_list_mutex.
400 */
401 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
402 {
403 struct dma_device *device;
404 struct dma_chan *chan;
405 struct dma_chan *min = NULL;
406 struct dma_chan *localmin = NULL;
407
408 list_for_each_entry(device, &dma_device_list, global_node) {
409 if (!dma_has_cap(cap, device->cap_mask) ||
410 dma_has_cap(DMA_PRIVATE, device->cap_mask))
411 continue;
412 list_for_each_entry(chan, &device->channels, device_node) {
413 if (!chan->client_count)
414 continue;
415 if (!min || chan->table_count < min->table_count)
416 min = chan;
417
418 if (dma_chan_is_local(chan, cpu))
419 if (!localmin ||
420 chan->table_count < localmin->table_count)
421 localmin = chan;
422 }
423 }
424
425 chan = localmin ? localmin : min;
426
427 if (chan)
428 chan->table_count++;
429
430 return chan;
431 }
432
433 /**
434 * dma_channel_rebalance - redistribute the available channels
435 *
436 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
437 * operation type) in the SMP case, and operation isolation (avoid
438 * multi-tasking channels) in the non-SMP case. Must be called under
439 * dma_list_mutex.
440 */
441 static void dma_channel_rebalance(void)
442 {
443 struct dma_chan *chan;
444 struct dma_device *device;
445 int cpu;
446 int cap;
447
448 /* undo the last distribution */
449 for_each_dma_cap_mask(cap, dma_cap_mask_all)
450 for_each_possible_cpu(cpu)
451 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
452
453 list_for_each_entry(device, &dma_device_list, global_node) {
454 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
455 continue;
456 list_for_each_entry(chan, &device->channels, device_node)
457 chan->table_count = 0;
458 }
459
460 /* don't populate the channel_table if no clients are available */
461 if (!dmaengine_ref_count)
462 return;
463
464 /* redistribute available channels */
465 for_each_dma_cap_mask(cap, dma_cap_mask_all)
466 for_each_online_cpu(cpu) {
467 chan = min_chan(cap, cpu);
468 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
469 }
470 }
471
472 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
473 {
474 struct dma_device *device;
475
476 if (!chan || !caps)
477 return -EINVAL;
478
479 device = chan->device;
480
481 /* check if the channel supports slave transactions */
482 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
483 return -ENXIO;
484
485 /*
486 * Check whether it reports it uses the generic slave
487 * capabilities, if not, that means it doesn't support any
488 * kind of slave capabilities reporting.
489 */
490 if (!device->directions)
491 return -ENXIO;
492
493 caps->src_addr_widths = device->src_addr_widths;
494 caps->dst_addr_widths = device->dst_addr_widths;
495 caps->directions = device->directions;
496 caps->residue_granularity = device->residue_granularity;
497 caps->descriptor_reuse = device->descriptor_reuse;
498
499 /*
500 * Some devices implement only pause (e.g. to get residuum) but no
501 * resume. However cmd_pause is advertised as pause AND resume.
502 */
503 caps->cmd_pause = !!(device->device_pause && device->device_resume);
504 caps->cmd_terminate = !!device->device_terminate_all;
505
506 return 0;
507 }
508 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
509
510 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
511 struct dma_device *dev,
512 dma_filter_fn fn, void *fn_param)
513 {
514 struct dma_chan *chan;
515
516 if (mask && !__dma_device_satisfies_mask(dev, mask)) {
517 pr_debug("%s: wrong capabilities\n", __func__);
518 return NULL;
519 }
520 /* devices with multiple channels need special handling as we need to
521 * ensure that all channels are either private or public.
522 */
523 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
524 list_for_each_entry(chan, &dev->channels, device_node) {
525 /* some channels are already publicly allocated */
526 if (chan->client_count)
527 return NULL;
528 }
529
530 list_for_each_entry(chan, &dev->channels, device_node) {
531 if (chan->client_count) {
532 pr_debug("%s: %s busy\n",
533 __func__, dma_chan_name(chan));
534 continue;
535 }
536 if (fn && !fn(chan, fn_param)) {
537 pr_debug("%s: %s filter said false\n",
538 __func__, dma_chan_name(chan));
539 continue;
540 }
541 return chan;
542 }
543
544 return NULL;
545 }
546
547 static struct dma_chan *find_candidate(struct dma_device *device,
548 const dma_cap_mask_t *mask,
549 dma_filter_fn fn, void *fn_param)
550 {
551 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
552 int err;
553
554 if (chan) {
555 /* Found a suitable channel, try to grab, prep, and return it.
