dmaengine: edma: Simplify the interrupt handling
[deliverable/linux.git] / drivers / dma / edma.c
1 /*
2 * TI EDMA DMA engine driver
3 *
4 * Copyright 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
48
49 #define PARM_SIZE 0x20
50
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
74
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
97
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
103
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
107
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
111 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
112 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
113 #define CHMAP_EXIST BIT(24)
114
115 /*
116 * Max of 20 segments per channel to conserve PaRAM slots
117 * Also note that MAX_NR_SG should be atleast the no.of periods
118 * that are required for ASoC, otherwise DMA prep calls will
119 * fail. Today davinci-pcm is the only user of this driver and
120 * requires atleast 17 slots, so we setup the default to 20.
121 */
122 #define MAX_NR_SG 20
123 #define EDMA_MAX_SLOTS MAX_NR_SG
124 #define EDMA_DESCRIPTORS 16
125
126 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
127 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
128 #define EDMA_CONT_PARAMS_ANY 1001
129 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
130 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
131
132 /* PaRAM slots are laid out like this */
133 struct edmacc_param {
134 u32 opt;
135 u32 src;
136 u32 a_b_cnt;
137 u32 dst;
138 u32 src_dst_bidx;
139 u32 link_bcntrld;
140 u32 src_dst_cidx;
141 u32 ccnt;
142 } __packed;
143
144 /* fields in edmacc_param.opt */
145 #define SAM BIT(0)
146 #define DAM BIT(1)
147 #define SYNCDIM BIT(2)
148 #define STATIC BIT(3)
149 #define EDMA_FWID (0x07 << 8)
150 #define TCCMODE BIT(11)
151 #define EDMA_TCC(t) ((t) << 12)
152 #define TCINTEN BIT(20)
153 #define ITCINTEN BIT(21)
154 #define TCCHEN BIT(22)
155 #define ITCCHEN BIT(23)
156
157 struct edma_pset {
158 u32 len;
159 dma_addr_t addr;
160 struct edmacc_param param;
161 };
162
163 struct edma_desc {
164 struct virt_dma_desc vdesc;
165 struct list_head node;
166 enum dma_transfer_direction direction;
167 int cyclic;
168 int absync;
169 int pset_nr;
170 struct edma_chan *echan;
171 int processed;
172
173 /*
174 * The following 4 elements are used for residue accounting.
175 *
176 * - processed_stat: the number of SG elements we have traversed
177 * so far to cover accounting. This is updated directly to processed
178 * during edma_callback and is always <= processed, because processed
179 * refers to the number of pending transfer (programmed to EDMA
180 * controller), where as processed_stat tracks number of transfers
181 * accounted for so far.
182 *
183 * - residue: The amount of bytes we have left to transfer for this desc
184 *
185 * - residue_stat: The residue in bytes of data we have covered
186 * so far for accounting. This is updated directly to residue
187 * during callbacks to keep it current.
188 *
189 * - sg_len: Tracks the length of the current intermediate transfer,
190 * this is required to update the residue during intermediate transfer
191 * completion callback.
192 */
193 int processed_stat;
194 u32 sg_len;
195 u32 residue;
196 u32 residue_stat;
197
198 struct edma_pset pset[0];
199 };
200
201 struct edma_cc;
202
203 struct edma_chan {
204 struct virt_dma_chan vchan;
205 struct list_head node;
206 struct edma_desc *edesc;
207 struct edma_cc *ecc;
208 int ch_num;
209 bool alloced;
210 int slot[EDMA_MAX_SLOTS];
211 int missed;
212 struct dma_slave_config cfg;
213 };
214
215 struct edma_cc {
216 struct device *dev;
217 struct edma_soc_info *info;
218 void __iomem *base;
219 int id;
220
221 /* eDMA3 resource information */
222 unsigned num_channels;
223 unsigned num_region;
224 unsigned num_slots;
225 unsigned num_tc;
226 enum dma_event_q default_queue;
227
228 bool unused_chan_list_done;
229 /* The edma_inuse bit for each PaRAM slot is clear unless the
230 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
231 */
232 unsigned long *edma_inuse;
233
234 /* The edma_unused bit for each channel is clear unless
235 * it is not being used on this platform. It uses a bit
236 * of SOC-specific initialization code.
237 */
238 unsigned long *edma_unused;
239
240 struct dma_device dma_slave;
241 struct edma_chan *slave_chans;
242 int dummy_slot;
243 };
244
245 /* dummy param set used to (re)initialize parameter RAM slots */
246 static const struct edmacc_param dummy_paramset = {
247 .link_bcntrld = 0xffff,
248 .ccnt = 1,
249 };
250
251 static const struct of_device_id edma_of_ids[] = {
252 { .compatible = "ti,edma3", },
253 {}
254 };
255
256 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
257 {
258 return (unsigned int)__raw_readl(ecc->base + offset);
259 }
260
261 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
262 {
263 __raw_writel(val, ecc->base + offset);
264 }
265
266 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
267 unsigned or)
268 {
269 unsigned val = edma_read(ecc, offset);
270
271 val &= and;
272 val |= or;
273 edma_write(ecc, offset, val);
274 }
275
276 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
277 {
278 unsigned val = edma_read(ecc, offset);
279
280 val &= and;
281 edma_write(ecc, offset, val);
282 }
283
284 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
285 {
286 unsigned val = edma_read(ecc, offset);
287
288 val |= or;
289 edma_write(ecc, offset, val);
290 }
291
292 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
293 int i)
294 {
295 return edma_read(ecc, offset + (i << 2));
296 }
297
298 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
299 unsigned val)
300 {
301 edma_write(ecc, offset + (i << 2), val);
302 }
303
304 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
305 unsigned and, unsigned or)
306 {
307 edma_modify(ecc, offset + (i << 2), and, or);
308 }
309
310 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
311 unsigned or)
312 {
313 edma_or(ecc, offset + (i << 2), or);
314 }
315
316 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
317 unsigned or)
318 {
319 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
320 }
321
322 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
323 int j, unsigned val)
324 {
325 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
326 }
327
328 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
329 {
330 return edma_read(ecc, EDMA_SHADOW0 + offset);
331 }
332
333 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
334 int offset, int i)
335 {
336 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
337 }
338
339 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
340 unsigned val)
341 {
342 edma_write(ecc, EDMA_SHADOW0 + offset, val);
343 }
344
345 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
346 int i, unsigned val)
347 {
348 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
349 }
350
351 static inline unsigned int edma_parm_read(struct edma_cc *ecc, int offset,
352 int param_no)
353 {
354 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
355 }
356
357 static inline void edma_parm_write(struct edma_cc *ecc, int offset,
358 int param_no, unsigned val)
359 {
360 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
361 }
362
363 static inline void edma_parm_modify(struct edma_cc *ecc, int offset,
364 int param_no, unsigned and, unsigned or)
365 {
366 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
367 }
368
369 static inline void edma_parm_and(struct edma_cc *ecc, int offset, int param_no,
370 unsigned and)
371 {
372 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
373 }
374
375 static inline void edma_parm_or(struct edma_cc *ecc, int offset, int param_no,
376 unsigned or)
377 {
378 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
379 }
380
381 static inline void set_bits(int offset, int len, unsigned long *p)
382 {
383 for (; len > 0; len--)
384 set_bit(offset + (len - 1), p);
385 }
386
387 static inline void clear_bits(int offset, int len, unsigned long *p)
388 {
389 for (; len > 0; len--)
390 clear_bit(offset + (len - 1), p);
391 }
392
393 static void edma_map_dmach_to_queue(struct edma_cc *ecc, unsigned ch_no,
394 enum dma_event_q queue_no)
395 {
396 int bit = (ch_no & 0x7) * 4;
397
398 /* default to low priority queue */
399 if (queue_no == EVENTQ_DEFAULT)
400 queue_no = ecc->default_queue;
401
402 queue_no &= 7;
403 edma_modify_array(ecc, EDMA_DMAQNUM, (ch_no >> 3), ~(0x7 << bit),
404 queue_no << bit);
405 }
406
407 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
408 int priority)
409 {
410 int bit = queue_no * 4;
411
412 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
413 }
414
415 static void edma_direct_dmach_to_param_mapping(struct edma_cc *ecc)
416 {
417 int i;
418
419 for (i = 0; i < ecc->num_channels; i++)
420 edma_write_array(ecc, EDMA_DCHMAP, i, (i << 5));
421 }
422
423 static int prepare_unused_channel_list(struct device *dev, void *data)
424 {
425 struct platform_device *pdev = to_platform_device(dev);
426 struct edma_cc *ecc = data;
427 int dma_req_min = EDMA_CTLR_CHAN(ecc->id, 0);
428 int dma_req_max = dma_req_min + ecc->num_channels;
429 int i, count;
430 struct of_phandle_args dma_spec;
431
432 if (dev->of_node) {
433 struct platform_device *dma_pdev;
434
435 count = of_property_count_strings(dev->of_node, "dma-names");
436 if (count < 0)
437 return 0;
438 for (i = 0; i < count; i++) {
439 if (of_parse_phandle_with_args(dev->of_node, "dmas",
440 "#dma-cells", i,
441 &dma_spec))
442 continue;
443
444 if (!of_match_node(edma_of_ids, dma_spec.np)) {
445 of_node_put(dma_spec.np);
446 continue;
447 }
448
449 dma_pdev = of_find_device_by_node(dma_spec.np);
450 if (&dma_pdev->dev != ecc->dev)
451 continue;
452
453 clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
454 ecc->edma_unused);
455 of_node_put(dma_spec.np);
456 }
457 return 0;
458 }
459
460 /* For non-OF case */
461 for (i = 0; i < pdev->num_resources; i++) {
462 struct resource *res = &pdev->resource[i];
463 int dma_req;
464
465 if (!(res->flags & IORESOURCE_DMA))
466 continue;
467
468 dma_req = (int)res->start;
469 if (dma_req >= dma_req_min && dma_req < dma_req_max)
470 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
471 ecc->edma_unused);
472 }
473
474 return 0;
475 }
476
477 static void edma_setup_interrupt(struct edma_cc *ecc, unsigned lch, bool enable)
478 {
479 lch = EDMA_CHAN_SLOT(lch);
480
481 if (enable) {
482 edma_shadow0_write_array(ecc, SH_ICR, lch >> 5,
483 BIT(lch & 0x1f));
484 edma_shadow0_write_array(ecc, SH_IESR, lch >> 5,
485 BIT(lch & 0x1f));
486 } else {
487 edma_shadow0_write_array(ecc, SH_IECR, lch >> 5,
488 BIT(lch & 0x1f));
489 }
490 }
491
492 /*
493 * paRAM slot management functions
494 */
495 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
496 const struct edmacc_param *param)
497 {
498 slot = EDMA_CHAN_SLOT(slot);
499 if (slot >= ecc->num_slots)
500 return;
501 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
502 }
503
504 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
505 struct edmacc_param *param)
506 {
507 slot = EDMA_CHAN_SLOT(slot);
508 if (slot >= ecc->num_slots)
509 return;
510 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
511 }
512
513 /**
514 * edma_alloc_slot - allocate DMA parameter RAM
515 * @ecc: pointer to edma_cc struct
516 * @slot: specific slot to allocate; negative for "any unused slot"
517 *
518 * This allocates a parameter RAM slot, initializing it to hold a
519 * dummy transfer. Slots allocated using this routine have not been
520 * mapped to a hardware DMA channel, and will normally be used by
521 * linking to them from a slot associated with a DMA channel.
