Merge remote-tracking branches 'spi/fix/atmel', 'spi/fix/bcm2835', 'spi/fix/doc'...
[deliverable/linux.git] / drivers / dma / edma.c
1 /*
2 * TI EDMA DMA engine driver
3 *
4 * Copyright 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28
29 #include <linux/platform_data/edma.h>
30
31 #include "dmaengine.h"
32 #include "virt-dma.h"
33
34 /*
35 * This will go away when the private EDMA API is folded
36 * into this driver and the platform device(s) are
37 * instantiated in the arch code. We can only get away
38 * with this simplification because DA8XX may not be built
39 * in the same kernel image with other DaVinci parts. This
40 * avoids having to sprinkle dmaengine driver platform devices
41 * and data throughout all the existing board files.
42 */
43 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
44 #define EDMA_CTLRS 2
45 #define EDMA_CHANS 32
46 #else
47 #define EDMA_CTLRS 1
48 #define EDMA_CHANS 64
49 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
50
51 /*
52 * Max of 20 segments per channel to conserve PaRAM slots
53 * Also note that MAX_NR_SG should be atleast the no.of periods
54 * that are required for ASoC, otherwise DMA prep calls will
55 * fail. Today davinci-pcm is the only user of this driver and
56 * requires atleast 17 slots, so we setup the default to 20.
57 */
58 #define MAX_NR_SG 20
59 #define EDMA_MAX_SLOTS MAX_NR_SG
60 #define EDMA_DESCRIPTORS 16
61
62 struct edma_pset {
63 u32 len;
64 dma_addr_t addr;
65 struct edmacc_param param;
66 };
67
68 struct edma_desc {
69 struct virt_dma_desc vdesc;
70 struct list_head node;
71 enum dma_transfer_direction direction;
72 int cyclic;
73 int absync;
74 int pset_nr;
75 struct edma_chan *echan;
76 int processed;
77
78 /*
79 * The following 4 elements are used for residue accounting.
80 *
81 * - processed_stat: the number of SG elements we have traversed
82 * so far to cover accounting. This is updated directly to processed
83 * during edma_callback and is always <= processed, because processed
84 * refers to the number of pending transfer (programmed to EDMA
85 * controller), where as processed_stat tracks number of transfers
86 * accounted for so far.
87 *
88 * - residue: The amount of bytes we have left to transfer for this desc
89 *
90 * - residue_stat: The residue in bytes of data we have covered
91 * so far for accounting. This is updated directly to residue
92 * during callbacks to keep it current.
93 *
94 * - sg_len: Tracks the length of the current intermediate transfer,
95 * this is required to update the residue during intermediate transfer
96 * completion callback.
97 */
98 int processed_stat;
99 u32 sg_len;
100 u32 residue;
101 u32 residue_stat;
102
103 struct edma_pset pset[0];
104 };
105
106 struct edma_cc;
107
108 struct edma_chan {
109 struct virt_dma_chan vchan;
110 struct list_head node;
111 struct edma_desc *edesc;
112 struct edma_cc *ecc;
113 int ch_num;
114 bool alloced;
115 int slot[EDMA_MAX_SLOTS];
116 int missed;
117 struct dma_slave_config cfg;
118 };
119
120 struct edma_cc {
121 int ctlr;
122 struct dma_device dma_slave;
123 struct edma_chan slave_chans[EDMA_CHANS];
124 int num_slave_chans;
125 int dummy_slot;
126 };
127
128 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
129 {
130 return container_of(d, struct edma_cc, dma_slave);
131 }
132
133 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
134 {
135 return container_of(c, struct edma_chan, vchan.chan);
136 }
137
138 static inline struct edma_desc
139 *to_edma_desc(struct dma_async_tx_descriptor *tx)
