dmaengine: move last completed cookie into generic dma_chan structure
[deliverable/linux.git] / drivers / dma / ep93xx_dma.c
1 /*
2 * Driver for the Cirrus Logic EP93xx DMA Controller
3 *
4 * Copyright (C) 2011 Mika Westerberg
5 *
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8 *
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12 *
13 * This driver is based on dw_dmac and amba-pl08x drivers.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 */
20
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #include <mach/dma.h>
30
31 /* M2P registers */
32 #define M2P_CONTROL 0x0000
33 #define M2P_CONTROL_STALLINT BIT(0)
34 #define M2P_CONTROL_NFBINT BIT(1)
35 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
36 #define M2P_CONTROL_ENABLE BIT(4)
37 #define M2P_CONTROL_ICE BIT(6)
38
39 #define M2P_INTERRUPT 0x0004
40 #define M2P_INTERRUPT_STALL BIT(0)
41 #define M2P_INTERRUPT_NFB BIT(1)
42 #define M2P_INTERRUPT_ERROR BIT(3)
43
44 #define M2P_PPALLOC 0x0008
45 #define M2P_STATUS 0x000c
46
47 #define M2P_MAXCNT0 0x0020
48 #define M2P_BASE0 0x0024
49 #define M2P_MAXCNT1 0x0030
50 #define M2P_BASE1 0x0034
51
52 #define M2P_STATE_IDLE 0
53 #define M2P_STATE_STALL 1
54 #define M2P_STATE_ON 2
55 #define M2P_STATE_NEXT 3
56
57 /* M2M registers */
58 #define M2M_CONTROL 0x0000
59 #define M2M_CONTROL_DONEINT BIT(2)
60 #define M2M_CONTROL_ENABLE BIT(3)
61 #define M2M_CONTROL_START BIT(4)
62 #define M2M_CONTROL_DAH BIT(11)
63 #define M2M_CONTROL_SAH BIT(12)
64 #define M2M_CONTROL_PW_SHIFT 9
65 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
66 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
67 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_TM_SHIFT 13
70 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
71 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
72 #define M2M_CONTROL_RSS_SHIFT 22
73 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
74 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
75 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_NO_HDSK BIT(24)
77 #define M2M_CONTROL_PWSC_SHIFT 25
78
79 #define M2M_INTERRUPT 0x0004
80 #define M2M_INTERRUPT_DONEINT BIT(1)
81
82 #define M2M_BCR0 0x0010
83 #define M2M_BCR1 0x0014
84 #define M2M_SAR_BASE0 0x0018
85 #define M2M_SAR_BASE1 0x001c
86 #define M2M_DAR_BASE0 0x002c
87 #define M2M_DAR_BASE1 0x0030
88
89 #define DMA_MAX_CHAN_BYTES 0xffff
90 #define DMA_MAX_CHAN_DESCRIPTORS 32
91
92 struct ep93xx_dma_engine;
93
94 /**
95 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
96 * @src_addr: source address of the transaction
97 * @dst_addr: destination address of the transaction
98 * @size: size of the transaction (in bytes)
99 * @complete: this descriptor is completed
100 * @txd: dmaengine API descriptor
101 * @tx_list: list of linked descriptors
102 * @node: link used for putting this into a channel queue
103 */
104 struct ep93xx_dma_desc {
105 u32 src_addr;
106 u32 dst_addr;
107 size_t size;
108 bool complete;
109 struct dma_async_tx_descriptor txd;
110 struct list_head tx_list;
111 struct list_head node;
112 };
113
114 /**
115 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
116 * @chan: dmaengine API channel
117 * @edma: pointer to to the engine device
118 * @regs: memory mapped registers
119 * @irq: interrupt number of the channel
120 * @clk: clock used by this channel
121 * @tasklet: channel specific tasklet used for callbacks
122 * @lock: lock protecting the fields following
123 * @flags: flags for the channel
124 * @buffer: which buffer to use next (0/1)
125 * @active: flattened chain of descriptors currently being processed
126 * @queue: pending descriptors which are handled next
127 * @free_list: list of free descriptors which can be used
128 * @runtime_addr: physical address currently used as dest/src (M2M only). This
129 * is set via %DMA_SLAVE_CONFIG before slave operation is
130 * prepared
131 * @runtime_ctrl: M2M runtime values for the control register.
132 *
133 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
134 * will have slightly different scheme here: @active points to a head of
135 * flattened DMA descriptor chain.
136 *
137 * @queue holds pending transactions. These are linked through the first
138 * descriptor in the chain. When a descriptor is moved to the @active queue,
139 * the first and chained descriptors are flattened into a single list.
140 *
141 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
142 * necessary channel configuration information. For memcpy channels this must
143 * be %NULL.