522 *
523 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
524 * slots may be allocated on behalf of DSP firmware.
525 *
526 * Returns the number of the slot, else negative errno.
527 */
528 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
529 {
530 if (slot > 0)
531 slot = EDMA_CHAN_SLOT(slot);
532 if (slot < 0) {
533 slot = ecc->num_channels;
534 for (;;) {
535 slot = find_next_zero_bit(ecc->edma_inuse,
536 ecc->num_slots,
537 slot);
538 if (slot == ecc->num_slots)
539 return -ENOMEM;
540 if (!test_and_set_bit(slot, ecc->edma_inuse))
541 break;
542 }
543 } else if (slot < ecc->num_channels || slot >= ecc->num_slots) {
544 return -EINVAL;
545 } else if (test_and_set_bit(slot, ecc->edma_inuse)) {
546 return -EBUSY;
547 }
548
549 edma_write_slot(ecc, slot, &dummy_paramset);
550
551 return EDMA_CTLR_CHAN(ecc->id, slot);
552 }
553
554 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
555 {
556 slot = EDMA_CHAN_SLOT(slot);
557 if (slot < ecc->num_channels || slot >= ecc->num_slots)
558 return;
559
560 edma_write_slot(ecc, slot, &dummy_paramset);
561 clear_bit(slot, ecc->edma_inuse);
562 }
563
564 /**
565 * edma_link - link one parameter RAM slot to another
566 * @ecc: pointer to edma_cc struct
567 * @from: parameter RAM slot originating the link
568 * @to: parameter RAM slot which is the link target
569 *
570 * The originating slot should not be part of any active DMA transfer.
571 */
572 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
573 {
574 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
575 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
576
577 from = EDMA_CHAN_SLOT(from);
578 to = EDMA_CHAN_SLOT(to);
579 if (from >= ecc->num_slots || to >= ecc->num_slots)
580 return;
581
582 edma_parm_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
583 PARM_OFFSET(to));
584 }
585
586 /**
587 * edma_get_position - returns the current transfer point
588 * @ecc: pointer to edma_cc struct
589 * @slot: parameter RAM slot being examined
590 * @dst: true selects the dest position, false the source
591 *
592 * Returns the position of the current active slot
593 */
594 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
595 bool dst)
596 {
597 u32 offs;
598
599 slot = EDMA_CHAN_SLOT(slot);
600 offs = PARM_OFFSET(slot);
601 offs += dst ? PARM_DST : PARM_SRC;
602
603 return edma_read(ecc, offs);
604 }
605
606 /*-----------------------------------------------------------------------*/
607 /**
608 * edma_start - start dma on a channel
609 * @ecc: pointer to edma_cc struct
610 * @channel: channel being activated
611 *
612 * Channels with event associations will be triggered by their hardware
613 * events, and channels without such associations will be triggered by
614 * software. (At this writing there is no interface for using software
615 * triggers except with channels that don't support hardware triggers.)
616 *
617 * Returns zero on success, else negative errno.
618 */
619 static int edma_start(struct edma_cc *ecc, unsigned channel)
620 {
621 if (ecc->id != EDMA_CTLR(channel)) {
622 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
623 ecc->id, EDMA_CTLR(channel));
624 return -EINVAL;
625 }
626 channel = EDMA_CHAN_SLOT(channel);
627
628 if (channel < ecc->num_channels) {
629 int j = channel >> 5;
630 unsigned int mask = BIT(channel & 0x1f);
631
632 /* EDMA channels without event association */
633 if (test_bit(channel, ecc->edma_unused)) {
634 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
635 edma_shadow0_read_array(ecc, SH_ESR, j));
636 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
637 return 0;
638 }
639
640 /* EDMA channel with event association */
641 dev_dbg(ecc->dev, "ER%d %08x\n", j,
642 edma_shadow0_read_array(ecc, SH_ER, j));
643 /* Clear any pending event or error */
644 edma_write_array(ecc, EDMA_ECR, j, mask);
645 edma_write_array(ecc, EDMA_EMCR, j, mask);
646 /* Clear any SER */
647 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
648 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
649 dev_dbg(ecc->dev, "EER%d %08x\n", j,
650 edma_shadow0_read_array(ecc, SH_EER, j));
651 return 0;
652 }
653
654 return -EINVAL;
655 }
656
657 /**
658 * edma_stop - stops dma on the channel passed
659 * @ecc: pointer to edma_cc struct
660 * @channel: channel being deactivated
661 *
662 * Any active transfer is paused and all pending hardware events are cleared.
663 * The current transfer may not be resumed, and the channel's Parameter RAM
664 * should be reinitialized before being reused.
665 */
666 static void edma_stop(struct edma_cc *ecc, unsigned channel)
667 {
668 if (ecc->id != EDMA_CTLR(channel)) {
669 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
670 ecc->id, EDMA_CTLR(channel));
671 return;
672 }
673 channel = EDMA_CHAN_SLOT(channel);
674
675 if (channel < ecc->num_channels) {
676 int j = channel >> 5;
677 unsigned int mask = BIT(channel & 0x1f);
678
679 edma_shadow0_write_array(ecc, SH_EECR, j, mask);
680 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
681 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
682 edma_write_array(ecc, EDMA_EMCR, j, mask);
683
684 /* clear possibly pending completion interrupt */
685 edma_shadow0_write_array(ecc, SH_ICR, j, mask);
686
687 dev_dbg(ecc->dev, "EER%d %08x\n", j,
688 edma_shadow0_read_array(ecc, SH_EER, j));
689
690 /* REVISIT: consider guarding against inappropriate event
691 * chaining by overwriting with dummy_paramset.