140 {
141 return container_of(tx, struct edma_desc, vdesc.tx);
142 }
143
144 static void edma_desc_free(struct virt_dma_desc *vdesc)
145 {
146 kfree(container_of(vdesc, struct edma_desc, vdesc));
147 }
148
149 /* Dispatch a queued descriptor to the controller (caller holds lock) */
150 static void edma_execute(struct edma_chan *echan)
151 {
152 struct virt_dma_desc *vdesc;
153 struct edma_desc *edesc;
154 struct device *dev = echan->vchan.chan.device->dev;
155 int i, j, left, nslots;
156
157 /* If either we processed all psets or we're still not started */
158 if (!echan->edesc ||
159 echan->edesc->pset_nr == echan->edesc->processed) {
160 /* Get next vdesc */
161 vdesc = vchan_next_desc(&echan->vchan);
162 if (!vdesc) {
163 echan->edesc = NULL;
164 return;
165 }
166 list_del(&vdesc->node);
167 echan->edesc = to_edma_desc(&vdesc->tx);
168 }
169
170 edesc = echan->edesc;
171
172 /* Find out how many left */
173 left = edesc->pset_nr - edesc->processed;
174 nslots = min(MAX_NR_SG, left);
175 edesc->sg_len = 0;
176
177 /* Write descriptor PaRAM set(s) */
178 for (i = 0; i < nslots; i++) {
179 j = i + edesc->processed;
180 edma_write_slot(echan->slot[i], &edesc->pset[j].param);
181 edesc->sg_len += edesc->pset[j].len;
182 dev_vdbg(echan->vchan.chan.device->dev,
183 "\n pset[%d]:\n"
184 " chnum\t%d\n"
185 " slot\t%d\n"
186 " opt\t%08x\n"
187 " src\t%08x\n"
188 " dst\t%08x\n"
189 " abcnt\t%08x\n"
190 " ccnt\t%08x\n"
191 " bidx\t%08x\n"
192 " cidx\t%08x\n"
193 " lkrld\t%08x\n",
194 j, echan->ch_num, echan->slot[i],
195 edesc->pset[j].param.opt,
196 edesc->pset[j].param.src,
197 edesc->pset[j].param.dst,
198 edesc->pset[j].param.a_b_cnt,
199 edesc->pset[j].param.ccnt,
200 edesc->pset[j].param.src_dst_bidx,
201 edesc->pset[j].param.src_dst_cidx,
202 edesc->pset[j].param.link_bcntrld);
203 /* Link to the previous slot if not the last set */
204 if (i != (nslots - 1))
205 edma_link(echan->slot[i], echan->slot[i+1]);
206 }
207
208 edesc->processed += nslots;
209
210 /*
211 * If this is either the last set in a set of SG-list transactions
212 * then setup a link to the dummy slot, this results in all future
213 * events being absorbed and that's OK because we're done
214 */
215 if (edesc->processed == edesc->pset_nr) {
216 if (edesc->cyclic)
217 edma_link(echan->slot[nslots-1], echan->slot[1]);
218 else
219 edma_link(echan->slot[nslots-1],
220 echan->ecc->dummy_slot);
221 }
222
223 if (edesc->processed <= MAX_NR_SG) {
224 dev_dbg(dev, "first transfer starting on channel %d\n",
225 echan->ch_num);
226 edma_start(echan->ch_num);
227 } else {
228 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
229 echan->ch_num, edesc->processed);
230 edma_resume(echan->ch_num);
231 }
232
233 /*
234 * This happens due to setup times between intermediate transfers
235 * in long SG lists which have to be broken up into transfers of
236 * MAX_NR_SG
237 */
238 if (echan->missed) {
239 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
240 edma_clean_channel(echan->ch_num);
241 edma_stop(echan->ch_num);
242 edma_start(echan->ch_num);
243 edma_trigger_channel(echan->ch_num);
244 echan->missed = 0;
245 }
246 }
247
248 static int edma_terminate_all(struct dma_chan *chan)
249 {
250 struct edma_chan *echan = to_edma_chan(chan);
251 unsigned long flags;
252 LIST_HEAD(head);
253
254 spin_lock_irqsave(&echan->vchan.lock, flags);
255
256 /*
257 * Stop DMA activity: we assume the callback will not be called
258 * after edma_dma() returns (even if it does, it will see
259 * echan->edesc is NULL and exit.)