556 * We first set DMA_PRIVATE to disable balance_ref_count as this
557 * channel will not be published in the general-purpose
558 * allocator
559 */
560 dma_cap_set(DMA_PRIVATE, device->cap_mask);
561 device->privatecnt++;
562 err = dma_chan_get(chan);
563
564 if (err) {
565 if (err == -ENODEV) {
566 pr_debug("%s: %s module removed\n", __func__,
567 dma_chan_name(chan));
568 list_del_rcu(&device->global_node);
569 } else
570 pr_debug("%s: failed to get %s: (%d)\n",
571 __func__, dma_chan_name(chan), err);
572
573 if (--device->privatecnt == 0)
574 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
575
576 chan = ERR_PTR(err);
577 }
578 }
579
580 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
581 }
582
583 /**
584 * dma_get_slave_channel - try to get specific channel exclusively
585 * @chan: target channel
586 */
587 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
588 {
589 int err = -EBUSY;
590
591 /* lock against __dma_request_channel */
592 mutex_lock(&dma_list_mutex);
593
594 if (chan->client_count == 0) {
595 struct dma_device *device = chan->device;
596
597 dma_cap_set(DMA_PRIVATE, device->cap_mask);
598 device->privatecnt++;
599 err = dma_chan_get(chan);
600 if (err) {
601 pr_debug("%s: failed to get %s: (%d)\n",
602 __func__, dma_chan_name(chan), err);
603 chan = NULL;
604 if (--device->privatecnt == 0)
605 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
606 }
607 } else
608 chan = NULL;
609
610 mutex_unlock(&dma_list_mutex);
611
612
613 return chan;
614 }
615 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
616
617 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
618 {
619 dma_cap_mask_t mask;
620 struct dma_chan *chan;
621
622 dma_cap_zero(mask);
623 dma_cap_set(DMA_SLAVE, mask);
624
625 /* lock against __dma_request_channel */
626 mutex_lock(&dma_list_mutex);
627
628 chan = find_candidate(device, &mask, NULL, NULL);
629
630 mutex_unlock(&dma_list_mutex);
631
632 return IS_ERR(chan) ? NULL : chan;
633 }
634 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
635
636 /**
637 * __dma_request_channel - try to allocate an exclusive channel
638 * @mask: capabilities that the channel must satisfy
639 * @fn: optional callback to disposition available channels
640 * @fn_param: opaque parameter to pass to dma_filter_fn
641 *
642 * Returns pointer to appropriate DMA channel on success or NULL.
643 */
644 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
645 dma_filter_fn fn, void *fn_param)
646 {
647 struct dma_device *device, *_d;
648 struct dma_chan *chan = NULL;
649
650 /* Find a channel */
651 mutex_lock(&dma_list_mutex);
652 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
653 chan = find_candidate(device, mask, fn, fn_param);
654 if (!IS_ERR(chan))
655 break;
656
657 chan = NULL;
658 }
659 mutex_unlock(&dma_list_mutex);
660
661 pr_debug("%s: %s (%s)\n",
662 __func__,
663 chan ? "success" : "fail",
664 chan ? dma_chan_name(chan) : NULL);
665
666 return chan;
667 }
668 EXPORT_SYMBOL_GPL(__dma_request_channel);
669
670 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
671 const char *name,
672 struct device *dev)
673 {
674 int i;
675
676 if (!device->filter.mapcnt)
677 return NULL;
678
679 for (i = 0; i < device->filter.mapcnt; i++) {
680 const struct dma_slave_map *map = &device->filter.map[i];
681
682 if (!strcmp(map->devname, dev_name(dev)) &&
683 !strcmp(map->slave, name))
684 return map;
685 }
686
687 return NULL;
688 }
689
690 /**
691 * dma_request_chan - try to allocate an exclusive slave channel
692 * @dev: pointer to client device structure
693 * @name: slave channel name
694 *
695 * Returns pointer to appropriate DMA channel on success or an error pointer.