692 */
693 }
694 }
695
696 /*
697 * Temporarily disable EDMA hardware events on the specified channel,
698 * preventing them from triggering new transfers
699 */
700 static void edma_pause(struct edma_cc *ecc, unsigned channel)
701 {
702 if (ecc->id != EDMA_CTLR(channel)) {
703 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
704 ecc->id, EDMA_CTLR(channel));
705 return;
706 }
707 channel = EDMA_CHAN_SLOT(channel);
708
709 if (channel < ecc->num_channels) {
710 unsigned int mask = BIT(channel & 0x1f);
711
712 edma_shadow0_write_array(ecc, SH_EECR, channel >> 5, mask);
713 }
714 }
715
716 /* Re-enable EDMA hardware events on the specified channel. */
717 static void edma_resume(struct edma_cc *ecc, unsigned channel)
718 {
719 if (ecc->id != EDMA_CTLR(channel)) {
720 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
721 ecc->id, EDMA_CTLR(channel));
722 return;
723 }
724 channel = EDMA_CHAN_SLOT(channel);
725
726 if (channel < ecc->num_channels) {
727 unsigned int mask = BIT(channel & 0x1f);
728
729 edma_shadow0_write_array(ecc, SH_EESR, channel >> 5, mask);
730 }
731 }
732
733 static int edma_trigger_channel(struct edma_cc *ecc, unsigned channel)
734 {
735 unsigned int mask;
736
737 if (ecc->id != EDMA_CTLR(channel)) {
738 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
739 ecc->id, EDMA_CTLR(channel));
740 return -EINVAL;
741 }
742 channel = EDMA_CHAN_SLOT(channel);
743 mask = BIT(channel & 0x1f);
744
745 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
746
747 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
748 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
749 return 0;
750 }
751
752 static void edma_clean_channel(struct edma_cc *ecc, unsigned channel)
753 {
754 if (ecc->id != EDMA_CTLR(channel)) {
755 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
756 ecc->id, EDMA_CTLR(channel));
757 return;
758 }
759 channel = EDMA_CHAN_SLOT(channel);
760
761 if (channel < ecc->num_channels) {
762 int j = (channel >> 5);
763 unsigned int mask = BIT(channel & 0x1f);
764
765 dev_dbg(ecc->dev, "EMR%d %08x\n", j,
766 edma_read_array(ecc, EDMA_EMR, j));
767 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
768 /* Clear the corresponding EMR bits */
769 edma_write_array(ecc, EDMA_EMCR, j, mask);
770 /* Clear any SER */
771 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
772 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
773 }
774 }
775
776 /**
777 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
778 * @ecc: pointer to edma_cc struct
779 * @channel: specific channel to allocate; negative for "any unmapped channel"
780 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
781 * Controller (TC) executes requests using this channel. Use
782 * EVENTQ_DEFAULT unless you really need a high priority queue.
783 *
784 * This allocates a DMA channel and its associated parameter RAM slot.
785 * The parameter RAM is initialized to hold a dummy transfer.
786 *
787 * Normal use is to pass a specific channel number as @channel, to make
788 * use of hardware events mapped to that channel. When the channel will
789 * be used only for software triggering or event chaining, channels not
790 * mapped to hardware events (or mapped to unused events) are preferable.
791 *
792 * DMA transfers start from a channel using edma_start(), or by
793 * chaining. When the transfer described in that channel's parameter RAM
794 * slot completes, that slot's data may be reloaded through a link.
795 *
796 * DMA errors are only reported to the @callback associated with the
797 * channel driving that transfer, but transfer completion callbacks can
798 * be sent to another channel under control of the TCC field in
799 * the option word of the transfer's parameter RAM set. Drivers must not
800 * use DMA transfer completion callbacks for channels they did not allocate.
801 * (The same applies to TCC codes used in transfer chaining.)
802 *
803 * Returns the number of the channel, else negative errno.
804 */
805 static int edma_alloc_channel(struct edma_cc *ecc, int channel,
806 enum dma_event_q eventq_no)
807 {
808 unsigned done = 0;
809 int ret = 0;
810
811 if (!ecc->unused_chan_list_done) {
812 /*
813 * Scan all the platform devices to find out the EDMA channels
814 * used and clear them in the unused list, making the rest
815 * available for ARM usage.
816 */
817 ret = bus_for_each_dev(&platform_bus_type, NULL, ecc,
818 prepare_unused_channel_list);
819 if (ret < 0)
820 return ret;
821
822 ecc->unused_chan_list_done = true;
823 }
824
825 if (channel >= 0) {
826 if (ecc->id != EDMA_CTLR(channel)) {
827 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n",
828 __func__, ecc->id, EDMA_CTLR(channel));
829 return -EINVAL;
830 }
831 channel = EDMA_CHAN_SLOT(channel);
832 }
833
834 if (channel < 0) {
835 channel = 0;
836 for (;;) {
837 channel = find_next_bit(ecc->edma_unused,
838 ecc->num_channels, channel);
839 if (channel == ecc->num_channels)
840 break;
841 if (!test_and_set_bit(channel, ecc->edma_inuse)) {
842 done = 1;
843 break;
844 }
845 channel++;
846 }
847 if (!done)
848 return -ENOMEM;
849 } else if (channel >= ecc->num_channels) {
850 return -EINVAL;
851 } else if (test_and_set_bit(channel, ecc->edma_inuse)) {
852 return -EBUSY;
853 }
854
855 /* ensure access through shadow region 0 */
856 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
857
858 /* ensure no events are pending */
859 edma_stop(ecc, EDMA_CTLR_CHAN(ecc->id, channel));
860 edma_write_slot(ecc, channel, &dummy_paramset);
861
862 edma_setup_interrupt(ecc, EDMA_CTLR_CHAN(ecc->id, channel), true);
863
864 edma_map_dmach_to_queue(ecc, channel, eventq_no);
865
866 return EDMA_CTLR_CHAN(ecc->id, channel);
867 }
868
869 /**
870 * edma_free_channel - deallocate DMA channel
871 * @ecc: pointer to edma_cc struct
872 * @channel: dma channel returned from edma_alloc_channel()
873 *
874 * This deallocates the DMA channel and associated parameter RAM slot
875 * allocated by edma_alloc_channel().
876 *
877 * Callers are responsible for ensuring the channel is inactive, and
878 * will not be reactivated by linking, chaining, or software calls to
879 * edma_start().
880 */
881 static void edma_free_channel(struct edma_cc *ecc, unsigned channel)
882 {
883 if (ecc->id != EDMA_CTLR(channel)) {
884 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
885 ecc->id, EDMA_CTLR(channel));
886 return;
887 }
888 channel = EDMA_CHAN_SLOT(channel);
889
890 if (channel >= ecc->num_channels)
891 return;
892
893 edma_setup_interrupt(ecc, channel, false);
894 /* REVISIT should probably take out of shadow region 0 */
895
896 edma_write_slot(ecc, channel, &dummy_paramset);
897 clear_bit(channel, ecc->edma_inuse);
898 }
899
900 /* Move channel to a specific event queue */
901 static void edma_assign_channel_eventq(struct edma_cc *ecc, unsigned channel,
902 enum dma_event_q eventq_no)
903 {
904 if (ecc->id != EDMA_CTLR(channel)) {
905 dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
906 ecc->id, EDMA_CTLR(channel));
907 return;
908 }
909 channel = EDMA_CHAN_SLOT(channel);
910
911 if (channel >= ecc->num_channels)
912 return;
913
914 /* default to low priority queue */
915 if (eventq_no == EVENTQ_DEFAULT)
916 eventq_no = ecc->default_queue;
917 if (eventq_no >= ecc->num_tc)
918 return;
919
920 edma_map_dmach_to_queue(ecc, channel, eventq_no);
921 }
922
923 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
924 {
925 return container_of(d, struct edma_cc, dma_slave);
926 }
927
928 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
929 {
930 return container_of(c, struct edma_chan, vchan.chan);
931 }
932
933 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
934 {
935 return container_of(tx, struct edma_desc, vdesc.tx);
936 }
937
938 static void edma_desc_free(struct virt_dma_desc *vdesc)
939 {
940 kfree(container_of(vdesc, struct edma_desc, vdesc));
941 }
942
943 /* Dispatch a queued descriptor to the controller (caller holds lock) */
944 static void edma_execute(struct edma_chan *echan)
945 {
946 struct edma_cc *ecc = echan->ecc;
947 struct virt_dma_desc *vdesc;
948 struct edma_desc *edesc;
949 struct device *dev = echan->vchan.chan.device->dev;
950 int i, j, left, nslots;
951
952 if (!echan->edesc) {
953 /* Setup is needed for the first transfer */
954 vdesc = vchan_next_desc(&echan->vchan);
955 if (!vdesc)
956 return;
957 list_del(&vdesc->node);
958 echan->edesc = to_edma_desc(&vdesc->tx);
959 }
960
961 edesc = echan->edesc;
962
963 /* Find out how many left */
964 left = edesc->pset_nr - edesc->processed;
965 nslots = min(MAX_NR_SG, left);
966 edesc->sg_len = 0;
967
968 /* Write descriptor PaRAM set(s) */
969 for (i = 0; i < nslots; i++) {
970 j = i + edesc->processed;
971 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
972 edesc->sg_len += edesc->pset[j].len;
973 dev_vdbg(dev,
974 "\n pset[%d]:\n"
975 " chnum\t%d\n"
976 " slot\t%d\n"
977 " opt\t%08x\n"
978 " src\t%08x\n"
979 " dst\t%08x\n"
980 " abcnt\t%08x\n"
981 " ccnt\t%08x\n"
982 " bidx\t%08x\n"
983 " cidx\t%08x\n"
984 " lkrld\t%08x\n",
985 j, echan->ch_num, echan->slot[i],
986 edesc->pset[j].param.opt,
987 edesc->pset[j].param.src,
988 edesc->pset[j].param.dst,
989 edesc->pset[j].param.a_b_cnt,
990 edesc->pset[j].param.ccnt,
991 edesc->pset[j].param.src_dst_bidx,
992 edesc->pset[j].param.src_dst_cidx,
993 edesc->pset[j].param.link_bcntrld);
994 /* Link to the previous slot if not the last set */
995 if (i != (nslots - 1))
996 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
997 }
998
999 edesc->processed += nslots;
1000
1001 /*
1002 * If this is either the last set in a set of SG-list transactions
1003 * then setup a link to the dummy slot, this results in all future
1004 * events being absorbed and that's OK because we're done
1005 */
1006 if (edesc->processed == edesc->pset_nr) {
1007 if (edesc->cyclic)
1008 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
1009 else
1010 edma_link(ecc, echan->slot[nslots - 1],
1011 echan->ecc->dummy_slot);
1012 }
1013
1014 if (echan->missed) {
1015 /*
1016 * This happens due to setup times between intermediate
1017 * transfers in long SG lists which have to be broken up into
1018 * transfers of MAX_NR_SG
1019 */
1020 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
1021 edma_clean_channel(ecc, echan->ch_num);
1022 edma_stop(ecc, echan->ch_num);
1023 edma_start(ecc, echan->ch_num);
1024 edma_trigger_channel(ecc, echan->ch_num);
1025 echan->missed = 0;
1026 } else if (edesc->processed <= MAX_NR_SG) {
1027 dev_dbg(dev, "first transfer starting on channel %d\n",
1028 echan->ch_num);
1029 edma_start(ecc, echan->ch_num);
1030 } else {
1031 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
1032 echan->ch_num, edesc->processed);
1033 edma_resume(ecc, echan->ch_num);
1034 }
1035 }
1036
1037 static int edma_terminate_all(struct dma_chan *chan)
1038 {
1039 struct edma_chan *echan = to_edma_chan(chan);
1040 unsigned long flags;
1041 LIST_HEAD(head);
1042
1043 spin_lock_irqsave(&echan->vchan.lock, flags);
1044
1045 /*
1046 * Stop DMA activity: we assume the callback will not be called
1047 * after edma_dma() returns (even if it does, it will see
1048 * echan->edesc is NULL and exit.)