260 */
261 if (echan->edesc) {
262 int cyclic = echan->edesc->cyclic;
263
264 /*
265 * free the running request descriptor
266 * since it is not in any of the vdesc lists
267 */
268 edma_desc_free(&echan->edesc->vdesc);
269
270 echan->edesc = NULL;
271 edma_stop(echan->ch_num);
272 /* Move the cyclic channel back to default queue */
273 if (cyclic)
274 edma_assign_channel_eventq(echan->ch_num,
275 EVENTQ_DEFAULT);
276 }
277
278 vchan_get_all_descriptors(&echan->vchan, &head);
279 spin_unlock_irqrestore(&echan->vchan.lock, flags);
280 vchan_dma_desc_free_list(&echan->vchan, &head);
281
282 return 0;
283 }
284
285 static int edma_slave_config(struct dma_chan *chan,
286 struct dma_slave_config *cfg)
287 {
288 struct edma_chan *echan = to_edma_chan(chan);
289
290 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
291 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
292 return -EINVAL;
293
294 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
295
296 return 0;
297 }
298
299 static int edma_dma_pause(struct dma_chan *chan)
300 {
301 struct edma_chan *echan = to_edma_chan(chan);
302
303 if (!echan->edesc)
304 return -EINVAL;
305
306 edma_pause(echan->ch_num);
307 return 0;
308 }
309
310 static int edma_dma_resume(struct dma_chan *chan)
311 {
312 struct edma_chan *echan = to_edma_chan(chan);
313
314 edma_resume(echan->ch_num);
315 return 0;
316 }
317
318 /*
319 * A PaRAM set configuration abstraction used by other modes
320 * @chan: Channel who's PaRAM set we're configuring
321 * @pset: PaRAM set to initialize and setup.
322 * @src_addr: Source address of the DMA
323 * @dst_addr: Destination address of the DMA
324 * @burst: In units of dev_width, how much to send
325 * @dev_width: How much is the dev_width
326 * @dma_length: Total length of the DMA transfer
327 * @direction: Direction of the transfer
328 */
329 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
330 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
331 enum dma_slave_buswidth dev_width, unsigned int dma_length,
332 enum dma_transfer_direction direction)
333 {
334 struct edma_chan *echan = to_edma_chan(chan);
335 struct device *dev = chan->device->dev;
336 struct edmacc_param *param = &epset->param;
337 int acnt, bcnt, ccnt, cidx;
338 int src_bidx, dst_bidx, src_cidx, dst_cidx;
339 int absync;
340
341 acnt = dev_width;
342
343 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
344 if (!burst)
345 burst = 1;
346 /*
347 * If the maxburst is equal to the fifo width, use
348 * A-synced transfers. This allows for large contiguous
349 * buffer transfers using only one PaRAM set.
350 */
351 if (burst == 1) {
352 /*
353 * For the A-sync case, bcnt and ccnt are the remainder
354 * and quotient respectively of the division of:
355 * (dma_length / acnt) by (SZ_64K -1). This is so
356 * that in case bcnt over flows, we have ccnt to use.
357 * Note: In A-sync tranfer only, bcntrld is used, but it
358 * only applies for sg_dma_len(sg) >= SZ_64K.
359 * In this case, the best way adopted is- bccnt for the
360 * first frame will be the remainder below. Then for
361 * every successive frame, bcnt will be SZ_64K-1. This
362 * is assured as bcntrld = 0xffff in end of function.
363 */
364 absync = false;
365 ccnt = dma_length / acnt / (SZ_64K - 1);
366 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
367 /*
368 * If bcnt is non-zero, we have a remainder and hence an
369 * extra frame to transfer, so increment ccnt.
370 */
371 if (bcnt)
372 ccnt++;
373 else
374 bcnt = SZ_64K - 1;
375 cidx = acnt;
376 } else {
377 /*
378 * If maxburst is greater than the fifo address_width,
379 * use AB-synced transfers where A count is the fifo
380 * address_width and B count is the maxburst. In this
381 * case, we are limited to transfers of C count frames
382 * of (address_width * maxburst) where C count is limited
383 * to SZ_64K-1. This places an upper bound on the length
384 * of an SG segment that can be handled.