696 */
697 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
698 {
699 struct dma_device *d, *_d;
700 struct dma_chan *chan = NULL;
701
702 /* If device-tree is present get slave info from here */
703 if (dev->of_node)
704 chan = of_dma_request_slave_channel(dev->of_node, name);
705
706 /* If device was enumerated by ACPI get slave info from here */
707 if (has_acpi_companion(dev) && !chan)
708 chan = acpi_dma_request_slave_chan_by_name(dev, name);
709
710 if (chan) {
711 /* Valid channel found or requester need to be deferred */
712 if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
713 return chan;
714 }
715
716 /* Try to find the channel via the DMA filter map(s) */
717 mutex_lock(&dma_list_mutex);
718 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
719 dma_cap_mask_t mask;
720 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
721
722 if (!map)
723 continue;
724
725 dma_cap_zero(mask);
726 dma_cap_set(DMA_SLAVE, mask);
727
728 chan = find_candidate(d, &mask, d->filter.fn, map->param);
729 if (!IS_ERR(chan))
730 break;
731 }
732 mutex_unlock(&dma_list_mutex);
733
734 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
735 }
736 EXPORT_SYMBOL_GPL(dma_request_chan);
737
738 /**
739 * dma_request_slave_channel - try to allocate an exclusive slave channel
740 * @dev: pointer to client device structure
741 * @name: slave channel name
742 *
743 * Returns pointer to appropriate DMA channel on success or NULL.
744 */
745 struct dma_chan *dma_request_slave_channel(struct device *dev,
746 const char *name)
747 {
748 struct dma_chan *ch = dma_request_chan(dev, name);
749 if (IS_ERR(ch))
750 return NULL;
751
752 return ch;
753 }
754 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
755
756 /**
757 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
758 * @mask: capabilities that the channel must satisfy
759 *
760 * Returns pointer to appropriate DMA channel on success or an error pointer.
761 */
762 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
763 {
764 struct dma_chan *chan;
765
766 if (!mask)
767 return ERR_PTR(-ENODEV);
768
769 chan = __dma_request_channel(mask, NULL, NULL);
770 if (!chan)
771 chan = ERR_PTR(-ENODEV);
772
773 return chan;
774 }
775 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
776
777 void dma_release_channel(struct dma_chan *chan)
778 {
779 mutex_lock(&dma_list_mutex);
780 WARN_ONCE(chan->client_count != 1,
781 "chan reference count %d != 1\n", chan->client_count);
782 dma_chan_put(chan);
783 /* drop PRIVATE cap enabled by __dma_request_channel() */
784 if (--chan->device->privatecnt == 0)
785 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
786 mutex_unlock(&dma_list_mutex);
787 }
788 EXPORT_SYMBOL_GPL(dma_release_channel);
789
790 /**
791 * dmaengine_get - register interest in dma_channels
792 */
793 void dmaengine_get(void)
794 {
795 struct dma_device *device, *_d;
796 struct dma_chan *chan;
797 int err;
798
799 mutex_lock(&dma_list_mutex);
800 dmaengine_ref_count++;
801
802 /* try to grab channels */
803 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
804 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
805 continue;
806 list_for_each_entry(chan, &device->channels, device_node) {
807 err = dma_chan_get(chan);
808 if (err == -ENODEV) {
809 /* module removed before we could use it */
810 list_del_rcu(&device->global_node);
811 break;
812 } else if (err)
813 pr_debug("%s: failed to get %s: (%d)\n",
814 __func__, dma_chan_name(chan), err);
815 }
816 }
817
818 /* if this is the first reference and there were channels
819 * waiting we need to rebalance to get those channels
820 * incorporated into the channel table
821 */
822 if (dmaengine_ref_count == 1)
823 dma_channel_rebalance();
824 mutex_unlock(&dma_list_mutex);
825 }
826 EXPORT_SYMBOL(dmaengine_get);
827
828 /**
829 * dmaengine_put - let dma drivers be removed when ref_count == 0
830 */
831 void dmaengine_put(void)
832 {
833 struct dma_device *device;
834 struct dma_chan *chan;
835
836 mutex_lock(&dma_list_mutex);
837 dmaengine_ref_count--;
838 BUG_ON(dmaengine_ref_count < 0);
839 /* drop channel references */
840 list_for_each_entry(device, &dma_device_list, global_node) {
841 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
842 continue;
843 list_for_each_entry(chan, &device->channels, device_node)
844 dma_chan_put(chan);
845 }
846 mutex_unlock(&dma_list_mutex);
847 }
848 EXPORT_SYMBOL(dmaengine_put);
849
850 static bool device_has_all_tx_types(struct dma_device *device)
851 {
852 /* A device that satisfies this test has channels that will never cause
853 * an async_tx channel switch event as all possible operation types can
854 * be handled.