1049 */
1050 if (echan->edesc) {
1051 edma_stop(echan->ecc, echan->ch_num);
1052 /* Move the cyclic channel back to default queue */
1053 if (echan->edesc->cyclic)
1054 edma_assign_channel_eventq(echan->ecc, echan->ch_num,
1055 EVENTQ_DEFAULT);
1056 /*
1057 * free the running request descriptor
1058 * since it is not in any of the vdesc lists
1059 */
1060 edma_desc_free(&echan->edesc->vdesc);
1061 echan->edesc = NULL;
1062 }
1063
1064 vchan_get_all_descriptors(&echan->vchan, &head);
1065 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1066 vchan_dma_desc_free_list(&echan->vchan, &head);
1067
1068 return 0;
1069 }
1070
1071 static int edma_slave_config(struct dma_chan *chan,
1072 struct dma_slave_config *cfg)
1073 {
1074 struct edma_chan *echan = to_edma_chan(chan);
1075
1076 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1077 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1078 return -EINVAL;
1079
1080 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
1081
1082 return 0;
1083 }
1084
1085 static int edma_dma_pause(struct dma_chan *chan)
1086 {
1087 struct edma_chan *echan = to_edma_chan(chan);
1088
1089 if (!echan->edesc)
1090 return -EINVAL;
1091
1092 edma_pause(echan->ecc, echan->ch_num);
1093 return 0;
1094 }
1095
1096 static int edma_dma_resume(struct dma_chan *chan)
1097 {
1098 struct edma_chan *echan = to_edma_chan(chan);
1099
1100 edma_resume(echan->ecc, echan->ch_num);
1101 return 0;
1102 }
1103
1104 /*
1105 * A PaRAM set configuration abstraction used by other modes
1106 * @chan: Channel who's PaRAM set we're configuring
1107 * @pset: PaRAM set to initialize and setup.
1108 * @src_addr: Source address of the DMA
1109 * @dst_addr: Destination address of the DMA
1110 * @burst: In units of dev_width, how much to send
1111 * @dev_width: How much is the dev_width
1112 * @dma_length: Total length of the DMA transfer
1113 * @direction: Direction of the transfer
1114 */
1115 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
1116 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
1117 enum dma_slave_buswidth dev_width,
1118 unsigned int dma_length,
1119 enum dma_transfer_direction direction)
1120 {
1121 struct edma_chan *echan = to_edma_chan(chan);
1122 struct device *dev = chan->device->dev;
1123 struct edmacc_param *param = &epset->param;
1124 int acnt, bcnt, ccnt, cidx;
1125 int src_bidx, dst_bidx, src_cidx, dst_cidx;
1126 int absync;
1127
1128 acnt = dev_width;
1129
1130 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
1131 if (!burst)
1132 burst = 1;
1133 /*
1134 * If the maxburst is equal to the fifo width, use
1135 * A-synced transfers. This allows for large contiguous
1136 * buffer transfers using only one PaRAM set.
1137 */
1138 if (burst == 1) {
1139 /*
1140 * For the A-sync case, bcnt and ccnt are the remainder
1141 * and quotient respectively of the division of:
1142 * (dma_length / acnt) by (SZ_64K -1). This is so
1143 * that in case bcnt over flows, we have ccnt to use.
1144 * Note: In A-sync tranfer only, bcntrld is used, but it
1145 * only applies for sg_dma_len(sg) >= SZ_64K.
1146 * In this case, the best way adopted is- bccnt for the
1147 * first frame will be the remainder below. Then for
1148 * every successive frame, bcnt will be SZ_64K-1. This
1149 * is assured as bcntrld = 0xffff in end of function.
1150 */
1151 absync = false;
1152 ccnt = dma_length / acnt / (SZ_64K - 1);
1153 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
1154 /*
1155 * If bcnt is non-zero, we have a remainder and hence an
1156 * extra frame to transfer, so increment ccnt.
1157 */
1158 if (bcnt)
1159 ccnt++;
1160 else
1161 bcnt = SZ_64K - 1;
1162 cidx = acnt;
1163 } else {
1164 /*
1165 * If maxburst is greater than the fifo address_width,
1166 * use AB-synced transfers where A count is the fifo
1167 * address_width and B count is the maxburst. In this
1168 * case, we are limited to transfers of C count frames
1169 * of (address_width * maxburst) where C count is limited
1170 * to SZ_64K-1. This places an upper bound on the length
1171 * of an SG segment that can be handled.
1172 */
1173 absync = true;
1174 bcnt = burst;
1175 ccnt = dma_length / (acnt * bcnt);
1176 if (ccnt > (SZ_64K - 1)) {
1177 dev_err(dev, "Exceeded max SG segment size\n");
1178 return -EINVAL;
1179 }
1180 cidx = acnt * bcnt;
1181 }
1182
1183 epset->len = dma_length;
1184
1185 if (direction == DMA_MEM_TO_DEV) {
1186 src_bidx = acnt;
1187 src_cidx = cidx;
1188 dst_bidx = 0;
1189 dst_cidx = 0;
1190 epset->addr = src_addr;
1191 } else if (direction == DMA_DEV_TO_MEM) {
1192 src_bidx = 0;
1193 src_cidx = 0;
1194 dst_bidx = acnt;
1195 dst_cidx = cidx;
1196 epset->addr = dst_addr;
1197 } else if (direction == DMA_MEM_TO_MEM) {
1198 src_bidx = acnt;
1199 src_cidx = cidx;
1200 dst_bidx = acnt;
1201 dst_cidx = cidx;
1202 } else {
1203 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1204 return -EINVAL;
1205 }
1206
1207 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1208 /* Configure A or AB synchronized transfers */
1209 if (absync)
1210 param->opt |= SYNCDIM;
1211
1212 param->src = src_addr;
1213 param->dst = dst_addr;
1214
1215 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1216 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1217
1218 param->a_b_cnt = bcnt << 16 | acnt;
1219 param->ccnt = ccnt;
1220 /*
1221 * Only time when (bcntrld) auto reload is required is for
1222 * A-sync case, and in this case, a requirement of reload value
1223 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1224 * and then later will be populated by edma_execute.