385 */
386 absync = true;
387 bcnt = burst;
388 ccnt = dma_length / (acnt * bcnt);
389 if (ccnt > (SZ_64K - 1)) {
390 dev_err(dev, "Exceeded max SG segment size\n");
391 return -EINVAL;
392 }
393 cidx = acnt * bcnt;
394 }
395
396 epset->len = dma_length;
397
398 if (direction == DMA_MEM_TO_DEV) {
399 src_bidx = acnt;
400 src_cidx = cidx;
401 dst_bidx = 0;
402 dst_cidx = 0;
403 epset->addr = src_addr;
404 } else if (direction == DMA_DEV_TO_MEM) {
405 src_bidx = 0;
406 src_cidx = 0;
407 dst_bidx = acnt;
408 dst_cidx = cidx;
409 epset->addr = dst_addr;
410 } else if (direction == DMA_MEM_TO_MEM) {
411 src_bidx = acnt;
412 src_cidx = cidx;
413 dst_bidx = acnt;
414 dst_cidx = cidx;
415 } else {
416 dev_err(dev, "%s: direction not implemented yet\n", __func__);
417 return -EINVAL;
418 }
419
420 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
421 /* Configure A or AB synchronized transfers */
422 if (absync)
423 param->opt |= SYNCDIM;
424
425 param->src = src_addr;
426 param->dst = dst_addr;
427
428 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
429 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
430
431 param->a_b_cnt = bcnt << 16 | acnt;
432 param->ccnt = ccnt;
433 /*
434 * Only time when (bcntrld) auto reload is required is for
435 * A-sync case, and in this case, a requirement of reload value
436 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
437 * and then later will be populated by edma_execute.
438 */
439 param->link_bcntrld = 0xffffffff;
440 return absync;
441 }
442
443 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
444 struct dma_chan *chan, struct scatterlist *sgl,
445 unsigned int sg_len, enum dma_transfer_direction direction,
446 unsigned long tx_flags, void *context)
447 {
448 struct edma_chan *echan = to_edma_chan(chan);
449 struct device *dev = chan->device->dev;
450 struct edma_desc *edesc;
451 dma_addr_t src_addr = 0, dst_addr = 0;
452 enum dma_slave_buswidth dev_width;
453 u32 burst;
454 struct scatterlist *sg;
455 int i, nslots, ret;
456
457 if (unlikely(!echan || !sgl || !sg_len))
458 return NULL;
459
460 if (direction == DMA_DEV_TO_MEM) {
461 src_addr = echan->cfg.src_addr;
462 dev_width = echan->cfg.src_addr_width;
463 burst = echan->cfg.src_maxburst;
464 } else if (direction == DMA_MEM_TO_DEV) {
465 dst_addr = echan->cfg.dst_addr;
466 dev_width = echan->cfg.dst_addr_width;
467 burst = echan->cfg.dst_maxburst;
468 } else {
469 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
470 return NULL;
471 }
472
473 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
474 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
475 return NULL;
476 }
477
478 edesc = kzalloc(sizeof(*edesc) + sg_len *
479 sizeof(edesc->pset[0]), GFP_ATOMIC);
480 if (!edesc) {
481 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
482 return NULL;
483 }
484
485 edesc->pset_nr = sg_len;
486 edesc->residue = 0;
487 edesc->direction = direction;
488 edesc->echan = echan;
489
490 /* Allocate a PaRAM slot, if needed */
491 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
492
493 for (i = 0; i < nslots; i++) {
494 if (echan->slot[i] < 0) {
495 echan->slot[i] =
496 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
497 EDMA_SLOT_ANY);
498 if (echan->slot[i] < 0) {
499 kfree(edesc);
500 dev_err(dev, "%s: Failed to allocate slot\n",
501 __func__);
502 return NULL;
503 }
504 }
505 }
506
507 /* Configure PaRAM sets for each SG */
508 for_each_sg(sgl, sg, sg_len, i) {
509 /* Get address for each SG */
510 if (direction == DMA_DEV_TO_MEM)
511 dst_addr = sg_dma_address(sg);
512 else
513 src_addr = sg_dma_address(sg);
514
515 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
516 dst_addr, burst, dev_width,
517 sg_dma_len(sg), direction);
518 if (ret < 0) {
519 kfree(edesc);
520 return NULL;
521 }
522
523 edesc->absync = ret;
524 edesc->residue += sg_dma_len(sg);
525
526 /* If this is the last in a current SG set of transactions,
527 enable interrupts so that next set is processed */
528 if (!((i+1) % MAX_NR_SG))
529 edesc->pset[i].param.opt |= TCINTEN;
530
531 /* If this is the last set, enable completion interrupt flag */
532 if (i == sg_len - 1)
533 edesc->pset[i].param.opt |= TCINTEN;
534 }
535 edesc->residue_stat = edesc->residue;
536
537 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
538 }
539
540 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
541 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
542 size_t len, unsigned long tx_flags)
543 {
544 int ret;
545 struct edma_desc *edesc;
546 struct device *dev = chan->device->dev;
547 struct edma_chan *echan = to_edma_chan(chan);
548
549 if (unlikely(!echan || !len))
550 return NULL;
551
552 edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
553 if (!edesc) {
554 dev_dbg(dev, "Failed to allocate a descriptor\n");
555 return NULL;
556 }
557
558 edesc->pset_nr = 1;
559
560 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
561 DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
562 if (ret < 0)
563 return NULL;
564
565 edesc->absync = ret;
566
567 /*
568 * Enable intermediate transfer chaining to re-trigger channel
569 * on completion of every TR, and enable transfer-completion
570 * interrupt on completion of the whole transfer.