855 */
856 #ifdef CONFIG_ASYNC_TX_DMA
857 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
858 return false;
859 #endif
860
861 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
862 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
863 return false;
864 #endif
865
866 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
867 if (!dma_has_cap(DMA_XOR, device->cap_mask))
868 return false;
869
870 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
871 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
872 return false;
873 #endif
874 #endif
875
876 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
877 if (!dma_has_cap(DMA_PQ, device->cap_mask))
878 return false;
879
880 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
881 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
882 return false;
883 #endif
884 #endif
885
886 return true;
887 }
888
889 static int get_dma_id(struct dma_device *device)
890 {
891 int rc;
892
893 mutex_lock(&dma_list_mutex);
894
895 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
896 if (rc >= 0)
897 device->dev_id = rc;
898
899 mutex_unlock(&dma_list_mutex);
900 return rc < 0 ? rc : 0;
901 }
902
903 /**
904 * dma_async_device_register - registers DMA devices found
905 * @device: &dma_device
906 */
907 int dma_async_device_register(struct dma_device *device)
908 {
909 int chancnt = 0, rc;
910 struct dma_chan* chan;
911 atomic_t *idr_ref;
912
913 if (!device)
914 return -ENODEV;
915
916 /* validate device routines */
917 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
918 !device->device_prep_dma_memcpy);
919 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
920 !device->device_prep_dma_xor);
921 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
922 !device->device_prep_dma_xor_val);
923 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
924 !device->device_prep_dma_pq);
925 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
926 !device->device_prep_dma_pq_val);
927 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
928 !device->device_prep_dma_memset);
929 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
930 !device->device_prep_dma_interrupt);
931 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
932 !device->device_prep_dma_sg);
933 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
934 !device->device_prep_dma_cyclic);
935 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
936 !device->device_prep_interleaved_dma);
937
938 BUG_ON(!device->device_tx_status);
939 BUG_ON(!device->device_issue_pending);
940 BUG_ON(!device->dev);
941
942 /* note: this only matters in the
943 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
944 */
945 if (device_has_all_tx_types(device))
946 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
947
948 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
949 if (!idr_ref)
950 return -ENOMEM;
951 rc = get_dma_id(device);
952 if (rc != 0) {
953 kfree(idr_ref);
954 return rc;
955 }
956
957 atomic_set(idr_ref, 0);
958
959 /* represent channels in sysfs. Probably want devs too */
960 list_for_each_entry(chan, &device->channels, device_node) {
961 rc = -ENOMEM;
962 chan->local = alloc_percpu(typeof(*chan->local));
963 if (chan->local == NULL)
964 goto err_out;
965 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
966 if (chan->dev == NULL) {
967 free_percpu(chan->local);
968 chan->local = NULL;
969 goto err_out;
970 }
971
972 chan->chan_id = chancnt++;
973 chan->dev->device.class = &dma_devclass;
974 chan->dev->device.parent = device->dev;
975 chan->dev->chan = chan;
976 chan->dev->idr_ref = idr_ref;
977 chan->dev->dev_id = device->dev_id;
978 atomic_inc(idr_ref);
979 dev_set_name(&chan->dev->device, "dma%dchan%d",
980 device->dev_id, chan->chan_id);
981
982 rc = device_register(&chan->dev->device);
983 if (rc) {
984 free_percpu(chan->local);
985 chan->local = NULL;
986 kfree(chan->dev);
987 atomic_dec(idr_ref);
988 goto err_out;
989 }
990 chan->client_count = 0;
991 }
992 device->chancnt = chancnt;
993