144 */
145 struct ep93xx_dma_chan {
146 struct dma_chan chan;
147 const struct ep93xx_dma_engine *edma;
148 void __iomem *regs;
149 int irq;
150 struct clk *clk;
151 struct tasklet_struct tasklet;
152 /* protects the fields following */
153 spinlock_t lock;
154 unsigned long flags;
155 /* Channel is configured for cyclic transfers */
156 #define EP93XX_DMA_IS_CYCLIC 0
157
158 int buffer;
159 struct list_head active;
160 struct list_head queue;
161 struct list_head free_list;
162 u32 runtime_addr;
163 u32 runtime_ctrl;
164 };
165
166 /**
167 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
168 * @dma_dev: holds the dmaengine device
169 * @m2m: is this an M2M or M2P device
170 * @hw_setup: method which sets the channel up for operation
171 * @hw_shutdown: shuts the channel down and flushes whatever is left
172 * @hw_submit: pushes active descriptor(s) to the hardware
173 * @hw_interrupt: handle the interrupt
174 * @num_channels: number of channels for this instance
175 * @channels: array of channels
176 *
177 * There is one instance of this struct for the M2P channels and one for the
178 * M2M channels. hw_xxx() methods are used to perform operations which are
179 * different on M2M and M2P channels. These methods are called with channel
180 * lock held and interrupts disabled so they cannot sleep.
181 */
182 struct ep93xx_dma_engine {
183 struct dma_device dma_dev;
184 bool m2m;
185 int (*hw_setup)(struct ep93xx_dma_chan *);
186 void (*hw_shutdown)(struct ep93xx_dma_chan *);
187 void (*hw_submit)(struct ep93xx_dma_chan *);
188 int (*hw_interrupt)(struct ep93xx_dma_chan *);
189 #define INTERRUPT_UNKNOWN 0
190 #define INTERRUPT_DONE 1
191 #define INTERRUPT_NEXT_BUFFER 2
192
193 size_t num_channels;
194 struct ep93xx_dma_chan channels[];
195 };
196
197 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
198 {
199 return &edmac->chan.dev->device;
200 }
201
202 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
203 {
204 return container_of(chan, struct ep93xx_dma_chan, chan);
205 }
206
207 /**
208 * ep93xx_dma_set_active - set new active descriptor chain
209 * @edmac: channel
210 * @desc: head of the new active descriptor chain
211 *
212 * Sets @desc to be the head of the new active descriptor chain. This is the
213 * chain which is processed next. The active list must be empty before calling
214 * this function.
215 *
216 * Called with @edmac->lock held and interrupts disabled.
217 */
218 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
219 struct ep93xx_dma_desc *desc)
220 {
221 BUG_ON(!list_empty(&edmac->active));
222
223 list_add_tail(&desc->node, &edmac->active);
224
225 /* Flatten the @desc->tx_list chain into @edmac->active list */
226 while (!list_empty(&desc->tx_list)) {
227 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
228 struct ep93xx_dma_desc, node);
229
230 /*
231 * We copy the callback parameters from the first descriptor
232 * to all the chained descriptors. This way we can call the
233 * callback without having to find out the first descriptor in
234 * the chain. Useful for cyclic transfers.
235 */
236 d->txd.callback = desc->txd.callback;
237 d->txd.callback_param = desc->txd.callback_param;
238
239 list_move_tail(&d->node, &edmac->active);
240 }
241 }
242
243 /* Called with @edmac->lock held and interrupts disabled */
244 static struct ep93xx_dma_desc *
245 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
246 {
247 if (list_empty(&edmac->active))
248 return NULL;
249
250 return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
251 }
252
253 /**
254 * ep93xx_dma_advance_active - advances to the next active descriptor
255 * @edmac: channel
256 *
257 * Function advances active descriptor to the next in the @edmac->active and
258 * returns %true if we still have descriptors in the chain to process.
259 * Otherwise returns %false.
260 *
261 * When the channel is in cyclic mode always returns %true.
262 *
263 * Called with @edmac->lock held and interrupts disabled.
264 */
265 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
266 {
267 struct ep93xx_dma_desc *desc;
268
269 list_rotate_left(&edmac->active);
270
271 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
272 return true;
273
274 desc = ep93xx_dma_get_active(edmac);
275 if (!desc)
276 return false;
277
278 /*
279 * If txd.cookie is set it means that we are back in the first
280 * descriptor in the chain and hence done with it.
281 */
282 return !desc->txd.cookie;
283 }
284
285 /*
286 * M2P DMA implementation
287 */
288
289 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
290 {
291 writel(control, edmac->regs + M2P_CONTROL);
292 /*
293 * EP93xx User's Guide states that we must perform a dummy read after
294 * write to the control register.