571 */
572 edesc->pset[0].param.opt |= ITCCHEN;
573 edesc->pset[0].param.opt |= TCINTEN;
574
575 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
576 }
577
578 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
579 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
580 size_t period_len, enum dma_transfer_direction direction,
581 unsigned long tx_flags)
582 {
583 struct edma_chan *echan = to_edma_chan(chan);
584 struct device *dev = chan->device->dev;
585 struct edma_desc *edesc;
586 dma_addr_t src_addr, dst_addr;
587 enum dma_slave_buswidth dev_width;
588 u32 burst;
589 int i, ret, nslots;
590
591 if (unlikely(!echan || !buf_len || !period_len))
592 return NULL;
593
594 if (direction == DMA_DEV_TO_MEM) {
595 src_addr = echan->cfg.src_addr;
596 dst_addr = buf_addr;
597 dev_width = echan->cfg.src_addr_width;
598 burst = echan->cfg.src_maxburst;
599 } else if (direction == DMA_MEM_TO_DEV) {
600 src_addr = buf_addr;
601 dst_addr = echan->cfg.dst_addr;
602 dev_width = echan->cfg.dst_addr_width;
603 burst = echan->cfg.dst_maxburst;
604 } else {
605 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
606 return NULL;
607 }
608
609 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
610 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
611 return NULL;
612 }
613
614 if (unlikely(buf_len % period_len)) {
615 dev_err(dev, "Period should be multiple of Buffer length\n");
616 return NULL;
617 }
618
619 nslots = (buf_len / period_len) + 1;
620
621 /*
622 * Cyclic DMA users such as audio cannot tolerate delays introduced
623 * by cases where the number of periods is more than the maximum
624 * number of SGs the EDMA driver can handle at a time. For DMA types
625 * such as Slave SGs, such delays are tolerable and synchronized,
626 * but the synchronization is difficult to achieve with Cyclic and
627 * cannot be guaranteed, so we error out early.
628 */
629 if (nslots > MAX_NR_SG)
630 return NULL;
631
632 edesc = kzalloc(sizeof(*edesc) + nslots *
633 sizeof(edesc->pset[0]), GFP_ATOMIC);
634 if (!edesc) {
635 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
636 return NULL;
637 }
638
639 edesc->cyclic = 1;
640 edesc->pset_nr = nslots;
641 edesc->residue = edesc->residue_stat = buf_len;
642 edesc->direction = direction;
643 edesc->echan = echan;
644
645 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
646 __func__, echan->ch_num, nslots, period_len, buf_len);
647
648 for (i = 0; i < nslots; i++) {
649 /* Allocate a PaRAM slot, if needed */
650 if (echan->slot[i] < 0) {
651 echan->slot[i] =
652 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
653 EDMA_SLOT_ANY);
654 if (echan->slot[i] < 0) {
655 kfree(edesc);
656 dev_err(dev, "%s: Failed to allocate slot\n",
657 __func__);
658 return NULL;
659 }
660 }
661
662 if (i == nslots - 1) {
663 memcpy(&edesc->pset[i], &edesc->pset[0],
664 sizeof(edesc->pset[0]));
665 break;
666 }
667
668 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
669 dst_addr, burst, dev_width, period_len,
670 direction);
671 if (ret < 0) {
672 kfree(edesc);