994 mutex_lock(&dma_list_mutex);
995 /* take references on public channels */
996 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
997 list_for_each_entry(chan, &device->channels, device_node) {
998 /* if clients are already waiting for channels we need
999 * to take references on their behalf
1000 */
1001 if (dma_chan_get(chan) == -ENODEV) {
1002 /* note we can only get here for the first
1003 * channel as the remaining channels are
1004 * guaranteed to get a reference
1005 */
1006 rc = -ENODEV;
1007 mutex_unlock(&dma_list_mutex);
1008 goto err_out;
1009 }
1010 }
1011 list_add_tail_rcu(&device->global_node, &dma_device_list);
1012 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1013 device->privatecnt++; /* Always private */
1014 dma_channel_rebalance();
1015 mutex_unlock(&dma_list_mutex);
1016
1017 return 0;
1018
1019 err_out:
1020 /* if we never registered a channel just release the idr */
1021 if (atomic_read(idr_ref) == 0) {
1022 mutex_lock(&dma_list_mutex);
1023 idr_remove(&dma_idr, device->dev_id);
1024 mutex_unlock(&dma_list_mutex);
1025 kfree(idr_ref);
1026 return rc;
1027 }
1028
1029 list_for_each_entry(chan, &device->channels, device_node) {
1030 if (chan->local == NULL)
1031 continue;
1032 mutex_lock(&dma_list_mutex);
1033 chan->dev->chan = NULL;
1034 mutex_unlock(&dma_list_mutex);
1035 device_unregister(&chan->dev->device);
1036 free_percpu(chan->local);
1037 }
1038 return rc;
1039 }
1040 EXPORT_SYMBOL(dma_async_device_register);
1041
1042 /**
1043 * dma_async_device_unregister - unregister a DMA device
1044 * @device: &dma_device
1045 *
1046 * This routine is called by dma driver exit routines, dmaengine holds module
1047 * references to prevent it being called while channels are in use.
1048 */
1049 void dma_async_device_unregister(struct dma_device *device)
1050 {
1051 struct dma_chan *chan;
1052
1053 mutex_lock(&dma_list_mutex);
1054 list_del_rcu(&device->global_node);
1055 dma_channel_rebalance();
1056 mutex_unlock(&dma_list_mutex);
1057
1058 list_for_each_entry(chan, &device->channels, device_node) {
1059 WARN_ONCE(chan->client_count,
1060 "%s called while %d clients hold a reference\n",
1061 __func__, chan->client_count);
1062 mutex_lock(&dma_list_mutex);
1063 chan->dev->chan = NULL;
1064 mutex_unlock(&dma_list_mutex);
1065 device_unregister(&chan->dev->device);
1066 free_percpu(chan->local);
1067 }
1068 }
1069 EXPORT_SYMBOL(dma_async_device_unregister);
1070
1071 struct dmaengine_unmap_pool {
1072 struct kmem_cache *cache;
1073 const char *name;
1074 mempool_t *pool;
1075 size_t size;
1076 };
1077
1078 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1079 static struct dmaengine_unmap_pool unmap_pool[] = {
1080 __UNMAP_POOL(2),
1081 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1082 __UNMAP_POOL(16),
1083 __UNMAP_POOL(128),
1084 __UNMAP_POOL(256),
1085 #endif
1086 };
1087
1088 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1089 {
1090 int order = get_count_order(nr);
1091
1092 switch (order) {
1093 case 0 ... 1:
1094 return &unmap_pool[0];
1095 case 2 ... 4:
1096 return &unmap_pool[1];
1097 case 5 ... 7:
1098 return &unmap_pool[2];
1099 case 8:
1100 return &unmap_pool[3];
1101 default:
1102 BUG();
1103 return NULL;
1104 }
1105 }
1106
1107 static void dmaengine_unmap(struct kref *kref)
1108 {
1109 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1110 struct device *dev = unmap->dev;
1111 int cnt, i;
1112
1113 cnt = unmap->to_cnt;
1114 for (i = 0; i < cnt; i++)
1115 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1116 DMA_TO_DEVICE);
1117 cnt += unmap->from_cnt;
1118 for (; i < cnt; i++)
1119 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1120 DMA_FROM_DEVICE);
1121 cnt += unmap->bidi_cnt;
1122 for (; i < cnt; i++) {
1123 if (unmap->addr[i] == 0)
1124 continue;
1125 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1126 DMA_BIDIRECTIONAL);
1127 }
1128 cnt = unmap->map_cnt;
1129 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1130 }
1131