295 */
296 readl(edmac->regs + M2P_CONTROL);
297 }
298
299 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
300 {
301 struct ep93xx_dma_data *data = edmac->chan.private;
302 u32 control;
303
304 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
305
306 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
307 | M2P_CONTROL_ENABLE;
308 m2p_set_control(edmac, control);
309
310 return 0;
311 }
312
313 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
314 {
315 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
316 }
317
318 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
319 {
320 u32 control;
321
322 control = readl(edmac->regs + M2P_CONTROL);
323 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
324 m2p_set_control(edmac, control);
325
326 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
327 cpu_relax();
328
329 m2p_set_control(edmac, 0);
330
331 while (m2p_channel_state(edmac) == M2P_STATE_STALL)
332 cpu_relax();
333 }
334
335 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
336 {
337 struct ep93xx_dma_desc *desc;
338 u32 bus_addr;
339
340 desc = ep93xx_dma_get_active(edmac);
341 if (!desc) {
342 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
343 return;
344 }
345
346 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
347 bus_addr = desc->src_addr;
348 else
349 bus_addr = desc->dst_addr;
350
351 if (edmac->buffer == 0) {
352 writel(desc->size, edmac->regs + M2P_MAXCNT0);
353 writel(bus_addr, edmac->regs + M2P_BASE0);
354 } else {
355 writel(desc->size, edmac->regs + M2P_MAXCNT1);
356 writel(bus_addr, edmac->regs + M2P_BASE1);
357 }
358
359 edmac->buffer ^= 1;
360 }
361
362 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
363 {
364 u32 control = readl(edmac->regs + M2P_CONTROL);
365
366 m2p_fill_desc(edmac);
367 control |= M2P_CONTROL_STALLINT;
368
369 if (ep93xx_dma_advance_active(edmac)) {
370 m2p_fill_desc(edmac);
371 control |= M2P_CONTROL_NFBINT;
372 }
373
374 m2p_set_control(edmac, control);
375 }
376
377 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
378 {
379 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
380 u32 control;
381
382 if (irq_status & M2P_INTERRUPT_ERROR) {
383 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
384
385 /* Clear the error interrupt */
386 writel(1, edmac->regs + M2P_INTERRUPT);
387
388 /*
389 * It seems that there is no easy way of reporting errors back
390 * to client so we just report the error here and continue as
391 * usual.
392 *
393 * Revisit this when there is a mechanism to report back the
394 * errors.
395 */
396 dev_err(chan2dev(edmac),
397 "DMA transfer failed! Details:\n"
398 "\tcookie : %d\n"
399 "\tsrc_addr : 0x%08x\n"
400 "\tdst_addr : 0x%08x\n"
401 "\tsize : %zu\n",
402 desc->txd.cookie, desc->src_addr, desc->dst_addr,
403 desc->size);
404 }
405
406 switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
407 case M2P_INTERRUPT_STALL:
408 /* Disable interrupts */
409 control = readl(edmac->regs + M2P_CONTROL);
410 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
411 m2p_set_control(edmac, control);
412
413 return INTERRUPT_DONE;
414
415 case M2P_INTERRUPT_NFB:
416 if (ep93xx_dma_advance_active(edmac))
417 m2p_fill_desc(edmac);
418
419 return INTERRUPT_NEXT_BUFFER;
420 }
421
422 return INTERRUPT_UNKNOWN;
423 }
424
425 /*
426 * M2M DMA implementation
427 *
428 * For the M2M transfers we don't use NFB at all. This is because it simply
429 * doesn't work well with memcpy transfers. When you submit both buffers it is
430 * extremely unlikely that you get an NFB interrupt, but it instead reports
431 * DONE interrupt and both buffers are already transferred which means that we
432 * weren't able to update the next buffer.
433 *
434 * So for now we "simulate" NFB by just submitting buffer after buffer
435 * without double buffering.
436 */
437
438 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
439 {
440 const struct ep93xx_dma_data *data = edmac->chan.private;
441 u32 control = 0;
442
443 if (!data) {
444 /* This is memcpy channel, nothing to configure */
445 writel(control, edmac->regs + M2M_CONTROL);
446 return 0;
447 }
448
449 switch (data->port) {
450 case EP93XX_DMA_SSP:
451 /*
452 * This was found via experimenting - anything less than 5
453 * causes the channel to perform only a partial transfer which
454 * leads to problems since we don't get DONE interrupt then.
455 */
456 control = (5 << M2M_CONTROL_PWSC_SHIFT);
457 control |= M2M_CONTROL_NO_HDSK;
458
459 if (data->direction == DMA_MEM_TO_DEV) {
460 control |= M2M_CONTROL_DAH;
461 control |= M2M_CONTROL_TM_TX;
462 control |= M2M_CONTROL_RSS_SSPTX;
463 } else {
464 control |= M2M_CONTROL_SAH;
465 control |= M2M_CONTROL_TM_RX;
466 control |= M2M_CONTROL_RSS_SSPRX;
467 }
468 break;
469
470 case EP93XX_DMA_IDE:
471 /*
472 * This IDE part is totally untested. Values below are taken
473 * from the EP93xx Users's Guide and might not be correct.
474 */
475 if (data->direction == DMA_MEM_TO_DEV) {
476 /* Worst case from the UG */
477 control = (3 << M2M_CONTROL_PWSC_SHIFT);
478 control |= M2M_CONTROL_DAH;
479 control |= M2M_CONTROL_TM_TX;
480 } else {
481 control = (2 << M2M_CONTROL_PWSC_SHIFT);
482 control |= M2M_CONTROL_SAH;
483 control |= M2M_CONTROL_TM_RX;
484 }
485
486 control |= M2M_CONTROL_NO_HDSK;
487 control |= M2M_CONTROL_RSS_IDE;
488 control |= M2M_CONTROL_PW_16;
489 break;
490
491 default:
492 return -EINVAL;
493 }
494
495 writel(control, edmac->regs + M2M_CONTROL);
496 return 0;
497 }
498
499 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
500 {
501 /* Just disable the channel */
502 writel(0, edmac->regs + M2M_CONTROL);
503 }
504
505 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
506 {
507 struct ep93xx_dma_desc *desc;
508
509 desc = ep93xx_dma_get_active(edmac);
510 if (!desc) {
511 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
512 return;
513 }
514
515 if (edmac->buffer == 0) {
516 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
517 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
518 writel(desc->size, edmac->regs + M2M_BCR0);
519 } else {
520 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
521 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
522 writel(desc->size, edmac->regs + M2M_BCR1);
523 }
524
525 edmac->buffer ^= 1;
526 }
527
528 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
529 {
530 struct ep93xx_dma_data *data = edmac->chan.private;
531 u32 control = readl(edmac->regs + M2M_CONTROL);
532
533 /*
534 * Since we allow clients to configure PW (peripheral width) we always
535 * clear PW bits here and then set them according what is given in
536 * the runtime configuration.