673 return NULL;
674 }
675
676 if (direction == DMA_DEV_TO_MEM)
677 dst_addr += period_len;
678 else
679 src_addr += period_len;
680
681 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
682 dev_vdbg(dev,
683 "\n pset[%d]:\n"
684 " chnum\t%d\n"
685 " slot\t%d\n"
686 " opt\t%08x\n"
687 " src\t%08x\n"
688 " dst\t%08x\n"
689 " abcnt\t%08x\n"
690 " ccnt\t%08x\n"
691 " bidx\t%08x\n"
692 " cidx\t%08x\n"
693 " lkrld\t%08x\n",
694 i, echan->ch_num, echan->slot[i],
695 edesc->pset[i].param.opt,
696 edesc->pset[i].param.src,
697 edesc->pset[i].param.dst,
698 edesc->pset[i].param.a_b_cnt,
699 edesc->pset[i].param.ccnt,
700 edesc->pset[i].param.src_dst_bidx,
701 edesc->pset[i].param.src_dst_cidx,
702 edesc->pset[i].param.link_bcntrld);
703
704 edesc->absync = ret;
705
706 /*
707 * Enable period interrupt only if it is requested
708 */
709 if (tx_flags & DMA_PREP_INTERRUPT)
710 edesc->pset[i].param.opt |= TCINTEN;
711 }
712
713 /* Place the cyclic channel to highest priority queue */
714 edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);
715
716 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
717 }
718
719 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
720 {
721 struct edma_chan *echan = data;
722 struct device *dev = echan->vchan.chan.device->dev;
723 struct edma_desc *edesc;
724 struct edmacc_param p;
725
726 edesc = echan->edesc;
727
728 /* Pause the channel for non-cyclic */
729 if (!edesc || (edesc && !edesc->cyclic))
730 edma_pause(echan->ch_num);
731
732 switch (ch_status) {
733 case EDMA_DMA_COMPLETE:
734 spin_lock(&echan->vchan.lock);
735
736 if (edesc) {
737 if (edesc->cyclic) {
738 vchan_cyclic_callback(&edesc->vdesc);
739 } else if (edesc->processed == edesc->pset_nr) {
740 dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
741 edesc->residue = 0;
742 edma_stop(echan->ch_num);
743 vchan_cookie_complete(&edesc->vdesc);
744 edma_execute(echan);
745 } else {
746 dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
747
748 /* Update statistics for tx_status */
749 edesc->residue -= edesc->sg_len;
750 edesc->residue_stat = edesc->residue;
751 edesc->processed_stat = edesc->processed;
752
753 edma_execute(echan);
754 }
755 }
756
757 spin_unlock(&echan->vchan.lock);
758
759 break;
760 case EDMA_DMA_CC_ERROR:
761 spin_lock(&echan->vchan.lock);
762
763 edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
764
765 /*
766 * Issue later based on missed flag which will be sure
767 * to happen as:
768 * (1) we finished transmitting an intermediate slot and
769 * edma_execute is coming up.
770 * (2) or we finished current transfer and issue will
771 * call edma_execute.
772 *
773 * Important note: issuing can be dangerous here and
774 * lead to some nasty recursion when we are in a NULL
775 * slot. So we avoid doing so and set the missed flag.
776 */
777 if (p.a_b_cnt == 0 && p.ccnt == 0) {
778 dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
779 echan->missed = 1;
780 } else {
781 /*
782 * The slot is already programmed but the event got
783 * missed, so its safe to issue it here.