1225 */
1226 param->link_bcntrld = 0xffffffff;
1227 return absync;
1228 }
1229
1230 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1231 struct dma_chan *chan, struct scatterlist *sgl,
1232 unsigned int sg_len, enum dma_transfer_direction direction,
1233 unsigned long tx_flags, void *context)
1234 {
1235 struct edma_chan *echan = to_edma_chan(chan);
1236 struct device *dev = chan->device->dev;
1237 struct edma_desc *edesc;
1238 dma_addr_t src_addr = 0, dst_addr = 0;
1239 enum dma_slave_buswidth dev_width;
1240 u32 burst;
1241 struct scatterlist *sg;
1242 int i, nslots, ret;
1243
1244 if (unlikely(!echan || !sgl || !sg_len))
1245 return NULL;
1246
1247 if (direction == DMA_DEV_TO_MEM) {
1248 src_addr = echan->cfg.src_addr;
1249 dev_width = echan->cfg.src_addr_width;
1250 burst = echan->cfg.src_maxburst;
1251 } else if (direction == DMA_MEM_TO_DEV) {
1252 dst_addr = echan->cfg.dst_addr;
1253 dev_width = echan->cfg.dst_addr_width;
1254 burst = echan->cfg.dst_maxburst;
1255 } else {
1256 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1257 return NULL;
1258 }
1259
1260 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1261 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1262 return NULL;
1263 }
1264
1265 edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1266 GFP_ATOMIC);
1267 if (!edesc) {
1268 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1269 return NULL;
1270 }
1271
1272 edesc->pset_nr = sg_len;
1273 edesc->residue = 0;
1274 edesc->direction = direction;
1275 edesc->echan = echan;
1276
1277 /* Allocate a PaRAM slot, if needed */
1278 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1279
1280 for (i = 0; i < nslots; i++) {
1281 if (echan->slot[i] < 0) {
1282 echan->slot[i] =
1283 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1284 if (echan->slot[i] < 0) {
1285 kfree(edesc);
1286 dev_err(dev, "%s: Failed to allocate slot\n",
1287 __func__);
1288 return NULL;
1289 }
1290 }
1291 }
1292
1293 /* Configure PaRAM sets for each SG */
1294 for_each_sg(sgl, sg, sg_len, i) {
1295 /* Get address for each SG */
1296 if (direction == DMA_DEV_TO_MEM)
1297 dst_addr = sg_dma_address(sg);
1298 else
1299 src_addr = sg_dma_address(sg);
1300
1301 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1302 dst_addr, burst, dev_width,
1303 sg_dma_len(sg), direction);
1304 if (ret < 0) {
1305 kfree(edesc);
1306 return NULL;
1307 }
1308
1309 edesc->absync = ret;
1310 edesc->residue += sg_dma_len(sg);
1311
1312 /* If this is the last in a current SG set of transactions,
1313 enable interrupts so that next set is processed */
1314 if (!((i+1) % MAX_NR_SG))
1315 edesc->pset[i].param.opt |= TCINTEN;
1316
1317 /* If this is the last set, enable completion interrupt flag */
1318 if (i == sg_len - 1)
1319 edesc->pset[i].param.opt |= TCINTEN;
1320 }
1321 edesc->residue_stat = edesc->residue;
1322
1323 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1324 }
1325
1326 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1327 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1328 size_t len, unsigned long tx_flags)
1329 {
1330 int ret;
1331 struct edma_desc *edesc;
1332 struct device *dev = chan->device->dev;
1333 struct edma_chan *echan = to_edma_chan(chan);
1334
1335 if (unlikely(!echan || !len))
1336 return NULL;
1337
1338 edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
1339 if (!edesc) {
1340 dev_dbg(dev, "Failed to allocate a descriptor\n");
1341 return NULL;
1342 }
1343
1344 edesc->pset_nr = 1;
1345
1346 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1347 DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
1348 if (ret < 0)
1349 return NULL;
1350
1351 edesc->absync = ret;
1352
1353 /*
1354 * Enable intermediate transfer chaining to re-trigger channel
1355 * on completion of every TR, and enable transfer-completion
1356 * interrupt on completion of the whole transfer.
1357 */
1358 edesc->pset[0].param.opt |= ITCCHEN;
1359 edesc->pset[0].param.opt |= TCINTEN;
1360
1361 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1362 }
1363
1364 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1365 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1366 size_t period_len, enum dma_transfer_direction direction,
1367 unsigned long tx_flags)
1368 {
1369 struct edma_chan *echan = to_edma_chan(chan);
1370 struct device *dev = chan->device->dev;
1371 struct edma_desc *edesc;
1372 dma_addr_t src_addr, dst_addr;
1373 enum dma_slave_buswidth dev_width;
1374 u32 burst;
1375 int i, ret, nslots;
1376
1377 if (unlikely(!echan || !buf_len || !period_len))
1378 return NULL;
1379
1380 if (direction == DMA_DEV_TO_MEM) {
1381 src_addr = echan->cfg.src_addr;
1382 dst_addr = buf_addr;
1383 dev_width = echan->cfg.src_addr_width;
1384 burst = echan->cfg.src_maxburst;
1385 } else if (direction == DMA_MEM_TO_DEV) {
1386 src_addr = buf_addr;
1387 dst_addr = echan->cfg.dst_addr;
1388 dev_width = echan->cfg.dst_addr_width;
1389 burst = echan->cfg.dst_maxburst;
1390 } else {
1391 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1392 return NULL;
1393 }
1394
1395 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1396 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1397 return NULL;
1398 }
1399
1400 if (unlikely(buf_len % period_len)) {
1401 dev_err(dev, "Period should be multiple of Buffer length\n");
1402 return NULL;
1403 }
1404
1405 nslots = (buf_len / period_len) + 1;
1406
1407 /*
1408 * Cyclic DMA users such as audio cannot tolerate delays introduced
1409 * by cases where the number of periods is more than the maximum
1410 * number of SGs the EDMA driver can handle at a time. For DMA types
1411 * such as Slave SGs, such delays are tolerable and synchronized,
1412 * but the synchronization is difficult to achieve with Cyclic and
1413 * cannot be guaranteed, so we error out early.
1414 */
1415 if (nslots > MAX_NR_SG)
1416 return NULL;
1417
1418 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1419 GFP_ATOMIC);
1420 if (!edesc) {
1421 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1422 return NULL;
1423 }
1424
1425 edesc->cyclic = 1;
1426 edesc->pset_nr = nslots;
1427 edesc->residue = edesc->residue_stat = buf_len;
1428 edesc->direction = direction;
1429 edesc->echan = echan;
1430
1431 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1432 __func__, echan->ch_num, nslots, period_len, buf_len);
1433
1434 for (i = 0; i < nslots; i++) {
1435 /* Allocate a PaRAM slot, if needed */
1436 if (echan->slot[i] < 0) {
1437 echan->slot[i] =
1438 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1439 if (echan->slot[i] < 0) {
1440 kfree(edesc);
1441 dev_err(dev, "%s: Failed to allocate slot\n",
1442 __func__);
1443 return NULL;
1444 }
1445 }
1446
1447 if (i == nslots - 1) {
1448 memcpy(&edesc->pset[i], &edesc->pset[0],
1449 sizeof(edesc->pset[0]));
1450 break;
1451 }
1452
1453 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1454 dst_addr, burst, dev_width, period_len,
1455 direction);
1456 if (ret < 0) {
1457 kfree(edesc);
1458 return NULL;
1459 }
1460
1461 if (direction == DMA_DEV_TO_MEM)
1462 dst_addr += period_len;
1463 else
1464 src_addr += period_len;
1465
1466 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1467 dev_vdbg(dev,
1468 "\n pset[%d]:\n"
1469 " chnum\t%d\n"
1470 " slot\t%d\n"
1471 " opt\t%08x\n"
1472 " src\t%08x\n"
1473 " dst\t%08x\n"
1474 " abcnt\t%08x\n"
1475 " ccnt\t%08x\n"
1476 " bidx\t%08x\n"
1477 " cidx\t%08x\n"
1478 " lkrld\t%08x\n",
1479 i, echan->ch_num, echan->slot[i],
1480 edesc->pset[i].param.opt,
1481 edesc->pset[i].param.src,
1482 edesc->pset[i].param.dst,
1483 edesc->pset[i].param.a_b_cnt,
1484 edesc->pset[i].param.ccnt,
1485 edesc->pset[i].param.src_dst_bidx,
1486 edesc->pset[i].param.src_dst_cidx,
1487 edesc->pset[i].param.link_bcntrld);
1488
1489 edesc->absync = ret;
1490
1491 /*
1492 * Enable period interrupt only if it is requested
1493 */
1494 if (tx_flags & DMA_PREP_INTERRUPT)
1495 edesc->pset[i].param.opt |= TCINTEN;
1496 }
1497
1498 /* Place the cyclic channel to highest priority queue */
1499 edma_assign_channel_eventq(echan->ecc, echan->ch_num, EVENTQ_0);
1500
1501 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1502 }
1503
1504 static void edma_completion_handler(struct edma_chan *echan)
1505 {
1506 struct edma_cc *ecc = echan->ecc;
1507 struct device *dev = echan->vchan.chan.device->dev;
1508 struct edma_desc *edesc = echan->edesc;
1509
1510 if (!edesc)
1511 return;
1512
1513 spin_lock(&echan->vchan.lock);
1514 if (edesc->cyclic) {
1515 vchan_cyclic_callback(&edesc->vdesc);
1516 spin_unlock(&echan->vchan.lock);
1517 return;
1518 } else if (edesc->processed == edesc->pset_nr) {
1519 edesc->residue = 0;
1520 edma_stop(ecc, echan->ch_num);
1521 vchan_cookie_complete(&edesc->vdesc);
1522 echan->edesc = NULL;
1523
1524 dev_dbg(dev, "Transfer completed on channel %d\n",
1525 echan->ch_num);
1526 } else {
1527 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1528 echan->ch_num);
1529
1530 edma_pause(ecc, echan->ch_num);
1531
1532 /* Update statistics for tx_status */
1533 edesc->residue -= edesc->sg_len;
1534 edesc->residue_stat = edesc->residue;
1535 edesc->processed_stat = edesc->processed;
1536 }
1537 edma_execute(echan);
1538
1539 spin_unlock(&echan->vchan.lock);
1540 }
1541
1542 /* eDMA interrupt handler */
1543 static irqreturn_t dma_irq_handler(int irq, void *data)
1544 {
1545 struct edma_cc *ecc = data;
1546 int ctlr;
1547 u32 sh_ier;
1548 u32 sh_ipr;
1549 u32 bank;
1550
1551 ctlr = ecc->id;
1552 if (ctlr < 0)
1553 return IRQ_NONE;
1554
1555 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1556
1557 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1558 if (!sh_ipr) {
1559 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1560 if (!sh_ipr)
1561 return IRQ_NONE;
1562 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1563 bank = 1;
1564 } else {
1565 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1566 bank = 0;
1567 }
1568
1569 do {
1570 u32 slot;
1571 u32 channel;
1572
1573 slot = __ffs(sh_ipr);
1574 sh_ipr &= ~(BIT(slot));
1575
1576 if (sh_ier & BIT(slot)) {
1577 channel = (bank << 5) | slot;
1578 /* Clear the corresponding IPR bits */
1579 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1580 edma_completion_handler(&ecc->slave_chans[channel]);
1581 }
1582 } while (sh_ipr);
1583
1584 edma_shadow0_write(ecc, SH_IEVAL, 1);
1585 return IRQ_HANDLED;
1586 }
1587
1588 static void edma_error_handler(struct edma_chan *echan)
1589 {
1590 struct edma_cc *ecc = echan->ecc;
1591 struct device *dev = echan->vchan.chan.device->dev;
1592 struct edmacc_param p;
1593
1594 if (!echan->edesc)
1595 return;
1596
1597 spin_lock(&echan->vchan.lock);
1598
1599 edma_read_slot(ecc, echan->slot[0], &p);
1600 /*
1601 * Issue later based on missed flag which will be sure
1602 * to happen as:
1603 * (1) we finished transmitting an intermediate slot and
1604 * edma_execute is coming up.