537 */
538 control &= ~M2M_CONTROL_PW_MASK;
539 control |= edmac->runtime_ctrl;
540
541 m2m_fill_desc(edmac);
542 control |= M2M_CONTROL_DONEINT;
543
544 /*
545 * Now we can finally enable the channel. For M2M channel this must be
546 * done _after_ the BCRx registers are programmed.
547 */
548 control |= M2M_CONTROL_ENABLE;
549 writel(control, edmac->regs + M2M_CONTROL);
550
551 if (!data) {
552 /*
553 * For memcpy channels the software trigger must be asserted
554 * in order to start the memcpy operation.
555 */
556 control |= M2M_CONTROL_START;
557 writel(control, edmac->regs + M2M_CONTROL);
558 }
559 }
560
561 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
562 {
563 u32 control;
564
565 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_DONEINT))
566 return INTERRUPT_UNKNOWN;
567
568 /* Clear the DONE bit */
569 writel(0, edmac->regs + M2M_INTERRUPT);
570
571 /* Disable interrupts and the channel */
572 control = readl(edmac->regs + M2M_CONTROL);
573 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_ENABLE);
574 writel(control, edmac->regs + M2M_CONTROL);
575
576 /*
577 * Since we only get DONE interrupt we have to find out ourselves
578 * whether there still is something to process. So we try to advance
579 * the chain an see whether it succeeds.
580 */
581 if (ep93xx_dma_advance_active(edmac)) {
582 edmac->edma->hw_submit(edmac);
583 return INTERRUPT_NEXT_BUFFER;
584 }
585
586 return INTERRUPT_DONE;
587 }
588
589 /*
590 * DMA engine API implementation
591 */
592
593 static struct ep93xx_dma_desc *
594 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
595 {
596 struct ep93xx_dma_desc *desc, *_desc;
597 struct ep93xx_dma_desc *ret = NULL;
598 unsigned long flags;
599
600 spin_lock_irqsave(&edmac->lock, flags);
601 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
602 if (async_tx_test_ack(&desc->txd)) {
603 list_del_init(&desc->node);
604
605 /* Re-initialize the descriptor */
606 desc->src_addr = 0;
607 desc->dst_addr = 0;
608 desc->size = 0;
609 desc->complete = false;
610 desc->txd.cookie = 0;
611 desc->txd.callback = NULL;
612 desc->txd.callback_param = NULL;
613
614 ret = desc;
615 break;
616 }
617 }
618 spin_unlock_irqrestore(&edmac->lock, flags);
619 return ret;
620 }
621
622 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
623 struct ep93xx_dma_desc *desc)
624 {
625 if (desc) {
626 unsigned long flags;
627
628 spin_lock_irqsave(&edmac->lock, flags);
629 list_splice_init(&desc->tx_list, &edmac->free_list);
630 list_add(&desc->node, &edmac->free_list);
631 spin_unlock_irqrestore(&edmac->lock, flags);
632 }
633 }
634
635 /**
636 * ep93xx_dma_advance_work - start processing the next pending transaction
637 * @edmac: channel
638 *
639 * If we have pending transactions queued and we are currently idling, this
640 * function takes the next queued transaction from the @edmac->queue and
641 * pushes it to the hardware for execution.
642 */
643 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
644 {
645 struct ep93xx_dma_desc *new;
646 unsigned long flags;
647
648 spin_lock_irqsave(&edmac->lock, flags);
649 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
650 spin_unlock_irqrestore(&edmac->lock, flags);
651 return;
652 }
653
654 /* Take the next descriptor from the pending queue */
655 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
656 list_del_init(&new->node);
657
658 ep93xx_dma_set_active(edmac, new);
659
660 /* Push it to the hardware */
661 edmac->edma->hw_submit(edmac);
662 spin_unlock_irqrestore(&edmac->lock, flags);
663 }
664
665 static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
666 {
667 struct device *dev = desc->txd.chan->device->dev;
668
669 if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
670 if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
671 dma_unmap_single(dev, desc->src_addr, desc->size,
672 DMA_TO_DEVICE);
673 else
674 dma_unmap_page(dev, desc->src_addr, desc->size,
675 DMA_TO_DEVICE);
676 }
677 if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
678 if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
679 dma_unmap_single(dev, desc->dst_addr, desc->size,
680 DMA_FROM_DEVICE);
681 else
682 dma_unmap_page(dev, desc->dst_addr, desc->size,
683 DMA_FROM_DEVICE);
684 }
685 }
686
687 static void ep93xx_dma_tasklet(unsigned long data)
688 {
689 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
690 struct ep93xx_dma_desc *desc, *d;
691 dma_async_tx_callback callback = NULL;
692 void *callback_param = NULL;
693 LIST_HEAD(list);
694
695 spin_lock_irq(&edmac->lock);
696 /*
697 * If dma_terminate_all() was called before we get to run, the active
698 * list has become empty. If that happens we aren't supposed to do
699 * anything more than call ep93xx_dma_advance_work().