784 */
785 dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
786 edma_clean_channel(echan->ch_num);
787 edma_stop(echan->ch_num);
788 edma_start(echan->ch_num);
789 edma_trigger_channel(echan->ch_num);
790 }
791
792 spin_unlock(&echan->vchan.lock);
793
794 break;
795 default:
796 break;
797 }
798 }
799
800 /* Alloc channel resources */
801 static int edma_alloc_chan_resources(struct dma_chan *chan)
802 {
803 struct edma_chan *echan = to_edma_chan(chan);
804 struct device *dev = chan->device->dev;
805 int ret;
806 int a_ch_num;
807 LIST_HEAD(descs);
808
809 a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
810 echan, EVENTQ_DEFAULT);
811
812 if (a_ch_num < 0) {
813 ret = -ENODEV;
814 goto err_no_chan;
815 }
816
817 if (a_ch_num != echan->ch_num) {
818 dev_err(dev, "failed to allocate requested channel %u:%u\n",
819 EDMA_CTLR(echan->ch_num),
820 EDMA_CHAN_SLOT(echan->ch_num));
821 ret = -ENODEV;
822 goto err_wrong_chan;
823 }
824
825 echan->alloced = true;
826 echan->slot[0] = echan->ch_num;
827
828 dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
829 EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
830
831 return 0;
832
833 err_wrong_chan:
834 edma_free_channel(a_ch_num);
835 err_no_chan:
836 return ret;
837 }
838
839 /* Free channel resources */
840 static void edma_free_chan_resources(struct dma_chan *chan)
841 {
842 struct edma_chan *echan = to_edma_chan(chan);
843 struct device *dev = chan->device->dev;
844 int i;
845
846 /* Terminate transfers */
847 edma_stop(echan->ch_num);
848
849 vchan_free_chan_resources(&echan->vchan);
850
851 /* Free EDMA PaRAM slots */
852 for (i = 1; i < EDMA_MAX_SLOTS; i++) {
853 if (echan->slot[i] >= 0) {
854 edma_free_slot(echan->slot[i]);
855 echan->slot[i] = -1;
856 }
857 }
858
859 /* Free EDMA channel */
860 if (echan->alloced) {
861 edma_free_channel(echan->ch_num);
862 echan->alloced = false;
863 }
864
865 dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
866 }
867
868 /* Send pending descriptor to hardware */
869 static void edma_issue_pending(struct dma_chan *chan)
870 {
871 struct edma_chan *echan = to_edma_chan(chan);
872 unsigned long flags;
873
874 spin_lock_irqsave(&echan->vchan.lock, flags);
875 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
876 edma_execute(echan);
877 spin_unlock_irqrestore(&echan->vchan.lock, flags);
878 }
879
880 static u32 edma_residue(struct edma_desc *edesc)
881 {
882 bool dst = edesc->direction == DMA_DEV_TO_MEM;
883 struct edma_pset *pset = edesc->pset;
884 dma_addr_t done, pos;
885 int i;
886
887 /*
888 * We always read the dst/src position from the first RamPar
889 * pset. That's the one which is active now.
890 */
891 pos = edma_get_position(edesc->echan->slot[0], dst);
892
893 /*
894 * Cyclic is simple. Just subtract pset[0].addr from pos.
895 *
896 * We never update edesc->residue in the cyclic case, so we
897 * can tell the remaining room to the end of the circular
898 * buffer.
899 */
900 if (edesc->cyclic) {
901 done = pos - pset->addr;
902 edesc->residue_stat = edesc->residue - done;
903 return edesc->residue_stat;
904 }
905
906 /*
907 * For SG operation we catch up with the last processed
908 * status.
909 */
910 pset += edesc->processed_stat;
911
912 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
913 /*
914 * If we are inside this pset address range, we know
915 * this is the active one. Get the current delta and
916 * stop walking the psets.