1605 * (2) or we finished current transfer and issue will
1606 * call edma_execute.
1607 *
1608 * Important note: issuing can be dangerous here and
1609 * lead to some nasty recursion when we are in a NULL
1610 * slot. So we avoid doing so and set the missed flag.
1611 */
1612 if (p.a_b_cnt == 0 && p.ccnt == 0) {
1613 dev_dbg(dev, "Error on null slot, setting miss\n");
1614 echan->missed = 1;
1615 } else {
1616 /*
1617 * The slot is already programmed but the event got
1618 * missed, so its safe to issue it here.
1619 */
1620 dev_dbg(dev, "Missed event, TRIGGERING\n");
1621 edma_clean_channel(ecc, echan->ch_num);
1622 edma_stop(ecc, echan->ch_num);
1623 edma_start(ecc, echan->ch_num);
1624 edma_trigger_channel(ecc, echan->ch_num);
1625 }
1626 spin_unlock(&echan->vchan.lock);
1627 }
1628
1629 /* eDMA error interrupt handler */
1630 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1631 {
1632 struct edma_cc *ecc = data;
1633 int i;
1634 int ctlr;
1635 unsigned int cnt = 0;
1636
1637 ctlr = ecc->id;
1638 if (ctlr < 0)
1639 return IRQ_NONE;
1640
1641 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1642
1643 if ((edma_read_array(ecc, EDMA_EMR, 0) == 0) &&
1644 (edma_read_array(ecc, EDMA_EMR, 1) == 0) &&
1645 (edma_read(ecc, EDMA_QEMR) == 0) &&
1646 (edma_read(ecc, EDMA_CCERR) == 0))
1647 return IRQ_NONE;
1648
1649 while (1) {
1650 int j = -1;
1651
1652 if (edma_read_array(ecc, EDMA_EMR, 0))
1653 j = 0;
1654 else if (edma_read_array(ecc, EDMA_EMR, 1))
1655 j = 1;
1656 if (j >= 0) {
1657 dev_dbg(ecc->dev, "EMR%d %08x\n", j,
1658 edma_read_array(ecc, EDMA_EMR, j));
1659 for (i = 0; i < 32; i++) {
1660 int k = (j << 5) + i;
1661
1662 if (edma_read_array(ecc, EDMA_EMR, j) &
1663 BIT(i)) {
1664 /* Clear the corresponding EMR bits */
1665 edma_write_array(ecc, EDMA_EMCR, j,
1666 BIT(i));
1667 /* Clear any SER */
1668 edma_shadow0_write_array(ecc, SH_SECR,
1669 j, BIT(i));
1670 edma_error_handler(&ecc->slave_chans[k]);
1671 }
1672 }
1673 } else if (edma_read(ecc, EDMA_QEMR)) {
1674 dev_dbg(ecc->dev, "QEMR %02x\n",
1675 edma_read(ecc, EDMA_QEMR));
1676 for (i = 0; i < 8; i++) {
1677 if (edma_read(ecc, EDMA_QEMR) & BIT(i)) {
1678 /* Clear the corresponding IPR bits */
1679 edma_write(ecc, EDMA_QEMCR, BIT(i));
1680 edma_shadow0_write(ecc, SH_QSECR,
1681 BIT(i));
1682
1683 /* NOTE: not reported!! */
1684 }
1685 }
1686 } else if (edma_read(ecc, EDMA_CCERR)) {
1687 dev_dbg(ecc->dev, "CCERR %08x\n",
1688 edma_read(ecc, EDMA_CCERR));
1689 /* FIXME: CCERR.BIT(16) ignored! much better
1690 * to just write CCERRCLR with CCERR value...
1691 */
1692 for (i = 0; i < 8; i++) {
1693 if (edma_read(ecc, EDMA_CCERR) & BIT(i)) {
1694 /* Clear the corresponding IPR bits */
1695 edma_write(ecc, EDMA_CCERRCLR, BIT(i));
1696
1697 /* NOTE: not reported!! */
1698 }
1699 }
1700 }
1701 if ((edma_read_array(ecc, EDMA_EMR, 0) == 0) &&
1702 (edma_read_array(ecc, EDMA_EMR, 1) == 0) &&
1703 (edma_read(ecc, EDMA_QEMR) == 0) &&
1704 (edma_read(ecc, EDMA_CCERR) == 0))
1705 break;
1706 cnt++;
1707 if (cnt > 10)
1708 break;
1709 }
1710 edma_write(ecc, EDMA_EEVAL, 1);
1711 return IRQ_HANDLED;
1712 }
1713
1714 /* Alloc channel resources */
1715 static int edma_alloc_chan_resources(struct dma_chan *chan)
1716 {
1717 struct edma_chan *echan = to_edma_chan(chan);
1718 struct device *dev = chan->device->dev;
1719 int ret;
1720 int a_ch_num;
1721 LIST_HEAD(descs);
1722
1723 a_ch_num = edma_alloc_channel(echan->ecc, echan->ch_num, EVENTQ_DEFAULT);
1724
1725 if (a_ch_num < 0) {
1726 ret = -ENODEV;
1727 goto err_no_chan;
1728 }
1729
1730 if (a_ch_num != echan->ch_num) {
1731 dev_err(dev, "failed to allocate requested channel %u:%u\n",
1732 EDMA_CTLR(echan->ch_num),
1733 EDMA_CHAN_SLOT(echan->ch_num));
1734 ret = -ENODEV;
1735 goto err_wrong_chan;
1736 }
1737
1738 echan->alloced = true;
1739 echan->slot[0] = echan->ch_num;
1740
1741 dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
1742 EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
1743
1744 return 0;
1745
1746 err_wrong_chan:
1747 edma_free_channel(echan->ecc, a_ch_num);
1748 err_no_chan:
1749 return ret;
1750 }
1751
1752 /* Free channel resources */
1753 static void edma_free_chan_resources(struct dma_chan *chan)
1754 {
1755 struct edma_chan *echan = to_edma_chan(chan);
1756 int i;
1757
1758 /* Terminate transfers */
1759 edma_stop(echan->ecc, echan->ch_num);
1760
1761 vchan_free_chan_resources(&echan->vchan);
1762
1763 /* Free EDMA PaRAM slots */
1764 for (i = 1; i < EDMA_MAX_SLOTS; i++) {
1765 if (echan->slot[i] >= 0) {
1766 edma_free_slot(echan->ecc, echan->slot[i]);
1767 echan->slot[i] = -1;
1768 }
1769 }
1770
1771 /* Free EDMA channel */
1772 if (echan->alloced) {
1773 edma_free_channel(echan->ecc, echan->ch_num);
1774 echan->alloced = false;
1775 }
1776
1777 dev_dbg(chan->device->dev, "freeing channel for %u\n", echan->ch_num);
1778 }
1779
1780 /* Send pending descriptor to hardware */
1781 static void edma_issue_pending(struct dma_chan *chan)
1782 {
1783 struct edma_chan *echan = to_edma_chan(chan);
1784 unsigned long flags;
1785
1786 spin_lock_irqsave(&echan->vchan.lock, flags);
1787 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1788 edma_execute(echan);
1789 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1790 }
1791
1792 static u32 edma_residue(struct edma_desc *edesc)
1793 {
1794 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1795 struct edma_pset *pset = edesc->pset;
1796 dma_addr_t done, pos;
1797 int i;
1798
1799 /*
1800 * We always read the dst/src position from the first RamPar
1801 * pset. That's the one which is active now.