700 */
701 desc = ep93xx_dma_get_active(edmac);
702 if (desc) {
703 if (desc->complete) {
704 edmac->chan.completed_cookie = desc->txd.cookie;
705 list_splice_init(&edmac->active, &list);
706 }
707 callback = desc->txd.callback;
708 callback_param = desc->txd.callback_param;
709 }
710 spin_unlock_irq(&edmac->lock);
711
712 /* Pick up the next descriptor from the queue */
713 ep93xx_dma_advance_work(edmac);
714
715 /* Now we can release all the chained descriptors */
716 list_for_each_entry_safe(desc, d, &list, node) {
717 /*
718 * For the memcpy channels the API requires us to unmap the
719 * buffers unless requested otherwise.
720 */
721 if (!edmac->chan.private)
722 ep93xx_dma_unmap_buffers(desc);
723
724 ep93xx_dma_desc_put(edmac, desc);
725 }
726
727 if (callback)
728 callback(callback_param);
729 }
730
731 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
732 {
733 struct ep93xx_dma_chan *edmac = dev_id;
734 struct ep93xx_dma_desc *desc;
735 irqreturn_t ret = IRQ_HANDLED;
736
737 spin_lock(&edmac->lock);
738
739 desc = ep93xx_dma_get_active(edmac);
740 if (!desc) {
741 dev_warn(chan2dev(edmac),
742 "got interrupt while active list is empty\n");
743 spin_unlock(&edmac->lock);
744 return IRQ_NONE;
745 }
746
747 switch (edmac->edma->hw_interrupt(edmac)) {
748 case INTERRUPT_DONE:
749 desc->complete = true;
750 tasklet_schedule(&edmac->tasklet);
751 break;
752
753 case INTERRUPT_NEXT_BUFFER:
754 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
755 tasklet_schedule(&edmac->tasklet);
756 break;
757
758 default:
759 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
760 ret = IRQ_NONE;
761 break;
762 }
763
764 spin_unlock(&edmac->lock);
765 return ret;
766 }
767
768 /**
769 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
770 * @tx: descriptor to be executed
771 *
772 * Function will execute given descriptor on the hardware or if the hardware
773 * is busy, queue the descriptor to be executed later on. Returns cookie which
774 * can be used to poll the status of the descriptor.
775 */
776 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
777 {
778 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
779 struct ep93xx_dma_desc *desc;
780 dma_cookie_t cookie;
781 unsigned long flags;
782
783 spin_lock_irqsave(&edmac->lock, flags);
784
785 cookie = edmac->chan.cookie;
786
787 if (++cookie < 0)
788 cookie = 1;
789
790 desc = container_of(tx, struct ep93xx_dma_desc, txd);
791
792 edmac->chan.cookie = cookie;
793 desc->txd.cookie = cookie;
794
795 /*
796 * If nothing is currently prosessed, we push this descriptor
797 * directly to the hardware. Otherwise we put the descriptor
798 * to the pending queue.
799 */
800 if (list_empty(&edmac->active)) {
801 ep93xx_dma_set_active(edmac, desc);
802 edmac->edma->hw_submit(edmac);
803 } else {
804 list_add_tail(&desc->node, &edmac->queue);
805 }
806
807 spin_unlock_irqrestore(&edmac->lock, flags);
808 return cookie;
809 }
810
811 /**
812 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
813 * @chan: channel to allocate resources
814 *
815 * Function allocates necessary resources for the given DMA channel and
816 * returns number of allocated descriptors for the channel. Negative errno
817 * is returned in case of failure.
818 */
819 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
820 {
821 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
822 struct ep93xx_dma_data *data = chan->private;
823 const char *name = dma_chan_name(chan);
824 int ret, i;
825
826 /* Sanity check the channel parameters */
827 if (!edmac->edma->m2m) {
828 if (!data)
829 return -EINVAL;
830 if (data->port < EP93XX_DMA_I2S1 ||
831 data->port > EP93XX_DMA_IRDA)
832 return -EINVAL;
833 if (data->direction != ep93xx_dma_chan_direction(chan))
834 return -EINVAL;
835 } else {
836 if (data) {
837 switch (data->port) {
838 case EP93XX_DMA_SSP:
839 case EP93XX_DMA_IDE:
840 if (data->direction != DMA_MEM_TO_DEV &&
841 data->direction != DMA_DEV_TO_MEM)
842 return -EINVAL;
843 break;
844 default:
845 return -EINVAL;
846 }
847 }
848 }
849
850 if (data && data->name)
851 name = data->name;
852
853 ret = clk_enable(edmac->clk);
854 if (ret)
855 return ret;
856
857 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
858 if (ret)
859 goto fail_clk_disable;
860
861 spin_lock_irq(&edmac->lock);
862 edmac->chan.completed_cookie = 1;
863 edmac->chan.cookie = 1;
864 ret = edmac->edma->hw_setup(edmac);
865 spin_unlock_irq(&edmac->lock);
866
867 if (ret)
868 goto fail_free_irq;
869
870 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
871 struct ep93xx_dma_desc *desc;
872
873 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
874 if (!desc) {
875 dev_warn(chan2dev(edmac), "not enough descriptors\n");
876 break;
877 }
878
879 INIT_LIST_HEAD(&desc->tx_list);
880
881 dma_async_tx_descriptor_init(&desc->txd, chan);
882 desc->txd.flags = DMA_CTRL_ACK;
883 desc->txd.tx_submit = ep93xx_dma_tx_submit;
884
885 ep93xx_dma_desc_put(edmac, desc);
886 }
887
888 return i;
889
890 fail_free_irq:
891 free_irq(edmac->irq, edmac);
892 fail_clk_disable:
893 clk_disable(edmac->clk);
894
895 return ret;
896 }
897
898 /**
899 * ep93xx_dma_free_chan_resources - release resources for the channel
900 * @chan: channel
901 *
902 * Function releases all the resources allocated for the given channel.