917 */
918 if (pos >= pset->addr && pos < pset->addr + pset->len)
919 return edesc->residue_stat - (pos - pset->addr);
920
921 /* Otherwise mark it done and update residue_stat. */
922 edesc->processed_stat++;
923 edesc->residue_stat -= pset->len;
924 }
925 return edesc->residue_stat;
926 }
927
928 /* Check request completion status */
929 static enum dma_status edma_tx_status(struct dma_chan *chan,
930 dma_cookie_t cookie,
931 struct dma_tx_state *txstate)
932 {
933 struct edma_chan *echan = to_edma_chan(chan);
934 struct virt_dma_desc *vdesc;
935 enum dma_status ret;
936 unsigned long flags;
937
938 ret = dma_cookie_status(chan, cookie, txstate);
939 if (ret == DMA_COMPLETE || !txstate)
940 return ret;
941
942 spin_lock_irqsave(&echan->vchan.lock, flags);
943 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
944 txstate->residue = edma_residue(echan->edesc);
945 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
946 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
947 spin_unlock_irqrestore(&echan->vchan.lock, flags);
948
949 return ret;
950 }
951
952 static void __init edma_chan_init(struct edma_cc *ecc,
953 struct dma_device *dma,
954 struct edma_chan *echans)
955 {
956 int i, j;
957
958 for (i = 0; i < EDMA_CHANS; i++) {
959 struct edma_chan *echan = &echans[i];
960 echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
961 echan->ecc = ecc;
962 echan->vchan.desc_free = edma_desc_free;
963
964 vchan_init(&echan->vchan, dma);
965
966 INIT_LIST_HEAD(&echan->node);
967 for (j = 0; j < EDMA_MAX_SLOTS; j++)
968 echan->slot[j] = -1;
969 }
970 }
971
972 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
973 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
974 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
975 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
976
977 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
978 struct device *dev)
979 {
980 dma->device_prep_slave_sg = edma_prep_slave_sg;
981 dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
982 dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
983 dma->device_alloc_chan_resources = edma_alloc_chan_resources;
984 dma->device_free_chan_resources = edma_free_chan_resources;
985 dma->device_issue_pending = edma_issue_pending;
986 dma->device_tx_status = edma_tx_status;
987 dma->device_config = edma_slave_config;
988 dma->device_pause = edma_dma_pause;
989 dma->device_resume = edma_dma_resume;
990 dma->device_terminate_all = edma_terminate_all;
991
992 dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
993 dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
994 dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
995 dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
996
997 dma->dev = dev;
998
999 /*
1000 * code using dma memcpy must make sure alignment of
1001 * length is at dma->copy_align boundary.
1002 */
1003 dma->copy_align = DMAENGINE_ALIGN_4_BYTES;
1004
1005 INIT_LIST_HEAD(&dma->channels);
1006 }
1007
1008 static int edma_probe(struct platform_device *pdev)
1009 {
1010 struct edma_cc *ecc;
1011 int ret;
1012
1013 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1014 if (ret)
1015 return ret;
1016
1017 ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
1018 if (!ecc) {
1019 dev_err(&pdev->dev, "Can't allocate controller\n");
1020 return -ENOMEM;
1021 }
1022
1023 ecc->ctlr = pdev->id;
1024 ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
1025 if (ecc->dummy_slot < 0) {
1026 dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
1027 return ecc->dummy_slot;
1028 }
1029
1030 dma_cap_zero(ecc->dma_slave.cap_mask);
1031 dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1032 dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1033 dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1034
1035 edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
1036
1037 edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
1038
1039 ret = dma_async_device_register(&ecc->dma_slave);
1040 if (ret)
1041 goto err_reg1;
1042
1043 platform_set_drvdata(pdev, ecc);
1044
1045 dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
1046
1047 return 0;
1048
1049 err_reg1:
1050 edma_free_slot(ecc->dummy_slot);
1051 return ret;
1052 }
1053
1054 static int edma_remove(struct platform_device *pdev)
1055 {
1056 struct device *dev = &pdev->dev;
1057 struct edma_cc *ecc = dev_get_drvdata(dev);
1058
1059 dma_async_device_unregister(&ecc->dma_slave);
1060 edma_free_slot(ecc->dummy_slot);
1061
1062 return 0;
1063 }
1064
1065 static struct platform_driver edma_driver = {
1066 .probe = edma_probe,
1067 .remove = edma_remove,
1068 .driver = {
1069 .name = "edma-dma-engine",
1070 },
1071 };
1072
1073 bool edma_filter_fn(struct dma_chan *chan, void *param)
1074 {
1075 if (chan->device->dev->driver == &edma_driver.driver) {
1076 struct edma_chan *echan = to_edma_chan(chan);
1077 unsigned ch_req = *(unsigned *)param;
1078 return ch_req == echan->ch_num;
1079 }
1080 return false;
1081 }
1082 EXPORT_SYMBOL(edma_filter_fn);
1083
1084 static int edma_init(void)
1085 {
1086 return platform_driver_register(&edma_driver);
1087 }
1088 subsys_initcall(edma_init);
1089
1090 static void __exit edma_exit(void)
1091 {
1092 platform_driver_unregister(&edma_driver);
1093 }
1094 module_exit(edma_exit);
1095
1096 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1097 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
1098 MODULE_LICENSE("GPL v2");
This page took 0.054076 seconds and 6 git commands to generate.