1802 */
1803 pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1804
1805 /*
1806 * Cyclic is simple. Just subtract pset[0].addr from pos.
1807 *
1808 * We never update edesc->residue in the cyclic case, so we
1809 * can tell the remaining room to the end of the circular
1810 * buffer.
1811 */
1812 if (edesc->cyclic) {
1813 done = pos - pset->addr;
1814 edesc->residue_stat = edesc->residue - done;
1815 return edesc->residue_stat;
1816 }
1817
1818 /*
1819 * For SG operation we catch up with the last processed
1820 * status.
1821 */
1822 pset += edesc->processed_stat;
1823
1824 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1825 /*
1826 * If we are inside this pset address range, we know
1827 * this is the active one. Get the current delta and
1828 * stop walking the psets.
1829 */
1830 if (pos >= pset->addr && pos < pset->addr + pset->len)
1831 return edesc->residue_stat - (pos - pset->addr);
1832
1833 /* Otherwise mark it done and update residue_stat. */
1834 edesc->processed_stat++;
1835 edesc->residue_stat -= pset->len;
1836 }
1837 return edesc->residue_stat;
1838 }
1839
1840 /* Check request completion status */
1841 static enum dma_status edma_tx_status(struct dma_chan *chan,
1842 dma_cookie_t cookie,
1843 struct dma_tx_state *txstate)
1844 {
1845 struct edma_chan *echan = to_edma_chan(chan);
1846 struct virt_dma_desc *vdesc;
1847 enum dma_status ret;
1848 unsigned long flags;
1849
1850 ret = dma_cookie_status(chan, cookie, txstate);
1851 if (ret == DMA_COMPLETE || !txstate)
1852 return ret;
1853
1854 spin_lock_irqsave(&echan->vchan.lock, flags);
1855 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1856 txstate->residue = edma_residue(echan->edesc);
1857 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1858 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1859 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1860
1861 return ret;
1862 }
1863
1864 static void __init edma_chan_init(struct edma_cc *ecc, struct dma_device *dma,
1865 struct edma_chan *echans)
1866 {
1867 int i, j;
1868
1869 for (i = 0; i < ecc->num_channels; i++) {
1870 struct edma_chan *echan = &echans[i];
1871 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1872 echan->ecc = ecc;
1873 echan->vchan.desc_free = edma_desc_free;
1874
1875 vchan_init(&echan->vchan, dma);
1876
1877 INIT_LIST_HEAD(&echan->node);
1878 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1879 echan->slot[j] = -1;
1880 }
1881 }
1882
1883 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1884 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1885 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1886 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1887
1888 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
1889 struct device *dev)
1890 {
1891 dma->device_prep_slave_sg = edma_prep_slave_sg;
1892 dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1893 dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1894 dma->device_alloc_chan_resources = edma_alloc_chan_resources;
1895 dma->device_free_chan_resources = edma_free_chan_resources;
1896 dma->device_issue_pending = edma_issue_pending;
1897 dma->device_tx_status = edma_tx_status;
1898 dma->device_config = edma_slave_config;
1899 dma->device_pause = edma_dma_pause;
1900 dma->device_resume = edma_dma_resume;
1901 dma->device_terminate_all = edma_terminate_all;
1902
1903 dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1904 dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1905 dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1906 dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1907
1908 dma->dev = dev;
1909
1910 /*
1911 * code using dma memcpy must make sure alignment of
1912 * length is at dma->copy_align boundary.
1913 */
1914 dma->copy_align = DMAENGINE_ALIGN_4_BYTES;
1915
1916 INIT_LIST_HEAD(&dma->channels);
1917 }
1918
1919 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1920 struct edma_cc *ecc)
1921 {
1922 int i;
1923 u32 value, cccfg;
1924 s8 (*queue_priority_map)[2];
1925
1926 /* Decode the eDMA3 configuration from CCCFG register */
1927 cccfg = edma_read(ecc, EDMA_CCCFG);
1928
1929 value = GET_NUM_REGN(cccfg);
1930 ecc->num_region = BIT(value);
1931
1932 value = GET_NUM_DMACH(cccfg);
1933 ecc->num_channels = BIT(value + 1);
1934
1935 value = GET_NUM_PAENTRY(cccfg);
1936 ecc->num_slots = BIT(value + 4);
1937
1938 value = GET_NUM_EVQUE(cccfg);
1939 ecc->num_tc = value + 1;
1940
1941 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1942 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1943 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1944 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1945 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1946
1947 /* Nothing need to be done if queue priority is provided */
1948 if (pdata->queue_priority_mapping)
1949 return 0;
1950
1951 /*
1952 * Configure TC/queue priority as follows:
1953 * Q0 - priority 0
1954 * Q1 - priority 1
1955 * Q2 - priority 2
1956 * ...
1957 * The meaning of priority numbers: 0 highest priority, 7 lowest
1958 * priority. So Q0 is the highest priority queue and the last queue has
1959 * the lowest priority.
1960 */
1961 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1962 GFP_KERNEL);
1963 if (!queue_priority_map)
1964 return -ENOMEM;
1965
1966 for (i = 0; i < ecc->num_tc; i++) {
1967 queue_priority_map[i][0] = i;
1968 queue_priority_map[i][1] = i;
1969 }
1970 queue_priority_map[i][0] = -1;
1971 queue_priority_map[i][1] = -1;
1972
1973 pdata->queue_priority_mapping = queue_priority_map;
1974 /* Default queue has the lowest priority */
1975 pdata->default_queue = i - 1;
1976
1977 return 0;
1978 }
1979
1980 #if IS_ENABLED(CONFIG_OF)
1981 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1982 size_t sz)
1983 {
1984 const char pname[] = "ti,edma-xbar-event-map";
1985 struct resource res;
1986 void __iomem *xbar;
1987 s16 (*xbar_chans)[2];
1988 size_t nelm = sz / sizeof(s16);
1989 u32 shift, offset, mux;
1990 int ret, i;
1991
1992 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1993 if (!xbar_chans)
1994 return -ENOMEM;
1995
1996 ret = of_address_to_resource(dev->of_node, 1, &res);
1997 if (ret)
1998 return -ENOMEM;
1999
2000 xbar = devm_ioremap(dev, res.start, resource_size(&res));
2001 if (!xbar)
2002 return -ENOMEM;
2003
2004 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2005 nelm);
2006 if (ret)
2007 return -EIO;
2008
2009 /* Invalidate last entry for the other user of this mess */
2010 nelm >>= 1;
2011 xbar_chans[nelm][0] = -1;
2012 xbar_chans[nelm][1] = -1;
2013
2014 for (i = 0; i < nelm; i++) {
2015 shift = (xbar_chans[i][1] & 0x03) << 3;
2016 offset = xbar_chans[i][1] & 0xfffffffc;
2017 mux = readl(xbar + offset);
2018 mux &= ~(0xff << shift);
2019 mux |= xbar_chans[i][0] << shift;
2020 writel(mux, (xbar + offset));
2021 }
2022
2023 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2024 return 0;
2025 }
2026
2027 static int edma_of_parse_dt(struct device *dev, struct edma_soc_info *pdata)
2028 {
2029 int ret = 0;
2030 struct property *prop;
2031 size_t sz;
2032 struct edma_rsv_info *rsv_info;
2033
2034 rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
2035 if (!rsv_info)
2036 return -ENOMEM;
2037 pdata->rsv = rsv_info;
2038
2039 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", &sz);
2040 if (prop)
2041 ret = edma_xbar_event_map(dev, pdata, sz);
2042
2043 return ret;
2044 }
2045
2046 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
2047 {
2048 struct edma_soc_info *info;
2049 int ret;
2050
2051 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2052 if (!info)
2053 return ERR_PTR(-ENOMEM);
2054
2055 ret = edma_of_parse_dt(dev, info);
2056 if (ret)
2057 return ERR_PTR(ret);
2058
2059 return info;
2060 }
2061 #else
2062 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
2063 {
2064 return ERR_PTR(-EINVAL);
2065 }
2066 #endif
2067
2068 static int edma_probe(struct platform_device *pdev)
2069 {
2070 struct edma_soc_info *info = pdev->dev.platform_data;
2071 s8 (*queue_priority_mapping)[2];
2072 int i, off, ln;
2073 const s16 (*rsv_chans)[2];
2074 const s16 (*rsv_slots)[2];
2075 const s16 (*xbar_chans)[2];
2076 int irq;
2077 char *irq_name;