903 * The channel must be idle when this is called.
904 */
905 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
906 {
907 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
908 struct ep93xx_dma_desc *desc, *d;
909 unsigned long flags;
910 LIST_HEAD(list);
911
912 BUG_ON(!list_empty(&edmac->active));
913 BUG_ON(!list_empty(&edmac->queue));
914
915 spin_lock_irqsave(&edmac->lock, flags);
916 edmac->edma->hw_shutdown(edmac);
917 edmac->runtime_addr = 0;
918 edmac->runtime_ctrl = 0;
919 edmac->buffer = 0;
920 list_splice_init(&edmac->free_list, &list);
921 spin_unlock_irqrestore(&edmac->lock, flags);
922
923 list_for_each_entry_safe(desc, d, &list, node)
924 kfree(desc);
925
926 clk_disable(edmac->clk);
927 free_irq(edmac->irq, edmac);
928 }
929
930 /**
931 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
932 * @chan: channel
933 * @dest: destination bus address
934 * @src: source bus address
935 * @len: size of the transaction
936 * @flags: flags for the descriptor
937 *
938 * Returns a valid DMA descriptor or %NULL in case of failure.
939 */
940 static struct dma_async_tx_descriptor *
941 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
942 dma_addr_t src, size_t len, unsigned long flags)
943 {
944 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
945 struct ep93xx_dma_desc *desc, *first;
946 size_t bytes, offset;
947
948 first = NULL;
949 for (offset = 0; offset < len; offset += bytes) {
950 desc = ep93xx_dma_desc_get(edmac);
951 if (!desc) {
952 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
953 goto fail;
954 }
955
956 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
957
958 desc->src_addr = src + offset;
959 desc->dst_addr = dest + offset;
960 desc->size = bytes;
961
962 if (!first)
963 first = desc;
964 else
965 list_add_tail(&desc->node, &first->tx_list);
966 }
967
968 first->txd.cookie = -EBUSY;
969 first->txd.flags = flags;
970
971 return &first->txd;
972 fail:
973 ep93xx_dma_desc_put(edmac, first);
974 return NULL;
975 }
976
977 /**
978 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
979 * @chan: channel
980 * @sgl: list of buffers to transfer
981 * @sg_len: number of entries in @sgl
982 * @dir: direction of tha DMA transfer
983 * @flags: flags for the descriptor
984 *
985 * Returns a valid DMA descriptor or %NULL in case of failure.
986 */
987 static struct dma_async_tx_descriptor *
988 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
989 unsigned int sg_len, enum dma_transfer_direction dir,
990 unsigned long flags)
991 {
992 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
993 struct ep93xx_dma_desc *desc, *first;
994 struct scatterlist *sg;
995 int i;
996
997 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
998 dev_warn(chan2dev(edmac),
999 "channel was configured with different direction\n");
1000 return NULL;
1001 }
1002
1003 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1004 dev_warn(chan2dev(edmac),
1005 "channel is already used for cyclic transfers\n");
1006 return NULL;
1007 }
1008
1009 first = NULL;
1010 for_each_sg(sgl, sg, sg_len, i) {
1011 size_t sg_len = sg_dma_len(sg);
1012
1013 if (sg_len > DMA_MAX_CHAN_BYTES) {
1014 dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1015 sg_len);
1016 goto fail;
1017 }
1018
1019 desc = ep93xx_dma_desc_get(edmac);
1020 if (!desc) {
1021 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1022 goto fail;
1023 }
1024
1025 if (dir == DMA_MEM_TO_DEV) {
1026 desc->src_addr = sg_dma_address(sg);
1027 desc->dst_addr = edmac->runtime_addr;
1028 } else {
1029 desc->src_addr = edmac->runtime_addr;
1030 desc->dst_addr = sg_dma_address(sg);
1031 }
1032 desc->size = sg_len;
1033
1034 if (!first)
1035 first = desc;
1036 else
1037 list_add_tail(&desc->node, &first->tx_list);
1038 }
1039
1040 first->txd.cookie = -EBUSY;
1041 first->txd.flags = flags;
1042
1043 return &first->txd;
1044
1045 fail:
1046 ep93xx_dma_desc_put(edmac, first);
1047 return NULL;
1048 }
1049
1050 /**
1051 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1052 * @chan: channel
1053 * @dma_addr: DMA mapped address of the buffer
1054 * @buf_len: length of the buffer (in bytes)
1055 * @period_len: lenght of a single period
1056 * @dir: direction of the operation
1057 *
1058 * Prepares a descriptor for cyclic DMA operation. This means that once the
1059 * descriptor is submitted, we will be submitting in a @period_len sized
1060 * buffers and calling callback once the period has been elapsed. Transfer
1061 * terminates only when client calls dmaengine_terminate_all() for this
1062 * channel.