1132 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1133 {
1134 if (unmap)
1135 kref_put(&unmap->kref, dmaengine_unmap);
1136 }
1137 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1138
1139 static void dmaengine_destroy_unmap_pool(void)
1140 {
1141 int i;
1142
1143 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1144 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1145
1146 mempool_destroy(p->pool);
1147 p->pool = NULL;
1148 kmem_cache_destroy(p->cache);
1149 p->cache = NULL;
1150 }
1151 }
1152
1153 static int __init dmaengine_init_unmap_pool(void)
1154 {
1155 int i;
1156
1157 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1158 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1159 size_t size;
1160
1161 size = sizeof(struct dmaengine_unmap_data) +
1162 sizeof(dma_addr_t) * p->size;
1163
1164 p->cache = kmem_cache_create(p->name, size, 0,
1165 SLAB_HWCACHE_ALIGN, NULL);
1166 if (!p->cache)
1167 break;
1168 p->pool = mempool_create_slab_pool(1, p->cache);
1169 if (!p->pool)
1170 break;
1171 }
1172
1173 if (i == ARRAY_SIZE(unmap_pool))
1174 return 0;
1175
1176 dmaengine_destroy_unmap_pool();
1177 return -ENOMEM;
1178 }
1179
1180 struct dmaengine_unmap_data *
1181 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1182 {
1183 struct dmaengine_unmap_data *unmap;
1184
1185 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1186 if (!unmap)
1187 return NULL;
1188
1189 memset(unmap, 0, sizeof(*unmap));
1190 kref_init(&unmap->kref);
1191 unmap->dev = dev;
1192 unmap->map_cnt = nr;
1193
1194 return unmap;
1195 }
1196 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1197
1198 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1199 struct dma_chan *chan)
1200 {
1201 tx->chan = chan;
1202 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1203 spin_lock_init(&tx->lock);
1204 #endif
1205 }
1206 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1207
1208 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1209 * @tx: in-flight transaction to wait on
1210 */
1211 enum dma_status
1212 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1213 {
1214 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1215
1216 if (!tx)
1217 return DMA_COMPLETE;
1218
1219 while (tx->cookie == -EBUSY) {
1220 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1221 pr_err("%s timeout waiting for descriptor submission\n",
1222 __func__);
1223 return DMA_ERROR;
1224 }
1225 cpu_relax();
1226 }
1227 return dma_sync_wait(tx->chan, tx->cookie);
1228 }
1229 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1230
1231 /* dma_run_dependencies - helper routine for dma drivers to process
1232 * (start) dependent operations on their target channel
1233 * @tx: transaction with dependencies
1234 */
1235 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1236 {
1237 struct dma_async_tx_descriptor *dep = txd_next(tx);
1238 struct dma_async_tx_descriptor *dep_next;
1239 struct dma_chan *chan;
1240
1241 if (!dep)
1242 return;
1243
1244 /* we'll submit tx->next now, so clear the link */
1245 txd_clear_next(tx);
1246 chan = dep->chan;
1247
1248 /* keep submitting up until a channel switch is detected
1249 * in that case we will be called again as a result of
1250 * processing the interrupt from async_tx_channel_switch
1251 */
1252 for (; dep; dep = dep_next) {
1253 txd_lock(dep);
1254 txd_clear_parent(dep);
1255 dep_next = txd_next(dep);
1256 if (dep_next && dep_next->chan == chan)
1257 txd_clear_next(dep); /* ->next will be submitted */
1258 else
1259 dep_next = NULL; /* submit current dep and terminate */
1260 txd_unlock(dep);
1261
1262 dep->tx_submit(dep);
1263 }
1264
1265 chan->device->device_issue_pending(chan);
1266 }
1267 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1268
1269 static int __init dma_bus_init(void)
1270 {
1271 int err = dmaengine_init_unmap_pool();
1272
1273 if (err)
1274 return err;
1275 return class_register(&dma_devclass);
1276 }
1277 arch_initcall(dma_bus_init);
1278
1279
This page took 0.055258 seconds and 6 git commands to generate.