2078 struct resource *mem;
2079 struct device_node *node = pdev->dev.of_node;
2080 struct device *dev = &pdev->dev;
2081 struct edma_cc *ecc;
2082 int ret;
2083
2084 if (node) {
2085 info = edma_setup_info_from_dt(dev);
2086 if (IS_ERR(info)) {
2087 dev_err(dev, "failed to get DT data\n");
2088 return PTR_ERR(info);
2089 }
2090 }
2091
2092 if (!info)
2093 return -ENODEV;
2094
2095 pm_runtime_enable(dev);
2096 ret = pm_runtime_get_sync(dev);
2097 if (ret < 0) {
2098 dev_err(dev, "pm_runtime_get_sync() failed\n");
2099 return ret;
2100 }
2101
2102 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2103 if (ret)
2104 return ret;
2105
2106 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2107 if (!ecc) {
2108 dev_err(dev, "Can't allocate controller\n");
2109 return -ENOMEM;
2110 }
2111
2112 ecc->dev = dev;
2113 ecc->id = pdev->id;
2114 /* When booting with DT the pdev->id is -1 */
2115 if (ecc->id < 0)
2116 ecc->id = 0;
2117
2118 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2119 if (!mem) {
2120 dev_dbg(dev, "mem resource not found, using index 0\n");
2121 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2122 if (!mem) {
2123 dev_err(dev, "no mem resource?\n");
2124 return -ENODEV;
2125 }
2126 }
2127 ecc->base = devm_ioremap_resource(dev, mem);
2128 if (IS_ERR(ecc->base))
2129 return PTR_ERR(ecc->base);
2130
2131 platform_set_drvdata(pdev, ecc);
2132
2133 /* Get eDMA3 configuration from IP */
2134 ret = edma_setup_from_hw(dev, info, ecc);
2135 if (ret)
2136 return ret;
2137
2138 /* Allocate memory based on the information we got from the IP */
2139 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2140 sizeof(*ecc->slave_chans), GFP_KERNEL);
2141 if (!ecc->slave_chans)
2142 return -ENOMEM;
2143
2144 ecc->edma_unused = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_channels),
2145 sizeof(unsigned long), GFP_KERNEL);
2146 if (!ecc->edma_unused)
2147 return -ENOMEM;
2148
2149 ecc->edma_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2150 sizeof(unsigned long), GFP_KERNEL);
2151 if (!ecc->edma_inuse)
2152 return -ENOMEM;
2153
2154 ecc->default_queue = info->default_queue;
2155
2156 for (i = 0; i < ecc->num_slots; i++)
2157 edma_write_slot(ecc, i, &dummy_paramset);
2158
2159 /* Mark all channels as unused */
2160 memset(ecc->edma_unused, 0xff, sizeof(ecc->edma_unused));
2161
2162 if (info->rsv) {
2163 /* Clear the reserved channels in unused list */
2164 rsv_chans = info->rsv->rsv_chans;
2165 if (rsv_chans) {
2166 for (i = 0; rsv_chans[i][0] != -1; i++) {
2167 off = rsv_chans[i][0];
2168 ln = rsv_chans[i][1];
2169 clear_bits(off, ln, ecc->edma_unused);
2170 }
2171 }
2172
2173 /* Set the reserved slots in inuse list */
2174 rsv_slots = info->rsv->rsv_slots;
2175 if (rsv_slots) {
2176 for (i = 0; rsv_slots[i][0] != -1; i++) {
2177 off = rsv_slots[i][0];
2178 ln = rsv_slots[i][1];
2179 set_bits(off, ln, ecc->edma_inuse);
2180 }
2181 }
2182 }
2183
2184 /* Clear the xbar mapped channels in unused list */
2185 xbar_chans = info->xbar_chans;
2186 if (xbar_chans) {
2187 for (i = 0; xbar_chans[i][1] != -1; i++) {
2188 off = xbar_chans[i][1];
2189 clear_bits(off, 1, ecc->edma_unused);
2190 }
2191 }
2192
2193 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2194 if (irq < 0 && node)
2195 irq = irq_of_parse_and_map(node, 0);
2196
2197 if (irq >= 0) {
2198 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2199 dev_name(dev));
2200 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2201 ecc);
2202 if (ret) {
2203 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2204 return ret;
2205 }
2206 }
2207
2208 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2209 if (irq < 0 && node)
2210 irq = irq_of_parse_and_map(node, 2);
2211
2212 if (irq >= 0) {
2213 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2214 dev_name(dev));
2215 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2216 ecc);
2217 if (ret) {
2218 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2219 return ret;
2220 }
2221 }
2222
2223 for (i = 0; i < ecc->num_channels; i++)
2224 edma_map_dmach_to_queue(ecc, i, info->default_queue);
2225
2226 queue_priority_mapping = info->queue_priority_mapping;
2227
2228 /* Event queue priority mapping */
2229 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2230 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2231 queue_priority_mapping[i][1]);
2232
2233 /* Map the channel to param entry if channel mapping logic exist */
2234 if (edma_read(ecc, EDMA_CCCFG) & CHMAP_EXIST)
2235 edma_direct_dmach_to_param_mapping(ecc);
2236
2237 for (i = 0; i < ecc->num_region; i++) {
2238 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2239 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2240 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2241 }
2242 ecc->info = info;
2243
2244 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2245 if (ecc->dummy_slot < 0) {
2246 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2247 return ecc->dummy_slot;
2248 }
2249
2250 dma_cap_zero(ecc->dma_slave.cap_mask);
2251 dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
2252 dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
2253 dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
2254
2255 edma_dma_init(ecc, &ecc->dma_slave, dev);
2256
2257 edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
2258
2259 ret = dma_async_device_register(&ecc->dma_slave);
2260 if (ret)
2261 goto err_reg1;
2262
2263 if (node)
2264 of_dma_controller_register(node, of_dma_xlate_by_chan_id,
2265 &ecc->dma_slave);
2266
2267 dev_info(dev, "TI EDMA DMA engine driver\n");
2268
2269 return 0;
2270
2271 err_reg1:
2272 edma_free_slot(ecc, ecc->dummy_slot);
2273 return ret;
2274 }
2275
2276 static int edma_remove(struct platform_device *pdev)
2277 {
2278 struct device *dev = &pdev->dev;
2279 struct edma_cc *ecc = dev_get_drvdata(dev);
2280
2281 if (dev->of_node)
2282 of_dma_controller_free(dev->of_node);
2283 dma_async_device_unregister(&ecc->dma_slave);
2284 edma_free_slot(ecc, ecc->dummy_slot);
2285
2286 return 0;
2287 }
2288
2289 #ifdef CONFIG_PM_SLEEP
2290 static int edma_pm_resume(struct device *dev)
2291 {
2292 struct edma_cc *ecc = dev_get_drvdata(dev);
2293 int i;
2294 s8 (*queue_priority_mapping)[2];
2295
2296 queue_priority_mapping = ecc->info->queue_priority_mapping;
2297
2298 /* Event queue priority mapping */
2299 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2300 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2301 queue_priority_mapping[i][1]);
2302
2303 /* Map the channel to param entry if channel mapping logic */
2304 if (edma_read(ecc, EDMA_CCCFG) & CHMAP_EXIST)
2305 edma_direct_dmach_to_param_mapping(ecc);
2306
2307 for (i = 0; i < ecc->num_channels; i++) {
2308 if (test_bit(i, ecc->edma_inuse)) {
2309 /* ensure access through shadow region 0 */
2310 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2311 BIT(i & 0x1f));
2312
2313 edma_setup_interrupt(ecc, EDMA_CTLR_CHAN(ecc->id, i),
2314 true);
2315 }
2316 }
2317
2318 return 0;
2319 }
2320 #endif
2321
2322 static const struct dev_pm_ops edma_pm_ops = {
2323 SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
2324 };
2325
2326 static struct platform_driver edma_driver = {
2327 .probe = edma_probe,
2328 .remove = edma_remove,
2329 .driver = {
2330 .name = "edma",
2331 .pm = &edma_pm_ops,
2332 .of_match_table = edma_of_ids,
2333 },
2334 };
2335
2336 bool edma_filter_fn(struct dma_chan *chan, void *param)
2337 {
2338 if (chan->device->dev->driver == &edma_driver.driver) {
2339 struct edma_chan *echan = to_edma_chan(chan);
2340 unsigned ch_req = *(unsigned *)param;
2341 return ch_req == echan->ch_num;
2342 }
2343 return false;
2344 }
2345 EXPORT_SYMBOL(edma_filter_fn);
2346
2347 static int edma_init(void)
2348 {
2349 return platform_driver_register(&edma_driver);
2350 }
2351 subsys_initcall(edma_init);
2352
2353 static void __exit edma_exit(void)
2354 {
2355 platform_driver_unregister(&edma_driver);
2356 }
2357 module_exit(edma_exit);
2358
2359 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2360 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2361 MODULE_LICENSE("GPL v2");
This page took 0.096671 seconds and 5 git commands to generate.