1063 *
1064 * Returns a valid DMA descriptor or %NULL in case of failure.
1065 */
1066 static struct dma_async_tx_descriptor *
1067 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1068 size_t buf_len, size_t period_len,
1069 enum dma_transfer_direction dir)
1070 {
1071 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1072 struct ep93xx_dma_desc *desc, *first;
1073 size_t offset = 0;
1074
1075 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1076 dev_warn(chan2dev(edmac),
1077 "channel was configured with different direction\n");
1078 return NULL;
1079 }
1080
1081 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1082 dev_warn(chan2dev(edmac),
1083 "channel is already used for cyclic transfers\n");
1084 return NULL;
1085 }
1086
1087 if (period_len > DMA_MAX_CHAN_BYTES) {
1088 dev_warn(chan2dev(edmac), "too big period length %d\n",
1089 period_len);
1090 return NULL;
1091 }
1092
1093 /* Split the buffer into period size chunks */
1094 first = NULL;
1095 for (offset = 0; offset < buf_len; offset += period_len) {
1096 desc = ep93xx_dma_desc_get(edmac);
1097 if (!desc) {
1098 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1099 goto fail;
1100 }
1101
1102 if (dir == DMA_MEM_TO_DEV) {
1103 desc->src_addr = dma_addr + offset;
1104 desc->dst_addr = edmac->runtime_addr;
1105 } else {
1106 desc->src_addr = edmac->runtime_addr;
1107 desc->dst_addr = dma_addr + offset;
1108 }
1109
1110 desc->size = period_len;
1111
1112 if (!first)
1113 first = desc;
1114 else
1115 list_add_tail(&desc->node, &first->tx_list);
1116 }
1117
1118 first->txd.cookie = -EBUSY;
1119
1120 return &first->txd;
1121
1122 fail:
1123 ep93xx_dma_desc_put(edmac, first);
1124 return NULL;
1125 }
1126
1127 /**
1128 * ep93xx_dma_terminate_all - terminate all transactions
1129 * @edmac: channel
1130 *
1131 * Stops all DMA transactions. All descriptors are put back to the
1132 * @edmac->free_list and callbacks are _not_ called.
1133 */
1134 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1135 {
1136 struct ep93xx_dma_desc *desc, *_d;
1137 unsigned long flags;
1138 LIST_HEAD(list);
1139
1140 spin_lock_irqsave(&edmac->lock, flags);
1141 /* First we disable and flush the DMA channel */
1142 edmac->edma->hw_shutdown(edmac);
1143 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1144 list_splice_init(&edmac->active, &list);
1145 list_splice_init(&edmac->queue, &list);
1146 /*
1147 * We then re-enable the channel. This way we can continue submitting
1148 * the descriptors by just calling ->hw_submit() again.
1149 */
1150 edmac->edma->hw_setup(edmac);
1151 spin_unlock_irqrestore(&edmac->lock, flags);
1152
1153 list_for_each_entry_safe(desc, _d, &list, node)
1154 ep93xx_dma_desc_put(edmac, desc);
1155
1156 return 0;
1157 }
1158
1159 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1160 struct dma_slave_config *config)
1161 {
1162 enum dma_slave_buswidth width;
1163 unsigned long flags;
1164 u32 addr, ctrl;
1165
1166 if (!edmac->edma->m2m)
1167 return -EINVAL;
1168
1169 switch (config->direction) {
1170 case DMA_DEV_TO_MEM:
1171 width = config->src_addr_width;
1172 addr = config->src_addr;
1173 break;
1174
1175 case DMA_MEM_TO_DEV:
1176 width = config->dst_addr_width;
1177 addr = config->dst_addr;
1178 break;
1179
1180 default:
1181 return -EINVAL;
1182 }
1183
1184 switch (width) {
1185 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1186 ctrl = 0;
1187 break;
1188 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1189 ctrl = M2M_CONTROL_PW_16;
1190 break;
1191 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1192 ctrl = M2M_CONTROL_PW_32;
1193 break;
1194 default:
1195 return -EINVAL;
1196 }
1197
1198 spin_lock_irqsave(&edmac->lock, flags);
1199 edmac->runtime_addr = addr;
1200 edmac->runtime_ctrl = ctrl;
1201 spin_unlock_irqrestore(&edmac->lock, flags);
1202
1203 return 0;
1204 }
1205
1206 /**
1207 * ep93xx_dma_control - manipulate all pending operations on a channel
1208 * @chan: channel
1209 * @cmd: control command to perform
1210 * @arg: optional argument
1211 *
1212 * Controls the channel. Function returns %0 in case of success or negative
1213 * error in case of failure.
1214 */
1215 static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1216 unsigned long arg)
1217 {
1218 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1219 struct dma_slave_config *config;
1220
1221 switch (cmd) {
1222 case DMA_TERMINATE_ALL:
1223 return ep93xx_dma_terminate_all(edmac);
1224
1225 case DMA_SLAVE_CONFIG:
1226 config = (struct dma_slave_config *)arg;
1227 return ep93xx_dma_slave_config(edmac, config);
1228
1229 default:
1230 break;
1231 }
1232
1233 return -ENOSYS;
1234 }
1235
1236 /**
1237 * ep93xx_dma_tx_status - check if a transaction is completed
1238 * @chan: channel
1239 * @cookie: transaction specific cookie
1240 * @state: state of the transaction is stored here if given
1241 *
1242 * This function can be used to query state of a given transaction.
1243 */
1244 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1245 dma_cookie_t cookie,
1246 struct dma_tx_state *state)
1247 {
1248 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1249 dma_cookie_t last_used, last_completed;
1250 enum dma_status ret;
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(&edmac->lock, flags);
1254 last_used = chan->cookie;
1255 last_completed = chan->completed_cookie;
1256 spin_unlock_irqrestore(&edmac->lock, flags);
1257
1258 ret = dma_async_is_complete(cookie, last_completed, last_used);
1259 dma_set_tx_state(state, last_completed, last_used, 0);
1260
1261 return ret;
1262 }
1263
1264 /**
1265 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1266 * @chan: channel
1267 *
1268 * When this function is called, all pending transactions are pushed to the
1269 * hardware and executed.
1270 */
1271 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1272 {
1273 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1274 }
1275
1276 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1277 {
1278 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1279 struct ep93xx_dma_engine *edma;
1280 struct dma_device *dma_dev;
1281 size_t edma_size;
1282 int ret, i;
1283
1284 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1285 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1286 if (!edma)
1287 return -ENOMEM;
1288
1289 dma_dev = &edma->dma_dev;
1290 edma->m2m = platform_get_device_id(pdev)->driver_data;
1291 edma->num_channels = pdata->num_channels;
1292
1293 INIT_LIST_HEAD(&dma_dev->channels);
1294 for (i = 0; i < pdata->num_channels; i++) {
1295 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1296 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1297
1298 edmac->chan.device = dma_dev;
1299 edmac->regs = cdata->base;
1300 edmac->irq = cdata->irq;
1301 edmac->edma = edma;
1302
1303 edmac->clk = clk_get(NULL, cdata->name);
1304 if (IS_ERR(edmac->clk)) {
1305 dev_warn(&pdev->dev, "failed to get clock for %s\n",
1306 cdata->name);
1307 continue;
1308 }
1309
1310 spin_lock_init(&edmac->lock);
1311 INIT_LIST_HEAD(&edmac->active);
1312 INIT_LIST_HEAD(&edmac->queue);
1313 INIT_LIST_HEAD(&edmac->free_list);
1314 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1315 (unsigned long)edmac);
1316
1317 list_add_tail(&edmac->chan.device_node,
1318 &dma_dev->channels);
1319 }
1320
1321 dma_cap_zero(dma_dev->cap_mask);
1322 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1323 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1324
1325 dma_dev->dev = &pdev->dev;
1326 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1327 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1328 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1329 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1330 dma_dev->device_control = ep93xx_dma_control;
1331 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1332 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1333
1334 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1335
1336 if (edma->m2m) {
1337 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1338 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1339
1340 edma->hw_setup = m2m_hw_setup;
1341 edma->hw_shutdown = m2m_hw_shutdown;
1342 edma->hw_submit = m2m_hw_submit;
1343 edma->hw_interrupt = m2m_hw_interrupt;
1344 } else {
1345 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1346
1347 edma->hw_setup = m2p_hw_setup;
1348 edma->hw_shutdown = m2p_hw_shutdown;
1349 edma->hw_submit = m2p_hw_submit;
1350 edma->hw_interrupt = m2p_hw_interrupt;
1351 }
1352
1353 ret = dma_async_device_register(dma_dev);
1354 if (unlikely(ret)) {
1355 for (i = 0; i < edma->num_channels; i++) {
1356 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1357 if (!IS_ERR_OR_NULL(edmac->clk))
1358 clk_put(edmac->clk);
1359 }
1360 kfree(edma);
1361 } else {
1362 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1363 edma->m2m ? "M" : "P");
1364 }
1365
1366 return ret;
1367 }
1368
1369 static struct platform_device_id ep93xx_dma_driver_ids[] = {
1370 { "ep93xx-dma-m2p", 0 },
1371 { "ep93xx-dma-m2m", 1 },
1372 { },
1373 };
1374
1375 static struct platform_driver ep93xx_dma_driver = {
1376 .driver = {
1377 .name = "ep93xx-dma",
1378 },
1379 .id_table = ep93xx_dma_driver_ids,
1380 };
1381
1382 static int __init ep93xx_dma_module_init(void)
1383 {
1384 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1385 }
1386 subsys_initcall(ep93xx_dma_module_init);
1387
1388 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1389 MODULE_DESCRIPTION("EP93xx DMA driver");
1390 MODULE_LICENSE("GPL");
This page took 0.07574 seconds and 5 git commands to generate.